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Abstract

Microaspiration is a common phenomenon in healthy subjects, but its frequency is increased in 

chronic inflammatory airway diseases, and its role in inflammatory and immune phenotypes is 

unclear. We have previously demonstrated that acellular bronchoalveolar lavage samples from half 

of the healthy people examined are enriched with oral taxa (here called pneumotypeSPT) and this 

finding is associated with increased numbers of lymphocytes and neutrophils in bronchoalveolar 

lavage. Here, we have characterized the inflammatory phenotype using a multi-omic approach. By 

evaluating both upper airway and acellular bronchoalveolar lavage samples from 49 subjects from 

three cohorts without known pulmonary disease, we observed that pneumotypeSPT was associated 

with a distinct metabolic profile, enhanced expression of inflammatory cytokines, a pro-

inflammatory phenotype characterized by elevated Th-17 lymphocytes and, conversely, a blunted 

alveolar macrophage TLR4 response. The cellular immune responses observed in the lower 

airways of humans with pneumotypeSPT indicate a role for the aspiration-derived microbiota in 

regulating the basal inflammatory status at the pulmonary mucosal surface.

Culture-independent techniques have challenged the preconception that the lower airways 

are normally sterile; the lungs of healthy individuals frequently harbour DNA of oral 

anaerobes such as members of the genera Prevotella and Veillonella, although at lower levels 

compared with the upper respiratory tract (URT)1–4. Because the oropharynx and the 

tracheobronchial tree are contiguous, continuing microaspiration probably seeds the lungs 

with oral bacteria5–7. Bacterial DNA of common oral taxa detected in the lower airways of a 

proportion of healthy people could represent the vestiges of aspirated oral bacteria, either 

nonviable or in the process of dynamic clearance, or could reflect a viable community of 

microorganisms, including aspirated oral bacteria, living in dynamic equilibrium with host 

defences.

Determination of the pulmonary microbial ecology and host-microbiome interaction has 

been limited to a description of the taxa present in the lower airways in health and disease. 

In an earlier report3, we observed two distinct lung microbiomes in acellular 

bronchoalveolar lavage (BAL) samples of healthy subjects that we termed ‘pneumotypes’: 

pneumotypeSPT, characterized by high bacterial load and supraglottic predominant taxa 

(SPT) such as the anaerobes Prevotella and Veillonella; and pneumotypeBPT, with low 

bacterial burden and background predominant taxa (BPT) found in the saline lavage and 

bronchoscope. We proposed that pneumotypeSPT reflects the presence of authentic URT-

derived microbes, whereas pneumotypeBPT predominantly reflects an absence of lung-

derived bacterial DNA, enabling a strong representation of environmental sequences present 

in instruments and reagents. Here, we have determined the prevalence of these two 

contrasting lung microbiome types, in a multi-centre study. Using a multi-omic approach, 

we tested the hypothesis that pneumotypeSPT is associated with a characteristic microbial 

metabolism profile and an inflammatory lower airway immune phenotype.
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Results

To test the generalizability of our earlier observation that two alternative lower airway 

pneumotypes exist among the studied subjects, we used acellular BAL samples obtained 

from 49 subjects recruited from three separate cohorts (Table 1). Analysis of the microbiome 

for 28 out of 49 acellular BAL samples using a 454 platform targeting the V1–V2 variable 

region has been reported previously (see Supplementary Information)3. For this report, all 

acellular BAL samples for 49 samples were processed at the same time at New York 

University (NYU) for DNA isolation, amplicon library preparation targeting the V4 variable 

region and sequencing using a MiSeq platform. When acellular BAL samples were 

compared with upper airways and background samples, unsupervised hierarchical clustering 

based on relative abundance of most prevalent taxa (>3% in any given sample) clustered the 

BAL samples into two groups (Fig. 1a). In one cluster, 27 out of 49 BAL samples clustered 

tightly with most of the background samples and one upper airway sample. We therefore 

denominated this group background predominant taxa. The other cluster of BAL samples 

constituted the remaining 22 out of 49 BAL samples and one background sample and was 

characterized by enrichment with taxa commonly seen in the upper airways. Two major 

distinct lung microbiomes (pneumotypes)3 were thus defined. PneumotypeSPT is 

characterized by enrichment with SPT including Prevotella and Veillonella, and 

pneumotypeBPT with BPT including Acidocella and Pseudomonas, consistent with the taxa 

identified as the most discriminant and abundant for upper airways and background, 

respectively (Supplementary Fig. 1). This dichotomy was present in acellular BAL samples 

obtained from subjects drawn from all three cohorts (although a small number of samples 

were obtained from Ohio State University). No demographic, clinical, smoking status or 

pulmonary function data distinguished subjects with pneumotypeSPT from those with 

pneumotypeBPT (Table 1). The results of the analysis of β-diversity, based on weighted 

UniFrac distances, showed a distinct clustering of samples identified as pneumotypeSPT and 

pneumotypeBPT (Fig. 1b). Importantly, BAL samples from each cohort were present in both 

pneumotypes, indicating that there was no cohort bias. Comparison of mean UniFrac 

pairwise distances showed greater divergence between samples of the two pneumotypes than 

between cohorts (Fig. 1c).

