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Enriques’ Classification of Surfaces in Char. p, III

E. Bombieri (Pisa) and D. Mumford (Cambridge)

To Jean-Pierre Serre

Introduction

This paper continues the extension to char. p of Enriques’ classification of alge-
braic surfaces, begun in two previous papers [7, 2] and in particular deals with the
special phenomena of char. 2 and 3. We have already seen that all surfaces can be
divided into four classes by their “Kodaira dimension” x:

0

k=trdeg, ® H°(X, Ox(nKy))—1

n=0

and that

a) k=—1=> X ruled,
b) k= 0=4K;=0 or 6K5;=0

c) k= 1= |nKyl|, n large, is composite with a pencil n: X — B, making X
elliptic or, in char. 2 or 3, possibly quasi-elliptic,

d) k=2=[nKy|, n large, defines a birational morphism onto a model X,
with rational double points; the surface X is of “ general type”.

Moreover, the surfaces with k=0 are divided into four classes:

B,=0, B,=22, x(0yx)=2
B,=0, B,=10, x(Oy=1,
Bi=4, B,=6, (0x)=0,
Bi=2, B,=2, z(0x)=0.

We have seen in Part II [2] that the third class consists in the abelian varieties of
dimension 2. The first class we call K 3-surfaces, the second class Enriques’
surfaces. In the fourth class, the Albanese variety is an elliptic curve E and the
Albanese mapping :

n: X>E
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has either all fibres non-singular elliptic or rational with a cusp. These surfaces
we call hyperelliptic or quasi-hyperelliptic depending on the fibres of 7. In [2],
we have classified the hyperelliptic surfaces too.

The goals of the present paper are to analyze Enriques’ surfaces and quasi-
hyperelliptic surfaces. This is largely a question of the “pathologies” of charac-
teristic 2 and 3, since quasi-hyperelliptic surfaces only exist in this case and if
char. %2 then we also saw in [2] that Enriques surfaces had the property

K#£0, 2K=0.

Such surfaces were investigated by the unpublished thesis of M. Artin, where
he showed that Enriques’ classical results in char. 0 extended to all finite characte-
ristics p+2. However, in char. 2, we shall see that Enriques surfaces are quite
varied! Here is an outline of the paper: in § 1, we shall study the formal geometry
of “cuspidal fibrations”, i.e., fibrations like those of quasi-elliptic surfaces. In
§ 2, we shall give a classification of quasi-hyperelliptic surfaces. In § 3, we look at
Enriques’ surfaces and we see that there are three types in char.2 and we give
examples of each type. In § 4, we shall show that every Enriques surface is elliptic
or quasi-elliptic and we shall prove that p =B, for such surfaces.

The study of special low characteristics can be one of two types: amusing or
tedious. It all depends on whether the peculiarities encountered are felt to be
meaningful variations of the general picture fitting in with standard principles,
such as the failure of Sard’s lemma, the loss of roots of unity, etc., or are felt in-
stead to be accidental and random, due for instance to numerological interactions
between combinations of exponents and the characteristic, of interest only for
the sake of having uniform theorems applicable in all characteristics. Our hope
is that the geometric aspects of char. 2 and 3 studied here are not entirely of the
latter kind. For example, we find quite striking the following points, which we
list in the hope that they will supply some motivation for taking the plunge into
char. 2 and 3:

1) that a smooth surface X fibred in curves with cusps in char.2 defines
canonically three usually distinct families of subspaces [2< T, p for all cusps P:
cf. Figure 2, § 1.

2) the structure of the automorphism groupscheme of the rational line with
a cusp at oo, and the orbit of oo itself under this group: cf. § 2.

3) the fact that there are three types of Enriques’ surfaces in char. 2, whose
canonical double covering has structure group u,, Z/2Z, «,, and which are at
least sometimes deformable into each other: cf. § 3.

4) the intricate way in which Enriques’ argument about the existence of re-
ducible divisors in linear systems on Enriques’ surfaces must be adapted in char. 2:
cf. § 4.

5) the fact that isolated “ pathological examples” (e.g Igusa’s surfaces) become
quite natural when viewed in a broader perspective: cf. § 2.
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§ 1. Remarks on the Differential Geometry of Cuspidal Fibres

In this section we study the germ (in the formal power series sense) of a general
map f: X — B, where X is a non-singular surface, B a non-singular curve, such that
every fibre of f has a cusp. More precisely, if ¢ (resp. x, y) are local coordinates on
B(resp. X), then f'is given by a formal power series t = f(x, y), and we seek to under-
stand

a) whether f can be put in normal form by suitable choices of the uniformizing
parameters,

b) what invariants can be defined,

c) what is the differential geometry underlying the failure of Sard’s lemma.
Starting with f: X-— B, let

2 ={PeX]|f is not smooth at P}

and let 2, be a one-dimensional locally closed subset of X such that at each point
PeZX,, f(f(P)) has an ordinary cusp at P.

Propeosition 1. We have

(@) Z, is an étale cover of B*™",  p=char (k).

(b) (Zo-fL(f(P))p=char(k) forall PeZX,.

Proof. Let ¢t be a local coordinate on B at f(P) and let x, y be local coordinates on
X at P. We can choose x, y such that

t =(unit)(x? + y3);

t ot
if char (k)#2, then g)—c— vanishes to order 1 and 5;:0 defines a germ of a curve

. . . Ot .
non-singular at P and passing through the nearby cusps, i.e. 6—x=0 is a local

equation for Z,. If instead char (k)=2, a similar argument shows that

2=(unit) -0

dy

where =0 is a local equation for X, and ¢ vanishes to exact order 1 at P, ie.
X, is non-singular. Now non-singular branches and ordinary cusps can meet
only with multiplicities 2 or 3, hence

dim(0y, p/mp spy Oz, p)=(Z0 TS (P)p=2 or 3.

On the other hand, X,— B factorizes as X, —>» B?" ™ — B for some n, where
1 is separable and now

: =p" icall
dim (0. /m 0 p"  generically
(Oso.2/m, 50y O ) {> p"  if t ramifies over t(P)
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This proves Proposition 1, plus the old result of Tate [13] that such a line of cusps
is only possible in characteristic 2 or 3. Q.E.D.

Now it is convenient to treat separately the cases of characteristic 2 and 3,
which are very different. We consider first the simpler case char (k)=3.

We begin by finding a normal form for f. We have

Proposition 2. Let char(k)=3 and choose any local coordinate t on B at f(P). Then
in suitable power series coordinates x,y on X at P, we have

t=x%+y>
Proof. Choose x,y so that x=0 is a local equation for Z,. Then if t=f(x, y) we

ot ot
have that x divides both x and 5;, whence we can write ¢ in the form

t=g(»)>+x*r(x, y)

and since t =0 has an ordinary cusp at (0, 0) we have also (dg/dy)(0)%0, »(0, 0)%0.
If we change coordinates via

y=g(»), x=xr(x,y),
t has the required form. Q.E.D.

