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Abstract

Background: System-wide profiling of genes and proteins in mammalian cells produce lists of differentially
expressed genes/proteins that need to be further analyzed for their collective functions in order to extract new
knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as
input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries.
While many enrichment analysis tools and gene-set libraries databases have been developed, there is still room for
improvement.

Results: Here, we present Enrichr, an integrative web-based and mobile software application that includes new
gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches
to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be
embedded into any tool that performs gene list analysis. We applied Enrichr to analyze nine cancer cell lines by
comparing their enrichment signatures to the enrichment signatures of matched normal tissues. We observed a
common pattern of up regulation of the polycomb group PRC2 and enrichment for the histone mark H3K27me3 in
many cancer cell lines, as well as alterations in Toll-like receptor and interlukin signaling in K562 cells when
compared with normal myeloid CD33+ cells. Such analyses provide global visualization of critical differences
between normal tissues and cancer cell lines but can be applied to many other scenarios.

Conclusions: Enrichr is an easy to use intuitive enrichment analysis web-based tool providing various types of
visualization summaries of collective functions of gene lists. Enrichr is open source and freely available online at:
http://amp.pharm.mssm.edu/Enrichr.

Background
Recent improvements in our ability to perform genome-

wide profiling of DNA, RNA, and protein at lower costs

and more accurately further highlight the need for devel-

oping tools that can convert such an abundance of data

into useful biological, biomedical, and pharmacological

knowledge. One of the most powerful methods for ana-

lyzing such massive datasets is summarizing the results

as lists of differentially expressed genes and then query-

ing such gene lists against prior knowledge gene-set li-

braries [1,2]. Differentially expressed gene lists can be

extracted from RNA-seq or microarray studies; gene lists

can be created from genes harboring mutations in co-

horts of patients, or gene lists can be putative targets of

transcription factors or histone modifications profiled by

ChIP-seq. In fact, gene lists can be produced from any

relevant experimental method that profiles the entire

genome or the proteome. Once unbiased lists of genes

or proteins are generated from such experiments, these

lists are used as input for computing enrichment with

existing lists created from prior knowledge organized

into gene-set libraries.

Gene-set libraries are used to organize accumulated

knowledge about the function of groups of genes. Each

gene-set library is made of a set of related gene lists

where each set of genes is associated with a functional

term such as a pathway name or a transcription factor

that regulates the genes. Creating such gene-set libraries

can be achieved by assembling gene sets from diverse
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contexts. The original method that developed this ap-

proach is called gene set enrichment analysis (GSEA),

first used to analyze microarray data collected from

muscle biopsies of diabetic patients [3]. The authors of

this seminal publication developed a statistical test that

is based on the Kolmogorov-Smirnov test [4] as well as

developed a database of gene-set libraries called MSigDB

[5]. Many other gene set enrichment analysis tools have

been developed in recent years following the original

concept [1]. However, many of such enrichment analysis

tools focus on performing enrichment using only the

Gene Ontology resource [6]. In addition, enrichment

analysis tools most commonly use the Fisher exact test

or similar variations of it to compute enrichment [7].

This family of tests has some bias to list size. Besides com-

puting enrichment for input lists of genes, gene-set librar-

ies can be used to build functional association networks

[8,9], predict novel functions for genes, and discover dis-

tal relationships between biological and pharmacological

processes. While many gene-set libraries and tools for

performing enrichment analysis already exist, there is a

growing need for them and there are more ways to im-

prove and validate gene set enrichment methods. For in-

stance, many useful novel gene set libraries can be

created; the performance of the enrichment computation

can be improved; and visualization of enrichment results

can be done in more intuitive and interactive ways.

Here, we present Enrichr, an integrative web-based

and mobile software application that includes many new

gene-set libraries, a new approach to rank enriched

terms, and powerful interactive visualizations of the re-

sults in new ways. Enrichr is delivered as an HTML5

web-based application and also as a mobile app for the

iPhone, Android and Blackberry. Users are provided

with the ability to share the results with collaborators

and export vector graphic figures that display the enrich-

ment results in a publication ready format. We evaluated

the ability of Enrichr to rank terms from gene-set librar-

ies by comparing the Fisher exact test to a method we

developed which computes the deviation from the

expected rank for terms. To evaluate various methods

that rank enriched terms, we analyzed lists of differen-

tially expressed genes from studies that measured gene

expression after knockdown of transcription factors to

see the ranking of the knocked down factors using a

transcription-factor/target-gene library [10]. We show

that the deviation from the expected rank method ranks

more relevant terms higher. We also applied Enrichr to

analyze nine cancer cell lines by comparing their enrich-

ment signature patterns to the enrichment signatures of

matched normal tissues. Such analysis provides a global

visualization of critical regulatory differences between

normal tissues and cancer cell lines. In particular, we ob-

served a common pattern of up regulation of the PRC2

polycomb group target genes and enrichment for the

histone mark H3K27me3 in many cancer cell lines. The

global view of enrichment signature patterns also clearly

unravels that Toll-like receptor signaling is turned off in

K562 cells when compared to normal CD33+ myeloid

cells, whereas interleukin signaling stays intact in both cell

types. Overall, Enrichr is an easy to use intuitive enrich-

ment analysis web-based tool providing various types of

visualization summaries of collective functions of gene

lists.