Using linear discriminant analysis (LDA) effect size (LEfSe) analysis to compare the two 

pneumotypes, multiple taxonomic differences were found: pneumotypeSPT was enriched 

with operational taxonomic units (OTUs) from the phyla Firmicutes, Fusobacterium and 

Bacteroidetes, whereas pneumotypeBPT was enriched with several OTUs belonging to the 

phyla Proteobacteria, Actinobacteria, Acidobacteria and others (Fig. 1d).

Bacteria and bacteriophages exist, in general, in very specific relationships, with most 

bacteriophages exhibiting fairly narrow host ranges8. To further characterize the differences 

between the two pneumotypes, we analysed the DNA phageome. Consistent with the 16S 

rRNA gene data, pneumotypeSPT was enriched with sequences most closely related to 

phages infecting Firmicutes and Bacteroidetes (for example, five different Streptococcus 

phages, Lactococcus phage KSY1 and Cellulophaga phage φ17 2, Supplementary Fig. 5). 

The overlap between some of the phages found enriched in BAL samples with 
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pneumotypeSPT (for example, the Streptococcus phages and Streptococcus genus) is 

consistent with infection of specific taxa with the appropriate phage.

A limitation of taxonomic assessment of microbial communities is the lack of functional 

information. We therefore used Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States (PICRUSt) to infer the relative abundance of protein-

coding genes based on the 16S rRNA taxonomic assignment described above, allowing us to 

examine each pneumotype9. Multiple significant differences in coding potential between 

pneumotypeBPT and pneumotypeSPT were noted (Fig. 2 and Supplementary Table 1). To 

examine whether the differences in genomic composition of the metabolic pathways 

observed in the two pneumotypes were consistent with different metabolic environments in 

the lower airways, metabolites in BAL fluid were assayed for 29 subjects from the NYU 

cohort by gas chromatography– time of flight (GC-TOF) mass spectrometry, and then 

correlated with the 16S data. We proposed the hypothesis that metabolome/ microbiome 

correlations would be present, indicating active microbial metabolism. Among those 

metabolites, we were interested in those of bacterial origin (such as rhamnose, a substrate 

for lipo-polysaccharides) or those related to fatty acids found at high levels in the lower 

airway environment that may have important immunological functions. Because our 

pneumotype classification is mainly driven by the extent of similarity of the lower and upper 

airway microbiomes, we quantified the similarity between samples from BAL and the upper 

airway by calculating mean pairwise UniFrac distances. The BAL UniFrac distance to the 

upper airway correlated with six out of 83 metabolites (Supplementary Table 3), with a 

positive Spearman’s (ρ) with fucose-rhamnose, cellobiose, isothreonic acid (Fig. 3a), 

threonic acid and glyceric acid, and negative Spearman’s ρ with arachidonic acid (Fig. 3b).

We then investigated how different taxa and metabolites co-occurred, and whether those 

relationships were conserved across pneumotypes. A co-occurrence network of the 16S data 

at the genus level was performed using SparCC, which greatly reduces artefactual 

correlations in compositional data10. Consistent with the results of previous analysis (Fig. 1), 

marker taxa for pneumotypeSPT and pneumotypeBPT co-occurred with other marker taxa 

within, but not across, the pneumotypes. These taxa were then considered in relation to the 

83 Kyoto Encyclopedia of Genes and Genomes (KEGG)-annotated metabolites. In the 

microbiome/metabolome correlation network that includes the most highly correlated 

metabolites (Fig. 3c), background-characteristic taxa such as Pseudomonas, Sphingomonas, 

Chryseobacterium, Burkholderia and Janthinobacterium were associated with glyceric acid, 

isothreonic acid, erythritol, threitol, cholesterol and fucose-rhamnose. In contrast, 

supraglottic-characteristic taxa, such as Prevotella, Rothia and Veillonella, were associated 

with palmitoleic acid, arachidonic acid, 4-hydroxybenzoate and glycerol. Furthermore, the 

genomic potential (metagenome) and end product (metabolome) levels were significantly 

correlated, especially in pneumotypeSPT (Supplementary Fig. 6), providing further evidence 

for active microbial metabolism in the pulmonary milieu.

We then tested for associations between the lung microbiome and host immune phenotypes. 

The BAL UniFrac distance to the upper airway showed a significant inverse correlation with 

the percentage of IL-17+ CD4+ cells in BAL (Fig. 4a); thus, pneumotypeSPT was associated 

with a higher frequency of CD4+ IL-17+ cells than pneumotypeBPT (4.9% (1.9 to 5.7) vs 
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1.0% (0.9 to 2.4) respectively, P = 0.04). The BAL UniFrac distance to the upper airway 

significantly correlated with the percentage of lymphocytes in BAL (available for the NYU 

and LHMP cohorts, Fig. 4). Evaluation of the bronchial epithelial cell transcriptome in a 

subset of 12 subjects showed that 2,834 out of 54,675 mRNAs were statistically significantly 

different between the two pneumotypes (P < 0.05), including genes related to innate or 

adaptive immunity (see Supplementary Information). Importantly, the expression of STAT3, 

an important transcription factor for Th17 differentiation, tended to be higher in 

pneumotypeSPT than in pneumotypeBPT (0.12 (−0.30 to 0.51) vs −0.50 (−0.78 to 0.24), 

respectively, P = 0.14). Furthermore, the BAL UniFrac distance to the upper airway was 

significantly and inversely correlated with bronchial epithelial cell STAT3 expression (Fig. 