By Proposition 2, we see that all such fibrations in char(k)=3 are locally
formally isomorphic. We can go a bit further and prove that they arise from smooth
fibrations. Let us define

X* =normalization of X xzBY/¥;

choosing x, y, t as in Proposition 2 then s=¢!/3 is a local coordinate on B*/* and

X xzB% is given locally by s®=x2+y3 ie. (s—y)>=x2 If we put r= X

5=y
then r®=x, so r is integral over k[[x, y,s]] and r, s are local coordinates on X
which is therefore non-singular along Z,.

Thus we have a diagram

Tos— X* —T X

J,, - J

B/ Bu_F_,p

where ¢ is étale, f* is smooth along X, f has ordinary cusps along X, and F is
the Frobenius morphism.
Since the map = is given by x=r3 y=s—r? we have that if L is the line sub-

0 0 . . .
bundle of Ty. generated locally by 6—r+2ra—s, then interpreting the sections of L
as derivations of (., we have:

@X =ker(L: (Ox:—’ 0xm);
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the map = is purely inseparable of degree 3, and is said, in the theory of purely
inseparable descent, to be the result of “dividing by the rank 1 distribution L.

We may make a “picture” of the map t=x2+ y? in char. 3. Notice that the line
of cusps x =0 meets each fibre r,=x2+y? at its cusp with intersection multiplicity
3 and thus has the same tangent cone at this intersection. Thus we have:

(0.0 (0.1 x=0 X

x2+y3 20 e (y—1)3 =0

Fig.1

The case of characteristic 2 is considerably more elaborate. The direct approach
to putting the power series ¢= f(x, y) in normal form does not work. The reason
is that the local structure of the map along the line of cusps defines an invariant,
which is alternatively a differential # on the line of cusps X itself, or a differential
w on the curve ¥ which is the étale covering of the base B which parametrizes
the set of cusps in the fibres (see Prop. 1): these are related by the usual p-linear
isomorphism between differentials on a curve Y and those on Y. Because of this
invariant, one must first choose ¢ so that w is in some standard form and, in fact,
there are an infinite number of cases according to the multiplicity of zero of 5 at
t=0. The most direct way to see why such an invariant exists is to examine the
versal deformation of the cusp y*+x*=0. One calculates immediately that this
definition is given in different characteristics by:

V2+xP+t +1,x=0 (char. 2, 3),
VEEX3 ity x+13x2=0 (char.=3),
VE4xP+t 4+, x+13y+t,xy=0 (char.=2).
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Inside the parameter space (t,, t,) (resp. (¢, t,, t3) or (¢4, ..., t4)) the set of points
where the fibre still has a cusp is given by:

t; =t,=0 only (char.#2,3)

t,=t;=0, t, arbitrary (char.=3)

ty=t,=0, t,t, arbitrary (char.=2).

It follows that if
f: X—B

is any formal family of curves with cusps, B=Spec(0), ® an equicharacteristic
complete local ring, then X is given by the complete local ring:

O[Lx, yIAy* +x%) (char.#2, 3),
O[[x, y]I/(y*+x3+a), some aem (char.=3),
O[[x, y11/(y*+x3+a+bx), some a,bem (char.=2).

This at first suggests that aem (char. = 3) and a, bem(char. = 2) are invariants of the
map f However this presentation of f is not unique for 2 reasons: 1st there are
many ways to identify the fibre f~1(0) with Spec k[[x, y]]A»*+x3), and 2nd,
after such an identification is chosen, the ¢-space does not represent the deforma-
tion functor but is merely its versal hull. At least we can say that a (or a and b) in
m/m? depend only on the identification of f~1(0) with y?+x3=0. For example,
for any A€ (0%, the two curves

y24+x34+1%a+(1*b)x =0,

yi+x*+a+b-x=0
are isomorphic via yr 43y, x++A%x. Thus, in char. 3, a can be replaced by i°a
for any Ae @* and there is not much useful information that can be extracted from a.
However, in char. 2, b3/a? is at least invariant under this substitution.

Now assume S=Spec k[[t]], and X is regular. Then a=a,t+---, a; %0,
hence b3/a’em. We define the value of the invariant w at the point t =0 to be:

@l oo=d(b%/a®),.o; e, =b%/a’e(m/m?).

Why is this independent of the choice of representation of f via a and b? Note
that it only depends on the values of a and b mod m?. Moreover, we claim that all
changes in the formal isomorphism of f~*(0) with y*>+x3=0 leave b3/a* mod m?
fixed. This is most easily seen if we recall that the tangent space to the versal de-
formation space of g=0 is intrinsically described as:

T=H0m(g . k[[xa Y]], k [[x’ y]]/(ga 8xs gy))
The automorphisms of y? + x3=0 are generated by

XX 4+ A% x",
. YHAXTTE 4 J2x2m oy J3x3m p=2m
¥ y+AYx™+ A yxtm 4 B3y xdm n=2m+1
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all n=>2, which induce
2 3 1 24 4m-2 =
y2+x3t—-> (y2+x3)( + 2x2 3), n=2m
Y+ xH(1+A2x2m)3, n=2m+1.
In our case
k[[xay]]/(g’nggy)gk1+k’x+ky+kxy,

thus these automorphisms induce the identity on T for n>4, and for n=2 and 3,
they still induce the identity on the subspace

_ [set of homomorphisms ¢ such that]
Lo +x¥ek-1+k-x

where our deformations lie. This proves that (a, b)) mod m? can only be changed
to (A®a, A*b) mod m?, hence b*/a? mod m? is independent of all choices.

Still assuming S=Spec k[[t]], X regular, we can extend our definition of
|, _oem/m? to a definition of we Q. First make a base change to K =algebraic
closure of k((s)), and then note that the substitution

t+s=t,
y+/a()+i/b(s) - (x+1/bls) =7,
x+1/b(s)=%

carries our surface
0=y?+x>+a(t)+b(t)-x
into a new surface
0=72+%3+a(®)+b() -
so that the cusp X ==t =0 on the new surface is the image of the generic cusp
on the original surface. One now calculates in a page or so that if we define w
for the original surface everywhere by:
53
WO=———
a*+b-b?
(Notation: ¢=dc/dt)

dt=d(log(a*+b-b?) ()

then the translation f=t+s carries the generic value of this w to the value wl;_,
for the new surface. Thus (#) is also independent of the choice of a, b to represent
f- Noting that Q} , is locally free of rank 1, one also has the more intrinsic formula:

(db)®3
da®2 1+ b-(db)®%

This formula is very suggestive of the usual formula for the j-invariant of the
elliptic curve

O=y*+x3+a+bx
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in char.#2, 3. This suggests strongly that if our map f arises by specializing an
elliptic fibration from char. 0, with the line of cusps “swallowing” the elliptic
curves, then w is likely to be a “ ghost” of the j-invariant of that elliptic fibration.
This is a good question to study.

