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Abstract

Recent technological advances enabled modern robots to become part of our daily life. In particular, assistive robotics emerged
as an exciting research topic that can provide solutions to improve the quality of life of elderly and vulnerable people. This
paper introduces the robotic platform developed in the ENRICHME project, with particular focus on its innovative perception
and interaction capabilities. The project’s main goal is to enrich the day-to-day experience of elderly people at home with
technologies that enable health monitoring, complementary care, and social support. The paper presents several modules
created to provide cognitive stimulation services for elderly users with mild cognitive impairments. The ENRICHME robot
was tested in three pilot sites around Europe (Poland, Greece, and UK) and proven to be an effective assistant for the elderly
at home.

Keywords Assistive robotics · Robot perception · Human–robot interaction

This research has received funding from the EC H2020 Programme
under Grant Agreement No. 643691, ENRICHME.

B Serhan Coşar
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1 Introduction

Modern assistive technologies help humans to improve their
quality of life. In particular, assistive robotics is an impor-
tant research field that focuses on monitoring and improving
the daily life of people. Beyond this, which usually requires
direct physical contact for assistance, the field of socially

assistive robotics [25,48] investigates the usage of robots
that assist humans through social interactions (e.g. speech
for appointment and medicine intake reminders [56]). Con-
sidering the ageing population and their increasing life
expectancy, the societal and economical impact of such
robots for the elderly could be significant.

Many socially assistive robotic systems have been pro-
posed by various research projects [40,41,49,57]. In this
paper, we describe a robotic system that enables health mon-
itoring, complementary care and social support for elderly
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Fig. 1 The ENRICHME system integrates an assistive robot for the
elderly, here shown while interacting with a user

Fig. 2 ENRICHME system architecture

people at home. The system is part of the ENRICHME1

project [58], which aims at providing physical, social and
cognitive assistance to elderly people with mild cognitive
impairments (see Fig. 1).

The ENRICHME system consists of three main elements
[7]: the mobile robot platform, the Ambient Intelligence
System (AIS), and the Networked Care Platform (NCP), as
shown in Fig. 2. The first two elements are deployed in the
elderly home, while the latter is accessible via the internet.
The robot platform acts as a companion and a physical sys-
tem interface for the elderly users. The AIS is a dedicated
computer interfaced with the robot, the different smart home
sensors, and the NCP. The latter includes a visualization tool
accessible by the medical staff to monitor the data made
available by the robot and the smart home environment, pre-
processed by the ENRICHME federated systems.

A significant part of the ENRICHME’s research focuses
on the robotics aspect of the system. The mobile robot is a

1 ENRICHME: ENabling Robot and assisted living environment for
Independent Care and Health Monitoring of the Elderly—http://www.
enrichme.eu.

customized platform modified to provide several important
services, based on the needs and technological feasibility
of our user requirements. The latter were defined with the
active participation of elderly people and formal/informal
carers [17], highlighting the need of services such as domes-
tic monitoring, object finding, personalized reminders and
cognitive games. In order to provide these services, the robot
includes several innovative solutions in the design, multisen-
sor perception of humans, RFID-based object localization,
and interaction behaviors.

In this paper, we presents some key technological advances
that enable the robotic innovations and the delivery of the
above services. It includes in particular the following main
contributions:

1. an improved multisensor human perception for an assis-
tive robot enhanced by a thermal camera;

2. a new RFID-based object mapping and localization for
mobile robots;

3. a set of use case experiences and qualitative results from
real human–robot interactions with elderly users.

The remainder of this paper is organized as follows. Related
projects and robot solutions are presented in Sect. 2. Then,
Sect. 3 provides hardware and software details of our mobile
robot platform. The approaches used to detect, identify, and
monitor the user are presented in Sect. 4. The RFID-based
object localization is explained in Sect. 5. The human–
robot interaction and behavior coordination are explained
in Sect. 6. Experiments, results and discussion of various
use case scenarios are presented in Sect. 7. Finally, Sect. 8
concludes the paper summarizing achievements and current
limitations of the ENRICHME solutions.

2 RelatedWork

2.1 Human Perception

Human motion analysis has been an important part of robust
human–robot interaction (HRI) [8,13,29]. The robot’s per-
ception process typically starts with the task of human
detection, which can be made very challenging by problems
such as occlusion and noisy observations in domestic envi-
ronments. Hence, various algorithms have been proposed
in order to perform robust human detection using 2D laser
scanners [8,42], RGB-D sensors [33,35], thermal cameras
[13,28].

Human perception often includes re-identification, which
aims to establish a consistent labeling of the observed
people across multiple cameras or in a single camera in
non-contiguous time intervals [6]. There has been many
approaches focusing on appearance-based methods using
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RGB images [22]. However, using color causes problems
as it is not discriminative for long-term applications. In [4],
human re-identification is performed on soft biometric traits
extracted from skeleton data and geodesic distances extracted
from the depth data. The authors in [52] tackle the problem
by extracting features from the skeleton of the person, such
as distances between the joints and their ratios. However, as
skeleton data is not robust for body motion and occlusion,
these approaches have strong limitations. In addition, point
cloud matching has a high computational cost.

The solutions implemented in ENRICHME and described
in this paper improve previous human detection approaches
by combining 2D laser, depth sensor and thermal cam-
era information in order to achieve robust human per-
ception in cluttered home environments. Also, our human
re-identification goes beyond the state-of-the-art by using
biometric features based on body part volumes [14]. Thanks
to these features, indeed, people can be successfully iden-
tified under challenging conditions (e.g. person partially
occluded by furniture or not facing the robot).

In assistive technologies, wearable devices [55] have some
advantages over contact-free devices [30] regarding accu-
racy. However, they might be impractical in many cases,
especially for elderly people with cognitive impairments,
who could forget to wear them. Most of the contact-free
approaches utilize color images to measure heart rate [3,62]
and respiration rate [60]. Since these approaches rely on color
information, illumination changes can affect the measure-
ments reliability. Thermal images can be used to avoid the
effect of illumination on color images. In [30], the heart rate
is estimated by applying fast Fourier transform (FFT) on the
temperature signal. The authors in [1] monitor the respiration
rate by detecting temperature changes on the nose region.
These approaches, however, assume a fixed camera setup,
requiring the user to stay still in front of the sensor for a con-
siderable amount of time, which is not feasible for monitoring
elderly people at home. In our system, instead, temperature,
respiration and heart rates are extracted in real-time from the
face of the user using a robot thermal camera [15], exploring
for the first time the feasibility of fully contact-free phys-
iological monitoring with a mobile assistive robot for the
elderly.

2.2 RFID-Based Object Localization

Finding common objects in a house is a challenging task for
many elderly people. In terms of object localization tech-
niques, radio frequency-based approaches [9] are among the
least intrusive solutions. Also, among them, RFID provides
the smallest and cheapest devices [46].

Many RFID-based techniques rely on the Received Sig-
nal Strength Indication (RSSI), a propagation metric from
the underlying radiowave process. However, a pure physical

model is usually too complex to be efficiently modelled. Sta-
tistical approaches that model the tag detection event itself
or the RSSI value, like in [18], avoid these complexities. A
compromise solution is to combine a physical approach with
Bayesian models. Joho et al. [37] first proposed to include the
RSSI into a sensor model. They extended the model provided
by Hähnel et al. [34], based on tag detection probabilities over
a grid map. A further extension was proposed by Liu et al.
[45]. This model used an optimized particle filter that can be
used online.