Implementation
Creating the gene-set libraries

Enrichr contains 35 gene-set libraries where some libraries

are borrowed from other tools while many other libraries

are newly created and only available in Enrichr. The gene-

set libraries provided by Enrichr are divided into six

categories: transcription, pathways, ontologies, diseases/

drugs, cell types and miscellaneous. The following is a de-

scription of each library and how it was created:

The transcription category provides six gene-set librar-

ies that attempt to link differentially expressed genes

with the transcriptional machinery. These six libraries

include the ability to identify transcription factors that

are enriched for target genes within the input list using

four different options: 1) ChEA [10]; 2) position weight

matrices (PWMs) from TRANSFAC [11] and JASPAR

[12]; 3) target genes generated from PMWs downloaded

from the UCSC genome browser [13]; and 4) transcrip-

tion factor targets extracted from the ENCODE project

[14,15]. In addition, the two other gene-set libraries in

the transcription category are gene sets associated with:

5) histone modifications extracted from the Roadmap

Epigenomics Project [16]; and 6) microRNAs targets

computationally predicted by TargetScan [17].

1. The ChIP-x Enrichment Analysis (ChEA) database

[10] is our own resource for storing putative targets for

transcription factors extracted from publications that

report experiments of profiling transcription factors

binding to DNA in mammalian cells. The database is

already formatted into a gene-set library where the

functional terms are the transcription factors profiled

in each study together with the PubMed identifier

(PMID) of the paper used to extract the gene. The

ChEA gene-set library used in Enrichr is an updated

version from the originally published database

containing more than twice the entries compared to

the originally published version [10].

2. PWMs from TRANSFAC and JASPAR were used to

scan the promoters of all human genes in the region

−2000 and +500 from the transcription factor start

site (TSS). We retained only the 100% matches to

the consensus sequences to call an interaction

Chen et al. BMC Bioinformatics 2013, 14:128 Page 2 of 14

http://www.biomedcentral.com/1471-2105/14/128



between a factor and target gene. This gene-set

library was created for a tool we previously

published called Expression2Kinases [18].

3. Transcription factor target genes inferred from

PWMs for the human genome were downloaded

from the UCSC Genome Browser [13] FTP site

which contains many resources for gene and

sequence annotations. We converted this file into a

gene set library and included it in Enrichr since it

produces different results compared with the other

method to identify transcription factor/target

interactions from PWMs as described above.

4. The ENCODE transcription factor gene-set library is

the fourth method to create a transcription factor/

target gene set library. We processed the newly

published data from the Encyclopedia of DNA

Elements (ENCODE) project [14,15]. Using the

aligned files for all 646 experiments that profiled

transcription factors in mammalian cells, we

identified the peaks using the MACS software [19]

and then identified the genes targeted by the factors

using our own custom processing. We sorted the

peaks for each experiment by distance to the

transcription factor start site (TSS) and retained the

top 2000 target genes for each experiment.

5. The Histone modification gene-set library was

created by processing experiments from the NIH

Roadmap Epigenomics [20]. Such experiments were

conducted using various types of human cell lines

types with antibodies targeting over 30 different

histone modification marks. ChIP-seq datasets from

the Roadmap Epigenomics project deposited to the

GEO database were analyzed and converted to gene

sets with the use of the software, SICER [21].

Previous studies [22] have indicated that the use of

control sample substantially reduces DNA shearing

biases and sequencing artifacts; therefore, for each

experiment, an input control sample was matched

according to the description in GEO. ChIP-seq

experiments without matched control input were

not included. The resulting gene-set library contains

27 types of histone modifications for 64 human cell

lines from various tissue origins.

6. The microRNA gene set library was created by

processing data from the TargetScan online database

[23] and was borrowed from our previous

publication, Lists2Networks [24].

The pathways category includes gene-set libraries from

well-known pathway databases such as WikiPathways

[25], KEGG [26], BioCarta, and Reactome [27] as well as

five gene-set libraries we created from our own resources:

kinase enrichment analysis (KEA) [28] for kinases and

their known substrates, protein-protein interaction hubs

[18], CORUM [29], and complexes from a recent high-

throughput IP-MS study [30] as well as a manually assem-

bled gene-set library created from extracting lists of

phosphoproteins from SILAC phosphoproteomics publi-

cations [31].

1-4. The pathway associated gene-set libraries were

created from each of the above databases by

converting members of each pathway from each

pathway database to a list of human genes.

5. The Kinase Enrichment Analysis (KEA) gene-set

library contains human or mouse kinases and their

known substrates collected from literature reports as

provided by six kinase-substrate databases: HPRD

[32], PhosphoSite [33], PhosphoPoint [34], Phospho.

Elm [35], NetworKIN [36], and MINT [37].

6. The protein-protein interaction hubs gene-set

library is made from an updated version of a human

protein-protein interaction network that we are

continually updating and originally published as part

of the program, Expression2Kinases [18]. From this

network, we extracted the proteins with 120 or

more interactions. These proteins are the terms in

the library whereas their direct protein interactors

are the genes in each gene set.

7–8.The next two gene-set libraries in the pathway

category are protein complexes. The first library

was created from a recent study that profiled

nuclear complexes in human breast cancer cell

lines after applying over 3000 immuno-

precipitations followed by mass-spectrometry

(IP-MS) experiments using over 1000 different

antibodies [30]. The second complexes gene-set

library was created from the mammalian complexes

database, CORUM [29].