Let’s return to the algebraic setting of the beginning of this section:

f: X—B,

where X is a smooth algebraic surface, B a smooth algebraic curve and Ly X
is a line of cusps. In this case, we get a closely related invariant:

VIGF(ZO9 Qéo)

To define #, we proceed as follows:
i) let 0 =0 be a local equation of Z, at a point Pe X,
i1) choose a local coordinate ¢ near f(P)e B
iii) then as we saw in the proof of Proposition 1,

dt=c¢?-a

for some differential « on X, regular near P.

iv) Let C be Cartier’s operator on differentials. Since ¢ C(a)= C(c?a)= C(dt)
=0, it follows C(x)=0, hence a =dx for some function x defined near P.

v) Now d(t+02x)=dt+c?-dx=0, so
t=y*+0’x (%)

for some function y defined near P.

vi) Then the fact that =0 has an ordinary cusp at P implies easily that x, ye
m,/m? are independent, hence x, y are local coordinates on X near P.

vii) Let —a— be the derivation of ¢y near P such that i(x)=0, i( =1
oy dy dy

Define

do\?
(5;) dx

g b))

dy

Zo

To see that n is independent of all choices (i.e., the choice of ¢, t and x), we relate
it to the previously defined w. We recall that for any smooth curve C, there is a
natural p-linear isomorphism between the differentials on C and those on C%?
given by

a-dbea? - d(b?),

a,belc; a?, el .

If o=a- db, write @' =a? - d(b?). Then we have:
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Proposition 3. Let
f:X-B

be the formal completion of f near P. By Proposition 1, f sets up an isomorphism
Bx=(Zo)?,

and under this isomorphism,
w=n?2. (H#)

Proof. 1t suffices to check this at one point. Starting with (*#), let 6=0, x+0,y

where 6,60 p. Note that ¢,(P)=+0 since y*+0%x=0 has an ordinary cusp at
the origin. Then if we set

. i/ ot
f=x-|/ ——
1+x03’

is easily rewritten: (**)

. ., 1 /1+xei\ 7t
0=y2+x3+t(1+xa§-‘/ p 2)

1

- tay . -
=y2-%—x3+t+6—12/—23 Xty %) - X2

Therefore, to 1st order in ¢, this deformation is given by the homomorphism

PR AR R (TR IV )
Thus
_0,(0,0°
0(0)= 720 55z Ao

But now on X, at (0, 0), ¢,(0, 0) dx = ,(0, 0) dy, hence
1(0)=((02(0,0)* dx|,_ o)l x=y—0

= (2((%,(:)))3 ay ‘“=°)

On X, the map f is given by t = y% hence n'®(0) is exactly w(0) as claimed. Q.E.D.

x=y=0

Corollary. Suppose f: X — B is a quasi-elliptic surface,
S={PeB| f~'(P) is reducible or multiple} and ZocX—f"(S)

is the line of cusps. Then the formal differential  is actually an element
I'(B—S, Q5).

Proof. In this case, f defines an isomorphism of X’ and B~S.

In the classification of quasi-elliptic surfaces in char. 2, this differential
may play a role similar to the j-invariant in the classification of elliptic surfaces.
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Using this invariant, we can now put cuspidal fibrations in normal forms.
Recall that if C is Cartier’s operator, and B is a non-singular curve, then C acts
on the differentials on B and

i) Co=0<w=df, some f,
i) Co=w< w=d4f/f, some f.
From (ji), it is quite easy to deduce:
(iii) w is regular at PeB and Cw=w, then ord, w=2k for some k, and for
some formal parameter ¢ on B at P,

IZk
(D=d(10g (1 + t2k+1)) =W dt.
Our normal form Theorem is this:
Proposition 4. Let . X — S=Spec k[[t]] be a formal map of a non-singular surface
X onto S and assume that all the fibres have ordinary cusps. Let w be the invariant
on S defined above. Then for some integer k, ordq w=0k, (k=00 if w=0). If k is
finite, let t' be a new parameter on S such that

w=d(log(1+1°**%)),

then for suitable coordinates x, y on X, f is given by:

t'=y>+x2-(x+y***Y), if kisfinite,

t=y*+x3, if kis infinite.
Proof. Since Z—;‘C (0)#%0, we may take y and ¢ to be coordinates on X replacing ¢
by z, x by (¥, z), the map is given by:

t=y*+2z%. 1. (%)

It is a simple calculation to show that n is now given by

n=d-log (r (2—;)2 * (%)2)

First, suppose w=0. Then #=0, hence

z=0

ot\?
(5;) (1,0)- dy=0,
But this means that
(3 =100 +z- 1,3, 2).

Note that 7,(0,0)%0. Substituting this in (*) and letting y=y+z1,(y), Z=
z}/t5(n, ) the map takes the form

t=32+23
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Secondly, suppose w=#0. Let w=d-log(1+1t *'*1). To simplify notation, replace
t by ¢ and choose new y,z, 1 so that t=y%+z%7 still. Then on %, y=]/t, S0
n=d-log(1+y* ). It follows that

() + (—25)2) |

dlo =0,
g 1 +y21 +1 —o
hence
(5 +(5)
0 oz
O () + 2Py, 2).

1+y21+1

But now expand 7:

11, )= +y - 1) +2 - 1,(1)+2% - 15(3, 2).
Note that 7,(0)+0. Substituting, we find:

(3 +y D)+ =(1+y* 1) ¢?
hence

ToTi+1,=¢

=y-¢

Here, if >0, then y|1,, hence 1,(0)=0, hence from the first equation ¢(0)+0.
Thus [ is the exact power of y dividing 3, and so [=3k. Write 7, =)*- 7,, so that
13 =¢ =1,+ 1 1. Substituting into t=y*+ 22 1, we get:

t=(y+192)>+ 22T 2y 10+ 2%+ 24 13(0, 2).
Letting y=y+ 1,2, Z=27,, this becomes
t=y2+22 (1 +2)+2% - 15(5, 2),
which is exactly what we want except for the Z*-term. It is easy to check that a
suitable substitution j+ p, 22 +32f( - 2) will get rid of this Z*-term. Q.E.D.
There is a rather beautiful geometric interpretation of the invariant 5. First
of all, in char. 2, the tangent line to the curve of cusps X, is always transversal to

the tangent line to each curve f ~'(P) at its cusp, rather than being equal as in
char. 3. In fact, if we write f by

t=y*+02-x,

then y=0 is the tangent line to the curve f ~1(0) at the cusp (0, 0) and ¢=0 is the
local equation of Z; and in the cotangent space to X at (0,0), dy and do are
always independent. Secondly, suppose we consider the tangent line to the fibre
£ ~1(0) at points Q besides (0, 0):

Ty r-10= To x
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Fig.2

and then take the limit of T, ;-10) as Q —(0,0). Ty ,-1(, is the subspace of T, x
defined by dt=0. Since dt=0? - dx, this is the same as the subspace defined by
dx=0 and as dx|, o, is still non-zero, this limit is the subspace dx| ¢,=0. In
general, this is a 3rd one-dimensional subspace of T, o), x!