In most of the previous work though, object localization
relies on several fixed, often expensive, RFID antennas sparse
in the environment. The solution presented in this paper,
instead, relies on a single sensor installed on a mobile robot,
making it one of the first robotic systems that use RFID
technology for object mapping and localization in domes-
tic environments. In addition, most of the existing systems
adopt custom-made or active devices, increasing the size of
the tags and the overall price of the installation. The new
RFID object localization presented in this paper uses passive
UHF tags, which are commercially available, cheap and with
smaller footprints.

2.3 Human–Robot Interaction

Multiple research projects have been focused on providing
personalized care for the elderly, more specifically men-
tal and physical stimulation. Research has been carried out
to provide robotic or computer based solutions to help the
elderly to maintain and improve their cognitive level, such
as cognitive games specially developed for the elderly. Two
computer based solutions are represented by the M3W2 and
the Sociable3 projects. Both of them contain games that
address different cognitive categories: attention, language,
memory, executive functions, logical reasoning, orientation.

One of the robotic solutions proposed is a long-term study
presented in [61]. A social robot was used for a period of six
months to help the elderly improve their level of attention
with a game called “Name that Tune”. The authors have
found that after 22 trials (out of a total of 80 trials), the
number of errors and the reaction time decreased while the
difficulty level increased, thus successfully improving the
level of attention of the end users. With respect to physi-
cal activities, the authors of [23] have proposed an exercise
coach for the elderly. The robot proposes multiple exercise
game scenarios (i.e., imitation game, memory game, workout
game, sequence game) in an one-on-one interaction session.
Personalized feedback is provided throughout the interac-
tion session. As later presented in this paper, our system
builds upon previous solutions to integrate advanced cogni-

2 https://m3w-project.eu.
3 http://cognitivetraining.eu.
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tive games in a mobile assistive robot for elderly people with
mild cognitive impairments.

2.4 Elderly-Care Robotics

In recent years, the development of innovative technologies
for a sustainable and high quality home care of the elderly
has become of primary importance. Extensive research has
been carried out in the area of mobile autonomous robot
companions operating in domestic environments. In partic-
ular, socially assistive robots focus on motivating, coaching,
and training users through non-physical interaction [48]. The
FP7 CompanionAble project [49] tried to address the issues
of social inclusion and homecare of persons with mild cog-
nitive impairments, prevalent among the older population.
The project focused on combining the strengths of a mobile
robotic companion with the advantages of a stationary smart
home. The FP7 Mobiserv project [54] developed an inte-
grated and intelligent home environment for the provision
of health, nutrition and well-being services to older adults.
The goal has been to develop and use up-to-date technol-
ogy like a companion robot, smart home, and smart clothes
in an intelligent and easy to use way to support indepen-
dent living of older persons. The FP7 Robot-Era project [19]
aims to enhance the quality and the acceptability of cur-
rent robotic services by using three different platforms for
indoor and outdoor application. The project exploits previous
knowledge on robotics and ambient intelligence technolo-
gies, cognitive-inspired robot learning architectures, elderly
user-needs, methodology of design for acceptability, and
standards fundamental for the real deployment. Another FP7
project, called GiraffPlus [16], tests how a network of sen-
sors in cooperation with a robot can help older people live
safer, more independent lives and enjoy social life from their
home. The system includes a telepresence robot that moves
around the person’s home and enables them to interact with
family, friends and healthcare professionals via video confer-
ence. Their system comes with sensors throughout the home
and in wearable devices that are designed to detect activities
like cooking, sleeping or watching television, but they also
provide medical information, like blood pressure and body
temperature.

Using the robotic platform Bandit, Fasola et al. [24] pre-
sented a robot exercise coach that is designed to motivate and
engage elderly users in simple physical exercise. Based on a
user study with older adults, the authors validated the robot’s
effectiveness at motivating physical exercise and showed
that there is a clear preference by older adults for a phys-
ically embodied robot coach, rather than a virtual one, in
terms of enjoyableness, helpfulness, and social attraction.
The HealthBots project [36] examined the role of telepres-
ence and humanoid robots in assisted living communities.
The robots were deployed as companions and nursing assis-

tants in a retirement village of around 650 residents. The
authors showed that the majority of the residents enjoyed
interacting with such robots. The authors in [39] presented a
human-like assistive communication robot, Matilda, which
was used for improving the emotional well-being of older
people in three residential care facilities in Australia, involv-
ing 70 participants. They showed that Matilda positively
engaged older people in group and one-to-one activities,
making them feel more productive and useful through per-
sonalized care. Li et al. [43] present a pilot study conducted
with Tangy robot, which is designed to facilitate multi-user
recreational activities. The authors used Tangy to assist mul-
tiple Bingo game sessions with groups of elderly residents in
a long-term care facility. They showed that Tangy was able
to autonomously and effectively facilitate Bingo games in
real interaction settings by determining its appropriate assis-
tive behaviors. A post-interaction questionnaire showed that
they enjoyed playing the game with the robot and that they
liked its socially interactive attributes. Mucchiani et al. [51]
developed design guidelines for an assistive robot based on
query of clinicians, caregivers and older adults. In their study,
authors found that hydration and walking encouragement
were critical daily activities where human–robot interaction
can be useful. They used a customized Savioke Relay robot
to perform both. Through observation of older adults with the
robot and post-interaction surveys, they found that perceived
usefulness, perceived ease of use, perceived enjoyment and
intention to repeat use were rated highly by the participants.
They also observed that the human-human interaction was
enhanced by the presence of the robot.

The H2020 Mario project [41] aims to help people with
dementia by enabling them to stay socially active using touch,
verbal, and visual human–robot interaction tools. Another
H2020 project called GrowMeUp [47], focus on allowing
the elderly people to live for longer in their own environ-
ment without losing contact with their social circles, staying
active either via teleconference or other social facilities
provided within the system. Additionally, they investigate
behavior analysis solutions to detect and report emergencies
or respond to the person’s non-verbal cues and commands.
The RAMCIP project [40] aims to develop a service robot,
capable to assist older persons in a wide range of daily activ-
ities, being at the same time an active promoter of the user’s
physical and mental health by deciding when and how to
assist the user. It is accomplished either by initiating a multi-
modal human–robot communication or by fulfilling a robotic
manipulation task.

Our ENRICHME system builds on top of these projects
by adding robust multi-sensor human perception, customized
interaction tools, and an RFID ecosystem to locate personal
items in the user’s home environment, which are later pre-
sented in this paper. It also incorporates a non-intrusive
solution to monitor the user and collect relevant physiolog-
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Fig. 3 Evolution of TIAGo iron to the ENRICHME version

ical parameters [15]. In addition, it integrates an advanced
robot behavior framework to coordinate high-level tasks for
assisting user’s daily activities [27].

3 Robot Platform

A customized version of TIAGo Iron, shown in Fig. 3, was
designed to fit the requirements of the ENRICHME project.
The following sections detail the hardware and software
architectures of the robot platform.

3.1 Robot Hardware Architecture

In order to get TIAGo to fit the requirements of the
ENRICHME project, several modifications on the hardware
is done. The base robot, which includes a differential drive
base, a lifting torso and a pan/tilt head, is kept. Several sen-
sors such as RFID system, thermal camera are added on top
of the base robot.

In an RFID system there is at least one reader and typically
multiple tags. Tags are very simple radio devices, capable
of transmitting a short signal after a reader request. These
tags do not require a battery, as they can be powered by the
reader’s radio signal itself. This reader is the only active radio
frequency device on the RFID network. Improvements in the
design of RFID readers have increased their popularity in
the robotics field. Modern readers are compact enough to be
embedded on a mobile robot,

The thermal camera, RFID antenna and its reader, the
environment sensor and the touchscreen is added to the base
design. The following hardware devices were selected:

– Optris PI450 thermal camera
– Mti Wireless Edge LTD. MT-242025/TRH/A antenna

– ThingMagic Mercury6e RFID reader module
– UiEM01 Environmental monitor providing temperature,

humidity and light measurements

Figure 4 presents the hardware architecture of the robot,
specifying the connection buses used to integrate the dif-
ferent devices required.