9. The SILAC phosphoproteomics gene set library was

created by processing tables from the supporting

materials of SILAC phosphoproteomics studies. From

each supporting table, we extracted lists of up and

down proteins without applying any cutoffs. Protein

IDs were converted to mammalian gene IDs when

necessary using online gene symbol conversion tools.

A total of 84 gene lists were extracted from such

studies.

The ontology category contains gene-set libraries cre-

ated from the three gene ontology trees [6] and from the

knockout mouse phenotypes ontology developed by the

Jackson Lab from their MGI-MP browser [38]. To create

such gene-set libraries, we “cut” the tree at either the third

or fourth level and created a gene set from the terms and

their associated genes downstream of the cut. The details

about creating the Gene Ontology gene-set libraries are

provided in our previous publication, Lists2Networks [24].
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The disease/drugs category has gene set libraries

created from the Connectivity Map database [39],

GeneSigDB [40], MSigDB [5], OMIM [41], and

VirusMINT [42].

1–2.The Connectivity Map (CMAP) database [39]

contains over 6,000 Affymetrix microarray gene

expression experiments where human cancer cell

lines were treated with over 1,300 drugs, many of

them FDA approved, and changes in expression

where measured after six hours. The drugs were

always used as a single treatment but varied in

concentrations. The CMAP database provides the

results in a table where genes are listed in rank

order based on their level of differential expression

compared to the untreated state. From this table,

we extracted the top 100 and bottom 100

differentially expressed genes to create two gene-set

libraries, one for the up genes and one for the

down genes for each condition. Each set is

associated with a drug name and the four digit

experiment number from CMAP. This four digit

number can be used to locate the concentration,

cell-type, and batch.

3. The GeneSigDB gene-set library was borrowed from

the GeneSigDB database [40]. The database contains

gene lists extracted manually from the supporting

tables of thousands of publications; most are from

cancer related studies.

4–5.The OMIM gene-set library was created directly

from the NCBI’s OMIM Morbid Map [41]. We

removed diseases with only a few genes and

merged diseases with similar names because these

are likely made of few subtypes of the same

disease. In addition, since most diseases have only

few genes, we used our tool, Genes2Networks [43],

to create the OMIM expanded gene-set library. We

entered the disease genes as the seed list and

expanded the list by identifying proteins that

directly interact with at least two of the disease

gene products; in other words, we searched for

paths that connect two disease gene products with

one intermediate protein, resulting in a sub-

network that connects the disease genes with

additional proteins/genes. Each sub-network for

each disease was converted to a gene set.

6. The VirusMINT gene-set library was created from

the VirusMINT database [42], which is made of

literature extracted protein-protein interactions

between viral proteins and human proteins. Each

term in the library represents a virus wherein the

genes/proteins in each set are the host proteins that

are known to directly interact with all the viral

proteins for each virus.

7–8.The MSigDB computational and MSigDB

oncogenic signature gene-set libraries were

borrowed from the MSigDB database from

categories C4 and C6 [5]. These gene-set libraries

contain modules of genes differentially expressed in

various cancers.

The cell type category is made of four gene-set librar-

ies: genes highly expressed in human and mouse tissues

extracted from the Mouse and Human Gene Atlases [44]

and genes highly expressed in cancer cell lines from the

Cancer Cell Line Encyclopedia (CCLE) [45] and NCI-60

[46]. The gene-set libraries in this category were all cre-

ated similarly. The Cancer Cell Line Encyclopedia

(CCLE) dataset was derived from the gene-centric RMA-

normalized mRNA expression data from the CCLE site.

The Human Gene Atlas and Mouse Gene Atlas datasets

were derived from averaged GCRMA-normalized mRNA

expression data from the BioGPS site. Finally, the Human

NCI60 Cell Lines dataset, while also downloaded from

the BioGPS site, was raw and not normalized; hence, it

was normalized using quantile normalization. The

downloaded datasets were all of similar format such that

the raw data was in a table with the rows being the genes

and the columns being the expression values in the differ-

ent cells. For each gene, the average and standard devi-

ation of the expression values across all samples were

computed. For each gene/term data point, a z-score was

calculated based on the row’s average and standard devi-

ation. Duplicate gene probes were merged by selecting the

highest absolute z-score. Only genes with an absolute

z-score of greater than 3 were selected to be part of a gene

set for a particular cell which represents the term.

The miscellaneous category has three gene-set librar-

ies: chromosome location, metabolites, and structural

domains. The chromosomal location library is made of

human genes belonging to chromosomal segments of

the human genome. It is derived from MSigDB [5]. The

metabolite library was created from HMDB, a database

[47] enlisting metabolites and the genes associated with

them. Finally, the structural domains library was created

from the PFAM [48] and InterPro [49] databases where

the terms are structural domains and the genes/proteins

are the genes containing the domains.

Computing enrichment

Enrichr implements three approaches to compute

enrichment. The first one is a standard method

implemented within most enrichment analysis tools: the

Fisher exact test. This is a proportion test that assumes

a binomial distribution and independence for probability

of any gene belonging to any set. The second test is a

correction to the Fisher exact test that we developed

based on intuition. We first compute enrichment using
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the Fisher exact test for many random input gene lists in

order to compute a mean rank and standard deviation

from the expected rank for each term in each gene-set

library. Then, using a lookup table of expected ranks

with their variances, we compute a z-score for deviation

from this expected rank, this can be a new corrected

score for ranking terms. Alternatively, we combined the

p-value computed using the Fisher exact test with the

z-score of the deviation from the expected rank by

multiplying these two numbers as follows:

c ¼ log pð Þ:z ð1Þ

Where c is the combined score, p is the p-value com-

puted using the Fisher exact test, and z is the z-score

computed by assessing the deviation from the expected

rank. Enrichr provides all three options for sorting

enriched terms. In the results section, we show how we

evaluated the quality of each of these three enrichment

methods by examining how the methods rank terms that

we know should be highly ranked.