4c). Many STAT3 downstream molecules (FST, LYZ, HP, SNAI2 and LEPR)11–16 were also 

present at significantly higher levels in pneumotypeSPT than in pneumotypeBPT 

(Supplementary Fig. 8). Taken together, these data indicate that microbes present in 

pneumotypeSPT or their products are linked to activation of these pathways and the lung 

mucosal Th17 response.

To further characterize the mechanisms involved in the lower airway immune phenotypes 

associated with each pneumotype, BAL cytokine levels were measured for the 29 subjects 

from whom sufficient BAL fluid was available (Supplementary Table 4). The BAL UniFrac 

distance to the upper airway negatively correlated with levels of IL-1α and fractalkine, two 

cytokines involved in Th17 differentiation and recruitment (Fig. 4d) as well as with IL-1ra, 

IL-8, growth-related oncogene-α (GRO), Eotaxin, FGF-2, epidermal growth factor (EGF), 

MIP-1α, TGF-α and granulocyte colony-stimulating factor (G-CSF) (Supplementary Table 

5).

To address which component of the lower airway microbiome might be most relevant for the 

local host immune phenotypes, we performed a network analysis between co-occurring taxa 

(summarized at the genus level) and BAL cytokines/cells (Fig. 4e). Using the previously 

constructed co-occurrence network (as shown Fig. 3c), we now searched for those taxa most 

highly correlated with particular BAL cytokines/cells. Among the significant correlations, 

SPT-characteristic taxa, including Prevotella, Rothia and Veillonella, were positively 

correlated with levels of multiple cytokines including Th17 cytokines, such as IL-1α, IL-1β, 

IL-6, fractalkine and IL-17, and with both Th17 cells and neutrophils. In contrast, BPT-

characteristic taxa, including members of the genera Pseudomonas, Sphingomonas, 

Chryseobacterium, Burkholderia and Janthinobacterium, only correlated with BAL 

macrophage percentage and levels of IFN-γ. To consider the innate responses in the lung to 

the two pneumotypes, we then evaluated the TLR4 responses of alveolar macrophages 

obtained from a subset of 18 subjects (eight from pneumotypeBPT and ten from 

pneumotypeSPT). Pairwise BAL UniFrac distance to the upper airway directly correlated 

with lipopolysaccharide (LPS)-induced increases in IL-6, macrophage-derived chemokine 

(MDC) and MIP-1α production (Fig. 5 and Supplementary Table 7). These data are 

indicative of the presence of a blunted TLR4 response in cells from subjects with 

pneumotypeSPT.
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Discussion

In our previous work, we found that the lower airway microbiomes assessed in acellular 

BAL samples obtained from healthy individuals could be divided into those with higher 

levels of bacterial 16S rRNA in the lower airway, whose bacterial communities resembled 

those in the URT (pneumotypeSPT), and individuals with low bacterial copy number, whose 

BAL bacterial sequences resembled background environmental taxa (pneumotypeBPT). In 

this cross-sectional study using three independent cohorts, we confirmed that a lower airway 

microbiome enriched with upper airway microbes (pneumotypeSPT) was present in 

approximately 45% of the studied individuals. Interestingly, a similar proportion of healthy 

individuals have been shown to microaspirate based on detectable radiotracer5,17. The 

existence of this distinct microbial community is further supported by phage data, which 

constitute an indirect method of studying bacterial communities independent of the 16S 

analysis. Importantly, both the pneumotypeSPT, as a categorical classification, and overall 

similarity between BAL and URT communities, as measured by the UniFrac statistic, were 

associated with enhanced lung inflammation characterized by increased BAL lymphocytes 

and with increased Th17 cells (Fig. 4a and b), concentrations of Th17-chemoattractant 

cytokines (for example, IL-1α, IL-1β, fractalkine and IL-7, Fig. 4d,e and Supplementary 

Tables 4 and 5), expression of inflammatory pathway mRNA (data in Supplementary 

Information and Supplementary Figs 8 and 9), and free fatty acids with immunological 

properties (for example, arachidonic acid, data in Supplementary Information and 

Supplementary Tables 2 and 3) and with blunted TLR4 responses. These data indicate that, 

among the subjects studied, the presence in the lung of URT-derived bacteria and/or their 

metabolic products regulates the tonic level of airway inflammation and Th17 immune 

activation.

In this study, we have utilized both the pneumotypeSPT as a categorical classification, and 

the overall similarity between BAL and URT communities, as measured by the UniFrac 

distance between BAL upper airways. We consider that the pneumotype categorization is 

useful for the conceptualization of a distinct microbial community. Our co-occurrence 

network analysis indicates that upper airway taxa tend to coexist. However, it is important to 

note that this is likely to be in dynamic change and, as indicated by previous descriptions of 

the ‘enterotypes’ in the gut microbiome18, an individual’s clusters can be highly variable19. 

We therefore also used the measurement of the UniFrac distance between BAL and the 

upper airways as a continuous variable of mouth-lung similarity, which may be more 

representative of the continuum variability that occurs in the physiological scenario where 

the lower airways are in communication with the upper airways and subjected to frequent 

aspiration events.

Because little is known about functional aspects of the lower airway microbiome, we used 

data from metabolomic analysis and from the taxa-inferred metagenome to explore possible 

associations between taxa and microbial metabolism. An increased relative abundance of 

carbohydrate metabolism genes in pneumotypeSPT correlated with reduced levels of 

cellobiose and fucose-rhamnose, consistent with active bacterial metabolism in the lower 

airway. Taken together, these data indicate that indigenous lung microbiota enriched with 
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oral taxa (pneumotypeSPT) form a metabolically active consortium that induces host cellular 

mucosal immunity of the Th17/neutrophilic phenotype, while suppressing innate immunity.

