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ENRIGHT’S COMPLETIONS AND
INJECTIVELY COPRESENTED MODULES

STEFFEN KÖNIG AND VOLODYMYR MAZORCHUK

Abstract. Let A be a finite-dimensional simple Lie algebra over the complex
numbers. It is shown that a module is complete (or relatively complete) in the
sense of Enright if and only if it is injectively copresented by certain injective
modules in the BGG-category O. Let A be the finite-dimensional algebra
associated to a block of O. Then the corresponding block of the category of
complete modules is equivalent to the category of eAe-modules for a suitable
choice of the idempotent e. Using this equivalence, a very easy proof is given for
Deodhar’s theorem (also proved by Bouaziz) that completion functors satisfy
braid relations. The algebra eAe is left properly and standardly stratified.
It satisfies a double centralizer property similar to Soergel’s “combinatorial
description” of O. Its simple objects, their characters and their multiplicities
in projective or standard objects are determined.

1. Introduction

Let A be a finite-dimensional simple Lie algebra over the complex numbers.
Fix a triangular decomposition, A = N− ⊕ H ⊕ N+. Then the BGG-category O,
which has been defined in [BGG], decomposes into a direct sum of indecomposable
subcategories, called blocks. Each block is equivalent to the module category of a
finite-dimensional associative algebra.

In his study of fundamental series representations in [E], Enright associated with
each simple root of A an endofunctor on the category of A-modules, which sends a
module M into what is called the relative completion of M . Relative completions
preserveO, and on a certain subcategory ofOthey can be written as the composition
of a localization functor with restriction and with taking a certain locally nilpotent
part [De, M].

In this paper we show that both the relative completions and Enright’s abso-
lute completions (from now on just called completions), which are compositions of
certain relative completions, have very natural interpretations in terms of the finite-
dimensional algebras associated with blocks of O. In fact, up to the equivalences
constructed by [BGG, S], the (relatively or absolutely) complete modules (i.e., the
images of completion functors) are precisely the injectively copresented modules for
certain choices of injective modules. Thus Enright’s completion fits into the general
framework established by Auslander [A].
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2726 STEFFEN KÖNIG AND VOLODYMYR MAZORCHUK

In particular, each block of the above categories of (relatively or absolutely)
complete modules is equivalent to the module category of an algebra eAe, where
A is a block of O and e is an idempotent, the primitive summands of which are
naturally indexed by cosets of the Weyl group. Thus, these subcategories carry
abelian structures, which are, in fact, not obtained by restriction from the abelian
structure of O.

From the abstract framework it is clear that the category of injectively co-
presented modules (for some choice of injectives) is equivalent to the category of
projectively presented modules (for the corresponding choice of projectives). Ex-
plicit versions of the last categories occur in [BG, II 5.9] in the context of projec-
tive functors. There it is shown that certain translation functors are equivalences
between categories of Harish-Chandra modules and categories of projectively pre-
sented modules in O.

There is even another equivalent version of these categories, namely, a para-
bolic generalization of the category O, which has been introduced and studied in
[FKM1, FKM2, FKM3] by Lie theoretic methods. For example, the abelian struc-
ture mentioned before was discovered in [FKM3] as a quite exotic looking property,
which gets a natural explanation in the present framework.

Altogether we get the following picture—it contains five categories, correspond-
ing blocks of which are all equivalent (for suitable choices of the defining parame-
ters):

eAe-mod

Harish-Chandra modules H1
f (θ)r

@
@
@
@@R

(relatively) complete modules in O

�
�
�
���

injectively copresented modules

�
�
�
��	

parabolic category O(P ,K)

@
@
@
@@I

Having defined relative completions in [E], Enright posed the problem of showing
that (on a certain subcategory) these relative completion functors satisfy the braid
relations. This problem has been solved independently by Deodhar ([De]) and by
Bouaziz ([Bo]). Later, Joseph ([Jo]) extended the result to the whole category O.
It turns out that the subcategory considered by Deodhar is precisely the category
of injectively cogenerated modules in our abstract setup, and this reformulation
enables us to reprove the Bouaziz-Deodhar result in an easy way.

As a by-product of the proof we get that complete modules have a Verma flag.
This yields a lower bound for the representation type of the category of modules
having a Verma flag (and, of course, also for all of O). See [BKM] for details of
this application.
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The paper is naturally divided into two parts. The first part starts with Sec-
tion 2, where we recall the abstract framework from Auslander’s paper. Then, in
Section 3 we define Enright’s completion functors and show that the correspond-
ing complete modules are precisely the injectively copresented modules when the
injective module is chosen to be projective as well. More generally, in Section 4 we
relate relatively complete modules to injectively copresented modules for certain
choices of injectives. In Section 5 we reprove the validity of braid relations using
our abstract approach. Section 6 recalls the equivalence proved in [BG] and then
summarizes all the equivalences of categories we have obtained.

In the second part of the paper we consider the structure of the finite-dimensional
algebras eAe occurring above. In this way, we get several new results for the other
four categories, but we also reprove in an easy way several assertions which were
already known for some of these categories. In particular, we reprove and generalize
results from [FKM3] on S-subcategories in O.

The basic structure of the algebra A is that it is quasi-hereditary in the sense
of Cline, Parshall and Scott [CPS1]. Verma modules play the role of standard
modules in this structure. For a quasi-hereditary algebra (A,≤), in general it is
known that certain centralizer subalgebras eAe carry an induced quasi-hereditary
structure ([CPS1]). However, this works only if the idempotent e is associated to
an ideal of the partially ordered set of weights. If e is chosen in a different way, as
it has to be in our situation, then a result of Dlab and Ringel ([DR]) states that
every finite-dimensional algebra can occur as eAe for some quasi-hereditary algebra
A.

Our aim in the second part of the paper is to show that for a rather different
choice of e (which covers our special situation for the category O), the algebra
eAe still carries the structure of a left properly stratified algebra (induced from
the quasi-hereditary structure on A – actually, it would be enough to start with A
left properly stratified). The algebras occurring in the first part of the paper are
all of this form. (See the remark on terminology in Section 7 for a comparison of
the concept of left properly stratified algebras with other definitions of stratified
algebras in the literature.)