Visualization of the results on a grid

Enrichr provides various ways to visualize the results

from the enrichment analysis. One such method is the

visualization of the enriched terms on a grid of squares.

Here, all terms from a gene-set library are represented

by squares on a grid which is organized based on the

terms’ gene content similarity where an area of high

similarity is made brighter. To arrange terms on the

grid, term-term similarity is first computed using our al-

gorithm, Sets2Networks [9]. For this, the gene-set library

is transposed making each gene the set label and the

terms the sets for each gene. Sets2Networks then com-

putes the probability for term-term similarity based on a

co-occurrence probabilistic calculation. Once an adja-

cency distance matrix is computed for similarity between

all pairs of terms, a simulated annealing process is used

to arrange all terms on the dimension-less torodial grid.

Dimension-less torodial grid means that the edges of the

grid are continuous and connected, forming a torus. The

simulated annealing process attempts to maximize the

global similarity of terms based on their computed simi-

larity distances as determined by Sets2Networks. The

annealing starts with a random arrangement of terms,

and then, using the Boltzman distribution, we swap the

location of pairs of terms randomly and compute the

global fitness of the swap. We run such annealing

process until the arrangement converges to a fitness

maximum. Once enrichment analysis is computed, the

enriched terms are highlighted with higher p-values indi-

cated by a brighter square. The grid can be clicked to

toggle between the two alternative views: The alternative

view shows all terms on the grid where the enriched

terms are highlighted with circles, colored from bright

white to gray based on their p-values.

Computing the significance of clustering of terms on

the grid

Once enrichment analysis on the grid is achieved, we

compute an index that distinguishes between randomly

distributed enriched terms on the grid and terms that

significantly cluster. While the continuous case of com-

puting such clustering has a foundation in the literature

[50,51], the discrete nature of the grids of terms used in

Enrichr has an appreciable effect that makes the computa-

tion with the continuous assumption inaccurate. Hence,

we implemented a numerical approach to compute such a

clustering index with associated probabilities.

Visualization of the results as a network of terms

Another alternative visualization of the results is to dis-

play the enriched terms as a network where the nodes

represent the enriched terms and the links represent the

gene content similarity among the enriched terms. To

make sure the network is sufficiently sparse to avoid

clutter and ambiguity, we connected each of the top ten

enriched terms to the only other closest enriched term

based on gene content similarity. To visualize the net-

work, we slightly modified the force-directed graph

example that is a part of the JavaScript library, Data

Driven Documents (D3) [52].

Implementation of the web and mobile applications

Enrichr has two parts: a back end and a front end. The

back end is comprised of a Microsoft IIS 6 web server

and Apache Tomcat 7 as the Java application server. The

back end uses Java servlets to respond to the submis-

sions of gene lists or for processing other data requests

from the front end. Apache Maven is used to compile,

minify, and aggregate the JavaScript and CSS files for

faster web load times, package, and deploy the web app

onto the Tomcat server. Conversely, the front end is

written primarily in HTML, CSS, JavaScript, and JSP.

Enrichr has a user friendly and responsive interface, using

AJAX calls to serve JSON response data from the servlet

asynchronously for a smoother user experience. The bar

graphs, grids, term networks, and color pickers are dy-

namically generated using the SVG JavaScript library, D3

[52]. The page transitions, sortable tables, hovering over

text functions, touch gestures, and other page manipula-

tions are powered by the jQuery JavaScript library. A

shared servlet that is used in other projects is used to con-

vert URL-encoded base64 text that represents the SVG

figures into downloadable SVG, PNG, or JPG files using

the Batik SVG Toolkit from the Apache XML Graphics

Project. Enrichr can also be accessed via Android, iOS,

and BlackBerry phone apps. All of the phone apps share
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the mobile framework, Apache Cordova, which allows for

the development of cross-platform mobile apps using

HTML5, JavaScript, and CSS ensuring that there is no fea-

ture decay across the different mobile platforms as well as

desktop web platforms. Slight adjustments in Java, Object-

ive C, and JavaScript for Android, iOS, and BlackBerry

respectively were necessary to ensure that Enrichr was

functional and consistent across these platforms.

Adding Enrichr as a final step to RNA-seq pipelines

Enrichr's online help contains a Python script that takes as

input the output from CuffDiff which is a part of CuffLinks

[53]. CuffDiff is a common last step in the analysis of

RNA-seq data which finds differentially expressed genes

for various comparisons of RNA-seq data. However, the

output from CuffDiff is not easy to handle. The python

script extracts all the up and down gene lists from the in-

put file, and then using the Python library, Poster, gener-

ates links to Enrichr analyses.