Taxa from the upper airways have been consistently observed in the lower airways in 

multiple lung microbiome studies1–4,20–23. However, across these studies, it has been 

difficult to establish whether the presence of upper airway taxa in BAL specimens is an 

artefact of carry-over of oropharyngeal microbes during sampling or is due to the authentic 

presence of such microbes in the lungs due to greater levels of microaspiration or inefficient 

microbial clearance. Microaspiration is common in healthy subjects5–7 and more frequent in 

those with lung disease, including chronic obstructive pulmonary disease (COPD), asthma, 

obstructive sleep apnoea, cystic fibrosis, pulmonary fibrosis, non-tuberculous mycobacteria 

and pneumonia6,24–28. Smoking or air pollution exposure further inhibit mucociliary 

clearance of bacteria29,30. Thus, commonly finding pneumotypeSPT in these asymptomatic 

subjects is not surprising. The topographical continuity of the upper and lower airways 

allows for microaspiration of upper airway anaerobes (for example, Prevotella or Veillonella, 

both markers for pneumotypeSPT). However, we also found differences between the upper 

airway microbiome and the microbiome observed in acellular BAL samples categorized as 

pneumotypeSPT (see Supplementary Information and Supplementary Fig. 4). Differences in 

the mucosal environment or immune response at the upper and lower airway may exert a 

selection pressure that is likely to affect the microbial community composition in each 

mucosal site. Furthermore, we have previously shown that pneumotypeSPT correlates with 

higher overall levels of bacteria based on 16S rRNA levels. Individuals with pneumotypeBPT 

are therefore likely to have less microaspiration and/or more effective microbial clearance. 

Consequently, BAL samples of pneumotypeBPT have greater phylogenetic differences from 

the microbiome present in the upper airways, as shown by higher BAL UniFrac distances to 

the upper airway. Using this continuous measurement complements earlier dichotomous 

pneumotype definitions3.

The strong correlation of the pneumotypeSPT microbial genomic potential and the lower 

airway metabolic environment indicate that microbial metabolism is active in the lungs of 

these subjects. In contrast, for subjects with pneumotypeBPT, the lower overall correlation 

between the metagenome and its metabolic environment indicates a lesser effect on the 

lower airway environment. However, the additive effects of the genomic potential of 

background taxa may dilute any microbial signal from resident microbes in this 

pneumotype. Background subtraction techniques optimized for samples with low signal-to-

noise ratio (for example, samples from pneumotypeBPT) are needed to better understand the 

microbiome contributions to the host environment.

The finding that inflammatory cytokines and lymphocytes inversely correlate with the β-

diversity gradient indicates that an increasing presence of oral microbes (lower BAL 

UniFrac distance to the upper airway) induces more lower airway inflammation. Lipoprotein 

lipase (LPL) mRNA is elevated in pneumotypeSPT (Supplementary Fig. 8), and its metabolic 

product arachidonic acid (Fig. 3b) is associated with enrichment with supraglottic microbes 

in the lower airways, possibly contributing to the increased inflammation31. In the gut, the 

gastrointestinal tract microbiota is critical to the mucosal immune phenotype. Indeed, in 

mouse gut lamina propria, a single group—segmented filamentous bacteria (SFB)—is 
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critical for Th17 cell differentiation32. Despite emerging data indicating that diverse 

microaspirated bacterial populations are normally present in association with airway mucosa 

in some people, little attention has been paid to the role of airway microbiota in Th17-

mediated airway mucosal inflammation33. In the lung, the mechanisms through which 

commensal-derived signals regulate innate and adaptive immunity are not well defined. 

Compared with the blood, the lung had an increased Th17/Treg ratio (Supplementary Fig. 

7), and pneumotypeSPT was associated with increased IL17+ CD4+ T cells (Fig. 4a). 

Furthermore, pneumotypeSPT and its marker taxa (for example, Veillonella and Prevotella) 

were associated with increased in vivo levels of several cytokines relevant for Th17 

differentiation (IL-1β and IL-6) or chemotaxis (fractalkine). These findings are indicative of 

a role for the lung microbiome in regulating the pulmonary Th17 response.

A strength of this study is that our findings were relevant across three independent cohorts, 

two of them (NYU and LHMP) reasonably sized. Although metabolome and detailed host 

immune phenotyping was only available from one of the cohorts (NYU), all three cohorts 

showed the pneumotypeSPT/pneumotypeBPT dichotomy. Also, lymphocyte percentages 

(available for the NYU and LHMP cohorts) were higher in pneumotypeSPT (Supplementary 

Table 4) and inversely correlated with the BAL UniFrac distance to the upper airway 

(Supplementary Table 5 and Fig. 4b).

