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Abstract

Continuous word representations, trained on

large unlabeled corpora are useful for many

natural language processing tasks. Popular

models that learn such representations ignore

the morphology of words, by assigning a dis-

tinct vector to each word. This is a limitation,

especially for languages with large vocabular-

ies and many rare words. In this paper, we pro-

pose a new approach based on the skipgram

model, where each word is represented as a

bag of character n-grams. A vector represen-

tation is associated to each character n-gram;

words being represented as the sum of these

representations. Our method is fast, allow-

ing to train models on large corpora quickly

and allows us to compute word representations

for words that did not appear in the training

data. We evaluate our word representations on

nine different languages, both on word sim-

ilarity and analogy tasks. By comparing to

recently proposed morphological word repre-

sentations, we show that our vectors achieve

state-of-the-art performance on these tasks.

1 Introduction

Learning continuous representations of words has a

long history in natural language processing (Rumel-

hart et al., 1988). These representations are typ-

ically derived from large unlabeled corpora using

co-occurrence statistics (Deerwester et al., 1990;

Schütze, 1992; Lund and Burgess, 1996). A large

body of work, known as distributional semantics,

has studied the properties of these methods (Turney

∗The two first authors contributed equally.

et al., 2010; Baroni and Lenci, 2010). In the neural

network community, Collobert and Weston (2008)

proposed to learn word embeddings using a feed-

forward neural network, by predicting a word based

on the two words on the left and two words on the

right. More recently, Mikolov et al. (2013b) pro-

posed simple log-bilinear models to learn continu-

ous representations of words on very large corpora

efficiently.

Most of these techniques represent each word of

the vocabulary by a distinct vector, without param-

eter sharing. In particular, they ignore the internal

structure of words, which is an important limitation

for morphologically rich languages, such as Turk-

ish or Finnish. For example, in French or Spanish,

most verbs have more than forty different inflected

forms, while the Finnish language has fifteen cases

for nouns. These languages contain many word

forms that occur rarely (or not at all) in the training

corpus, making it difficult to learn good word rep-

resentations. Because many word formations follow

rules, it is possible to improve vector representations

for morphologically rich languages by using charac-

ter level information.

In this paper, we propose to learn representations

for character n-grams, and to represent words as the

sum of the n-gram vectors. Our main contribution

is to introduce an extension of the continuous skip-

gram model (Mikolov et al., 2013b), which takes

into account subword information. We evaluate this

model on nine languages exhibiting different mor-

phologies, showing the benefit of our approach.
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2 Related work

Morphological word representations. In recent

years, many methods have been proposed to incor-

porate morphological information into word repre-

sentations. To model rare words better, Alexan-

drescu and Kirchhoff (2006) introduced factored

neural language models, where words are repre-

sented as sets of features. These features might in-

clude morphological information, and this technique

was succesfully applied to morphologically rich lan-

guages, such as Turkish (Sak et al., 2010). Re-

cently, several works have proposed different com-

position functions to derive representations of words

from morphemes (Lazaridou et al., 2013; Luong

et al., 2013; Botha and Blunsom, 2014; Qiu et

al., 2014). These different approaches rely on a

morphological decomposition of words, while ours

does not. Similarly, Chen et al. (2015) introduced

a method to jointly learn embeddings for Chinese

words and characters. Cui et al. (2015) proposed

to constrain morphologically similar words to have

similar representations. Soricut and Och (2015)

described a method to learn vector representations

of morphological transformations, allowing to ob-

tain representations for unseen words by applying

these rules. Word representations trained on mor-

phologically annotated data were introduced by Cot-

terell and Schütze (2015). Closest to our approach,

Schütze (1993) learned representations of character

four-grams through singular value decomposition,

and derived representations for words by summing

the four-grams representations. Very recently, Wi-

eting et al. (2016) also proposed to represent words

using character n-gram count vectors. However, the

objective function used to learn these representa-

tions is based on paraphrase pairs, while our model

can be trained on any text corpus.