Results and discussion
The user interface

The user interface of Enrichr starts with a form that en-

ables users to either upload a file containing a list of genes

or paste in a list of genes into a text area (Additional file 1:

Figure S1). An example is provided to show users the cor-

rect format for gene symbols and to enable demo analysis

if a gene list is not readily available. Users can optionally

enter a brief description of their list, which is useful if they

choose to share the analysis with collaborators. After sub-

mitting the list for analysis, the user is presented with the

results page, which is divided into the six different categor-

ies: transcription, pathways, ontologies, disease/drugs, cell

types, and miscellaneous. Clicking on the name of the

gene-set library expands a box that reveals the enrichment

analysis results for that gene-set library. Users are first

presented with a bar graph that shows the top 10 enriched

terms for the selected gene-set library (Figure 1 and

Additional file 2: Figure S2). The bar graph provides a vis-

ual representation of how significant each term is based

on the overlap with the user’s input list. The longer bars

and lighter colored bars mean that the term is more sig-

nificant. It is possible to export the bar graph as a figure

for publication or other form of presentation into three

formats: JPEG, SVG and PNG. In addition, the color of

the bar graph can be customized using a hexagonal color

selection wheel populated with colors that provide the

best contrast. There are three methods to compute enrich-

ment and the user can toggle between them by clicking on

any bar of the bar graph: Fisher exact test based ranking,

rank based ranking, and combined score ranking.

To view the results in a tabular format, the user can

switch to the table view tab. The results are presented

in an HTML sortable table with various columns show-

ing the enriched terms with the various scores (Figure 1

and Additional file 3: Figure S3). Clicking on the

headers allows the user to sort the different columns

and a search box is also available if interested in find-

ing the scores for a particular term. Furthermore, the

user can export the table to a tab-delimited formatted

file that can be opened with software tools such as

Excel or any text editor. Within these files, the users

Gene1
Gene2
Gene3
Gene4
Gene5

Gene6
Gene7
Gene8

….
GeneN

Enrichr

35 Gene Set Libraries

E2F1-18555785 (mouse)

SRF-21415370 (mouse)

ZFX-18555785 (mouse)

JARID1A-20064375 (mouse)

MYC-18358816 (mouse)

TRIM28-19339689 (mouse)

GATA4-21415370 (mouse)

MYC-19030024 (mouse)

ESRRB-18555785 (mouse)
MYC-18555785 (mouse)

Term Overlap P-value Z-score Combined Score

CTGTTAC,MIR-194

AAGCCAT,MIR-135A,MIR-135B

TGCTGCT,MIR-15A,MIR-16,MIR-15B,MIR-195,MIR-424,MIR-497

AAAGGGA,MIR-204,MIR-211

AGTCTAG,MIR-151

AAGGGAT,MIR-188
GTTAAAG,MIR-302B

CAGTGTT,MIR-141,MIR-200A

AAGCACA,MIR-218

TCCAGAT,MIR-516-5P

Tables

Bar graphs

Grids Networks

Input gene

      lists

13/442 2.87E-05 -1.693546 17.7139178

14/694 6.78E-04 -2.374911 17.3269922

6/107 1.92E-04 -1.881197 16.09821523

8/245 5.78E-04 -1.864356 13.89912657

5/100 0.001104 -1.869102 12.72630872

5/108 0.0015322 12.06352873

14/676 5.25E-04 -1.480832 11.18346686

12/586 0.0015077 9.775220763

5/134 0.0037768 -1.735447 9.681851103

-1.861359

-1.504539

MP0002118_a

MP0000955_a

MP0005266_a

MP0009765_a

MP0002752_a

MP0000598_a

MP0005332_a

MP0000609_a

MP0006036_a

Figure 1 Enrichr workflow. Enrichr receives lists of human or mouse genes as input. It uses 35 gene-set libraries to compute enrichment. The
enrichment results are interactively displayed as bar graphs, tables, grids of terms with the enriched terms highlighted, and networks of enriched terms.
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can see all terms, their scores, and the overlapping

genes with the input genes for each term. The overlap-

ping genes can be seen also by mouse hovering the

terms in the table. For most tables, the enriched terms

are hyperlinked to external sources that provide more

information about the term.

Enrichr also provides a unique visualization of the re-

sults on a grid of terms (Figure 1 and Additional file 4:

Figure S4). On each grid spot, the terms from a gene-set

library are arranged based on their gene content simi-

larity. The enriched terms are highlighted on the grid

and color coded based on their level of enrichment,

where brighter spots signify more enrichment. Enrichr

also provides a measure of clustering of the enriched

terms on the grid. The clustering level z-scores and p-

values are highlighted in red if the clustering is signifi-

cant (p-value < 0.1) or displayed in gray if the clustering

is not significant. This clustering indicator provides an

additional assessment of how related the genes are to

each other and how relevant the specific gene-set librar-

ies are for the input list of genes. The observation of

one or two clusters on the grid suggests that a gene-set

library is relevant to the input list. It also indicates that

the terms in the clusters are relevant to the input list.

Similar to the bar graph tab, the grid can be customized

with the color wheel and exported into the three image

formats. Clicking on any spot on the grid toggles be-

tween a p-value view and a grid view. The p-value view

only highlights the enriched terms leaving all other

spots black, while the grid view shows the similarity be-

tween terms as bright spots and the enriched terms as

circles on top of the grid.

The final visualization option is a network view of the

enriched terms (Figure 1 and Additional file 5: Figure

S5). The network connects terms that are close to each

other on the grid, giving a sense of how the enriched

terms are related to each other. The nodes of the network

are the enriched terms and they are arranged using a

force-based layout. Users have the option to refine this

arrangment by dragging the nodes to a desired place.