Our study has several limitations. The BAL samples utilized in this study were acellular 

BAL fluid. There is still controversy regarding whether acellular BAL, whole BAL or BAL 

cells should be used to evaluate the lower airway microbiome, because it has been noted that 

these different sample types yield different results34,35. Due to the low bacterial burden of 

these samples, especially in pneumotypeBPT samples, it is possible that changes in 

processing may affect our pneumotype interpretation. Thus, our distinct pneumotype 

designations will need to be validated using other lower airway samples (for example, lung 

tissue, airway brushes and whole BAL specimens). In this study, a cross-sectional design 

was used to examine samples obtained from one segment of the lung. It is likely that 

microbiome heterogeneity (and thus pneumotype categorization) occurs over time and 

across different segments of the lung36. Longitudinal studies and studies evaluating different 

lung segments will be needed to confirm this hypothesis. It is also important to note that 

because the metagenome data are predicted from 16S rRNA data (PICRUSt), it does not 

constitute an independent validation of the taxonomic clusters. Furthermore, we note that 

inferred metagenomic data should be interpreted with caution due to concerns pertaining to 

biased amplification of 16S rRNA sequences, and that predicted pathways of non-bacterial 

origin (for example, pathways related to human disease and drug development) need to be 

removed from the analysis37. PICRUSt predictions depend on the sequenced reference 

genomes, which might not be sufficient to distinguish genomic content between related 

bacterial strains. The associations observed between microbiome, metabolome and 

inflammation in the human lung are insufficient to determine the causal direction, which 

would require interventional studies utilizing antibiotics or other measures aimed at altering 

the microbiome33. The mRNA from airway brushings represents a mixture of cells that 

mediate the mucosal immune response; experiments with sorted cells will allow better 

determination of the contribution of epithelial, myeloid and lymphoid cells to the expression 

signatures observed in the pneumotypes. Ultimately, animal models that replicate 
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observations in humans with pneumotypeSPT are needed to uncover the mechanisms of the 

lung microbiome, metabolome and immune response interactions. Despite the differences in 

inflammatory phenotypes between pneumotypeSPT and pneumotypeBPT, there were no 

differences in pulmonary function correlating with airway and/or parenchymal injury 

(recognizing that subjects were included only if they had no known clinical lung disease). 

We therefore interpret our findings as reflecting a sub-clinical inflammatory phenotype, 

which may be relevant to persistence. Our analysis was limited to the bacteriome (and its 

associated phages). Concurrent examination of the mycobiome and virome will be 

valuable38,39. Finally, a large percentage of subjects had significant smoking history (26% 

were current smokers and 37% were ex-smokers) and may not be representative of the 

general population. Although studies have not been able to show a direct effect of smoking 

on the lower airway microbiome3,4, smoking affects the host immune response. Although 

our multivariate analysis, considering smoking as a cofactor (see Supplementary Information 

and Supplementary Fig. 10), indicates that several of the associations observed between the 

microbiome and the host immune phenotype are independent of smoking, experimental 

studies are needed to discern the independent contribution of microbiome and smoking to 

the host immune phenotype.

In summary, our findings indicate that the basal level of lower airway mucosal Th17 immune 

activation is associated with compositional characteristics of local lung bacteria, where in 

some subjects this seems to be derived largely from the URT though microaspiration. 

Further studies will be needed to determine: the dynamics of entry; clearance and local 

replication by the microbial community; the stability of this phenotype over time within 

individuals; whether these levels of asymptomatic tonic Th17 inflammation contribute to 

long-term consequences for lung health; whether they interact with other environmental 

factors in the pathogenesis of inflammatory lung disease; and whether they regulate 

responses to recognized pulmonary pathogens.

Methods

Subjects

Forty-nine subjects were enrolled for research bronchoscopy as part of three cohorts: 31 

from NYU, 14 from the healthy control group from the LHMP (four from the University of 

Pittsburgh, four from the University of California San Francisco and six from the University 

of California Los Angeles) and four from OSU. All subjects signed informed consent forms 

and the research protocol was approved by the human subjects review committees of the 

institutional review boards at each institution. Exclusion criteria included known underlying 

lung disease, treatment with antibiotics or steroids in the previous three months, 

cardiovascular, renal or liver disease, diabetes mellitus and heavy alcohol use (more than six 

beers daily). Before bronchoscopy, subjects underwent a screening visit where they were 

questioned about respiratory symptoms and were subjected to pulmonary function testing. 

None of the subjects complained of new respiratory symptoms (cough, wheezing or 

shortness of breath).

Segal et al. Page 9

Nat Microbiol. Author manuscript; available in PMC 2016 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16S rRNA gene sequencing

Research bronchoscopy was performed by obtaining samples from background (sterile 

saline and saline through the bronchoscope before bronchoscopy), upper airways and lower 

airways using BAL as previously described3,4. Samples were stored at −80 °C until they 

were processed. DNA was extracted using an ion exchange column (Qiagen). High-

throughput sequencing of bacterial 16S rRNA gene amplicons encoding the V4 region40 

(150 bp read length, paired-end protocol) was performed using a MiSeq Illumina Sequencer. 

The 16S rRNA gene sequences were analysed using the Quantitative Insights into Microbial 

Ecology (QIIME) pipeline for analysis of microbiome data (see Supplementary 

Information)3,41–45. The proportion of reads at the OTU or genus levels was used as a 

measure of the relative abundance of each type of bacteria. Microbiome analysis of BAL 

samples was compared with 16S data from background and upper airways. Because lower 

airway samples have low biomass, we used SourceTracker to estimate the contribution of 

background microbiota to BAL samples46. In a subset of samples (n = 28) 16S rRNA gene 

sequences were previously obtained using a 454 platform and targeting the V1–V2 variable 

region and results have been reported elsewhere3. Procrustes analysis based on UniFrac 

distances was then performed to evaluate for the consistency of microbiome results. When 

samples were sequenced using two different approaches (454 and MiSeq) and targeting two 

different variable regions of the 16S rRNA gene (V1–V2 and V4), similar pneumotype 

allocation was found for each sample (see Supplementary Information and Supplementary 

Fig. 3 for more details). To determine the genomic potential of these two pneumotypes, we 

computationally predicted the metagenome using PICRUSt47. This software tool uses the 

obtained 16S rRNA gene sequence data to predict the functional profile of a bacterial 

community based on an existing reference genome database. Metagenomic pathway analysis 

was performed using STAMP with default parameters48.