3.2 Overall Software Architecture

The ENRICHME system consists of four main software mod-
ules: (i) navigation, (ii) human perception, (iii) RFID-based
object localization, (iv) interaction and behavior coordina-
tion. An overall schematic of the system is presented in
Fig. 5. Using 2D laser scanner and depth sensor, an advanced
navigation software is implemented. The details of the navi-
gation software is described in the next subsection (Sect. 3.3).
Human perception performs human detection, tracking, and
reidentification using 2D laser scanner, depth sensor, and
thermal camera (Sect. 4). Object localization uses RFID
antenna and reader to detect RFID tagged objects in the
user’s flat (Sect. 5). Finally, audio-visual and spatial inter-
action with the user is implemented by the interaction and
behavior coordination module (Sect. 6).

Standard software operating systems and middle-wares
have been adopted in the ENRICHME system. The robot
works with Robot Operating System (ROS)4 over Ubuntu and
runs all dedicated software for each module (e.g., human per-
ception) on ROS. The implementation details of the modules
are presented in the next sections. The robot also communi-
cates with the AIS computer using serialized ROS messages,
i.e., via ROS topics and services.

3.3 Advanced Navigation Software

Specific ROS-based navigation software was developed for
the ENRICHME system. The purpose of the improved nav-
igation software was twofold: first, to increase the safety
of the navigation to prevent collisions with the elderly and
the environment; second, to provide an easy-to-use graphical
interface to map every home and configure additional meta-
data like Virtual Obstacles (VOs), Zones Of Interest (ZOIs)
and Points Of Interest (POIs). Figure 6 shows a snapshot of
the GUI to define meta-data on map. ZOIs are painted in
green, POIs are the blue circles, and VOs are in red.

POIs were required in order to define the dock station
position within the map and to define pre-defined locations
where the robot was meant to wait for instructions. ZOIs
were needed in order to have topological information about
the objects detected by RFID. Finally, VOs are always useful
to prevent the robot entering some specific areas.

4 http://www.ros.org.
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Fig. 4 Hardware architecture of
the robot platform

Fig. 5 Software architecture of
the robot platform

Apart from the different meta-data that helps to improve
the autonomous navigation of the robot, a key development
was to integrate the depth information from the RGB-D cam-
era of the robot’s head to the laser scan of the base. This
ensures that obstacles that cannot be detected by the laser are
effectively avoided thanks to the camera. A typical exam-
ple that appears in household environments is a table high
enough so that the laser detects only the legs but does not
detect the plane of the table. In this case, the camera does
detect the table plane and the robot circumvents the table.

4 Human Perception

4.1 Detection and Tracking

This sub-module is responsible for detecting and tracking
people around the robot. Two different human detectors
are used: (i) 2D laser-based legs detector, and (ii) RGB-D
camera-based upper-body detector.

The first detector is a 2D laser-based leg detector [2],
which extracts a set of features, including the number of
beams, linearity, circularity, radius, mean curvature, and
mean speed. The AdaBoost algorithm [59] is then employed
to turn a set of supervised weak classifiers into a strong classi-
fier, detecting legs from laser range data. The second detector
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Fig. 6 Navigation setup GUI for TIAGo ENRICHME

is a RGB-D based upper body detector [50]. This detector
applies template matching on depth images. To reduce the
computational load, this detector first runs a ground plane
estimation to determine a region of interest (ROI) that is the
most suitable to detect the upper body of a standing or walk-
ing person.

After the people nearby the robot are detected, a Bayesian
tracker is used to track them. It extends and improves the
solution proposed by [8], which allows combining multiple
sensor data, independently from the particular detection type
and frequency. The estimator adopted for our system is the
unscented Kalman filter (UKF) [38]. It is also possible to
switch between UKF and SIR filters, or choose EKF, since
they have all been implemented in ROS (Sect. 4.4). A gating
procedure is applied using a validation region around each
new predicted observation [5]. New validated detections are
associated to the correct target using a simple Nearest Neigh-
bor (NN) data association algorithm.

During testing, we observed that, under particular circum-
stances, both leg and upper-body detectors were affected by
a significant number of false positives in real home environ-
ments. Chairs were falsely detected as human legs; in others,
bulky shelves were falsely detected as human upper-body. To
solve the problem, the human detectors have been improved
exploiting the temperature information of the thermal cam-
era, mounted on the top of the robot (Fig. 4).

As humans are typically detectable within a limited
temperature range (i.e., 32–40 ◦C), they can be effectively

segmented in thermal images most of the time. In the adopted
solution, the position of human in thermal images is deter-
mined by applying thresholding and connected component
analysis (Fig. 7). The thermal detection is used to validate
the information from the other two detectors. The flow dia-
gram of the improved human detection/tracking system is
illustrated in Fig. 8.

4.2 Re-identification

Human re-identification is an important field in computer
vision and robotics. For long-term applications, such as
domestic service robots, many existing approaches have
strong limitations. For instance, appearance and color based
approaches are not applicable as people change often their
clothes. Face recognition requires a clear frontal image of
the face, which may not be possible all the time (e.g., a per-
son facing opposite the camera, see Fig. 9a). Skeletal data is
not always available because of self-occluding body motion
(e.g., turning around) or objects occluding parts of the body
(e.g., passing behind a table, see Fig. 9b and [53]).

In order to deal with the above limitations, we use a
volume-based human re-identification algorithm [14] that
uses biometric features, including body part volumes and
limb lengths. In particular, we extract height, shoulder width,
length of face, head volume, upper-torso volume and lower-
torso volume. As these features are neither view dependent
nor based on skeletal data, they do not require any special
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Fig. 7 a Image obtained from
the thermal camera of the
ENRICHME robot; b the
person’s position can be found
applying thresholding and
connected component analysis

Fig. 8 The flow diagram of the
human detection/tracking
module using thermal
information

Fig. 9 In a real-world scenario,
re-identification should cope
with a different views and b

occlusions

pose. In real-world scenarios, most of the time, lower body
parts of people are occluded by some object in the environ-
ment (e.g., chair). As our features are extracted from upper
body parts, they are robust to occlusions by chairs, tables
and similar types of furniture, which makes our approach
very suitable for applications in domestic environments.

The re-identification module uses the upper body detec-
tor in [50] to find humans in the scene, segments the whole
body of a person and extracts biometric features. Classifica-
tion is performed by a support vector machine (SVM). The
flow diagram of the respective sub-modules is presented in
Fig. 10. In particular, the depth of the body is firstly esti-
mated from the bounding box detected via an upper body
detector (Fig. 11a). Body segmentation is performed by
thresholding the whole image using the estimated depth level
(Fig. 11b). Then, important landmark points, including head

point, shoulder points and neck points, are detected. Using
these landmark points, height of the person, distance between
shoulder points, face’s length, head’s volume, upper-torso’s
volume, and lower-torso’s volume are extracted as biometric
features (Fig. 11c).

4.3 Physiological Monitoring

In assistive technologies, several approaches (from wearable
[55] to contact-free [30]) have been proposed for monitor-
ing physiological parameters. Although wearable devices
may have advantages over contract-free devices regarding
accuracy, they may not be reliable, especially for elderly
people with cognitive impairment (e.g., forgetting to wear
a heartbeat monitoring device). Since most of the contact-
free approaches require to be in front of a fixed camera, it is
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Fig. 10 Flow diagram of the
re-identification module

Fig. 11 The result of a the
upper body detector, b the body
segmentation and landmark
point detection: (a–e) head,
neck, left, right, and hip points,
(c) , and c the extracted
biometric features: (1) height of
the person, (2) distance between
shoulder joints, (3) length of
face, (4) head volume, (5)
upper-torso volume, and (6)
lower-torso volume

hard to use such approaches in real-world applications (e.g.,
at home).