Character level features for NLP. Another area

of research closely related to our work are character-

level models for natural language processing. These

models discard the segmentation into words and aim

at learning language representations directly from

characters. A first class of such models are recur-

rent neural networks, applied to language model-

ing (Mikolov et al., 2012; Sutskever et al., 2011;

Graves, 2013; Bojanowski et al., 2015), text nor-

malization (Chrupała, 2014), part-of-speech tag-

ging (Ling et al., 2015) and parsing (Ballesteros et

al., 2015). Another family of models are convolu-

tional neural networks trained on characters, which

were applied to part-of-speech tagging (dos San-

tos and Zadrozny, 2014), sentiment analysis (dos

Santos and Gatti, 2014), text classification (Zhang

et al., 2015) and language modeling (Kim et al.,

2016). Sperr et al. (2013) introduced a language

model based on restricted Boltzmann machines, in

which words are encoded as a set of character n-

grams. Finally, recent works in machine translation

have proposed using subword units to obtain repre-

sentations of rare words (Sennrich et al., 2016; Lu-

ong and Manning, 2016).

3 Model

In this section, we propose our model to learn word

representations while taking into account morphol-

ogy. We model morphology by considering subword

units, and representing words by a sum of its charac-

ter n-grams. We will begin by presenting the general

framework that we use to train word vectors, then

present our subword model and eventually describe

how we handle the dictionary of character n-grams.

3.1 General model

We start by briefly reviewing the continuous skip-

gram model introduced by Mikolov et al. (2013b),

from which our model is derived. Given a word vo-

cabulary of size W , where a word is identified by

its index w ∈ {1, ...,W}, the goal is to learn a

vectorial representation for each word w. Inspired

by the distributional hypothesis (Harris, 1954), word

representations are trained to predict well words that

appear in its context. More formally, given a large

training corpus represented as a sequence of words

w1, ..., wT , the objective of the skipgram model is to

maximize the following log-likelihood:

T
∑

t=1

∑

c∈Ct

log p(wc | wt),

where the context Ct is the set of indices of words

surrounding word wt. The probability of observing

a context word wc given wt will be parameterized

using the aforementioned word vectors. For now, let

us consider that we are given a scoring function s

which maps pairs of (word, context) to scores in R.
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One possible choice to define the probability of a

context word is the softmax:

p(wc | wt) =
es(wt, wc)

∑W
j=1 e

s(wt, j)
.

However, such a model is not adapted to our case as

it implies that, given a word wt, we only predict one

context word wc.

The problem of predicting context words can in-

stead be framed as a set of independent binary clas-

sification tasks. Then the goal is to independently

predict the presence (or absence) of context words.

For the word at position t we consider all context

words as positive examples and sample negatives at

random from the dictionary. For a chosen context

position c, using the binary logistic loss, we obtain

the following negative log-likelihood:

log
(

1 + e−s(wt, wc)
)

+
∑

n∈Nt,c

log
(

1 + es(wt, n)
)

,

where Nt,c is a set of negative examples sampled

from the vocabulary. By denoting the logistic loss

function ℓ : x 7→ log(1 + e−x), we can re-write the

objective as:

T
∑

t=1





∑

c∈Ct

ℓ(s(wt, wc)) +
∑

n∈Nt,c

ℓ(−s(wt, n))



 .

A natural parameterization for the scoring function

s between a word wt and a context word wc is to use

word vectors. Let us define for each word w in the

vocabulary two vectors uw and vw in R
d. These two

vectors are sometimes referred to as input and out-

put vectors in the literature. In particular, we have

vectors uwt
and vwc

, corresponding, respectively, to

words wt and wc. Then the score can be computed

as the scalar product between word and context vec-

tors as s(wt, wc) = u
⊤
wt
vwc

. The model described

in this section is the skipgram model with negative

sampling, introduced by Mikolov et al. (2013b).