These networks can also be color customized interactively

and exported into one of the three image formats.

Enrichr makes it simple to share the analysis results with

others. Users can click on the share icon to the right of the

description box, resulting in a popup that provides the user

with a link to the analysis results that they can copy and

paste into an e-mail to send to a collaborator. Users can

also create a user account where they can store and

organize all their uploaded lists in one place. The user ac-

count will enable users to contribute their lists to the com-

munity generetaed gene-set library. This will allow other

users to query their input lists against user contributed lists.

Enrichr also provides a mechanism to search for func-

tions for specific genes with an auto-complete

functionality. The results from the gene function search

show all the terms for the gene from all gene-set librar-

ies (Additional file 6: Figure S6). Enrichr is also mobile-

friendly such that it supports touch gestures; for ex-

ample, a simple swipe left and right on the main page

switches between the tabs. On the results page, at the

top level with no specific enrichment type selected,

swipes left and right will navigate between the different

enrichment categories. Once the user selects an enrich-

ment type, swipes left and right will navigate between

the different visualization types for the current enrich-

ment type.

Statistics of the gene set libraries

Enrichr includes 35 gene-set libraries totaling 31,026

gene-sets that completely cover the human and mouse

genome and proteome (Table 1). On average, each gene-

set has ~350 genes and there are over six million connec-

tions between terms and genes. Further statistics and

information of where the gene-set libraries were derived

from can be found in the “Dataset Statistics” tab of the

Enrichr main page. Histograms of gene frequencies for

most gene-set libraries follow a power law, suggesting that

some genes are much more common in gene-set libraries

than others (Figure 2a). This has an implication for enrich-

ment computations that we did not consider yet in

Enrichr. Some genes are more likely to appear in various

enrichment analyses more than others, this tendency can

stem from various sources including well-studied genes.

This research focus bias is in several of the libraries.

Evaluation of the enrichment scoring methods

Enrichr computes three types of enrichment scores to

assess the significance of overlap between the input list

and the gene sets in each gene-set library for ranking a

term’s relevance to the input list. These tests are: 1) the

Fisher exact test, a test that is implemented in most gene

list enrichment analyses programs; 2) a test statistics that

we developed which is the z-score of the deviation from

the expected rank by the Fisher exact test; and 3) a com-

bined score that multiplies the log of the p-value com-

puted with the Fisher exact test by the z-score computed

by our correction to the test. The reason that we devise

a correction for the Fisher exact test was because we no-

ticed that some terms always appear on top of the

ranked list regardless of the content of the input gene

list. This is because the Fisher exact test has a slight bias

that affects the ranking of terms solely based on the

length of the gene sets in each gene-set library. This can

be seen when inputting random gene lists many times

and observing the average rank of each term (Figure 2b

and 2c). GO terms with few genes are ranked higher if

they have short lists and at least one gene from the input

list overlaps with the genes associated with the term
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(Figure 2c). For terms that have enough genes, the

rank stabilizes into what is expected for an average

rank (slightly above 150 in the plot). For the ChEA

enrichment analysis with the Fisher exact test, tran-

scription factors with many targets appear higher more

often for random input gene lists (Figure 2b). This is

because the ChEA database contain gene IDs that did

not match all the genes from our random input lists.

Hence, if the gene set library contains “noise,” i.e. gene

names that are not standardize, which is very common

because gene symbols constantly change and there are

many different resources that convert gene/protein IDs

to gene symbols, the effect of the Fisher exact test is

to give higher rank for terms with longer lists. Since

each of the three scoring methods described above

produce different ranking for terms, we next evaluated

the quality of each of the scoring scheme in an un-

biased manner.

To compare the quality of the rankings of each of these

three enrichment analysis methods, we gathered

Table 1 List of gene set libraries ranked by number of terms

Gene Mean genes per

Gene-set library Terms coverage term

Down-regulated CMAP 6100 8695 100

Up-regulated CMAP 6100 11251 100

HMDB Metabolites 3906 3729 47.1495

GeneSigDB 2139 23729 126.6947

Human CoR Complexome 1796 10231 158.2778

CORUM 1673 2741 4.6934

Cancer Cell Line Encyclopedia 967 15797 176.2079

GO Biological Process 941 7683 78.4676

MSigDB Computational 858 10061 106.4207

Genome Browser PWMs 615 13362 275.1447

MGI Mammalian Phenotype Top 4 476 10496 201.7101

Kinase Enrichment Analysis KEA 474 4533 36.7089

ENCODE TF ChIP-seq 434 19851 1064.055

GO Molecular Function 402 8469 121.8284

Chromosome Location 386 32740 84.8187

PPI Hub Proteins 385 16487 247.2286

Histone Modifications ChIP-seq 356 21921 1232.129

TRANSFAC/JASPAR PWMs 335 42887 1249.63

Pfam InterPro Domains 311 7588 35.3408

BioCarta Pathways 249 1295 17.6506

ChIP Enrichment Analysis ChEA 240 42574 1455.7

microRNA TargetScan 222 7504 154.6036

GO Cellular Component 205 7325 172.1268

KEGG Pathways 200 4128 48.44

WikiPathways 199 2854 38.8191

MSigDB Oncogenic Signatures 189 11250 165.709

OMIM Expanded 187 2178 88.9198

Mouse Gene Atlas 96 20686 660.1354

NCI-60 Cancer Cell Lines 93 12232 343.3333

OMIM Disease 90 1759 25.0667

VirusMINT 85 851 14.8824

Human Gene Atlas 84 15381 449.7619

SILAC Phosphoproteomics 84 7732 341.869

Reactome Pathways 78 3185 72.5128

MGI Mammalian Phenotype Top 3 71 10406 717.4366
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differential gene expression data after knockdown of vari-