Thus at each point if X, the cuspidal fibration f: X — B determines canoni-
cally the 3 tangent directions dy=0, do=0 and dx=0. Here dy=0 is always
distinct from do=0 and dx=0 (because we have an ordinary cusp) but doe=0
and dx=0 may be equal. We get the following curious picture: Here is the

Lo . . . t
geometric interpretation of 5: look at the differential f* (dT) on X. It has a

simple pole on the fibre f ~1(0) and a double zero on the curve X,. Thus at (0, 0)
it is indeterminate. However, take any curve C<X on which (0, 0) is a smooth
point with tangent line dx=0 at (0, 0). Then we claim

. dt
lim (f* “t")l =’1|(o, 0)-
Q-(0,0) Q

QeC
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To see this, let x =g(y) be the equation of C where g'(0)=0. Then

* (ﬂf) _o(x,y)*dx __ olsiy)?
t ey Y+ Xlew.y Y o)1 e»
hence
dt oo
lim *(_) 2% (02 - dx=nlq o,.
y“"f /oy 5y( ©.0

Moreover, in this picture, note that the zeroes of the differential form # are
precisely those points where the tangent lines do=0 and dx=0 are equal

(in fact, g—; (0)=0if and only if do is a multiple of dx).

As in characteristic 3, we may also reduce the study of cuspidal fibrations to
that of smooth fibrations plus a “rank one distribution™. In fact, as above, define

X* =normalization of X x g B/,

Choosing t, x, y as in Proposition 4, then s=¢'/? is a local coordinate on B%/?
and X x gBY/? is given locally by s?=y?+x3+x2 y2¥*1 (if k=00, the last term

is omitted). If we put r= S—tz, then r2=x+y2**! so r is integral over k[[x. y, s]].
x

As x=r2+y?**! s=rx+y=r>+ry?**1 1y, it follows that X* is smooth with
local coordinates (r,y), and the map X* — B%/? is smooth. Thus we have a
diagram

Xt -t X

f*

g2 _F .,

as before.

However, unlike char. 3, X, does not lift to X* unless k=c0: for finite k, the
inverse image X, of X, in X* is the curve r?=y?**! which is purely inseparable
of degree 2 over BY/?), i, is generically B4, and which even has singularities
if k= 1, i.e,, over the zeroes of .

Since the map = is given by

x=r2 +y2k+l,

y=y
we have that if L is the line sub-bundle of Ty« generated locally by d/0r, then
interpreting the sections of L as derivations of 0., we have:

(Ox=ker (L- (OX"‘ b 0x:«).

This means that X is the quotient of X* by the rank 1 distribution L.
One final remark: we can get still another definition of our invariant # from
this construction. In fact, in char. 2, suppose Y is any smooth surface and

LT, i=12
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are 2 rank 1 integrable distributions (i.e., DeI'(U, L)= D*eI'(U, L;)). Let C be
the curve of points P where L, ,=L, ,. Then we get an invariant differential {
on C as follows:

i} Since the L, are integrable, there are locally functions x;e0, such that
dx; %0 and D(x;)=0, all DeL,. If x| is another such function, dx;=u? dx;, u; a
unit.

i) Along C, dx, is a multiple of dx,. Define

{=dlog(dx,/dx,|c)
Then we claim:

Proposition 5. Let f: X — B be a cuspidal fibration, and let X* =(normalization
of X xgBY'?) as above. Let L,, L, Ty. be the distributions which are tangent to
the fibres of f*: X* — B2 and to the fibres of n: X* — X respectively. Let
X, < X* be the curve where L,, L, are tangent. Assume the invariant weI'(Z,, Q%)
is not identically zero. Then X, =n;'(Z,) and we get a diagram:

Uh_ 8 L3
2o

where g is birational. Then { and n are related by:
g* C — ,1(1 12),

Proof. This is a simple calculation in the normal forms of Proposition 4. The
details are left to the reader.

§ 2. Analysis of Quasi-Hyperelliptic Surfaces in Char. 2, 3

In this section we study quasi-hyperelliptic surfaces X. By definition, these are
surfaces satisfying:

a) Ky~0 (~being numerical equivalence),

b) the Albanese mapping is n: X — E, E elliptic,

¢) almost all fibres C, of = are rational with a cusp. By Table 1 of the Intro-
duction to [2], it follows also that

d) B,=2, c,=0, x(0x) =0. Moreover, by Proposition 5 [2], it follows that

¢’) all fibres C, are rational with a cusp. In Theorem 3, 2], we saw that:

€) There is a second pencil n’': X — IP! on X, this time with elliptic fibres.

We can follow now the same argument used in § 3, [2] for hyperelliptic sur-
faces to construct an action of E on X. Now we denote by C, a fixed rational
curve with one ordinary cusp (all such are isomorphic) and deduce, exactly as in

§3,[2]:
Theorem 1. Every quasi-hyperelliptic surface X is of the form:
X =E, x Co/K,
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E, an elliptic curve, where K is a finite subgroupscheme of E, and K acts by
k(u, v)=(u +k, a(k)(v))

Jor some injective homomorphism
o: K— Aut(Co).

Moreover the 2 fibrations on X are given by:
E, x Cy/K E, x Co/K

inbres =Cop fibres elliptic

E,/K, elliptic Co/o(K)= TP,
To use the Theorem, we must calculate Aut{C,):

Proposition 6. Let co be the cusp on C, and let t be an affine coordinate on Cy—(00).
Then:

i) if char#2,3, Aut(Cy)=reduced group of automorphisms t—at+bx=
semi-direct product G,,- G,, (G, the normal factor).

il) if char=3, Aut(Cy)=group scheme of automorphisms t—at+b+ctd,
where ¢*=0x"“semi-direct” product of 3 factors G,-A-G,, where G, nor-
malizes A and G,, and A normalizes G, and A=a,.

iii) if char =2, Aut(C,)=group scheme of automorphisms t —» at+b+ct?+dt*,
where c¢*=d*=0x"“semi-direct” product of 3-factors G,-A-G,, where G,
normalizes A and G, and A normalize G, and A is an infinitesimal group scheme
of order 8.

Proof. In fact, G,, - G, obviously acts on C,, and an S-valued automorphism of
C, 18 a product of an S-valued point of G,,- G, times another S-valued auto-
morphism which a) fixes the point t=0, b) acts as the identity on mg /M3, ¢,-
It suffices to show that the group of automorphisms with properties a) and b) is
(e), o3, or the above A of order 8, depending on the characteristic. Now if L=
0c,((0)), then I is very ample and any automorphism is determined by its action
on I'(I?). But it must preserve the filtration:

I(Lyc (13 cr(3),

basis basis basis

1 x=1/12 x=1/t?
y=1/t3

and act identically on I'(L), I'(I?)/I'(L), I'(I2)/T'(I?). Let it therefore act via
X Xx+a,
y—=y+bx+c

But x3 = y2, hence we must have
x3+3x*a+3xa®+a*=y*+2byx+b* x2+2cy+2bcx+ci

If p#2, 3, this shows a=b=c=0; if p=3, this shows b=c=0 and a*=0; if p=2,
this shows a=b? and b*=c?=0. The Proposition now follows by examining the
effect of these substitutions on t=x/y. Q.E.D.
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The remarkable feature of the situation of Theorem 1 is the fact that E, x C,
has a singular line on it, while its quotient by K is non-singular. We can give the
following criterion, starting with any action of such a group K, for E; x Co/K
to be non-singular:

Proposition 7. Let Stab(co)c Aut(C,) be the stabilizer of oo (as a subgroup-
scheme). Then for any action of K< E, on E, x C, as in Theorem 5,

E, x Cy/K non-singular <> o(K) ¢Stab (c0).