3.2 Subword model

By using a distinct vector representation for each

word, the skipgram model ignores the internal struc-

ture of words. In this section, we propose a different

scoring function s, in order to take into account this

information.

Each word w is represented as a bag of character

n-gram. We add special boundary symbols < and >

at the beginning and end of words, allowing to dis-

tinguish prefixes and suffixes from other character

sequences. We also include the word w itself in the

set of its n-grams, to learn a representation for each

word (in addition to character n-grams). Taking the

word where and n = 3 as an example, it will be

represented by the character n-grams:

<wh, whe, her, ere, re>

and the special sequence

<where>.

Note that the sequence <her>, corresponding to the

word her is different from the tri-gram her from the

word where. In practice, we extract all the n-grams

for n greater or equal to 3 and smaller or equal to 6.

This is a very simple approach, and different sets of

n-grams could be considered, for example taking all

prefixes and suffixes.

Suppose that you are given a dictionary of n-

grams of size G. Given a word w, let us denote by

Gw ⊂ {1, . . . , G} the set of n-grams appearing in

w. We associate a vector representation zg to each

n-gram g. We represent a word by the sum of the

vector representations of its n-grams. We thus ob-

tain the scoring function:

s(w, c) =
∑

g∈Gw

z
⊤
g vc.

This simple model allows sharing the representa-

tions across words, thus allowing to learn reliable

representation for rare words.

In order to bound the memory requirements of our

model, we use a hashing function that maps n-grams

to integers in 1 to K. We hash character sequences

using the Fowler-Noll-Vo hashing function (specifi-

cally the FNV-1a variant).1 We set K = 2.106 be-

low. Ultimately, a word is represented by its index

in the word dictionary and the set of hashed n-grams

it contains.

4 Experimental setup

4.1 Baseline

In most experiments (except in Sec. 5.3), we

compare our model to the C implementation

1
http://www.isthe.com/chongo/tech/comp/fnv
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of the skipgram and cbow models from the

word2vec2 package.

4.2 Optimization

We solve our optimization problem by perform-

ing stochastic gradient descent on the negative log

likelihood presented before. As in the baseline

skipgram model, we use a linear decay of the step

size. Given a training set containing T words and

a number of passes over the data equal to P , the

step size at time t is equal to γ0(1 − t
TP

), where

γ0 is a fixed parameter. We carry out the optimiza-

tion in parallel, by resorting to Hogwild (Recht et

al., 2011). All threads share parameters and update

vectors in an asynchronous manner.

4.3 Implementation details

For both our model and the baseline experiments, we

use the following parameters: the word vectors have

dimension 300. For each positive example, we sam-

ple 5 negatives at random, with probability propor-

tional to the square root of the uni-gram frequency.

We use a context window of size c, and uniformly

sample the size c between 1 and 5. In order to sub-

sample the most frequent words, we use a rejection

threshold of 10−4 (for more details, see (Mikolov et

al., 2013b)). When building the word dictionary, we

keep the words that appear at least 5 times in the

training set. The step size γ0 is set to 0.025 for the

skipgram baseline and to 0.05 for both our model

and the cbow baseline. These are the default values

in the word2vec package and work well for our

model too.

Using this setting on English data, our model with

character n-grams is approximately 1.5× slower

to train than the skipgram baseline. Indeed,

we process 105k words/second/thread versus 145k

words/second/thread for the baseline. Our model is

implemented in C++, and is publicly available.3

4.4 Datasets

Except for the comparison to previous

work (Sec. 5.3), we train our models on Wikipedia

data.4 We downloaded Wikipedia dumps in nine

languages: Arabic, Czech, German, English,

2
https://code.google.com/archive/p/word2vec

3
https://github.com/facebookresearch/fastText

4
https://dumps.wikimedia.org

Spanish, French, Italian, Romanian and Russian.