Shotgun sequencing and phageome analysis

DNA was extracted from BAL samples as described for 16S sequencing above. Following 

fragmentation and library preparation, sequencing was performed on the Illumina MiSeq 

platform (2 × 250 bp paired-end reads). Sequences were analysed using VirusSeeker49. The 

DNA phageome was analysed using LEfSe to identify discriminant bacteriophage 

taxonomic markers.

Measurement of metabolites in BAL fluid

For metabolomics analysis, we utilized BAL samples from 29 NYU subjects in which 

sufficient BAL fluid was available. Samples (4 ml) of BAL fluid were processed for GC–

TOF metabolomics (see Supplementary Information for further details)50,51. Mass spectra 

were acquired for m/z 85–500 at 20 spectra s−1 and 1,750 V detector voltage. The resulting 

files were processed by the metabolomics BinBase database (University of California 

Davis). All database entries in BinBase were matched against the Fiehn mass spectral library 

of 1,200 authentic metabolite spectra using retention index and mass spectrum information 

or the NIST05 commercial library. Identified metabolites were reported if present in at least 

50% of the samples per study design group (as defined in the software). Intensity data were 

mean-centred and divided by the standard deviation of each variable using MetaboAnalyst52.
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Measurement of BAL cells

BAL cells were centrifuged (500g for 5 min) and washed twice. Cell viability was assessed 

by trypan blue exclusion, and cytospins were prepared. Total cell count and BAL cell 

differentials (500 cells counted) were performed to assess counts of macrophages, 

lymphocytes and neutrophils. To obtain measurement of T cell subsets, fluorescence-

activated cell sorting (FACS) was performed as described with Treg defined as CD3+, CD4+ 

and FoxP3+ and Th17 defined as CD3+, CD4+ and IL-17+ (ref. 53).

Evaluation of transcriptome of bronchial epithelial cells

In a subset of subjects (n = 12), paired peripheral bronchial epithelial cells were obtained by 

airway brushing. The presence of club cells was used to confirm sampling of the small 

peripheral airways. RNA was then extracted using a Qiagen miRNeasy Mini Kit. To identify 

target genes, global gene expression profiling was performed with the Affymetrix GeneChip 

Human Genome U133 Plus 2.0 Array (HG-U 133 Plus 2.0). Array data were analysed by 

GeneSpring GX version 12.6.1 (Agilent Technologies) using Linear Models for Microarray 

Data (LIMMA). Hierarchical heat maps were generated by Java TreeView 3.0 using the 

complete linkage clustering method and squared Euclidean distance measure. Ingenuity 

pathway analysis (IPA) was used to identify top biological functions and disease/disorders, 

top regulator effect networks, and to generate network pathways. Networks generated by 

IPA grouped the differentially regulated genes according to previously known associations 

between genes or proteins54.

Measurement of in vivo cytokines in BAL fluid

For cytokines, we utilized BAL samples from 29 subjects from NYU in which a sufficient 

amount of BAL fluid was available. Thirty-nine cytokines were measured in the 

concentrated BAL with Luminex using Human Cytokine Panel I (Millipore) according to the 

manufacturer’s instructions in a Luminex 200IS system (Luminex). Because analytes in the 

epithelial lining fluid (ELF) are diluted with sterile saline during BAL, a concentration step 

was performed via dialysis and lyophilization, using albumin as an internal control. After 

approximately 75-fold concentration, 31 out of 39 cytokines were present at measurable 

levels (defined as levels above the lowest standard in >70% of the samples). These included 

interleukin(IL)-1 receptor antagonist (IL-1ra), IL-1α, IL-1β IL-5, IL-6, IL-7, IL-8 (CXCL8), 

IL-12 (p40), IL-12 (p70), IL-15, IL-17, interferon -γ-induced protein 10 (IP-10 or 

CXCL10), interferon-γ (IFN-γ), epidermal growth factor (EGF), eotaxin (CCL11), 

fibroblast growth factor-2 (FGF-2), Flt-3 ligand, fractalkine (CX3CL1), granulocyte colony-

stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), 

growth-related oncogene-α (GRO or CXCL1), monocyte chemotactic protein 1 (MCP-1 or 

CCL2), monocyte chemotactic protein 3 (MCP-3 or CCL7), macrophage-derived chemokine 

(MDC or CCL22), macrophage inflammatory protein 1α (MIP-1α or CCL3), macrophage 

inflammatory protein 1β (MIP-1β), transforming growth factor alpha (TGF-α), tumour 

necrosis factor α (TNF-α), vascular endothelial growth factor (VEGF), soluble CD40 ligand 

(sCD40 L), and soluble IL-2 receptor (sIL-2Rα). Average results from technical duplicates 

were utilized. The levels of the following cytokines were below the detection limit of the 
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assay and are not included in the analyses: IFN-α, TNF-β IL-2, IL-3, IL-4, IL-9, IL-10, and 

IL-13. Data were analysed with MasterPlex TM QT software (version 1–2, MiraiBio).