This module is based on a contact-free physiological mon-
itoring system [15]. The system detects the subtle changes
in temperature on thermal images acquired from a thermal
camera. A dedicated software was developed for the robot
to monitor some important physiological parameter levels,
including body temperature, respiration rate and heartbeat
rate.

The approach was developed to extract human physio-
logical data including face temperature, respiratory rate and
heartbeat rate levels, from the thermal camera (Optris PI-
450). The challenges include face tracking in thermal images
and physiological feature extraction from temperature infor-
mation. The main steps of the process are shown in Fig. 12.

4.4 ROS Implementation

The software system consists of several ROS packages for
human perception: (i) 2D laser-based legs detector, (ii) RGB-
D camera-based upper-body detector, (iii) Bayesian tracking,
(iv) volume based re-identification, and (v) physiological
monitoring. The flow diagram of the modules is presented
in Fig. 13.

The ROS package developed for human perception includes
a one-click launch file. Parameters for relevant modules can
be set using a YAML configuration file. Our tracker’s mod-
ular design allows for the easy replacement or addition of
detectors. To add a detector to the tracking framework, we
provide the information via the YAML based configuration
file.

5 RFID-Based Object Localization

Object localization in ENRICHME is based upon a dis-
cretized map (a grid map) where tag detections are mapped by
the robot. Each tag detection is probabilistically associated
to a small area around the robot. After several detections, we
characterize the cumulated probability of detection over rel-
evant areas of the map. ENRICHME’s grid-map framework
for object localization is hence designed to detect objects on a
region-based accuracy level. This assumption allows a more
efficient detection in house environments, where accuracy is
less relevant. This section describe the components and the
implementation of our object localization module.

5.1 System Description

Object localization in ENRICHME is based on the driver
described in [10]. In essence, we use a trilateration approach
as described by [9]. However, we use robot movements to
provide multipath and removing the need of multiple anten-
nas. Instead of computing the intersection areas between
different detections, we assign weights to areas after each
tag detection based on the number of detections. When the
robot detects a tagged object, it updates the corresponding tag
grid map using our confidence model. Cells within the mea-
surement area increase its weight while the remaining ones
decrease it. As the robot moves around the environment, the
cells belonging to the intersection of the detection areas will
receive higher weights than the others. This way, high weight
areas emerge over time, effectively creating a probabilistic
map of possible object’s location(s).
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Fig. 12 Flow diagram of the
physiological monitoring

Fig. 13 Flow diagram of the ROS human perception

This updated grid map is used to localize a tagged object
within a specific room. Our application requires knowing
which area is the most probable location of an object, more
than a probabilistic map itself. We compute location proba-
bilities by dividing the probability map into relevant regions
and comparing relative region cumulated weights. The pro-
cess is illustrated by the sequence in Fig. 14 for a set of RFID
detections of a single object recorded by the moving robot.

As the robot moves and detects a tagged object (on the
left), a cumulative probability map is built by intersecting the
detection areas. The map is based on a heat scale (i.e. brighter
red = high probability; dark blue = low probability). Next
subsections will describe in detail our confidence model, and
how grid maps are updated and used to locate objects.

5.2 ConfidenceModel

We develop a simplified confidence model, describing most
likely tag locations around the RFID antenna given a positive
detection. This model was built moving a robot equipped with

an RFID antenna around a tag in a known position. Reference
tag was placed at the same height as the antenna, approxi-
mately 0.65 m, and over a plastic panel. The robot started
at 4.5 m away from the tag, facing it. Approximately every
30 cm, the robot would perform a complete spin while record-
ing, before taking another step towards the tag. In Fig. 15, we
captured tag readings’ information over a robot centered—
pose 0,0 facing right- grid map. This antenna centered grid
was used to describe tag detection.

We represented detection probability, as number of pos-
itive readings compared to the total number of detections.
Using captured data, we defined three areas, represented
in different colors in Fig. 15a. Black area in front of the
robot corresponds to a detection probability above 75%. Gray
area around robot comprehends probabilities between 30 and
75%. And white area is regions with probabilities under 30%.
These observations match with those made by [34] for their
simplified model.

We use a similar simplified confidence model, based on
two parameters, a detection radius and a frontal cone. This
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Fig. 14 RFID object localization in an elderly flat. As the robot moves
and detects a tagged object (on the left), a cumulative probability map
is built by intersecting the detection areas. Map color is based on a heat
scale (i.e. bright red = high probability; blue = low probability). (Color
figure online)

simplified confidence model is represented in Fig. 15c. It
comprises two parts: a 60 cone starting on the robot and a
2 m. diameter circle, centered 1.3 m. ahead of the robot. The
cone is the highest detection likelihood area, whereas the
circle comprises most of the habitual detection locations.

We also analyzed received signal strength indicator (RSSI)
distribution. Fig. 15b shows a gray-scaled grid with RSSI val-

ues higher than the average. Unsurprisingly RSSI distribution
is a circular shape, as suggested by [32]. Its diameter (around
2 m.) depends on the transmitted power by the reader. A big-
ger transmitted power is not advisable, as it would increase
reflections that could be identified as ’ghost’ detections. RSSI
is a relevant information provided by RFID readers. Our
model will use RSSI values to compute weight when updat-
ing the gridmap.

5.3 Grid-Map Updating

Once we have determined our confidence model, it can be
used to update tag grid maps. Each time a tagged object is
detected by the RFID reader, region described by our confi-
dence model at current robot position is more likely to contain
the tag. A positive detection within a region also means that
tag is less likely to be outside it. As a result, cells inside
this confidence model at robot position increment its weight,
while cells outside it decrement its weight.

Inside the confidence region we make a distinction
between the central cone and the surrounding circle. Cells
inside this region cone have relatively higher weight than
those inside the circle. Received RSSI also is taken into
account. The stronger the signal is, the higher the increment
inside the confidence area and the decrement outside it. This
process is summarized in Algorithm 1.

5.4 Object Localization

ENRICHME robot is conceived as a ’virtual companion’,
offering support to people with MCI. General advice in
these situations is to provide just enough help so that users
remain somehow active. Our RFID-based localization algo-
rithm accuracy was targeted to room level (regions) in order
to make users to finally retrieve objects. This granularity may
be insufficient for some large rooms, so a smaller level was

Fig. 15 Confidence model from recorded data
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Algorithm 1 Grid map update
Input: RSSI, pose, map
Output: updated map
1: for celli ∈ map do

2: if (celli ∈ con f idence_region(pose)) then

3: if (celli ∈ cone_region(pose)) then

4: Wcelli = Wcelli + finc(RSSI )

5: else

6: Wcelli = Wcelli + 0.5 ∗ finc(RSSI )

7: end if

8: else

9: Wcelli = Wcelli − fdec(RSSI )

10: end if

11: end for

12: return map

defined comprising smaller subregions inside a room. User
could then ask again to locate an object within the previously
reported region.

Using this map partitioning into regions and/or subre-
gions, we compute the overall cumulated cell weight over
each region in the detection grid map. This value provides a
confidence value on the likelihood of the tag to be located in
every region. Global map weight is used to normalize region
cumulated weights into a region confidence factor ranging
between 0 and 100%.

5.5 ROS Implementation

Each one of the elements in Fig. 16 corresponds to a different
ROS node. The RFID reader driver node rfid_node is
based upon the ROS driver implementation described in [10].
This node outputs tag reading messages, which contain tag
identification number (ID), received signal strength (RSSI),
phase and carrier frequency.