We normalize the raw Wikipedia data using Matt

Mahoney’s pre-processing perl script.5 All the

datasets are shuffled, and we train our models by

doing five passes over them.

5 Results

We evaluate our model in five experiments: an eval-

uation of word similarity and word analogies, a com-

parison to state-of-the-art methods, an analysis of

the effect of the size of training data and of the size

of character n-grams that we consider. We will de-

scribe these experiments in detail in the following

sections.

5.1 Human similarity judgement

We first evaluate the quality of our representations

on the task of word similarity / relatedness. We do

so by computing Spearman’s rank correlation co-

efficient (Spearman, 1904) between human judge-

ment and the cosine similarity between the vector

representations. For German, we compare the dif-

ferent models on three datasets: GUR65, GUR350

and ZG222 (Gurevych, 2005; Zesch and Gurevych,

2006). For English, we use the WS353 dataset in-

troduced by Finkelstein et al. (2001) and the rare

word dataset (RW), introduced by Luong et al.

(2013). We evaluate the French word vectors on

the translated dataset RG65 (Joubarne and Inkpen,

2011). Spanish, Arabic and Romanian word vectors

are evaluated using the datasets described in (Hassan

and Mihalcea, 2009). Russian word vectors are eval-

uated using the HJ dataset introduced by Panchenko

et al. (2016).

We report results for our method and baselines

for all datasets in Table 1. Some words from these

datasets do not appear in our training data, and

thus, we cannot obtain word representation for these

words using the cbow and skipgram baselines. In

order to provide comparable results, we propose by

default to use null vectors for these words. Since our

model exploits subword information, we can also

compute valid representations for out-of-vocabulary

words. We do so by taking the sum of its n-gram

vectors. When OOV words are represented using

5
http://mattmahoney.net/dc/textdata
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sg cbow sisg- sisg

AR WS353 51 52 54 55

DE

GUR350 61 62 64 70

GUR65 78 78 81 81

ZG222 35 38 41 44

EN
RW 43 43 46 47

WS353 72 73 71 71

ES WS353 57 58 58 59

FR RG65 70 69 75 75

RO WS353 48 52 51 54

RU HJ 59 60 60 66

Table 1: Correlation between human judgement and

similarity scores on word similarity datasets. We

train both our model and the word2vec baseline on

normalized Wikipedia dumps. Evaluation datasets

contain words that are not part of the training set,

so we represent them using null vectors (sisg-).

With our model, we also compute vectors for unseen

words by summing the n-gram vectors (sisg).

null vectors we refer to our method as sisg- and

sisg otherwise (Subword Information Skip Gram).

First, by looking at Table 1, we notice that the pro-

posed model (sisg), which uses subword informa-

tion, outperforms the baselines on all datasets except

the English WS353 dataset. Moreover, computing

vectors for out-of-vocabulary words (sisg) is al-

ways at least as good as not doing so (sisg-). This

proves the advantage of using subword information

in the form of character n-grams.

Second, we observe that the effect of using char-

acter n-grams is more important for Arabic, Ger-

man and Russian than for English, French or Span-

ish. German and Russian exhibit grammatical de-

clensions with four cases for German and six for

Russian. Also, many German words are compound

words; for instance the nominal phrase “table ten-

nis” is written in a single word as “Tischtennis”. By

exploiting the character-level similarities between

“Tischtennis” and “Tennis”, our model does not rep-

resent the two words as completely different words.