A basic question for any abelian category occurring in Lie theory is to param-
eterize simple objects and to determine their characters or their multiplicities in
other objects such as projective or standard objects. Since eAe is left properly
stratified and this structure is directly related to the quasi-hereditary structure of
A, we get full answers to these questions (if the corresponding information on A
is available). In particular, characters of simples and their multiplicities in pro-
jective and standard objects are determined as consequences of Kazhdan-Lusztig
conjecture (= theorem in our case).

We start Section 7 by recalling the definitions of quasi-hereditary and left prop-
erly stratified algebras and explaining the terminology and comparing it with similar
notions used in the literature. Then we formulate and prove Theorem 5, which is
a sufficient criterion for an algebra eAe to be standardly stratified if A is quasi-
hereditary (or, more generally, also standardly stratified). We also discuss multiplic-
ity formulae and establish the existence of double centralizer properties (following
the approach taken in [KSX]). In Section 8, we consider S-subcategories in O.
Applying Theorem 5 to this setup yields Theorem 7, which reproves many results
from [FKM1, FKM2] and [FKM3]. The assertions on double centralizer properties
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2728 STEFFEN KÖNIG AND VOLODYMYR MAZORCHUK

then reprove two of the main results of [FKM2, FKM3]. Moreover, formulae for
characters and multiplicities of simples are obtained.

Through all of the paper we restrict ourselves to considering modules in O which
have integral support. This simplifies notation and arguments, but it is, in fact, not
a restriction, since by Soergel’s result ([S]) all the other blocks of O are equivalent
to blocks having integral support (possibly for other Lie algebras); hence they share
the same structure.

2. Projectively presented modules

and injectively copresented modules

This section fixes the abstract setup in which we will study Lie theoretic notions
later on. In particular, it provides us with equivalences of categories which will be
used. Most of the results are taken from Auslander’s work [A], Sections 3 and 5.
Modules always are left modules.

Let A be a finite-dimensional associative algebra. By Λ we denote the set of iso-
morphism classes of simple A-modules. The simple module L(λ) has the projective
cover P (λ) and the injective envelope I(λ).

Let Γ be a subset of Λ. An A-module M is Γ-projectively generated if it is a
quotient of a direct sum of indecomposable projective modules indexed by elements
of Γ (Γ-projectives). It is Γ-projectively presented if it has a projective presentation
P2 → P1 → M → 0 by Γ-projectives. Dually, M is Γ-injectively cogenerated
if it is a submodule of a sum of indecomposable injective modules indexed by Γ
(Γ-injectives), and it is Γ-injectively copresented if it has a copresentation by Γ-
injectives.

Denote by P (Γ) (resp. by I(Γ)) a direct sum of indecomposable projective (resp.
injective) objects corresponding to the elements in Γ. Denote by AΓ the endomor-
phism ring of P (Γ). The Γ-projectively presented modules can be characterized as
follows in terms of the endomorphism ring AΓ.

Proposition 1. For an A-module M the following statements are equivalent:
(a) M is Γ-projectively presented.
(b) The canonical morphism P (Γ)⊗AΓHomA(P (Γ),M)→M is an isomorphism.
(c) There is an AΓ-module N such that the A-module M is isomorphic to the

induced module P (Γ)⊗AΓ N .

Proof. See [A, 5.2].

The dual assertion reads as follows:

Proposition 2. For an A-module M the following statements are equivalent:
(a) M is Γ-injectively copresented.
(b) The canonical morphism M → HomAΓ(HomA(P (Γ), A), HomA(P (Γ),M))

is an isomorphism.
(c) There is an AΓ-module N such that the A-module M is isomorphic to the

coinduced module HomAΓ(HomA(P (Γ), A), N).

Proof. See [A, 5.5].

Up to a Morita equivalence, the endomorphism ring AΓ can be written as eAe
for some idempotent e = e2 ∈ A. Then the two canonical morphisms appearing
above are the obvious morphisms Ae⊗eAe eM →M and M → HomeAe(eA, eM).
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The functors occurring in the previous results actually yield equivalences of cat-
egories as follows.

Proposition 3. The full subcategory B(Γ) of Γ-projectively presented modules is
equivalent to the category of AΓ-modules, via induction and restriction. This gives
B(Γ) an abelian structure. With respect to this abelian structure, the inclusion
B(Γ) ⊂ A-mod is right exact.

The full subcategory C(Γ) of Γ-injectively copresented modules is equivalent to the
category of AΓ-modules, via coinduction and restriction. This gives C(Γ) an abelian
structure. With respect to this abelian structure, the inclusion C(Γ) ⊂ A-mod is left
exact.

In particular, B(Γ) and C(Γ) are equivalent categories.

Proof. This combines [A, 5.1, 5.4 and 5.6].

Given any A-module, M , we can first map it to AΓ-mod using the exact functor
HomA(P (Γ),M) and then induce (resp. coinduce) it to a projectively presented
module M1 (resp. an injectively copresented module M2). If M is already Γ-

generated, say P1
f→M → 0, then M1 is the sum of all cokernels of maps P2 → P1

with P2 ∈ add(PΓ) which have image in the kernel of f . If M is Γ-cogenerated,
say 0 → M

g→ I1, then M2 is the intersection of all kernels of maps I1 → I2 with
I2 ∈ add(IΓ) which send M to zero. Obviously, both maps, sending M to M1 or to
M2, are idempotent and functorial.

We fix the following notation: M 7→ b(M) = M1 and M 7→ c(M) = M2.
The object b(M) together with the natural map b(M)→M is the left approx-

imation (in the sense of [AR]) of M in the category of Γ-presented modules. The
object c(M) together with the natural map M → c(M) is the right approximation
of M in the category of Γ-copresented modules. Both approximations are unique,
since the modules M with HomA(P (Γ),M) = 0 form a localizing subcategory (see
[A, Section 7]).

If a module M is already Γ-generated, say P → M , then b(M) is the largest
quotient of P which maps onto M and such that all the composition factors of the
kernel of b(M)→M have indices not in Γ. That is, b(M) is obtained from M by
maximal extension with non-Γ composition factors.