This information is received by the detection grid maps,
implemented by the node rfid_grid_map. Each node is
configured to monitor one object, assigned to one particular
tag ID. Each rfid_grid_map also uses robot localiza-
tion information to properly update the detected tag using
the detection model. Its input is a OccupancyGrid ROS
message that shares current map size, resolution and frame.

The third relevant node is rol_server, which imple-
ments the region probability estimation service. This service
is used by Robot interface to get a list of tracked objects and
most probable regions where each object is located. It reads
occupancy maps, builds a region probability list and offers it
to the robot in an unified interface. The list of implemented
actions of this server is summarized in Table 1.

6 Interaction and Behavior Coordination

For an every-day interaction with the elderly user, a web-
based graphical user interface (GUI) was developed for the
touchscreen mounted on the torso of the robot. The GUI fea-
tures eight custom developed applications: Cognitive games,
Health tips, Physical activities, Find object, Environmental
data (i.e., robot sensors; house sensors), Agenda, Call some-
body, Weather forecast and News reading. These applications
(also shown in Fig. 17) were designed based on the use cases
of the ENRICHME project and were customized based on
the feedback received from the early test participants of the
project. Next, each application is briefly presented.

6.1 GUI Applications

Find Object As presented in Sect. 5, the user can use the
ENRICHME robot to localize different objects around the
house. Therefore, a visual interface was designed for the
RFID-based object localization module. The user selects the
object that he/she wishes to find with the help of the robot.
The robot will display the rooms/regions in descending order
of the probability of finding the object in that room/region.
The last location shown is the last place where the object was
located. The interface for object localization can use differ-
ent hints with increasing levels of detail, instead of showing
immediately the exact known location on the screen. The
aim of this approach is to let the users remember the object
locations by themselves, which supports the maintenance of
cognitive capabilities.
Cognitive Games For helping the elderly maintain and even
improve their cognitive abilities, nine cognitive games were
designed and developed for this research project. A review of
the existing cognitive games designed for the elderly showed
that none of them met the requirements of the current project.
Most of the games are black-boxes (e.g., Sociable), there-
fore, do not provide access to the performance throughout
the game, and instead only at the end of the game provide a
final score. We want to be able to provide customized feed-
back at each step of each game; as well as a customized
performance score at the end of each game. Other cogni-
tive games platforms are not free to use (e.g., Luminosity)
and are not easy to integrate in the current architecture of
the system. Taking all these into consideration and based on
the input from the experts and the early test participants, we
have decided to implement nine cognitive games, each with
multiple difficulty levels. Each game is presented in Sect. 6.2.
Health Tips In this activity, the user can listen to a series of
healthy eating tips presented by the robot. The tips can be
customized for each country. The user can select to go to the
next/previous tip or to listen to the same tip again. Currently
the system provides nine tips related to a healthy diet: eating
more fruits and vegetables, eating less salt, getting active and
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Fig. 16 Flow diagram of the ROS modules for RFID object detection

Table 1 Actions implemented
in the findObject service

Action Payload Response format

List ‘objects’, ‘locations’ or ’sublocations’ A comma separated
string listing avail-
able objects, defined
locations or defined
sublocations. Objects
can be used as payload in
a ‘find’/’accurate_find’
action and response will
be an element returned
in ‘locations’ or ‘sublo-
cations’ ’list’ action
respectively

Find Any ’object’ element A comma separated
string alternating loca-
tions and probabilities.
First location has proba-
bility -1, meaning it was
last place where object
was detected

accurate_find Any ’object’ element As ’find’ action but
response will be using
sublocations. Probabili-
ties here are relative to
that location

Fig. 17 Main menu of the GUI on the robot’s monitor

having a healthy weight. The healthy tips are based on the
British Nutrition Foundation recommendations.5

Physical Activities For maintaining their physical abilities,
the GUI features a physical activities application. The user
can select the desired workout time (i.e., 5 min or 10 min).
Once the time is selected, the user is presented with a series
of upper body exercises (i.e., head, shoulders, arms). The
number of repetitions for each exercise is customizable. Both
auditory and visual feedback is provided by the robot for
each exercise. The application uses the skeleton data from the

5 https://www.nutrition.org.uk/healthyliving/healthydiet.html.
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Fig. 18 Interface for the physical activities application

RGB-D camera. Based on the position of the 22 joints, the
angles between the the joints of the upper body are computed
before providing the feedback for each exercise. Currently, a
total of 13 exercises were implemented: two for the head, one
for the shoulders, two for the body and eight for the arms. In
Fig. 18 the interface for this activity is shown. The physical
exercises were decided together with the physical therapists
from the care facilities.
Environmental Data In this application, the user can select
between visualizing the data from two types of sensors: the
Uniscan UiEM01 environmental monitoring sensor mounted
on the robot and the Smart Home Sensors mounted around
the house.
Agenda The purpose of this application is for the user of the
ENRICHME system to be able to visualize the appointments
and reminders set up through the Networked Care Platform
(NCP).
Call Somebody This application enables the user to per-
form video calls. The application was custom designed using
WebRTC technology. The user has also the option of texting
the contacts that are saved in the phone book of the applica-
tion.
Weather Application In this application the user can see the
weather forecast for its location. There are two visualization
options: hourly forecast and daily forecast. The application
uses the API of openweathermap.org.
News Reading The application uses the RSS 2.0 feed of dif-
ferent newspapers to gather the latest news and display them
to the end user. The newspaper and the news category can
be selected by the user. The news are presented both written
and read out loud by the robot.

6.2 Cognitive Games

As previously mentioned, nine cognitive games were devel-
oped. They are shown in Fig. 19.
Digit and Letter Cancellation In these two games the user has
to find all occurrences of a randomly chosen digit (i.e., Digit
cancellation, see Fig. 20a) or letter (i.e., Letter cancellation)
in a given time. Written and verbal feedback is provided

Fig. 19 ENRICHME cognitive games

after each item is selected. For correct answers, the digit turns
green, while for wrong answers, the digit turns red. The game
ends either when the user finds all the occurrences, or when
the time is up. The difficulty of the game is based on the total
number of digits and the given time. The lowest difficulty
is defined by 30 digits and 50 s game time. The game also
features two hints: first, the description of the game, and
second the number of elements that still need to be found.
The final score is given in percentage and it is based on the
number of mistakes, the number of correct answers and the
number of total digits or letters that needed to be found.
Integer and Decimal Matrix Task In these two games, the
user is presented with matrices containing multiple digits
(either integers or decimals). The purpose is for the user to
solve as many matrices as possible in 5 min time. Solving
a matrix means to find the two digits whose sum equals 10.
The difficulty level of this game is defined by the size of the
matrix: 2×2, 2×3, 2×4, 3×3, 3×4, and 4×4. After each
guess the user receives both visual and auditory feedback. A
new matrix appears only after a correct answer.
Hangman In this game (Fig. 20b) the user has to use the given
alphabet in order to guess a word which is part of one of the
following categories: fruits, vegetables, cities, animals, and
objects around the house. For each word there is a limited
number of hints that can be used (i.e., the number of unique
letters in the word—2). The first hint is always the description
of the word. The next hints are letters that appear in the word.
There is no time limit for guessing the word. For each wrong
letter pressed a new piece of the hangman is added.
Puzzle The user has to reconstruct the image by dragging
and snapping together the puzzle pieces. The pieces snap
towards each other once they are in the right place. There
is no time limit. The image can be reconstructed anywhere
on the screen. The background image represents the hint of
this game. There are 3 difficulty levels: easy (i.e., 12 puzzle
pieces), medium (i.e., 30 puzzle pieces), and difficult (i.e.,
54 puzzle pieces).
Memory game In this game the user is asked to memorize
a set of images. First, the images are shown on the screen
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Fig. 20 Some examples of
cognitive games