Finally, we observe that on the English Rare

Words dataset (RW), our approach outperforms the

sg cbow sisg

CS
Semantic 25.7 27.6 27.5

Syntactic 52.8 55.0 77.8

DE
Semantic 66.5 66.8 62.3

Syntactic 44.5 45.0 56.4

EN
Semantic 78.5 78.2 77.8

Syntactic 70.1 69.9 74.9

IT
Semantic 52.3 54.7 52.3

Syntactic 51.5 51.8 62.7

Table 2: Accuracy of our model and baselines on

word analogy tasks for Czech, German, English and

Italian. We report results for semantic and syntactic

analogies separately.

baselines while it does not on the English WS353

dataset. This is due to the fact that words in the En-

glish WS353 dataset are common words for which

good vectors can be obtained without exploiting

subword information. When evaluating on less fre-

quent words, we see that using similarities at the

character level between words can help learning

good word vectors.

5.2 Word analogy tasks

We now evaluate our approach on word analogy

questions, of the form A is to B as C is to D,

where D must be predicted by the models. We use

the datasets introduced by Mikolov et al. (2013a)

for English, by Svoboda and Brychcin (2016) for

Czech, by Köper et al. (2015) for German and by

Berardi et al. (2015) for Italian. Some questions con-

tain words that do not appear in our training corpus,

and we thus excluded these questions from the eval-

uation.

We report accuracy for the different models in

Table 2. We observe that morphological informa-

tion significantly improves the syntactic tasks; our

approach outperforms the baselines. In contrast,

it does not help for semantic questions, and even

degrades the performance for German and Italian.

Note that this is tightly related to the choice of the

length of character n-grams that we consider. We

show in Sec. 5.5 that when the size of the n-grams

is chosen optimally, the semantic analogies degrade
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DE EN ES FR

GUR350 ZG222 WS353 RW WS353 RG65

Luong et al. (2013) - - 64 34 - -

Qiu et al. (2014) - - 65 33 - -

Soricut and Och (2015) 64 22 71 42 47 67

sisg 73 43 73 48 54 69

Botha and Blunsom (2014) 56 25 39 30 28 45

sisg 66 34 54 41 49 52

Table 3: Spearman’s rank correlation coefficient between human judgement and model scores for different

methods using morphology to learn word representations. We keep all the word pairs of the evaluation set

and obtain representations for out-of-vocabulary words with our model by summing the vectors of character

n-grams. Our model was trained on the same datasets as the methods we are comparing to (hence the two

lines of results for our approach).

less. Another interesting observation is that, as ex-

pected, the improvement over the baselines is more

important for morphologically rich languages, such

as Czech and German.

5.3 Comparison with morphological

representations

We also compare our approach to previous work on

word vectors incorporating subword information on

word similarity tasks. The methods used are: the

recursive neural network of Luong et al. (2013),

the morpheme cbow of Qiu et al. (2014) and the

morphological transformations of Soricut and Och

(2015). In order to make the results comparable, we

trained our model on the same datasets as the meth-

ods we are comparing to: the English Wikipedia

data released by Shaoul and Westbury (2010), and

the news crawl data from the 2013 WMT shared

task for German, Spanish and French. We also

compare our approach to the log-bilinear language

model introduced by Botha and Blunsom (2014),

which was trained on the Europarl and news com-

mentary corpora. Again, we trained our model on

the same data to make the results comparable. Us-

ing our model, we obtain representations of out-of-

vocabulary words by summing the representations

of character n-grams. We report results in Table 3.

We observe that our simple approach performs well

relative to techniques based on subword information

obtained from morphological segmentors. We also

observe that our approach outperforms the Soricut

and Och (2015) method, which is based on prefix

and suffix analysis. The large improvement for Ger-

man is due to the fact that their approach does not

model noun compounding, contrary to ours.

5.4 Effect of the size of the training data

Since we exploit character-level similarities between

words, we are able to better model infrequent words.

Therefore, we should also be more robust to the size

of the training data that we use. In order to as-

sess that, we propose to evaluate the performance

of our word vectors on the similarity task as a func-

tion of the training data size. To this end, we train

our model and the cbow baseline on portions of

Wikipedia of increasing size. We use the Wikipedia

corpus described above and isolate the first 1, 2, 5,

10, 20, and 50 percent of the data. Since we don’t

reshuffle the dataset, they are all subsets of each

other. We report results in Fig. 1.