If a module M is already Γ-cogenerated, say M ⊂ I, then c(M) is the largest
submodule of I which contains M and such that all the composition factors of the
quotient c(M)/M have indices not in Γ. That is, c(M) is obtained from M by
maximal coextension with non-Γ composition factors.

3. Complete modules in the sense of Enright

Let A = N−⊕H⊕N+ denote a semi-simple finite-dimensional complex Lie alge-
bra with a fixed triangular decomposition, and let ∆ = ∆+∪∆− be the correspond-
ing root system with basis π. Let Xα, α ∈ ∆, Hα, α ∈ π be a fixed Weyl-Chevalley
basis of A. Let O denote the BGG-category of finitely generated, H-diagonalizable
and locally U(N+)-finite modules. For α ∈ π let Uα denote the Ore localization
of U(A) with respect to {Xm

−α|m ∈ N} (see [M]). For α ∈ π we denote by rα the
composition of the following functors:

U(A)-mod
Uα⊗U(A)−−→ Uα-mod res−→ U(A)-mod

locfin−→ U(A)-mod,
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where locfin is the functor of taking locallyXα-finite part. We call this composition
an elementary Enright completion (in Mathieu’s version), see [De, E, M]. Clearly,
rα : O → O is idempotent. A module M ∈ O is said to be complete in the
sense of Enright, if rα(M) = M for any α ∈ π. Of course, there is a notion
of relative completeness (or Γ-completeness) with respect to some set Γ of simple
roots. Obviously, the functor rα is left exact, but, in general, not right exact. One
also sees that rα commutes with the parabolic induction. We also denote by Aα

the Lie subalgebra of A generated by X±α. Clearly, Aα ' sl(2,C).
A module M ∈ O is said to have a quasi Verma flag, if there is a filtration,

M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 such that each Mi/Mi+1 is a non-zero submodule
of a Verma module (see [D, Chapter 7] for the definition and properties of Verma
modules, which we denote by M(λ)).

Definition 1. The full subcategory K of O consists of all complete modules having
a quasi Verma flag and integral support.

This was introduced in [FKM3], where it was shown that K decomposes into a
direct sum of module categories over local algebras. This will follow from our more
general results later on. We note that in [FKM3] the more complicated notation
stFint was used instead of K.

Our goal in this section is to show that a module (with integral support and
from O) is complete if and only if it is copresented by projective-injective modules.
The first step deals with modules cogenerated by projective-injective modules:

Lemma 1. Let M be an object in O with integral support. Then M has a quasi
Verma flag if and only if it is cogenerated by projective-injective modules.

Proof. The socle of a Verma module is the socle of a projective-injective module.
Therefore, a module with a quasi Verma flag is cogenerated by projective-injective
modules. Conversely, a projective module has a Verma flag, hence a quasi Verma
flag. A submodule of a module with a quasi Verma flag itself must have a quasi
Verma flag, which is obtained by restricting the original flag to the submodule.

We note that the length of a quasi Verma flag of a given module M is an invariant
of M , since it is equal to the number of composition factors of M which are simple
Verma modules.

The following lemma collects several assertions which were proved in [FKM3].
We repeat the easy proof for completeness.

Lemma 2. (a) Let M have a quasi Verma flag. Then, for any α ∈ π, the oper-
ator X−α acts injectively on M . Hence M ⊂ rα(M).

(b) Let λ ∈ H∗, let α ∈ π and let sα be the reflection with respect to α. Then
rα(M(λ)) ' M(λ) if M(λ) 6⊂ M(sα(λ)), and rα(M(λ)) ' M(sα(λ)) if
M(λ) ⊂M(sα(λ)).

(c) Let M have a quasi Verma flag. Then rα(M)/M is a direct sum of finite-
dimensional A-modules.

(d) Let M and N be two modules with quasi Verma flags. Suppose that N ⊂ M
and that both M and N are complete. Then any simple submodule of M/N
is a simple Verma module.

Proof. (a) follows from the fact that a Verma module is free over U(N−), hence
torsion-free.
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(b) is a standard property (see [E, De]). Alternatively, it can be proven by
using induction from a parabolic subalgebra. It is easy to produce a given Verma
module from a Verma module over a smaller Lie algebra by such an induction.
This induction functor commutes with completion, so the assertion follows from the
corresponding sl(2)-statement, which can be easily verified by a direct calculation.

(c) also follows from an sl(2)-computation.
(d) Suppose that there is a simple submodule of M/N which has the form L(λ),

for some integral λ, which does not belong to the closure of the antidominant Weyl
chamber. Hence there is α ∈ π such that L(λ) is a direct sum of finite-dimensional
modules with respect to Aα. Therefore, M/N has elements on which X−α acts in a
locally nilpotent way. Since rα is left exact, we have rα(M/N) ⊃ rα(M)/rα(N) =
M/N ⊃ L(λ). This contradicts the fact that X−α acts injectively on rα(M/N) by
the definition of rα.

Now we can restrict our attention to modules that are cogenerated by projective-
injective modules. In fact:

Lemma 3. Let M be a complete module with integral support. Then M is cogen-
erated by projective-injective modules. In particular, M has a quasi Verma flag.

Proof. Let M ∈ O be a module with integral support such that rα(M) = M for
any α ∈ π. Then rα(soc(M)) 6= 0 for all α ∈ π; in particular, X−α acts injectively
on soc(M) for all α ∈ π. In the integral case, the last statement means that soc(M)
is a direct sum of simple Verma modules.

Now we are ready to state our result.

Theorem 1. Let M ∈ O be a module with integral support. Then M is complete
if and only if it is copresented by projective-injective modules.

Proof. Suppose that M is complete. Then, by Lemma 3, it has a quasi Verma flag.
Thus there is an inclusion M ⊂ I for some projective-injective I. Using part (d) of
Lemma 2, we get that I/M has a socle which is a direct sum of simple Verma mod-
ules. Therefore, there exist a projective-injective module I ′ and a homomorphism
ϕ : I → I ′ such that M equals the kernel of ϕ. It follows that M is copresented by
projective-injective modules.