for a given time. Then, another set of images are shown on
the screen and the user is asked if the images shown on the
screen was part of the previous set or not. The game can be
customized to have any number of trials. Currently it is imple-
mented to include 3 trials and 3 difficulty levels. The images
are selected as part of six categories: armchair, clock, hat,
phone, sofa, and suitcase. For the easiest level, all images are
part of different categories. For the medium level. 2 images
are part of the same category, while for the difficult level all
images are part of the same category.
Speed game In this game, the screen is divided into two parts.
In each part, there is a combination of a letter and a number.
The user has to decide in which of the two parts appears the
combination VOWEL + EVEN NUMBER. There is no time
limit for this game, but the user should answer as quickly as
possible. No difficulty levels are implemented for this game.
Both visual and auditory feedback is provided after each trial.
Stroop game In this game the user has to decide the color of
the text, displayed on the screen. The text is a word (RED,
GREEN, BLUE, YELLOW) shown in different colors (red,
green, blue, yellow). The user has to press on the button
corresponding to the color of the text, and not the text written
on the screen. Half of the trials are congruent (i.e., the color
corresponds to the color on the screen, for example, Red
written in red color), while the other half are incongruent
trials (i.e., the color does not correspond to the text on the
screen, for example, Blue written in green color). No hints,
and no difficulty levels are implemented for this game.

6.3 Behavior Coordination

To coordinate the behavior of the robot, including inter-
active applications found on the touchscreen, the Hybrid
Behavior Based Architecture (HBBA) [27] is used. Its inte-
gration within ENRICHME is shown in Fig. 21. It is a three
layer architecture combining two robot control paradigms,
hybrid and behavior-based, and can be likened to the Belief-
Desire-Intention (BDI) model [31]. In HBBA, high-level
Motivation modules generate Desires that represent percep-
tual and action goals for the robot. The description of Desires

are never platform-specific. For instance, they can describe

Fig. 21 The hybrid behavior-based architecture (HBBA) implemented
in the ENRICHME project. HMI and RH represent the touchscreen and
robot hardware, respectively

the need to reach a location, but does not specify which exact
path to follow or velocity profile to apply.

A Motivation module is responsible for regulating a sin-
gle aspect of the overall robot behavior, for instance trying
to reach its docking station when the batteries are depleted.
In ENRICHME, each interactive application (Sect. 6) is
managed by a Motivation module for Cognitive Stimula-
tion (CS), Physical Stimulation (PS) and Social Stimulation
(SS). For instance, the physical activities motivation gener-
ates Desires to locate the user of the robot, keep the robot in
place but allow rotations to always face the user and track
its body movements during physical monitoring, and display
the instructions on the touch screen.

From the current set of Desires, HBBA first resolves con-
flicts on a priority-based basis and selects Strategies to fulfill
each Desire. Fulfilled Desires are named the Intentions of the
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robot, and the Strategies selection process is managed by the
Intention Translator (IT). The Intentions consists of instruc-
tions to configure perception (PC) behavior producing (BH)
modules and route the proper information messages between
them.

6.4 ROS Implementation

All the applications of the interface were implemented using
Web technologies: HTML, CSS, JavaScript (i.e., JQuery).
The connection between the web-interface and the rest of the
system is established through websockets and the standard
ROS JavaScript library (roslib.js). The interface publishes a
ROS message every time an application is loaded or closed.
The main parameters of the games are implemented as ROS
parameters which can be easily customized and adapted for
each end user.

As the system was tested in multiple countries in Europe,
the entire interface had to be customized for each country.
More specifically, the language of the interface has to be
easily configurable. For this purpose, all the messages dis-
played on the touchscreen are stored in different JSON files
for each language. A ROS parameter is implemented that
simply selects the requested language. Currently, the system
is available in English, Polish, Greek, Dutch, and Italian.

HBBA is implemented as multiple open-sourced ROS
nodes.6 Each Motivation module has its own process, which
sends Desires to the IW. The IW Translator uses the Google
OR-Tools7 library to solve a constraints optimization prob-
lem when resolving conflicts and selecting Strategies. The
routing of messages between modules is managed by per-
ceptual filters, which can progressively throttle the message
publication rate to reduce computational load [26]. Config-
uration of these filters, perception and behavior-producing
modules are Javascript programs interpreted by a Google
V88-based virtual machine embedded in the IW Translator.

7 Experiments

7.1 Human Perception

The human detection and tracking modules are the first
source of information for the ENRICHME robot, necessary
to find and approach the user. A detailed performance analy-
sis of our laser and RGB-D based people tracking is presented
in [44]. As noted before, during the testing in real home
environments, we noticed that some common objects, such
as chairs and bookcases, can sometime be confused with

6 https://www.github.com/francoisferland/HBBA.
7 https://developers.google.com/optimization/.
8 https://v8.dev.

humans by the leg and the upper-body detectors. As demon-
strated in Fig. 22, where some examples of false positive
recorded in an elderly flat are shown, human detection in clut-
tered homes is a very challenging task. However, by using
additional thermal information, as explained in Sect. 4.1, we
have eliminated many false positives and improved the accu-
racy of the human detection, as shown for the case of the
elderly user in Fig. 23.

In order to have quantitative results, we also tested our
detection module in a laboratory environment similar to a
flat that includes typical furniture such as sofas, book shelves.
We recorded over 4 min of data that contains multiple peo-
ple walking, sitting on a chair. Table 2 presents results for
our human detection algorithm together with an existing
detection algorithm in [20]. We can see that our algorithm
decreases most of the false positives and doubles the preci-
sion rate compared to the existing algorithm. This is achieved
by using additional thermal information while detecting peo-
ple. The true positives are low for both approaches because
of the noisy depth information when people are away from
the robot. Even in this case, our approaches achieves higher
F1-score than the existing approach.

After detection and tracking, our human perception
includes a re-identification module. Thanks to volumetric
features, this can recognize the user under different poses
and occlusions. Figure 24 shows some examples of re-
identification results recorded in two different flats of the
ENRICHME users. It can be seen that the system works suc-
cessfully even when the person is not facing the robot, is
occluded by a walker or in case there are multiple people
in the camera’s field of view. A thorough evaluation of our
re-identification module is also available in [14] (Fig. 25).

In addition, we also tested our re-identification module on
a public dataset9 recorded in a laboratory at the University of
Lincoln. The dataset contains 15 people standing and turning
around a spot for six times. The data simulates cases in which
people are observed from various view points by the robot
(e.g., facing backwards). The depth data in the dataset is
used to evaluate our re-identification module. The training is
done using 4 out of 6 turning around instances. The rest is
used for testing. Our algorithm achieves 40.03% recall rate
and 47.89% precision rate. Figure 26 shows the confusion
matrix of our re-identification results. We can see that, in
a 15 subject dataset, our algorithm might fail when people
have similar body shapes or volumetric features. However,
considering in a flat where the robot will come across with
a few people, our algorithm will be sufficient to distinguish
people and recognize the user.

To show the discriminative property of our algorithm, we
evaluated the re-identification performance on k-combinations

9 https://lcas.lincoln.ac.uk/wp/research/data-sets-software/l-cas-rgb-
d-t-re-identification-dataset/.
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Fig. 22 Some examples of false
human detection with the
laser-based leg detector (a) and
the RGB-D based upper-body
detector (b) in a UK home

Fig. 23 Human detection
improved by thermal
information

Table 2 The results of a standard human detection system and our
human detection module

Precision (%) F1-score (%)

Detection alg. in [20] 41.60 16.67

Our detection alg. 90.59 25.00

of 15 subjects, where k = {2, . . . , 14}. The average recall
rates versus different combinations are presented in Fig. 27.
It can be seen that our algorithm can accurately distinguish
the user among 4 people, achieving a recall rate higher than
70%.