As in the experiment presented in Sec. 5.1, not

all words from the evaluation set are present in the

Wikipedia data. Again, by default, we use a null

vector for these words (sisg-) or compute a vec-

tor by summing the n-gram representations (sisg).

The out-of-vocabulary rate is growing as the dataset

shrinks, and therefore the performance of sisg-

and cbow necessarily degrades. However, the pro-

posed model (sisg) assigns non-trivial vectors to

previously unseen words.

First, we notice that for all datasets, and all sizes,

the proposed approach (sisg) performs better than
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Figure 1: Influence of size of the training data on performance. We compute word vectors following the

proposed model using datasets of increasing size. In this experiment, we train models on a fraction of the

full Wikipedia dump.

the baseline. However, the performance of the base-

line cbow model gets better as more and more data

is available. Our model, on the other hand, seems

to quickly saturate and adding more data does not

always lead to improved results.

Second, and most importantly, we notice that the

proposed approach provides very good word vectors

even when using very small training datasets. For in-

stance, on the German GUR350 dataset, our model

(sisg) trained on 5% of the data achieves better

performance (66) than the cbow baseline trained on

the full dataset (62). On the other hand, on the En-

glish RW dataset, using 1% of the Wikipedia corpus

we achieve a correlation coefficient of 45 which is

better than the performance of cbow trained on the

full dataset (43). This has a very important practi-

cal implication: well performing word vectors can

be computed on datasets of a restricted size and still

work well on previously unseen words. In gen-

eral, when using vectorial word representations in

specific applications, it is recommended to retrain

the model on textual data relevant for the applica-

tion. However, this kind of relevant task-specific

data is often very scarce and learning from a reduced

amount of training data is a great advantage.

5.5 Effect of the size of n-grams

The proposed model relies on the use of character n-

grams to represent words as vectors. As mentioned

in Sec. 3.2, we decided to use n-grams ranging from

3 to 6 characters. This choice was arbitrary, moti-

vated by the fact that n-grams of these lengths will

cover a wide range of information. They would in-

clude short suffixes (corresponding to conjugations

and declensions for instance) as well as longer roots.

In this experiment, we empirically check for the in-

fluence of the range of n-grams that we use on per-

formance. We report our results in Table 4 for En-

glish and German on word similarity and analogy

datasets.

We observe that for both English and German,

our arbitrary choice of 3-6 was a reasonable deci-

sion, as it provides satisfactory performance across

languages. The optimal choice of length ranges

depends on the considered task and language and

should be tuned appropriately. However, due to

the scarcity of test data, we did not implement any

proper validation procedure to automatically select

the best parameters. Nonetheless, taking a large

range such as 3 − 6 provides a reasonable amount

of subword information.

This experiment also shows that it is important to

include long n-grams, as columns corresponding to

n ≤ 5 and n ≤ 6 work best. This is especially true

for German, as many nouns are compounds made

up from several units that can only be captured by

longer character sequences. On analogy tasks, we

observe that using larger n-grams helps for seman-

tic analogies. However, results are always improved

by taking n ≥ 3 rather than n ≥ 2, which shows

that character 2-grams are not informative for that

task. As described in Sec. 3.2, before computing
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2 3 4 5 6

2 57 64 67 69 69

3 65 68 70 70

4 70 70 71

5 69 71

6 70

(a) DE-GUR350

2 3 4 5 6

2 59 55 56 59 60

3 60 58 60 62

4 62 62 63

5 64 64

6 65

(b) DE Semantic

2 3 4 5 6

2 45 50 53 54 55

3 51 55 55 56

4 54 56 56

5 56 56

6 54

(c) DE Syntactic

2 3 4 5 6

2 41 42 46 47 48

3 44 46 48 48

4 47 48 48

5 48 48

6 48

(d) EN-RW

2 3 4 5 6

2 78 76 75 76 76

3 78 77 78 77

4 79 79 79

5 80 79

6 80

(e) EN Semantic

2 3 4 5 6

2 70 71 73 74 73

3 72 74 75 74

4 74 75 75

5 74 74

6 72

(f) EN Syntactic

Table 4: Study of the effect of sizes of n-grams considered on performance. We compute word vectors by

using character n-grams with n in {i, . . . , j} and report performance for various values of i and j. We eval-

uate this effect on German and English, and represent out-of-vocabulary words using subword information.