Conversely, suppose that M is copresented by projective-injective modules, say
M = ker(ϕ) for some ϕ : I → I ′ with I and I ′ both projective-injective. In
particular, the socle of the quotient I/M is a direct sum of simple Verma modules.
Part (c) of Lemma 2 implies that for any α, the socle of the quotient rα(M)/M (if
non–zero) is a direct sum of simple modules which are not Verma modules. But
rα(M) is isomorphic to a submodule of I as well; hence its image in I/M must be
zero. It follows that rα(M) equals M .

Corollary 1. Each complete module from O has a quasi Verma flag. In particular,
K is the subcategory of O consisting of all complete modules.

In Section 6, we will prove a stronger result.

4. Relative theory and the parabolic category O
The results of the previous section generalize to statements on relative com-

pletions. Categories of relatively complete modules may look artificial at first.
However, we show that they are equivalent to two other categories which have been
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studied before. These are, first, the parabolic category O(P ,K) which will be dis-
cussed in this section, and, second, a category of Harish-Chandra modules (see the
next section).

In [FKM3] the categoryK has been used to construct the following generalization
of O. Let G be a semi-simple Lie algebra and let P be a parabolic subalgebra such
that the semi-simple part of the Levi factor of P is isomorphic to A. Denote by
O(P ,K) the full subcategory of the category O for G (associated with the Borel
subalgebra contained in P) which consists of all modules possessing a decomposition
into a direct sum of modules from K, when viewed as A-modules. It has been shown
in [FKM3] that O(P ,K) has several nice properties. In particular, the blocks of this
category possess a combinatorial description in the fashion of Soergel’s description
of the classical category O. Now we can describe O(P ,K) in an abstract way, as
we described K in the previous section.

Let W denote the Weyl group of G and WA the Weyl group of A. The longest
representatives of the cosets W/WA will be called A-admissible elements. An in-
jective (resp. projective, resp. semi-simple) module I ∈ O (resp. P ∈ O, resp.
S ∈ O) will be called A-admissible provided all its indecomposable direct sum-
mands are injective envelopes of simple modules (resp. projective covers of simple
modules, resp. simples) of the form L(w(λ)), where w is A-admissible and λ is
dominant and A-integral.

If WA is generated by a simple reflection sα, then we will use the term α-
admissible as a synonym for A-admissible.

Lemma 4. Let P (resp. I) be an A-admissible projective (resp. injective) module.
Then the restriction of P (resp. I) to A-modules is a direct sum of copies of
projective-injective modules in the corresponding category O.

Proof. By duality, it is enough to give the proof for P . By the parabolic analogue of
the BGG-construction of projectives in O, P can be obtained from the projective-
injective module P ′ over A in two steps. First, induce it up to the parabolic
subalgebra and then induce the result up to g. In both cases the result, as an
A-module, decomposes into a direct sum F ⊗ P ′, where F is finite-dimensional.
Hence P , as an A-module, is a direct sum of projective-injective modules.

Theorem 2. Let M be in O. Then the following statements are equivalent:
1. M ∈ O(P ,K).
2. M is copresented by an A-admissible injective module.
3. M has A-integral support and is relatively complete with respect to all simple

roots of A.
Moreover, each relative completion functor coincides with the approximation func-
tor associated with the category of modules copresented by A-admissible injective
modules.

Proof. The equivalence of (1) and (3) follows directly from the definition and the
remark that relative completions commute with parabolic induction.

The proof of the equivalence between (2) and (3) is based on the same arguments
as the proof of Theorem 1. This is possible by Lemma 4, which permits us to copy
the arguments using projective-injective modules. The description of completion in
terms of injective copresentations also shows that the completion functor coincides
with the approximation functor.
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5. Summarizing all the equivalences

Before we can state the result, we have to introduce another category by recalling
some definitions and results from [BG].

Let θ be a central character. Consider U(G)-bimodules which are algebraic (i.e.,
direct sums of finite-dimensional modules under the diagonal action of G) and
which are, moreover, finitely generated as bimodules. By H1

f (θ)r we denote the full
subcategory of those modules on which the center acts through θ (here f stands
for finitely generated and r for the right action of the center). Associated with θ
is a dominant weight χ. The stabilizer of χ defines a subalgebra A. Bernstein and
Gelfand have shown ([BG, Theorem 5.9]) that a certain translation functor defines
an equivalence between H1

f (θ)r and the subcategory of O consisting of modules
which are presented by A-admissible projective objects.

Summarizing all the equivalences constructed so far, we get

Corollary 2. The following five categories are equivalent:
1. The category of A-complete modules in O with integral support.
2. The integral part of the parabolic category O(P ,K).
3. The category H1

f (θ)r of Harish-Chandra bimodules for integral singular θ,
whose stabilizing subalgebra is A.

4. The subcategory of O consisting of modules with integral support which are
copresented by A-admissible injective modules.

The equivalences between (1), (2) and (4) above restrict canonically to equivalences
between blocks. Each block is equivalent to the category eAe-mod for a suitable
choice of e and A.

Proof. The equivalence of (1), (2) and (4) is Theorem 2. The equivalence with (3)
is the result of Bernstein and Gelfand combined with Proposition 3. Finally, the
statement about blocks is also contained in Proposition 3.

We have to remark that, using the main result of [KM], one can add to the above
list of five categories one more category, namely, the parabolic category O(P ,F),
where F is generated by a simple generic Gelfand-Zetlin module. The precise
definition of this category is quite long and technical, so we will not give it here.
See [KM] for details.

One consequence of these equivalences is that it gives an abelian structure to
all of these categories, which in the cases (1), (3) and (4) is not clear from the
definitions. In particular, we get for free that each block of any of these categories
has finitely many simple objects, each object has finite length, multiplicities of
composition factors are well-defined, and so on.

Moreover, varying the defining parameters (i.e., the set of simple roots or the
central character), we get different categories which one can compare, e.g., by using
obvious functors between eAe-mod and fAf -mod, when e and f are the correspond-
ing idempotents. In particular, the idea of comparing the corresponding completion
functors will be developed in the next section.