The physiological monitoring module relies on a Fourier
analysis of the temperature on forehead and nose regions. The
face of the user must be therefore fully visible on the thermal
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Fig. 24 The ENRICHME robot
can successfully recognize the
correct user in challenging
situations such as non-frontal
views (top row), occlusions
(middle row) and multiple
people presence (bottom row)

Fig. 25 Examples of physiological monitoring with the ENRICHME robot while the user is reading news on its monitor

camera. For this reason, the physiological monitoring starts
when the user interacts with the robot, e.g. while reading
news or playing games (see Sect. 6). A detailed evaluation of
our physiological monitoring is provided by [15]. Figure 25
illustrates representative results obtained with an elderly per-
son in his flat. We can see that the module for physiological
monitoring successfully measures temperature, respiration
and heartbeat levels of the user while he is reading the news

on the robot’s monitor. The figure shows also a case in which
the physiological monitoring fails because the user’s face is
not fully visible (last image of Fig. 25). Since the face cannot
be properly detected, the algorithm cannot also estimate the
heartbeat and respiration rates correctly.

123



International Journal of Social Robotics (2020) 12:779–805 797

Fig. 26 The confusion matrix
obtained for our re-identification
module tested on a public
dataset

Fig. 27 The average recall rates for different combinations of people

7.2 Object Localization

A detailed analysis of the RFID object localization, eval-
uated in an office environment, was presented in [10]. In
ENRICHME, our solution was further validated in real-world
elderly homes, including the flat depicted in Fig. 28. This is
a dynamic environment, where objects can be located at and

Fig. 28 Layout of a validation site in Poland

moved between different places. New obstacles may also
appear, and people moving around makes the test scenario
even more challenging

Cheap RFID tags (Confidex EPC Class1 Gen2 UHF) were
attached to five common objects—remote, keyring, wallet,
pillbox and glasses – that could be located in two main
regions, living-room or bedroom. The bedroom was further
divided into three sub-regions (TV, dressing and sofa), which
increased the spatial resolution of the detector. In total, there
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were therefore four possible locations for the five tagged
objects.

In this experiment, each object was located in a distinct
sub-region, except for the remote and the keyring that were
both in the living-room. The bedroom area was particu-
larly cluttered, while most of the living room was free from
obstacles. A grid map was created by manually moving the
robot (with a joystick) once at the beginning, starting from
the dressing sub-region an heading South. After that, the
robot “patrolled” these regions for 5 min, moving repeatedly
between them and following the path shown in Fig. 28.

Table 3 summarizes the results of this experiment. Each
Region’s confidence was calculated as explained in Sect. 5.5.
In practice, the higher the confidence, the higher the probabil-
ity for an object to be located in such region. In the table, the
Average Region Confidence (ARC) is the confidence of the
object’s actual location. The Accuracy represents the proba-
bility of the highest confidence being assigned to the correct
object. Finally, the last column in the table shows the Num-
ber of Tag Detections (NTD), that is, how many detections
were integrated in each object’s grid map.

From the results, we can see how the remote was always
detected in the correct region. This is expected, since this
object was in the far corner of the living-room, away from
other regions. However, the region confidence is not very
high because of the relatively low number of detections. The
latter indeed were also rather weak, due to the path of the
robot which never got too close to the remote.

For similar reasons, the keyring was always missed. The
glasses were also difficult to detect, since placed in a region
that was mostly inaccessible by the robot. Moreover, they
were located between two different sub-regions (sofa and
dressing), making the accuracy drop below 50%. The most
probable region (incorrectly) estimated by the localization
algorithm was the dressing area, where the robot detected
the tag most of the time.

Finally, the pillbox was detected and correctly localized
with relatively high accuracy, while the wallet provided the
best results overall. Indeed, most of the time it was accurately
reported in the TV area with a large region confidence. In
this case, the spatial resolution of the localization system
was improved by a larger number of detections, thanks to the
local robot’s path and orientation in proximity of the wallet.

7.3 Use Case Experiences

In total, six ENRICHME systems were deployed in elderly
residences of the pilot sites: two in Greece, two in UK, and
two in Poland. Each site was managed by an ENRICHME
partner of the respective country.

The UK testing sites, managed by LACE Housing, were
three “housing with extra care” schemes with more than thirty
two-bedroom self-contained flats. The ENRICHME robot

was tested in two different buildings by 3 participants in
total, each one using the system for 10 weeks (see Fig. 29a).
The participants were all male and aged 70, 71, and 90,
respectively. Since the beginning, the users were very enthu-
siastic about the robot and keen to learn what it could do
and how to use it. Only one of the users was already familiar
with computer-based technology, and two of them had some
vision impairment. However, all the users were quickly able
to understand and operate the screen interface.

In Greece, the ENRICHME system was tested in one of the
facilities operated by the AKTIOS Group. This organization
provides a colorful and vivid environment for elderly care
with more than two-hundred beds in multiple units, where
the emphasis is given on hospitality services, nursing care,
stroke and bone fracture rehabilitation. They also provide
specialized services for people with dementia and Alzheimer
disease. AKTIOS hosted two ENRICHME systems for a
period of 20 weeks. There were two runs of 10 weeks, includ-
ing 4 participants in total. The system was installed in their
room and the activities were scheduled according to user
needs (see Fig. 29b). Inside the room, there was a bathroom,
one bed, a television, a wardrobe and a coffee table with
chairs. There were no carpet/mats and no other furniture.
The participants were introduced to the use of the system
and were closely monitored during the first days of its instal-
lation. There were 4 women aged from 73 to 89 years, who
quickly familiarized with the use of the robot and the its
interface.

The Polish pilot site was managed by the Poznan Uni-
versity of Medical Science (PUMS), which includes a
multi-professional team (geriatrician, nurse, physiotherapist,
occupational therapist, dietitian, social workers) specialized
in care for older individuals. They are actively involved in
various stages of geriatric care in Poland, e.g., to set up stan-
dards for geriatric and long-term care. Here, 4 participants
tested the ENRICHME system in their own houses or apart-
ments (Fig. 29c). There were 3 females and 1 male, with ages
between 66 and 83. The validation period for each participant
lasted approximately 10 weeks.

7.3.1 Interaction and Behavior Coordination

For each testing site, the interaction data was recorded in
a Mongo database with the following information: type of
activity (e.g., load page, close page), the user ID, the applica-
tion (e.g., cognitive games, puzzle, environmental), the date
and the time. We were interested in finding out which appli-
cations were most and least used by the end users. We only
considered for this analysis two participants that interacted
with the same robot in one of the testing sites. Each partici-
pant interacted with the robot for a duration of 8 weeks. The
robot was located in the first participant’s house between the
2nd of November and the 28th of December in 2017, and in
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Table 3 RFID-based object
localization statistics

Object Region ARC (%) Accuracy (%) NTD

Remote livingroom 32.1 100 123

Keyring livingroom – 0 0

Glasses bedroom_sofa 37.1 46.3 616

Pillbox bedroom_dressing 39.5 70.2 504

Wallet bedroom_tv 70.1 96.3 873

Fig. 29 ENRICHME robot
operating in UK at LACE (a),
Greece at AKTIOS (b), and
Poland at PUMS (c)

Table 4 Number of times each GUI application was used by the par-
ticipants

Application Participant 1 Participant 2

Cognitive games 168 2000

Health tips 16 11

Physical activities 9 37

Find object 32 4

Environmental data 64 122

Agenda 28 19

Call 11 23

Weather app 20 40

News app 7 19

Total 355 2275

the second participant’s house between the 15th of January
and the 11th of March in 2018.