Proof. Let E=E,/K, let X=E; x Cy/K and let n: x > E be the natural map.
Since E,; acts on E; x Cy/K by translation and permutes the fibres of X over E
transitively, it follows

X singular anywhere <> the whole curve E; x(c0)/K is singular on X
<> the generic fibre n = () of = is not regular
(ng = generic point of E).

Now 7 ~*(n;) is a curve of arithmetic genus 1 over the field k(y;) which becomes
isomorphic to Cy over k(ng). Let co be the image of the cusp on it. Since oo is
singular on 7 ~!(n) x Spec k(175), oo is a non-smooth point of 7~ (y;) over k(1.
Therefore

oo a k(ng)-rational point =00 not regular on = (ng).

And if oo is not k(nz)-rational, then oo is regular, or else comparing the genus of
7 '(ng) and its normalization it would force p,(n (1)) to be bigger than 1:
Thus

7 ~1(ng) not regular <o is k(n;)-rational
<> the curve E; x(c0)/K maps by = isomorphically to E
<> the singular line E; x (c0)/K defines a section
ofn: X > E.

But now E,; x C, is recovered by fibre product:

X*"‘—‘—EIXCO

|

E——E,

hence the above is equivalent to E; x(o0) defining a K-equivariant section of
pi: Ey x Co— Ey, or to co being a fixed point by a(K). Q.E.D.

Since if char +2, 3, the whole of Aut(C) stabilizes co, this shows again Tate’s
result that smooth surfaces like X can exist only if char=2 or 3. Now:

char =2 Stab (o) = G, - Ay - G, A0={gp. of automorphlsms}

t=t+ct? c2=0

char =3 Stab(0)=G, - G,,: set 4, =(e) here for consistency.
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The infinitesimal orbit of co can be pictured like this:

!
!
!
i
1
!

li

orbit in char 3
mult.=3

Fig.3

Moreover, one checks that Stab(oo) is also the subgroup-scheme of Aut(C,) of
all automorphisms that lift to the normalization P! of C,. We don’t know
whether this can be deduced from a general principle but in our case, the auto-
morphisms ¢ of IP! such that ¢(0)+ oo are given by

_at+b
T l—ct’
=b+(a+bc)t+(ac+bcH) > +(ac* +bcd) 3 +---.

o(t) a+bc#0

If char =3, and ¢ is also of the form ¢(t)=at+ B+ yt3, with « unit,y> =0, it follows
that ¢=0, ie, ¢eStab (o). If char=2 and ¢ is also of the form ¢(t)=ot+p+
y?+8t* with o unit, y*=0, 62=0, it follows that c2=0, hence y>=6=0, ie.,
¢eStab(co). Thus by explicit calculation we see that an S-valued point of Aut(C,)
lifts to IP* if and only if it fixes co.

To classify quasihyperelliptic X’s, the next step is to enumerate modulo con-
jugacy all subgroups:

Kc@G,-A-G,
such that:
1) K¢@G, A4y G,

2) K commutative,
3) Lie K and Lie K? at most one-dimensional (K? = Cartier dual).
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This is a tedious problem but, as near as we can tell, the following is the list of all
such subgroups K:
Char. 3

a) the u, of maps t— at +(1—a)t3, a®=1,

b) this p,, plus t—+t,

c) this ps, plus t—t+1i, ieZ/3Z,

d) the a, of maps t—t+at3, a®=0,

e) this oy, plus t— 41,

f) the group scheme of order 9 of maps

t—t+a+a’t3, a®=0.

Char. 2 —for all Aek:
a) the y, of maps t+ at +A(a+ 1)t>+(a+1)t*, a’=1,
b) if A=0, this ,, plus t~ot, @*=1,
c) this u,, plus t—t+ ¢ where ¢ is a root of
x*+Ax?4+x=0,
d) the y, of maps t—at+(a+a?)t*>+(1+a?)t*, a*=1,
e) this p,, plus t—1+1,
f) the a, of maps tr—t+Aat? +at*, a>=0,
g) if A=0, this a,, plus t—wt, 03=1,
h) the group scheme of order 4 of maps

tst+a+Aa?t?+a?t*, a*=0, 1+0.

Combined with Theorem 1, this leads immediately to a complete list of quasi-
hyperelliptic surfaces. Moreover, it has the following Corollary:

Proposition 8. If X is quasihyperelliptic, then:
1) if char.=3, then 6 Kx=0,
ii) ifchar.=2, then 6Ky =00r 4K, =0.

Proof. In the notation of Theorem 1, the inverse image on E; x C, of Q2 is the
invertible sheaf wg, ., But wg ¢, =2, ®wc, and K acts trivially on Q} .
Therefore

“(order Ky)=(least n such that a(K) acts trivially on we,)
But dt spans w, so Aut(C,) acts on w, through the character:
Aut(Cy)— Aut(C)/G,- AxG,,.
Now the Proposition follows by examining all the cases in the above list and noting

that the subgroups are all contained in pg- A - @G, (char.2 or 3) or in p,-4-G,
(char.2). Q.E.D.
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Another way to describe quasihyperelliptic surfaces X is to reduce their study
to that of ruled surfaces X* with rank one distributions L < Ty., as in § 1. To do
this, define:

X*=normalization of X x g E*/P)
n: X*—> X, the natural map
L=Ker[dn: Tyn—n*(Ty)].

The fibres of p: X* — E%/? are smooth and rational, so X* is an elliptic ruled
surface. We may also described X* in terms of the homomorphism «: K — Aut(C,)
as follows. Let

q: P! - C,
be the normalization map, and let
K,=a"1(Stab (c0)).

Note that K, < K; examining the various cases in our list above, we see that we
have an exact sequence

0Ky K—(x, or p,)—0,

hence E, /K, must be the elliptic curve E'/?, Moreover, we have seen that the action
of K, on C, lifts to an action a, of K, on IP!. Therefore we get a diagram:

E, xIP'— > E, xIP'K,

l

+
E, x Co———E, x Co/Kyg——— X

E,—— EWY» ___,E
hence:
E, x Co/Kyx X x g E1P
and
E, xP'/K = X*.
Thus X* is the ruled surface obtained by “twisting” E®/P x IP! by the cocycle
ag: Ko— Aut(IP*).