6. Braid relations

We keep the notation of the previous sections. Fix two simple roots α and β.
Motivated by a problem posed by Enright ([E]), Bouaziz ([Bo]) and independently
Deodhar ([De]), and later on also Joseph ([Jo]), proved that completion functors
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satisfy braid relations. Joseph considered functors defined on all of O, whereas
Deodhar and Bouaziz restricted their attention to the subcategory of O which
consists of all modules with integral support on which all X−γ , γ a positive root,
act injectively. Joseph’s completion functor is different from Mathieu’s version
which we are using. The two functors have different properties. Our functors do
not satisfy braid relations on all of O (see the example at the end of this section),
but they are idempotent functors. Joseph’s functors do satisfy braid relations, but
they are not idempotent.

Theorem 3 (Bouaziz, Deodhar). The braid relation sαsβ · · · = sβsα · · · in the
Weyl group of A implies the braid relation rαrβ · · · = rβrα · · · between composi-
tions of completion functors on the subcategory Oα,β of O which consists of all
modules with integral support on which X−α and X−β act injectively.

In this section we outline a short proof of this theorem which is based on our
abstract framework.

Proof. We denote by rl (resp. rr) the composition of functors occurring in the left
(resp. right) hand side of the braid relation.

The first step is to reduce the problem to rank two situations. Let A0 be the
rank two subalgebra of A corresponding to α and β. Denote its BGG-category by
O′. The Lie theoretic definitions of completion show that the braid relations can be
checked on the restriction of A-modules to A0-modules. These restricted modules
are direct sums of objects in O′. Denote by Γ′ the index set of projective-injective
objects in O′.

Lemma 5. Restricting from U(A) to U(A0) sends an injective object in O to a
direct sum of injective objects in O′, and it sends a projective object in O to a
direct sum of projective objects in O′.

Proof. Restriction preserves the defining properties of the category O, except that
the restriction of an object need not be finitely generated any more. By the PBW-
theorem, induction from U(A0) to U(A) is exact. Therefore its right adjoint, re-
striction, sends injective objects in O to sums of injective objects in O′. Moreover,
restriction and the operation of forming direct sums both commute with the dual-
ities in these categories, which interchange projective and injective objects.

Another way to prove this statement is to first check the easy case of projective
Verma modules. Then all other projectives can be obtained via exact tensoring
with finite-dimensional modules.

In particular, projective-injective objects in O restrict to direct sums of pro-
jective-injective objects in O′. Moreover, if we denote by Γ the index set of
A0-admissible injectives, then a Γ-cogenerated module M in O restricts to a Γ′-
cogenerated module in O′, where in the latter case we allow infinite direct sums
of projective-injective objects in the definition. It is enough to check the braid
relations on finitely generated objects in O′.

Thus from now on we are working with A0 only. We are given a module M con-
tained in a projective-injective module I. Applying rα or rβ to M means extending
M inside I by as many α-non-admissible (or β-non-admissible) composition factors
as possible. Let us call this an admissible extension of M .

Suppose for a moment that M is a simple Verma module. It follows from part
(b) of Lemma 2 that by applying either rl or rr to M we always get the projective
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Verma module as a result. This implies that we can build any submodule of the
projective Verma module, in particular any other Verma module, by successive
admissible extensions of its socle (which is the given M).

Now we go back to the general situation:

Lemma 6. Given M ⊂ I, where I is projective-injective, let F be minimal with
respect to inclusion such that it has the following properties: F is a submodule of
I; it contains M ; and there exists a ∆-filtration F0 ⊂ F1 ⊂ · · · ⊂ I of I such that
F equals some Fi.

Then both rl(M) and rr(M) coincide with F .

Proof. Let Γ be the indexing set of projective-injective modules. Then any Verma
module has a socle of type Γ, i.e. any injective envelope of any simple occurring in
the socle of a Verma module is projective. Therefore, there exists a map from I into
a direct sum of copies of I which has kernel equal to F . Thus, F is Γ-copresented
and hence A0-complete. It follows that F contains both rl(M) and rr(M). By the
minimality of F , all composition factors of type Γ in F are already in M . Hence,
all the socles of the Verma subquotients of F are in M . Thus, by the remarks
preceding the statement of the lemma, both rl(M) and rr(M) contain F .

Now we see that both rl and rr applied to M will give us the module F , which
finishes the proof of the braid relations.

We recall that completion functors are idempotent: rα = r2
α. This is trivial,

once they are identified with approximation functors.
We know already that completion functors are approximation functors, and so

they must satisfy braid relations as well. More precisely, our proof shows that
certain compositions of approximation functors are approximations with respect
to intersections of the sets of injective modules involved. In fact, fix simple roots
α and β and suppose there is a braid relation sαsβ · · · = sβsα · · · in the Weyl
group W . Denote by cα the approximation functor with respect to the category of
modules copresented by α-admissible injectives, and by cβ the approximation with
respect to the category of modules copresented by β-admissible injectives. By cα,β

we denote the approximation with respect to the category of modules copresented
by injectives which are both α-admissible and β-admissible. In the above notation
we immediately get the following.

Corollary 3. On the category of modules cogenerated by injectives which are both
α-admissible and β-admissible, the functors cα and cβ satisfy the same braid relation
(as sα and sβ). Moreover, the product in both sides of the relation coincides with
cα,β, i.e., cαcβ · · · = cα,β = cβcα · · · .

Applying the above arguments to A instead of A0 also shows:

Theorem 4. A complete module has a Verma flag.

This yields a lower bound for the representation type of the category of modules
having a Verma flag.

To finish this section we present an example which explains why we have to
restrict to the subcategory of Γ-cogenerated modules. In fact, on the full category
O, the completion functors rα do not satisfy braid relations. Even worse, iterated
compositions of such functors need not stabilize. This shows the difference between
rα and the original version of the completion functors, which, as it was shown by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Joseph in [Jo], satisfy braid relations on the whole of O, but are not idempotent.
Only on the subcategory of Γ-cogenerated modules (where both completion functors
coincide) does one have all these nice properties simultaneously.

Our example is the principal block of sl(3). The projective Verma module has
the following composition series:

6
4 5
2 3

1

.

The indecomposable projective-injective module looks as follows:

1
2 3

4 1 1 5
2 3 6 2 3

1 4 5 1
2 3

1

.