ous transcription factors from 10 experiments extracted

from 7 studies (Table 2). Once we have identified lists of

statistically significant differentially expressed genes,

which are either increased or decreased in expression

after the transcription factor knockdown, we examined

how the different scoring methods rank putative targets

of those factors with the expectation that the knocked-

down factors would be highly ranked when applying

enrichment analysis with the ChEA gene-set library

[10]. This analysis resulted in 104 comparisons of

transcription factors ranks because some transcription

factors have multiple entries in ChEA. The results show

that the second method, the test statistics that corrects

the bias from the Fisher exact test, which is the z-score

of the deviation from the expected rank, outperforms

the Fisher exact test and is comparable with the com-

bined scoring scheme (Figure 2d and 2e). This means

that in most cases the method ranks transcription fac-

tors higher, based on ChIP-seq data given lists of differ-

entially expressed genes after knockdown of the same

transcription factor. The combined scoring scheme is
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mostly affected by the expected rank test compared

with the Fisher exact test, but its overall performance is

slightly worse compared to using the expected rank

alone. It should be noted that while this analysis shows

some advantage to the rank test over the Fisher exact

test, more evidence and tests are needed using different

gene-set libraries and experimental data to conclusively

determine that this rank test is better than the Fisher

exact test. However, it is difficult to design such ana-

lyses in an unbiased manner and the combination of

the ChEA gene-set library coupled with the loss-of

-function followed by expression data is the only setting

we could devise for such validation so far.

Application to obtain a global view of regulatory

mechanisms in cancer cell lines and their matching

normal tissues

Finally, to demonstrate how Enrichr can be applied glo-

bally to obtain a regulatory picture of cancer cell lines

and their corresponding normal tissues, we used nine gene

sets from the CCLE gene-set library and matching nine

gene sets from the Human Gene Atlas library to perform

enrichment analysis using ten other gene-set libraries:

ChEA, ENCODE TFs, Histone Modifications, KEGG,

WikiPathways, PPI Hubs, KEA, Reactome, MGI-MP and

Biocarta. We visualize the results using the grid p-value

view, coloring each grid with a different color representing

Table 2 Rank of entries from the ChEA gene-set library using the three scoring methods implemented in Enrichr given

input of lists of up or down regulated genes indentified from studies that profiled gene expression after knockdown

or knockout of the same transcription factors

TF Up/Down PMID Rank p-value Rank z-score Rank combined

Nanog Up 16518401 1,4,5,16, 2,4,15,18,22, 1,5,12,16,18,

28,33,62,144 28,33,116 28,37,117

Nanog Down 16518401 5,11,14,16, 1,3,4,20,41, 1,6,12,15,18,

39,58,78,92 54,61,64 56,70,73

Pou5f1 Up 16518401 3,11,12,18, 1,4,12,23, 1,8,14,15,

27,71,81 33,35,36 21,50,54

Pou5f1 Down 16518401 32,64,78,156, 1,65,92,121, 23,52,90,127,

176,181,204 160,165,188 171,176,192

Nanog Up 16767105 3,7,12,18,38, 1,3,11,17,21, 3,5,9,12,25,

46,56,113 23,26,69 29,36,80

Nanog Down 16767105 18,28,79,89, 4,17,21,33,44, 23,25,35,48,

92,102,160,164 83,139,157 60,86,142,186

Pou5f1 Up 16767105 1,9,18,23,31, 2,5,10,20, 1,2,16,20,

82,120,183 30,34,79 23,55,88

Pou5f1 Down 16767105 25,44,124,166, 47,49,60,131, 43,44,74,134,

167,180,216 139,169,200 147,153,177

Sox2 Up 16767105 2,10,35,59,61, 11,15,26,36, 3,9,26,44,

70,121 68,71,103 58,80,123

Sox2 Down 16767105 5,44,50,130, 10,72,85,106, 1,61,82,108,

139,149,176 110,140,151 116,166,177

Sox2 Up 17515932 2,14,15,41,50, 6,27,30,35, 2,7,24,39,44,

61,82 44,49,55 45,57

Sox2 Down 17515932 8,19,68,93,117, 6,29,73,95, 4,17,84,103,

164,216 124,146,210 132,151,168

klf4 Up 18264089 1,27,31,183 6,22,31,199 1,23,31,210

klf4 Down 18264089 61,71,163,200 78,85,190,222 78,79,209,219

Zfp281 Up 18757296 3,24 3,6 3,6

Zfp281 Down 18757296 60,159 63,138 64,147

chd1 Up 19587682 126 106 107

chd1 Down 19587682 231 214 125

Tbx3 Up 20139965 110 96 96

Tbx3 Down 20139965 93 70 76
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the corresponding library (Figure 3). This analysis shows in-

teresting signature patterns: first, we noticed a cluster of

transcriptional regulators from ChEA that only appears for

the cancer cell lines of ovarian, skin and small intestine can-

cers. This cluster is composed of the polycomb group com-

plex called PRC2 (highlighted in yellow circles in Figure 3).