Note that in char 3, «y(Ky)< G, G,, hence K, stabilizes E; x(c0), hence the
line of cusps E; x (20)/K, is a section of X* — E?/* as we saw had to happenin § 1.
On the other hand, in char 2, «,(Ky)=G,,- 45 G,,, s0 K, need not stabilize
E, x () and the line of cusps need not be a section of X*— E®*/?). In fact, if
is the invariant, defined in § 1, in I'(E, Q%) defined by the cuspidal fibration X — E,
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then we have:
=0 <« the line of cusps is a section of X* —» E®/?
oty (Ko)=G,,- G,
<> a(K) belongs to one of the types a, b, c,f, g, h.

However, if a(K) is of type d or e, then w 0. Since K = E, , E, is an ordinary elliptic
curve, hence so is E, and w must be the unique non-zero global 1-form such that
Cw=ow (C=Cartier’s operator).

§ 3. Preliminary Analysis of Enriques’ Surfaces

We have defined Enriques’ surfaces by the conditions:
a) Ky~0 (~ is numerical equivalence),
b) B2 = 10 .

By the Basic Table in Part II, we see that such surfaces also have the properties:
c) Bi=0, c¢,=12, x(0y)=1.
Moreover either dim H'(0y)=dim H?(0Ox)=0 hence K,%0; or dim H(0y)=
dim H?(Ox)=1 hence K, =0. In the first case, by Castelnuovo’s Theorem, since X
is not rational we find [2K,|=+#, hence in fact 2K, =0. We have seen in Part 1],
Theorem 5, that the case Ky =0 only occurs in char. 2. We divide Enriques’ sur-
faces into three types according to the action of the Frobenius cohomology opera-
tion F on H(Oy):
Definition. Enriques’ surfaces are called:
i) classical if dim H!(04)=0, hence K, %0, 2K, =0;
it) singular if dim H'(Oyx)=1, hence Kx=0, and F is bijective on H(0y);
iii) supersingular if dim H*(0y)=1, hence Ky=0, and F is zero on H!(Oy).

The essential similarity of these three classes is brought out in the following
Theorem.

Theorem 2. Let X be an Enriques’ surface. Then' Pick is a group scheme of order 2.
Moreover:

Z/2Z if X is classical
Pic, ={u, if X is singular
a, if X is supersingular.

We give a short proof which handles the classical and non-classical cases
separately and then we will sketch a uniform proof which is, perhaps, more natural.

First Proof. If X is classical, H*(0y)=(0) implies Pic} has trivial tangent spaces
hence is a finite discrete group. If D is a divisor numerically equivalent to 0 then

1(Ox (D))= x(Ox)=1,

! Note. Pic} denotes the open subgroup of Pic, parametrizing divisor classes numerically equi-

valent to 0.
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hence dim H%(Ox(D))>0 or dim H?(0x(D))>0. Therefore |D|+@ or |Ky—D|+8,
hence in fact D=0 or D =K. Therefore Picy, ~Z/2Z. If X is not classical then the
same argument shows that any such D is linearly equivalent to 0, hence Pick
consists of one point. Since its tangent space is 1-dimensional, we must show that
there is a non-trivial obstruction to extending a non-zero morphism Spec k[t]/(t?)
—Picy to a morphism on Spec k[t]/(t®). By the theory of [5], last lecture, this
follows from:

Lemma 1. If X is a non-classical Enriques’ surface, the first Bockstein operation
B.: H'(Ox)— H*(0y)
is an isomorphism.

Proof of Lemma 1. It is well-known that in char. 2, f, (x) is the cup-product g, (x)=
x U x. By Serre’s duality

H'(Ox) ® H'(QF)— H*(23)

is an isomorphism. Since Ky =0, it follows that
H'(Ox) ® H' (0x)— H?(0y)

is an isomorphism. Then §, is this map composed with:
H'Y(Ox) > H'(0x) @ H' (Ox)

where x—x® x. Q.E.D.

This proves that Pic, =p, or o, when X is non-classical. Now the isomorphism
H'(0y)=Lie(Pic%) carries the Frobenius F on H!(0y) to p-th power on Lie(Pic%),
so F+0 is equivalent to p-th power +0 on Lie(Pick), hence is equivalent to
Pici=p,. Q.E.D. '

Second Proof. Let us first sketch some quite general facts about the Picard scheme
of any projective variety Y. Let P be the universal invertible sheaf on Y x Pic, .
Then:

(a) consider the functor which, for all morphisms f: S— Pic} assigns
P2 (1 X f)*P):

Y xS—L, ¥ x Pict,

S

S —=—— Pic}.

By Grothendieck’s theory of cohomology and base change (cf. EGA, Ch. 3, 2™
part; or Mumford, Abelian Varieties, § 1) there is a coherent sheaf # on Picj such
that

P2, 4 (1 X f)* P)=Hom, (f* #, Os).
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Applying this first with S =Spec(k), Image(f)=point corresponding to the sheaf
L on Y, it follows that Supp (#)=(0), since H°(Y, L)=(0) if L3 0,. Choosing
next §=Spec{k[c]), Image(f)=(0), and using the fact that if L on Y x Spec(k[e])
is a non-trivial deformation of @ (that is, fits into a non-split sequence

O“"@yﬂ*"’L_’(OY_)O)

then HO(Y x Spec(k[e]), L)=k, it follows that for all surjective homorphisms
Oy picy — k[€] we have

Hom (%, ®oq e, kL], k[e]) =k

and we deduce from this that & x>k, a sheaf with support (0) and stalk k there.
We now apply this to the inclusion f: H—Pic} of a finite group scheme into
Pic} . In this case

Op gkt ..., t, 17, ..., 8™

hence
Homy(k, Oy p)=k.

This proves:

Lemma 2. If Spec (A)<Pic} is a finite subgroup scheme, then
dim H°(Y x Spec(4), P Qgp,, A)=1.

(b) for all finite subschemes Spec(4)<—Picy, we may consider P ®q,, A as an
invertible ¢y ®, A-module, hence if n=dim, 4 it is also a locally free ¢y-module
of rank n. Now if Spec(4) is a subgroup, with points a,, ..., a,, let translation by
a; define an automorphism T;: A — A, define also

n: A= Oy 4=k[ty, ..., 6,1/, ... 187

by restriction to (0), and then define t: A—k by

t(f)=.§ [coeff. ofl!:[rf’"_1 in ﬂ(Ti(f))]-

Then (x, y)>t(x.y) is a non-degenerate quadratic form on the n-dimensional
k-vector space 4. Now we can pair the two locally free rank n ()y-sheaves
P ®gpy A and P~! @, A, via

(P ®opc A) X (P Ry, A) B Oy pic Qopie A= Uy ® A8 0y
This is similarly non-degenerate, which proves:
Lemma 3. If Spec(A) is a finite subgroup schme of Picy, then

P! @pp, A= Homg, (P gp, A, Oy).