Table 4 shows the number of times each application was
used by each participant in the 8 weeks of interaction. From
the table, it can be seen that the most used application by
the two participants is the Cognitive Games, followed by the

Table 5 Number of times each cognitive game was used by the partic-
ipants

Game Participant 1 Participant 2

Digit cancellation 21 274

Letter cancellation 11 200

Integer matrix 10 59

Decimal matrix 8 16

Memory game 28 47

Puzzle 35 89

Hangman 35 1255

Stroop 11 25

Speed game 9 35

Total 168 2000

Environmental data. The least used application by the first
participant is the News application, while for the second one
is the Find object application.

Next, we wanted to find out which was the preferred cog-
nitive game. Table 5 shows how many times each games was
played by each participant.
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Fig. 30 An example of HBBA
coordinating the physical
activities application requested
by a Polish user

For the first participant, the most played game is repre-
sented by both the Puzzle and the Hangman game, with a
total of 35 games for each. The second most played game
is the Memory game, played 28 times in 8 weeks. The two
most played games by the second participant are the Hang-
man games and the Digit Cancellation, played 1255 and 274
times, respectively. As it can be seen, both participants really
liked to play the Hangman game. The least played game by
both participant is the Decimal Matrix task.

Next, we wanted to see in how many days the applications
were used, the average time of interaction in each day, the
duration of the longest interaction, as well as the days of the
week when the robot was most and least used.

For the first participant, the GUI applications were used in
21 days out of the total 56 days. The average interaction time
was of 45 min with a maximum of 166 min. The preferred
day of the week for the interaction was Wednesday (5 times
in 8 weeks), followed by Monday and Saturday (4 times in
8 weeks) and Tuesday and Thursday (3 times in 8 weeks).

The second participant used the GUI applications in
44 days. The average interaction time was of 32 min with
a maximum of 197 min. There are no clear preferred days
of the week for the interaction. For 7 times in 8 weeks, the
end user interacted with the robot on Mondays, Wednesdays,
Thursdays and Sundays. For 6 times it was on Tuesdays and

Fridays, while the user interacted with the robot on Saturday
only for 4 times.

The recorded data shows that the two participants used
all 9 GUI applications designed and developed for the
ENRICHME system. The data also shows that the users liked
interacting with the robot all days in a week, spending at least
half an hour for each interaction on average. The application
most used by both end users is the Cognitive Games. Next, we
plan on extracting and analyzing the data from the other sites
as well so as to have a more complete picture of the applica-
tions used by all the end users of the ENRICHME system.
However, the preliminary results are promising as they show
that the end users used all the developed applications.

As described in Sect. 6, the robot behavior is coordi-
nated using HBBA. The implemented coordination module
is responsible of operating all nine interaction applications
together with tasks for reminding appointments and charg-
ing the battery of the robot. In real-world experiments,
our coordination module has successfully operated all tasks
implemented in the ENRICHME robot. Fig. 30 shows an
example of how HBBA works to complete the physical activ-
ities application started by an elderly user in Poland.
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7.3.2 User Feedback

After the validation experiments in the pilot sites, the par-
ticipants were asked to express their opinions about the
ENRICHME system. In general, the participants were happy
with the robot customization and interaction capabilities.
The acceptance of the ENRICHME robot was emphasized
in unstructured interviews throughout the validation phase
[21]. The participants pointed out that, when the robot was
present, there was “someone” to talk to, waiting for them at
home, and making the environment more friendly. This made
easier for them to cope with loneliness. At the end of the vali-
dation phase, indeed, some participants expressed regret that
they could not longer use the robot system.

Two of the participants in Greece chose to name the robots
after Greek gods. One was named Ermis, while the second
was named Apollo. Also in Poland the participants in the pilot
sites chose to personalize the robots, giving them popular
male Polish names: Kuba and Stach. One participant claimed
that “Kuba brings a lot of variety. Everyone is interested,
more willing to visit [...] the games are very interesting, I
really like the puzzle one. The atmosphere at home is more
revived by this robot”. Another participant, at the end of the
study, said that “the robot helped me open to something more,
to something new”.
Robot Design The participants approached the robot with
great confidence, believing that it looked safe and that they
could handle it with the support of the ENRICHME staff. All
the participants of the validation phase, after familiarizing
themselves with the robot, highly appreciated its appearance
and functionalities. Among the three most important sat-
isfaction items, “dimensions” was often mentioned. Other
favourite features were “safe and secure”, and “easy to use”.
This confirmed that the customized platform was very well
accepted by the users.
nGUI Applications and Cognitive Games The participants
were very interested and engaged by the various functions of
the system. All four participants enjoyed having the robot in
their rooms, playing the cognitive games, using the weather
forecast application, and reading some news. Their favorite
applications were the cognitive games, which some of them
used almost daily. All the participants had their own favorite
game: some enjoyed the Hangman and the Memory game,
while others preferred the Puzzle or the games with numbers.
They also found the possibility to check the home air quality
with the robot on-board sensors particularly useful. Indeed,
they were regularly checking it (sometimes more than once
a day), following the robot’s suggestion to open a window if
the air quality was bad.
Diet Suggestions and Reminders It was finally found that the
robot was very helpful to improve the users’ diet by providing
reminders for snacks or meals during the day, and by recom-
mending the type of food that the user was required to eat. In

addition, the guidelines provided by the healthy-tips appli-
cation were found very useful. After living and interacting
with the robot, the nutritional status of several participants
improved (i.e. their muscle tissue and daily energy intake
increased).

8 Conclusions

This paper described the robotic system implemented by the
ENRICHME project to enable health monitoring, comple-
mentary care and social support for elderly people at home.
The system was designed based on user requirements and
tested in real elderly homes, providing mobile interaction
services and cognitive stimulation for people with MCI.
Extensive research has been carried out in the area of mobile
autonomous robot companions operating in domestic envi-
ronments. As we have shown in the paper, our system builds
on top of previous systems by improving the robot perception
of humans and integrating a new RFID-based system to locate
everyday objects in a domestic environment. The system
incorporates other advanced features, such as non-intrusive
physiological monitoring, cognitive games and other inter-
action tools. The latter have been shown to be particularly
appreciated by our elderly users.

The mobile robot in ENRICHME is particularly useful for
two tasks: RFID object mapping and user monitoring. Indeed,
the range of RFID antennas small enough to be embedded
in mobile devices, such as smartphones or tablets, would
not be sufficient to detect all the objects in a typical home
environment. Furthermore, without a robot, the location of
the tagged objects could not be dynamically mapped, since
mobile devices do not integrate enough sensors (e.g. laser
scanners) and cannot be reasonably used to continuously
model the environment through their cameras.

For user monitoring, while it could also be argued that an
ambient intelligent solution can be integrated into a simpler
mobile device and a network of fixed sensors, it would not be
very effective in detecting or identifying people in cluttered
environments, and it would not be as flexible as a mobile
robot in terms of installation and configuration.

Although the emphasis of this paper is on the enabling
technological innovations of our assistive robot, future work
should look at opportune methodologies [11,12] to evalu-
ate the original expectations and the actual experiences of
our elderly users. Future technical improvements should also
consider fast and safe human–robot physical interaction (e.g.
find, pick-up and bring lost objects to the user), possibly
exploiting recent advances in soft robotics, as well as devel-
oping more expressive and empathetic interaction modalities
that adapt to the user’s mood.
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