Next, we saw that, in most of the cancer cell lines, the most

enriched terms in the histone modification grids are those

associated with H3K27me3 (blue circles in Figure 3). There

is direct evidence that the PRC2 polycomb group is res-

ponsible for the H3K27me3 specific modification [54],

confirming consistency between the ChEA and histone

modification enrichment results. Careful examination of

the genes for each cancer that overlap with these histone
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Figure 3 Global view of signatures created using genes that are highly expressed in cancer cell lines and their matching human

tissues. Enriched terms are highlighted on each grid based on the level of significance using various gene-set libraries, each represented by a
different color. Circles are used to highlight specific clusters of enriched terms.
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modifications showed that the genes are different for each

cancer and are critical tissue specific components. Hence,

compared with other cancer cell lines, in these cancer cell

lines the PRC2 complex and H3K27me3 modification is

used to silence tissue specific genes to help with the dedif-

ferentiation phenotype of cancer cells.

An interesting signature pattern was also present in

the WikiPathways grids that compared the enrichment

signatures between CD33+ myeloid positive normal

hematopoietic cells and K562 cells, which is a cell line often

used to study a specific form of leukemia. The two cell lines

share a cluster of pathways associated with Interleukin sig-

naling (green circles in Figure 3), but the normal tissue is

only enriched with Toll-like receptor signaling cluster, po-

tentially indicating the alteration in signaling in leukemia

shutting off this pathway. In addition, the highly expressed

genes in the normal hematopoietic cells form a cluster in

the MGI-MP grid which are defects in the hematopoietic

system when these genes are knocked out in mice (gray

circle in Figure 3). Finally, HUTU80 cells, a human duode-

num adenocarcinoma cell line, have a cluster in the PPI

hubs grid made of the EGFR cell signaling components

including EGFR, GRB2, PI3K, and PTPN11 as well as Src

signaling including LCK, JAK1 and STAT1, strongly

suggesting up-regulation of this pathway in this cancer.

Many more interesting clusters and patterns can be

extracted from such global view of enrichment signatures

and visualization of enriched terms on such grids.

Conclusions
In conclusion, Enrichr provides access to 35 gene-set libra-

ries with many useful libraries such as those created from

ENCODE enlisting many targets for many transcription

factors as well as a gene-set library extracted from the NIH

Roadmap Epigenomics Project for histone modifications.

Other newly created libraries include genes highly

expressed in different cell types and tissues; mouse pheno-

types from MGI-MP; structural domains; protein-protein

hubs; protein complexes; kinase substrates; differentially

phosphorylated proteins from SILAC experiments; differen-

tially expressed genes after approved drug perturbations;

and virus-host protein interactions. The results from

Enrichr are reported in four different ways: table, bar graph,

network of enriched terms, and a grid that displays all the

terms of a gene-set library while highlighting the enriched

terms. Each visual display is easily exportable to vector

graphic figures to be incorporated in publications and pre-

sentations. Enrichr also has a potentially improved method

to compute enrichment, and we demonstrated that this

method might be better than the currently widely used

Fisher exact test. In addition, we show how figures gene-

rated by Enrichr can be used to obtain a global view of cell

regulation in cancer by comparing highly expressed genes

in cancer cell lines with genes highly expressed in normal

matching tissues. Overall, Enrichr is a state-of-the-art gene

set enrichment analysis web application. Code snippets are

provided to embed Enrichr in any web-site. Enrichr is also

available as a mobile app for iPhone, Android and

Blackberry.

Availability and requirements
Enrichr is freely available online at: http://amp.pharm.

mssm.edu/Enrichr.

Enrichr requires a browser that supports SVG. Recent

versions of Chrome, Firefox, and Opera for Android are

recommended. Enrichr only works with Internet Explorer

(IE) 9 or higher. In addition, since the stock browsers in

Android 2.3.7 (Gingerbread) or below do not support

SVG, Enrichr does not work using these browsers.

Additional files

Additional file 1: Figure S1. The initial input interface of Enrichr allows
users to cut-and-paste lists of gene symbols or upload a text file
containing gene-lists.

Additional file 2: Figure S2. Bar graph visualization of the Enrichr
results showing the top 10 enriched terms in the ChEA gene-set library.
A color wheel is provided to change the bar graph default color.

Additional file 3: Figure S3. Table visualization of the Enrichr results
showing the top 10 enriched terms in the TRANSFAC and JASPAR PWMs
gene-set library. Mouse over events trigger the display of the overlapping
genes. The three scoring methods are shown for each term and the
complete table can be searched and exported to Excel.

Additional file 4: Figure S4. Grid visualization of the Enrichr results
showing the top 10 enriched terms in the MGI-MP gene-set library. A
color wheel is provided to change the bar graph default color. The z-
score and p-value indicate whether the enriched terms are highly
clustered on the grid.

Additional file 5: Figure S5. Network visualization of the top 10
enriched terms in the Mouse Gene Atlas gene-set library. Enriched terms
are connected by their distance on the grid which represents their gene
content similarity.

Additional file 6: Figure S6. Screenshot from the “Find A Gene” page
showing an example for searching annotations for the gene MAPK3.
Expanding the ChEA cross shows all gene-sets that contain MAPK3. This
means that in those studies MAPK3 was identified as a target gene for
the transcription factors. The number next to the transcription factors is
the PubMed ID of the study.
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