Apply this to the case in which Y= X, an Enriques’ surface. If Picy contains
a subgroup scheme Spec(4) of order n, then E =P ®,,, 4 is a locally free 0x-
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module of rank n. By Lemma 2, we have
dim H°(X, E )=1,
and by Lemma 3 and Serre duality
dim H%(X, E,)=dim H°(X, Q% ® Hom(E ,, Oy))
=dim H°(X x Spec(4), (2% ® Gpic) ® P '] Qpp,c A)-

Assume Spec(A) contains the point a of order 1 or 2 of Picy representing the sheaf
Q%. Now under the automorphism (x, p)—(x, —p) of X x Picy, the pull-back of
P is P~!'; and under the automorphism (x, p)~(x, p+a) the pull-back of P is
(Q% ® Up;c) ® P. Restricting the automorphism (x, p)—(x, a—p) to X x Spec(A),
it follows that

dim H°(X x Spec (4), (2% ® Gpi) ® P~ '] ®gp,. A)
=dim H°(X x Spec(4), P ®gp, A)=1.
Thus y(E,)=2.

On the other hand, if q,, ..., a,, are the points of Spec (4) and if a; corresponds
to a sheaf L; on X, then E is a direct sum of m sheaves, the i-th of these being a
successive extension of copies of L,. To see this, note that

m
A= @ (Qal, Spec (4)
i=1

and choose filtrations
@a,,Spec(A)=Ii,o Dli, 12 DIi,s=(O)

of each factor by ideals with dim I; ;/I; ;,, =1. Then

E,= @ (EA R4 (9,“, Spec (A))

i=1
and each factor is a successive extension of the sheaves
Ei,j=(EAIi,j)/(EAIi,j+1)'
Ift; ;el; ;—1I; ., then multiplication by ¢; ; defines
Li=EAIi,o/EAIi,1‘:_’EAIi,j/EAIi,jH-

Since y(L,)=yx(0x)=1, this proves: x(E ,)=n. Therefore n <2, and Pic} has order
2. The rest of the argument now follows the first proof.

Combining the Theorem with the fact that for all finite commutative group
schemes H, principal covering spaces

XX
with structure group H are classified by:
Hom(HP”, Picy)
(HP? = Cartier dual of H), cf. [8], p. 50, it follows that:
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Corollary. Let X be an Enriques surface. Then X has a canonical principal covering
space
XX

of degree 2, whose structure group is:

T if X is classical
Z/2Z  if X is singular
aQ, if X is supersingular.

(Recall that if char +2, then p,~Z/2Z.)

We may construct this covering explicitly as follows:

Casei: X classical. Let {f;;}eZ'({U}, 0%) be a 1-cocycle representing the
invertible sheaf Q%. Since 2Ky =0, { f;7} is a 1-coboundary and we can write

fi=g/g; on UnUj

where g,eI'(U,, 0%). Now we define n: X — X locally by the covering
z2=g; on UxA!

the glueing being given by
z/z;=f; on (UxAHYN(U;xA").

Case ii: X singular. Let {a;;}€Z'({U}, 0x) be a 1-cocycle representing an
element ne H'(0x) such that Fy=n. Following Serre [11], this means that
{a,.zj—aij} is a 1-coboundary, and we can write

ai—a;=b,—b;, on UnU
where b,e I'(U;, Ox). Now we define m: X — X locally by the Artin-Schreier covering:

z2—z;=b, on UxA®
the glueing being given by

zi—z;=a; on (UxA")n(U;xA").

Caseiii: X supersingular. Let {a,-j}ell({U,-},@X) be any 1-cocycle which is
not a coboundary. Since F is zero on H*(0y), {aizj} is a 1-coboundary and we can
write

Z=b;—b; on UnU
where b;eI'(U,, 0x). Now we define n: X — X locally by the inseparable covering:
z2=b;, on UxA!
the glueing being given by
zi—z;=a; on (UxA")N(U;xAY).

What sort of scheme is X ? If X is classical and char 2 or if X is singular and
char=2, r is étale of degree 2, hence X is a smooth surface. On the other hand, if




Enriques’ Classification of Surfaces in Char. p. 111 221

X is classical or supersingular and char=2, then = is purely inseparable. Still X
is a reduced Gorenstein surface because: a) it is codimension 1 in a smooth three-
fold, and b) in the notation above, g; (resp. b;) are not squares because {f;} (resp.
{a;;}) is not itself a 1-coboundary. Moreover, in the first set of cases, X is certainly
a K3-surface because Kz ~0 and x(03)=2x(0x)=2, and X is quotient of a K 3-
surface by means of a fixed point free involution. In the second set of cases, X
must be singular. To see this, note that

n=dg;/g;, casei, char.2

n=db,, case iii
detines a global 1-form on X with no poles, and that for all PeX:

P is singular on X if and only if all derivatives of z2 —g; (resp. z2 —b;) vanish
at P, hence if and only if 7 is zero at n(P). Since ¢,(X)=12, a 1-form like » will
generically have 12 zeros, and it must always vanish somewhere, hence X must be
singular.

However, X is always “ K 3-like”:

Proposition 9. The double covering n: X — X satisfies:

1 =0
dim HY(Gf)=10 i=1
1 i=2

and wy (the dualizing sheaf on X) is isomorphic to 0.

Proof. By Grothendieck’s duality theory (cf. [4]), for any finite flat morphism
g: Y Y, write o =g, (0), so that Y = Spec(.«/). Then

wy=[Homy, (o, wy)]”

(ie. regard Homy, (7, wy) as a sheaf of «/-modules and take the associated sheaf
on Y). So to show that wy = 3 we must show

¢: o/ —> Homy (4, wy) as o/-modules,
or equivalently we must construct an (y-linear map
t: o - wy

such that #(x - y) is a non-degenerate quadratic form on the locally free sheaf .of
with values in the invertible sheaf wy, and then define ¢ by setting ¢(x) equal to
the homomorphism yrt(x - y). Returning to Enriques’ surfaces, we have:

Casei: n, (Ox)=0y®L

where L =0y - z; locally.
Since z,/z;=f;;, we have L = Q} . Now define t to be 0 on Oy and this isomorphism
on L.

where a(@)=a, f(a+bz;)=b.
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Since Qf = 0y, define ¢ to be the map B.

This proves statement 2). Moreover, it also shows that x(0z)=y(n, Oz)=
2%(0x)=2. Now X connected and reduced implies dim H°(03)=1, so by 2) we
have also

dim H2(0)=dim H%(wy)=dim H°(05)=1. Q.E.D.

The same type of argument can be used to prove more generally thatifn: ¥—Y
is any principal covering space with finite structure group scheme G, then, in
Grothendieck’s notation, 7' ¢y = 0y, hence wy = n* wy.

Finally, we would like to give some examples to show that all these types of
Enriques’ surfaces do exist and may even be part of the same connected family of
surfaces. Enriques’ original construction of his surfaces as the normalization of
sextic surfaces in IP® passing doubly through the edges of a tetrahedron gives
classical Enriques surfaces in all characteristics (cf. [6], where it was remarked that
in char. 2 these surfaces carried regular 1-forms). To get all the types at once, we
follow an idea of Miles Reid which adapts Serre’s construction [10] to the case of
Enriques’ surfaces: we construct X in IP° as the intersection of three quadrics and
an action of y,, Z/2Z or a, on IP® which restricts to a free action of this group on
X. Then define X to be the orbit space.