All other indecomposable projective modules are submodules of this one, and all
other indecomposable injective modules are its quotients. We choose α in such
a way that the completion functor rα is the approximation with respect to the
injective modules indexed by 1, 3 and 5. We choose β corresponding to 1, 2 and
4. Let L be the simple module indexed by 2. Under rα it goes to zero. However,
by rβ it is sent to a module M of length two, having simple socle 2 and simple
top 5. Applying rα now annihilates the socle, and hence the image coincides with
the rα-image of the simple module indexed by 5. The latter has length three and
contains L as a subquotient together with two other simples, indexed by 5 and 6.
The next step kills 5 and 6, and we are back at the copy of L we started with and
to which we have to apply rα again. Thus no braid (rαrβ)n ever will send L to a
complete module.

7. Quasi-hereditary algebras and left properly stratified algebras

First we recall the definitions of quasi-hereditary algebras ([CPS1]) and of left
properly stratified algebras (compare with [CPS2, APT, ADL, KlM]). We fix an
arbitrary ground field k. In this section, by an algebra we mean a finite-dimensional
associative k-algebra.

Definition 2. Let A be a finite-dimensional algebra, and Λ the set of isomorphism
classes of simple A-modules. Choose representatives L(λ) of the elements of Λ. Let
≤ be a partial order on I. Then (A,≤) is called quasi-hereditary if and only if the
following assertions are true:

(a) For each λ ∈ Λ, there exists a finite-dimensional A-module ∆(λ) with an
epimorphism ∆(λ) → L(λ) in such a way that the composition factors L(µ)
of the kernel satisfy µ < λ.

(b) For each λ ∈ Λ, the projective cover P (λ) of L(λ) maps onto ∆(λ) in such a
way that the kernel has a finite filtration with factors ∆(µ) satisfying µ > λ.
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There exists an equivalent reformulation in terms of two-sided ideals. Call a two-
sided ideal J of A heredity if J = AeA for a primitive idempotent e and EndA(Ae)
is semi-simple. Then A is quasi-hereditary if and only if it has a heredity chain
0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ A of two-sided ideals, that is, for any i the ideal Ji/Ji−1 is a
heredity ideal in A/Ji−1 ([CPS1]).

Definition 3. Let A be a finite-dimensional algebra, and Λ the set of isomorphism
classes of simple A-modules. Choose representatives L(λ) of the elements of Λ. Let
≤ be a partial order on I. Then (A,≤) is called left properly stratified if and only
if the following assertions are true:

(c) For each λ ∈ Λ, there exists a finite-dimensional A-module ∆(λ) with an
epimorphism ∆(λ) → L(λ) in such a way that the composition factors L(µ)
of the kernel satisfy µ ≤ λ.

(d) For each λ ∈ Λ, the projective cover P (λ) of L(λ) maps onto ∆(λ) in such a
way that the kernel has a finite filtration with factors ∆(µ) satisfying µ > λ.

There also exists an equivalent definition in terms of two-sided ideals. A two-
sided ideal J in A is called left properly stratifying if J is generated (as a two-sided
ideal) by a primitive idempotent and J is projective as a left A-module. Then the
algebra A is left properly stratified if and only if there exists an ordering e1, . . . , en
of the equivalence classes of primitive idempotents of A such that for each l the
idempotent el generates a left properly stratifying ideal in the quotient algebra
A/〈e1, . . . , el−1〉 ([CPS2]). The corresponding chain of two-sided ideals is called a
stratifying chain.

Remark on terminology. We are grateful to the referee for pointing out that the
terminology used in the first version of this paper, and also in part of the literature,
is misleading. In fact, there seem to be two definitions of standardly stratified
algebras: the original one given in [CPS2] and a more restrictive one which is used,
for example, in [ADL, FKM1, FKM2, FKM3]. In the general definition given in
[CPS2], one does not always use a complete set of representatives of all isoclasses
of primitive idempotents in A. For example, in the sense of [CPS2], any finite-
dimensional algebra A has a standard stratification of length 1 with A = J1 as the
stratifying ideal. Another difference is that [CPS2] uses the notion of quasi-partial
order, and not that of partial order on the set of representatives of idempotents.

Our left properly stratified algebras are precisely the (left-handed version of the)
standardly stratified algebras in the more restricted sense of [ADL, FKM1, FKM2,
FKM3]. The name left properly stratified for our class of algebras was used, for
example, in [KlM].

Left properly stratified algebras are, of course, standardly stratified in the sense
of [CPS2]. In particular, in [CPS2] it is shown that the derived category of a stan-
dardly stratified algebra admits a stratification, that is, in our case, a sequence of
recollements by derived categories of local algebras, viz. the endomorphism rings
El of the modules ∆(λ). Any quasi-hereditary algebra is left properly stratified. A
left properly stratified algebra A is quasi-hereditary if and only if all the rings El
are simple, i.e., if and only if A has finite global dimension ([CPS2, ADL]).

When (A,≤) is quasi-hereditary, there are two well-known ways of producing
new quasi-hereditary algebras. If I is an ideal in the partially ordered set (Λ,≤)
(that is, λ < µ and µ ∈ I imply λ ∈ I) and e is a complete sum of primitive
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idempotents representing elements of I, then eAe is quasi-hereditary as well. If I
is a coideal, then A/AeA is quasi-hereditary.

We are going to study algebras eAe for a rather different choice of e, in order to
cover the examples which we met in the first part of this paper. In the next section
we will return to these examples.

From now on, (A,≤) is a fixed left properly stratified algebra with simple modules
L(λ) indexed by λ ∈ Λ. The projective cover of L(λ) is denoted by P (λ); the
standard module mapping onto L(λ) is ∆(λ). For any subset I ⊂ Λ, we denote
by e(I) a sum of pairwise orthogonal primitive idempotents e(L) representing the
elements L ∈ Λ. If M is any module and P is projective, then the trace of P in M is
the sum of all homomorphic images of P in M . If M equals A and P is isomorphic
to Af for some idempotent f , then this trace coincides with the two-sided ideal
AfA.

Theorem 5. Let (A,≤) be left properly stratified. Decompose the index set Λ into
a disjoint union Λ =

⋃n
i=1 Λi of subsets satisfying the following condition: If λ ∈ Λi

and µ ∈ Λj and λ > µ, then i < j. Suppose moreover that each Λi has a unique
minimal element (with respect to the restriction of ≤), which we denote by λi. Let
e be a sum of corresponding idempotents e(λi). Assume that the following two
conditions are satisfied:

(†) For all i and j and for all µ ∈ Λj, there is an equality of filtration multiplicities
[P (λi) : ∆(µ)] = [P (λi) : ∆(λj)] · [P (λj) : ∆(µ)].