Measurement of TLR4 response of alveolar macrophages

In a subset of samples from the NYU cohort (n = 18), alveolar macrophages were isolated 

for ex vivo TLR4 stimulation. BAL macrophages were isolated by plastic adhesion and cells 

(2 × 106) were incubated in 12-well plates with RPMI (Gibco), plus 10% fetal calf serum 

(HyClone) and 2% penicillin-streptomycin (Gibco) with or without 40 ng LPS ml−1 

(Escherichia coli 0.55:B4 and B5, Sigma-Aldrich). After 24 h, supernatants were collected 

and assayed using Human Cytokine Panel I (Millipore) according to the manufacturer’s 

instructions in a Luminex 200IS system (Luminex). Data were analysed with MasterPlex 

TM QT software (version 1–2, MiraiBio). Average results from technical duplicates were 

utilized.

Statistical and multi-omic analysis

Because the distributions of microbiome data are non-normal, and no distribution-specific 

tests are available, we used non-parametric tests of association. For association with discrete 

factors, we used either the Mann-Whitney test (in the case of two categories) or the Kruskal–

Wallis analysis of variance (in the case of more than two categories). For tests of association 

with continuous variables, we used non-parametric Spearman correlation tests. False 

discovery rate (FDR) was used to control for multiple testing55. To evaluate differences 

between groups of 16S data or inferred metagenomes, we used LDA LEfSe56. Features 

significantly discriminating among groups with LDA score >2.0 were represented as a 

cladogram, as produced by LEfSe with default parameters.

For multi-omic analysis, analysis was restricted to the samples obtained at NYU where all 

omic platforms where applied. Co-occurrence networks using 16S OTUs were calculated as 

previously described57. Briefly, 16S data were summarized at the genus level and co-

occurrence was calculated using SparCC10, with results validated over ten rarefactions of the 

genus-level input table. Genera co-occurring significantly (P < 0.05) with ρ > 0.7 or ρ < 

−0.7 were conserved for Spearman correlation analysis with metabolome, cytokine and BAL 

cell data. To evaluate whether smoking status was a confounder for the observed differences 

in biomarkers (for example, metabolites, BAL cells and cytokines) noted to be associated 

with a distinct pneumotype, we used a multivariate logistic regression model, where 

biomarkers were considered as outcome (dichotomized as below or above the median), and 

pneumotype and smoking status (never smoker vs smoker) were predictors (covariates). This 

analysis was carried out using SPSS (IBM, version 20), and age and gender were forced in 

the model. Results were reported as odds ratio (95% confidence interval) for both 

pneumotypeSPT and smoking status.

Accession codes

All multi-omic data have been submitted to the Gene Expression Omnibus (GEO) under 

accession numbers GSE74395 (for microbiome and host immune response data) and 

GSE73585 (for transcriptome data).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Major differences in microbial composition of the lower airways are driven by 
enrichment with either supraglottic taxa or background taxa
a, Unsupervised hierarchical clustering of most abundant taxa (relative abundance ≥3% in 

any sample) for BAL samples, upper airway and background samples. Upper airway 

samples were obtained by oral wash or by separate bronchoscopy. BAL samples were 

obtained after passing the upper airways without suctioning and wedging in a subsegment of 

the lower airways. The dendrogram indicates two well-separated clusters, one dominated by 

background samples and 27 of the 49 BAL samples, and a second dominated by upper 
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airway samples plus 22 of the 49 BAL samples. The heat map shows that the first cluster is 

enriched with Acidocella, Pseudomonas and Sphingomonas and the second cluster is 

enriched with taxa most commonly found in the upper airways such as Prevotella, Rothia 

and Veillonella. b, Principal coordinates analysis (PCoA) based on weighted UniFrac 

distances demonstrate that pneumotypeSPT BAL samples clustered separately from 

pneumotypeBPT BAL samples. Samples from all three cohorts can be found in both 

pneumotype clusters. c, Comparison of UniFrac distance between paired acellular BAL 

samples from New York University (NYU) (n = 31), the Lung HIV Microbiome Project 

(LHMP) (n = 14) and Ohio State University (OSU) (n = 4) show that there is greater 

UniFrac distance between pneumotypeSPT and pneumotypeBPT than between different 

institutions (represented as median (IQR), statistical significance of sample groupings based 

on Adonis). d, Cladogram representing results from calculated LDA LEfSe comparing 

taxonomic composition of BAL samples from pneumotypeSPT and pneumotypeBPT. 