character n-grams, we prepend and append special

positional characters to represent the beginning and

end of word. Therefore, 2-grams will not be enough

to properly capture suffixes that correspond to con-

jugations or declensions, since they are composed of

a single proper character and a positional one.

5.6 Language modeling

In this section, we describe an evaluation of the word

vectors obtained with our method on a language

modeling task. We evaluate our language model

on five languages (CS, DE, ES, FR, RU) using the

datasets introduced by Botha and Blunsom (2014).

Each dataset contains roughly one million training

tokens, and we use the same preprocessing and data

splits as Botha and Blunsom (2014).

Our model is a recurrent neural network with 650
LSTM units, regularized with dropout (with proba-

bility of 0.5) and weight decay (regularization pa-

rameter of 10−5). We learn the parameters using

the Adagrad algorithm with a learning rate of 0.1,

clipping the gradients which have a norm larger

than 1.0. We initialize the weight of the network in

the range [−0.05, 0.05], and use a batch size of 20.

Two baselines are considered: we compare our ap-

proach to the log-bilinear language model of Botha

and Blunsom (2014) and the character aware lan-

guage model of Kim et al. (2016). We trained word

vectors with character n-grams on the training set

of the language modeling task and use them to ini-

tialize the lookup table of our language model. We

report the test perplexity of our model without using

pre-trained word vectors (LSTM), with word vectors

pre-trained without subword information (sg) and

with our vectors (sisg). The results are presented

in Table 5.

We observe that initializing the lookup table of

the language model with pre-trained word represen-

tations improves the test perplexity over the base-

line LSTM. The most important observation is that

using word representations trained with subword in-

formation outperforms the plain skipgram model.

We observe that this improvement is most signifi-

cant for morphologically rich Slavic languages such

as Czech (8% reduction of perplexity over sg) and

Russian (13% reduction). The improvement is less

significant for Roman languages such as Spanish

(3% reduction) or French (2% reduction). This

shows the importance of subword information on the

language modeling task and exhibits the usefulness
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CS DE ES FR RU

Vocab. size 46k 37k 27k 25k 63k

CLBL 465 296 200 225 304

CANLM 371 239 165 184 261

LSTM 366 222 157 173 262

sg 339 216 150 162 237

sisg 312 206 145 159 206

Table 5: Test perplexity on the language modeling

task, for 5 different languages. We compare to two

state of the art approaches: CLBL refers to the work

of Botha and Blunsom (2014) and CANLM refers

to the work of Kim et al. (2016).

of the vectors that we propose for morphologically

rich languages.

6 Qualitative analysis

6.1 Nearest neighbors.

We report sample qualitative results in Table 7. For

selected words, we show nearest neighbors accord-

ing to cosine similarity for vectors trained using the

proposed approach and for the skipgram base-

line. As expected, the nearest neighbors for com-

plex, technical and infrequent words using our ap-

proach are better than the ones obtained using the

baseline model.

6.2 Character n-grams and morphemes

We want to qualitatively evaluate whether or not

the most important n-grams in a word correspond

to morphemes. To this end, we take a word vector

that we construct as the sum of n-grams. As de-

scribed in Sec. 3.2, each word w is represented as

the sum of its n-grams: uw =
∑

g∈Gw
zg. For each

n-gram g, we propose to compute the restricted rep-

resentation uw\g obtained by omitting g:

uw\g =
∑

g′∈G−{g}

zg′ .