(‡) For all i and j and for all µ ∈ Λj, in a standard filtration of the projec-
tive module P (λi) all subquotients isomorphic to ∆(µ) lie in the submodule
generated by subquotients isomorphic to ∆(λj).

Then the algebra (eAe,≤) is left properly stratified.

Let us add two remarks. First, the submodule occurring in condition (‡) is
well-defined because of the ordering conditions in the definition of left properly
stratified algebras. Second, one can easily construct examples of quasi-hereditary
algebras with a decomposition of Λ such that either (†) or (‡) or both of them are
not satisfied. Especially (‡) is not easy to check in particular examples. However,
in the case of the category O both conditions are not hard, as will be shown in the
next section.

Proof. Let us first fix some notation. We fix a stratifying chain of (A,≤) as follows:
0 = J0 ⊂ J1,1 ⊂ · · · ⊂ J1,l1 ⊂ J2,1 ⊂ · · · ⊂ J2,l2 ⊂ · · · ⊂ A, where J1,1 ⊂ · · · ⊂ J1,l1

is the part corresponding to the indices in Λ1, J2,1 ⊂ · · · ⊂ J2,l2 corresponds to the
indices in Λ2, and so on. Multiplying by e on both sides produces a chain of two-
sided ideals in eAe which contains the following subchain: 0 ⊂ J1 = eJ1,l1e ⊂ J2 =
eJ2,l2e ⊂ · · · ⊂ eAe. By ∆(1, 1), . . . ,∆(1, l1) = ∆(λ1) we denote the A-standard
modules corresponding to the indices up to λ1.

We proceed by induction on n (which counts the number of Λi). Assume that
(†) and (‡) are satisfied. To begin the induction, we have to show that J1 is a
stratifying ideal.

Let us first show that J1 is an idempotent ideal. By definition, J1,l1 is gen-
erated by an idempotent f = e1,1 + · · · + e1,l1 , that is, J1,l1 = AfA. We have
ef = fe = e1,l1 . Thus e1,l1 is contained in J1. We claim that J1 is generated by
e1,l1 . As a left module, J1,l1 is the sum of the traces of the projective A-modules
Ae1,1, Ae1,2, . . . , Ae1,l1 in A. Fix the projective module Aei,li . For an index j we
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denote by Tj the trace of Ae1,j in Aei,li . We have to show that for each j, the space
eTj is contained in Tl1 . Fix j. Since A is left properly stratified, the trace Tj as a
left module is generated by the sum of all copies of ∆(1, j) in any standard filtration
of Aei,li . This filtration satisfies condition (‡), which implies that eTj is contained
in a submodule generated by some copies of ∆(1, l1), which in turn is contained
in Tl1 , the trace of Ae1,l1 . Therefore, eJ1,l1 equals eAe1,l1A, and multiplying by e
from the right implies that eJ1,l1e equals the trace of Ae1,l1 .

Next we have to show that J1 is projective as a left eAe-module. We have just
seen that it is the trace of the left projective eAe-module eAe1,l1 . Fix a projective
A-module Ai,li . We claim that the trace Tl1 of Ae1,l1 in Ai,li is a direct sum of
copies of Ae1,l1 . Once this has been shown, multiplying by e on the left proves
our claim. By definition, Tl1 is a quotient of (Ae1,l1)m for some m ∈ N, which
we choose minimal. In the previous paragraph we have shown that Tl1 equals
Ai,li ∩ J1,l1 . Thus Tl1 has a filtration by standard modules. Moreover, we have
already seen that all subquotients ∆(1, j) occurring in a standard filtration of Ai,li
are inside M . Condition (†) now tells us that the epimorphism Aem1,l1 → Tl1 must
be injective as well, in order to get the correct filtration multiplicities.

The algebra (A/J1,l1 ,≤) satisfies the conditions (†) and (‡) as well. Thus we are
done by induction.

The algebras eAe which we have considered in the previous sections will be shown
(in the next section) to be left properly stratified as a consequence of Theorem 5.
For these algebras, it is of interest to parameterize simple modules and to describe
their characters. For the algebras A themselves this is known by the Kazhdan-
Lusztig conjecture (= theorem). We show now that such information is sufficient
to solve the problem for eAe as well. Keep the assumptions of Theorem 5. Then
the simple eAe-modules are parameterized by {1, . . . , n}.

Proposition 4. Denote the eAe-standard modules by θ1, . . . , θn and their projec-
tive covers by Q1, . . . , Qn. Then the multiplicity [θj : eL(λi)] of the simple eAe-
module eL(λi) of index i in θj is the sum of the multiplicities [∆(µ) : L(λi)] of the
simple A-module L(λi) in A-standard modules indexed by elements in Λj multiplied
with their multiplicity [P (λj) : ∆(µ)] in the A-projective module P (λj):

[θj : eL(λi)] =
∑
µ∈Λj

[∆(µ) : L(λi)] · [P (λj) : ∆(µ)].

Moreover, for the multiplicities of standard modules in filtrations of projective
modules, there is an equality: [Qi : θj ] = [P (λi) : ∆(λj)].

Proof. For any left properly stratified algebra, simple modules are parameterized
by the indices of ideals in a stratifying chain of maximal length. Such a chain has
been constructed in the proof of Theorem 5.

To check the assertion on multiplicities, we proceed by induction on n. It is
enough to look at the case j = 1. Then the eAe-standard module θ1 is e times the
projective A-module P (λ1). Since P (λ1) is filtered by standard modules, the result
follows.

Another basic property of the algebras arising in the context of category the O is
a double centralizer property (generalizing Soergel’s result [S]), which we consider
now.
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Lemma 7. Let A be an algebra, e some idempotent and f a primitive idempotent
contained in e (that is, ef = f = fe). If the projective A-module Af is injective as
well and its top is isomorphic to its socle, then the same is true for the projective
eAe-module eAf .