Multiple significant taxonomic differences were observed at different phylogenetic levels, 

with labels in the cladogram written for differences at the phylum level and indicated by 

letters for differences at the class level.
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Figure 2. Comparison of inferred metagenomes of pneumotypeSPT and pneumotypeBPT
a, PCoA based on Jensen–Shannon divergence shows that the metagenome of 

pneumotypeSPT is significantly different from the metagenome of pneumotypeBPT. b, LEfSe 

analysis was performed using the summarized functional annotation for the KOs annotated 

to metabolism inferred for each BAL sample. This analysis showed multiple functional 

differences in the genomic composition of pneumotypeSPT as compared with 

pneumotypeBPT. c, STAMP was used to determine metabolic pathways differentially 
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enriched (P < 0.05) and their effect size (η2). The 15 top metabolic pathways for each 

pneumotype are represented with effect size and relative abundance.
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Figure 3. Correlation between the lower airway microbiome and metabolome
a,b, Average UniFrac distances between pairs of BAL samples and upper airways was 

positively (a) or negatively (b) correlated with levels of metabolites in BAL fluid. Red 

symbols represent BAL samples identified as pneumotypeSPT and green symbols represent 

BAL samples identified as pneumotypeBPT (lines represent medians and standard error, SE, 

P values are based on Spearman’s ρ). c, A co-occurrence network for genus-level 

summarized taxa was built using SparCC as described in the Methods. Genera (circles) were 

then correlated with levels of metabolites, and significantly correlated metabolites (grey 

octagons) are represented in the network. Genera identified as markers for pneumotypeBPT 

are in light green and genera identified as markers for pneumotypeSPT are in light red. 

Cytoscape 3.2.158 was used to visualize the network with a prefuse force-directed layout, 

with the length of edges being 1 – ρ for positive correlations and absolute (ρ) for negative 

correlations. Nodes in close proximity are therefore highly positively correlated, and nodes 

further apart are highly negatively correlated.
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Figure 4. Similarity of the lower airway microbiome with the upper airway microbiome is 
associated with the percentage of lymphocytes in BAL
a,b, Average UniFrac distances between pairs of BAL samples and upper airways were 

negatively correlated with the percentage of CD4+ IL17+ cells (a) and the percentage of 

lymphocytes (b) in BAL. c, Similarity of the lower airway microbiome with the upper 

airway microbiome is associated with increased expression of STAT3 mRNA in bronchial 

epithelial cells. d, Negative significant correlations were found between average UniFrac 

distances of BAL to the upper airway and fractalkine and IL-1α. Red symbols represent 

BAL samples identified as pneumotypeSPT and green symbols represent BAL samples 

identified as pneumotypeBPT (lines represent median and SE, P value based on Spearman’s 

ρ). e, Network analysis built around co-occurrent taxa as defined previously (see Fig. 3). 

Taxa (circles) remaining in the model were then correlated with levels of cells and cytokines 

in BAL (grey triangles). Genera identified as markers for pneumotypeBPT are shown in light 

green and genera identified as markers for pneumotypeSPT are shown in light red. 

Significant correlations are shown in the network. The network was visualized with 

Cytoscape with the same parameters as previously defined. GM-CSF, granulocyte-

macrophage colony-stimulating factor; G-CSF, granulocyte colony-stimulating factor; GRO, 

growth-related oncogene-α.
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Figure 5. PneumotypeSPT is associated with a blunted TLR4 response of alveolar macrophages
Alveolar macrophages of subjects with pneumotypeSPT or pneumotypeBPT were cultured for 

24 h and exposed to 10 ng LPS or media alone. Cytokine production was compared for 

LPS/MA to calculate fold induction. Average UniFrac distances between pairs of BAL 

samples and upper airways correlated to fold induction of MDC, IL-6 and GM-CSF. Red 

symbols represent BAL samples identified as pneumotypeSPT and green symbols represent 

BAL samples identified as pneumotypeBPT (lines represent median and SE, P value based on 

Spearman’s ρ).
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Table 1

Demographics and pulmonary function.

Cohort PneumotypeBPT PneumotypeSPT P-value

n 49 27 22

Cohort (%) NS

    NYU 63 64.5 35.5

    OSU 8 75 25

    LHMP 29 26.8 71.4

Age (years) 53.0 (39.8–63.4) 52.3 (36.8–62.7) 55.0 (43.4–65.0) NS

Male (%) 64 63 77 NS

Caucasian (%) 77 81 91 NS

BMI 27 (23–31) 26 (23–31) 27 (24–31) NS

Smoking status (%)

    Current 26 33 18 NS

    Former 37 33 41 NS

    Never 37 33 41 NS

Pack-years (smokers) 25 (5–43) 25 (5–43) 39 (19–49) NS

PFT*

    Spirometry

      FVC† 98.0 (89.5–115.0) 100.0 (91.7–116.0) 98.9 (86.8–108.5) NS

      FEV1
† 90.0 (81.0–108.0) 92.9 (85.5–100.0) 90.0 (78.9–104.7) NS

      FEV1 /VC 75.0 (67.0–79.7) 75.5 (69.0–80.0) 74.0 (68.9–79.6) NS

    Lung volumes NS

      TLC† 100 (85–107) 99 (85–107) 100 (80–107) NS

      FRC† 87 (75–107) 86 (75–108) 90 (75–106) NS

      RV/TLC 0.32 (0.26–0.37) 0.32 (0.23–0.36) 0.34 (0.30–0.40) NS

    DLCO† 84 (75–94) 90 (72–96) 82 (77–92) NS

Data presented as percentages or median (IQR). P-value for comparison between pneumotypeBPT vs pneumotypeSPT. Abbreviations: NYU, New 

York University; OSU, Ohio State University; LHMP, Lung HIV Microbiome Project; BMI, body mass index; FVC, forced vital capacity; FEV1, 

forced expiratory volume in 1 s; TLC, total lung capacity; FRC, functional residual capacity; RV, residual volume; DLCO, diffusing capacity of the 

lungs for carbon monoxide; NS, not significant.

*
PFT, pulmonary function testing according to standard ATS/ERS guidelines20

†
% predicted.
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