We then rank n-grams by increasing value of cosine

between uw and uw\g. We show ranked n-grams for

selected words in three languages in Table 6.

For German, which has a lot of compound nouns,

we observe that the most important n-grams cor-

word n-grams

autofahrer fahr fahrer auto

freundeskreis kreis kreis> <freun

DE grundwort wort wort> grund

sprachschule schul hschul sprach

tageslicht licht gesl tages

anarchy chy <anar narchy

monarchy monarc chy <monar

kindness ness> ness kind

politeness polite ness> eness>

EN unlucky <un cky> nlucky

lifetime life <life time

starfish fish fish> star

submarine marine sub marin

transform trans <trans form

finirais ais> nir fini

FR finissent ent> finiss <finis

finissions ions> finiss sions>

Table 6: Illustration of most important character n-

grams for selected words in three languages. For

each word, we show the n-grams that, when re-

moved, result in the most different representation.

respond to valid morphemes. Good examples in-

clude Autofahrer (car driver) whose most important

n-grams are Auto (car) and Fahrer (driver). We also

observe the separation of compound nouns into mor-

phemes in English, with words such as lifetime or

starfish. However, for English, we also observe that

n-grams can correspond to affixes in words such as

kindness or unlucky. Interestingly, for French we ob-

serve the inflections of verbs with endings such as

ais>, ent> or ions>.

6.3 Word similarity for OOV words

As described in Sec. 3.2, our model is capable of

building word vectors for words that do not appear

in the training set. For such words, we simply aver-

age the vector representation of its n-grams. In or-

der to assess the quality of these representations, we

analyze which of the n-grams match best for OOV

words by selecting a few word pairs from the En-

glish RW similarity dataset. We select pairs such

that one of the two words is not in the training vo-

cabulary and is hence only represented by its n-

grams. For each pair of words, we display the cosine

similarity between each pair of n-grams that appear
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query tiling tech-rich english-born micromanaging eateries dendritic

sisg tile tech-dominated british-born micromanage restaurants dendrite

flooring tech-heavy polish-born micromanaged eaterie dendrites

sg bookcases technology-heavy most-capped defang restaurants epithelial

built-ins .ixic ex-scotland internalise delis p53

Table 7: Nearest neighbors of rare words using our representations and skipgram. These hand picked

examples are for illustration.

Figure 2: Illustration of the similarity between character n-grams in out-of-vocabulary words. For each pair,

only one word is OOV, and is shown on the x axis. Red indicates positive cosine, while blue negative.
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in the words. In order to simulate a setup with a

larger number of OOV words, we use models trained

on 1% of the Wikipedia data as in Sec. 5.4. The re-

sults are presented in Fig. 2.

We observe interesting patterns, showing that sub-

words match correctly. Indeed, for the word chip,

we clearly see that there are two groups of n-grams

in microcircuit that match well. These roughly cor-

respond to micro and circuit, and n-grams in be-

tween don’t match well. Another interesting ex-

ample is the pair rarity and scarceness. Indeed,

scarce roughly matches rarity while the suffix -ness

matches -ity very well. Finally, the word preado-

lescent matches young well thanks to the -adolesc-

subword. This shows that we build robust word rep-

resentations where prefixes and suffixes can be ig-

nored if the grammatical form is not found in the

dictionary.

7 Conclusion

In this paper, we investigate a simple method to

learn word representations by taking into account

subword information. Our approach, which incor-

porates character n-grams into the skipgram model,

is related to an idea that was introduced by Schütze

(1993). Because of its simplicity, our model trains

fast and does not require any preprocessing or super-

vision. We show that our model outperforms base-

lines that do not take into account subword informa-

tion, as well as methods relying on morphological

analysis. We will open source the implementation

of our model, in order to facilitate comparison of fu-

ture work on learning subword representations.
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