Proof. To say that Af is an injective left A-module is equivalent to saying that
its k-dual Homk(Af, k) is a projective right A-module. Multiplying by e on both
sides (and using f = ef) then yields that Homk(eAf, k) is a projective right eAe-
module. Hence eAf is injective as a left eAe-module. If L is the top of Af , then
eL is the top of eAf , which remains isomorphic to the socle.

Lemma 8. Let A be an algebra, e some idempotent and f a primitive idempotent
contained in e. If Af is a faithful A-module, then eAf is a faithful eAe-module.

Proof. Clear.

Theorem 6. Let A be an algebra, e some idempotent and f a primitive idempotent
contained in e. Suppose there is a resolution 0 → A → (Af)l → (Af)m for some
positive integers l and m. Then there is a similar resolution over eAe. Moreover,
there are two double centralizer properties:

A ' End(AffAf ) and eAe ' End(eAffAf ).

Proof. The first statement is clear. Together with Lemma 7, Lemma 8 and Proposi-
tion 2.6 in [KSX], this shows that the assumption of Theorem 2.8 (see also Theorem
2.10) in [KSX] is satisfied. This implies the double centralizer properties.

8. The algebras eAe for blocks of O
We return to our previous setup: Let A be a finite-dimensional simple Lie algebra

over the complex numbers with a fixed triangular decomposition A = N− ⊕ H ⊕
N+ and let O be the BGG-category. Decompose O into blocks, and fix a block
corresponding to an integral dominant weight λ. This block (like any other) is
equivalent to A-mod for some quasi-hereditary algebra (A,≤). Denoting the Weyl
group by W , the simple A-modules are parameterized by Λ := W · λ, the elements
in the orbit of λ under the dot action. The ordering ≤ is given by the Bruhat order
on W . We also fix a subset of the basis of the root system and denote by W0 the
corresponding Weyl group. Suppose that W0 contains the stabilizer subgroup of W
on λ. We partition Λ =

⋃n
i=1 Λi by cosets of W0 in such a way that the condition in

Theorem 5 is satisfied and each coset is ordered according to the Bruhat order on
W0 (to be more precise: on its cosets modulo the stabilizer of λ). In particular, Λ1

is equal to the cosets of W0 modulo the stabilizer of λ. Let w0 be the unique longest
element of W0. The unique longest element λj in Λj is represented by w0wj for a
wj ∈W , which is the shortest element in the coset. Let e be a sum of corresponding
idempotents e(λi).

Our approach in some sense is inverse to that of [FKM3]. Here, we start with a
quasi-hereditary algebra A associated with a block of O, pass to eAe for the choice
of e as above, and prove properties of eAe in this setup. Using the equivalences
discussed above, we could go back to the Lie theoretic categories studied there
and transport our results to these categories, thus reproving several results from
[FKM2, FKM3]. We refrain from explicitly stating all these consequences.

Theorem 7. With notation as above, the algebra (eAe,≤) is left properly stratified.
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Proof. We are going to check the conditions in Theorem 5. Throughout, we keep
the above notation. We check condition (†) first.

Lemma 9. For all i and j and for all µ ∈ Λj, there is an equality of filtration
multiplicities [P (λi) : ∆(µ)] = [P (λi) : ∆(λj)] · [P (λj) : ∆(µ)]. In particular, for
all i and µ ∈ Λi the multiplicity [P (λi) : ∆(µ)] equals one.

Proof. The proof proceeds by downwards induction alongW0. Induction starts with
the trivial case λ = µ. In the general case we apply BGG-reciprocity together with
the well-known formula (see [J], 2.16) [∆(w′ · λ) : L(w · λ)] = [∆(w′s · λ) : L(w · λ)]
(for s a simple reflection and w,w′ in W0 such that w′s ·λ > w′ ·λ) which transfers
a multiplicity concerning µ to one concerning a shorter index. By the choice of
Λi, one can go from λi to any µ ∈ Λi in such a way that the assumptions of this
formula are satisfied.

Before checking condition (‡) as well, we have to introduce some more notation.
By A0 we denote the semisimple Lie subalgebra of A corresponding to W0. By U(A)
and U(A0) we denote the universal enveloping algebras of A and A0 respectively.
By O′ we denote the BGG-category of A0 defined by restricting the fixed triangular
decomposition of A to A0.

Lemma 10. For all i and j and for all µ ∈ Λj, in a standard filtration of the
projective module P (λi) all subquotients isomorphic to ∆(µ) lie in a submodule
generated by subquotients isomorphic to ∆(λj).

Proof. Recall that by Lemma 4, the module P (λi), as an A0-module, is a direct
sum of big projective modules. Now we proceed by induction on the number of
A0-slices of P (λi) placed above PA0(λi). We already know that the maximal level
is a direct sum of big projectives over A0, and these modules are generated by their
simple tops. Inducing to A gives that for µ ∈ Λ1 all ∆(µ) belong to the submodule
generated by ∆(λ1). Moreover, because of the exactness of translation functors,
the trace of ∆(λ1) is a direct summand of P (λi) as an A0-module. Factoring out
this direct summand, we complete our proof by induction.

Now we see that all conditions of Theorem 5 are satisfied, and the proof of
Theorem 7 is complete.

In the case of O, the formula of Proposition 4 simplifies to the following state-
ment:

Corollary 4. Keep the assumptions of Theorem 7 and notation as in Proposi-
tion 4. Denote by l the order of Λ1. Then [θj : eL(λi)] = l · [∆(λj) : L(λi)].

Proof. Combine Proposition 4 with Lemma 9 and with BGG-reciprocity.

Hence, composition and filtration multiplicities for eAe are also given by the
Kazhdan-Lusztig conjecture.

Applying the previous discussion of double centralizer properties, we get for free
the following result. As remarked in [KSX], the methods of that paper also imply
it directly.

Theorem 8. With notation as above, there is a double centralizer property

eAe ' End(eAffAf ),

where Af is the big projective module in O.
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Proof. This is implied by Theorem 6 by using Theorem 3.2 in [KSX].

In [S] it has been shown that fAf is isomorphic to the coinvariant algebra, which
in turn is isomorphic to the cohomology algebra of the corresponding flag variety.
Therefore, our algebras eAe have a “combinatorial” description.
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