Let x,,X,,X3,;, V2,3 be homogeneous coordinates on IP°. Consider the
action of

G =group of matrices {(‘11 2), bek*, aek}

on IP® given by
(x; vy (xi, ax;+by,).

Inside G, we consider the following subgroup schemes of order 2:

1
a) for all ek*, H(,,0)={((1) (1)), (a ?)};2/21,

10
b) H(0’0)={(8 1),g2=0}ga2,

1 0
c) for all tek*, H‘O"):{(a {41 6),82=0}§H2'

Note that as either ¢ or 7 goes to 0, H, o, or H, ,, approaches H o,. In fact,
altogether they form a finite and flat group scheme over Spec k[o,7]/(o 7). These
group schemes act on IP® and the subrings of k[x,, ..., y;] of H-invariants of
even degree are readily computed to be:

a) (k[xla '~"y3]q(a'0))even =k[xl%’ xixj9 ylf+axkyk9 yixj+iji]

degree

where 1Zi<j<£3, 15k<3;

b) (k[xl’ --"y3]Hm'0))even =k[xlf’ xixj’ YI%’ yixj+,iji]
degree

where 1 Si<j<3, 15k<3;
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©) (k[xy, ..., Y3]H(°"))even =k[x, XiXj, yl%9 VixX;yix;+ 1y ¥4l
degree
where 1 Zi<j<3, 15k=s3.
In all three cases we take the twelve invariant quadratic forms on the right and
use these to define a morphism:

. pS 11
D, . P°>IP

for 61=0. Then &, ,IP°=~IP°/H,, . Define X, , to be a generic 2-dimensional
section of this quotient:

X(a,t)= Q(a,t)(lps)m(Ll =L2=L3 =0)

where the L, are generic linear forms, and define X(M) to be the inverse image of
X, in IP°, hence

{0, 1

X(a,t) =locus (f; =f,=/;=0)

where the f; are the quadratic forms obtained by pull-back of the linear forms L;.
Dropping for an easier notation the subfix (s, ), let 7 be the restriction of @ to X.
Since in all cases the fixed point locus F of H is one or two planes, X does not meet
F and n: X — X is a principal H-bundle. Since #(IP%) is smooth outside &(F),
this shows that X is smooth too. On the other hand, X, being the intersection of
three quadratic forms in IP®, is Gorenstein with dualizing sheaf given by:

3 = Qps(— Y, deg £l = 0.
As we have seen, 0y = n* wy, SO
w§* = Normy y(wy) = Oy.

Moreover, again because X is a complete intersection, H'(0z)=(0); since
dim H?(Oz)=dim H%(wz)=dim H°(Oz)=1, we find that y(0O3)=2, hence x(Ox)=
$4(0%)=1. By the Basic Table in Part II, X must be an Enriques surface.

§ 4. Linear Systems on Enriques’ Surfaces

In this section we shall continue our investigation of Enriques’ surfaces and
prove that they are all elliptic or quasi-elliptic. This result was proved for classical
surfaces by Enriques himself; modern proofs can be found in [1, 12]. The basic
argument in his proof was to show that every linear system |D|+@ with D2>0
contains reducible curves, hence with components of lower arithmetic genus;
this implies easily the existence on X of a curve of canonical type. His method of
proof however breaks down in the non-classical case and we have to exploit the
special features of char. 2 in order to obtain the same result.

Theorem 3. Every Enriques’ surface is elliptic or quasi-elliptic.

Proof. In order not to repeat well-known arguments, we shall consider only the
non-classical cases in char. 2. By the results in Part I, [7], it is sufficient to show
the existence of a curve of canonical type on X.
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Let L be an invertible sheaf on X, L& 0y, and |L|+@. If se (L) and C=div (s)
we have the exact sequence

0-0s>»>L—->0,9L—-0

and we denote by I'(L), the vector subspace of I'(L) consisting of those sections s
for which

HY(04)-> H'(L) is the zero map,
and | L|, will be the associated linear system.

Lemma 4. Assume that there exists Ce|L| with dim H°(Oc)=1. Then we have:
either

a) dim H'(L)=0 and dim |L|=dim |L|,=%(I?)
or

b) dim HY(L)=1 and dim|L|;=4(I?).

Moreover, in case b) we have that De|L|,, D>0 if and only if dim H(0p)=2,
hence every element of |L|, is reducible.

Proof of Lemma. Since Ky =0, the Riemann-Roch Theorem yields
dim |L|=%(1?)+dim H'(L).

The cohomology sequence of
0—-0y>L—->w,—0

where D =div (s), gives
H'(0x) > H'(L)— H'(wp) —> H(0) 0.

Now if dim H(wp)=dim H°(0p)= 1, we see that dim H!(L)< 1, hence we obtain
either a) or b). We also get, for any D,

dim H'(L)= —1+dim H(0p)+dim Im {H* (0) > H'(L)}

and we obtain the last clause of Lemma 4. Q.E.D.

Lemma 5. If 12>0, dim H'(L)=0 and |L| contains an irreducible curve then
dim H'(I®??)=0 and dim |[[®?|=2(?).

Proof of Lemma. Let C=div (s)e|L| be irreducible. Clearly H'(0,)-> H}(1L®?)
is the zero map, since it factors through multiplication by s alone, hence s*e
I'(L??),. On the other hand, C irreducible and C?=I?>0 imply dim H°(0,.)=1,
and the result follows from the previous Lemma. Q.E.D.

Proposition 10. Let C be an irreducible curve on X with C2>0. Then the linear
system | C| contains a reducible divisor D which is not the sum of two non-singular
rational curves.

Proof of Proposition. We choose a non-trivial 1-cocycle {a;;} € Z' ({U}, Ox) such
that, as remarked in the proof of Corollary to Theorem 2,

a}—exa;=b—~b;, on Unl
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with b;eI'(U,, Oy), where

- 1 if X issingular
¥7l0 if X is supersingular.

We also fix once for all such a datum b={b;}. Now let {f;;}eZ'({U}, 0%) be a
1-cocycle representing the class of L in Pic(X). If s is a section of L, the image
of the class of {a;;} by H'(0x)->H'(L) is represented by the 1-cocycle {s; a;;}e
Z'({U3}, L), hence if se I'(L), then this is a 1-coboundary:

s;a;=0,~f;0; on UnU

with o,€l'(U;, O). The corresponding datum o={s;} is determined uniquely
modulo sections of L. We use b and ¢ to construct sections of I22 as follows: if s,
tel'(L), and o,7 are associated data then st+ot and 6% +&, o5+ bs? are sections
of I®2, as a straightforward calculation in char. 2 shows.

Now take L=04(C). By Lemma 4, if dim H'(L)=1 every element of |C|, is
reducible and is not the sum of two non-singular rational curves, since by hypo-
thesis C*>>0, and dim H°(0,)=2.

Therefore we have to consider only the case in which dim H'(L)=0. We fix
a basis sg, ..., s, of I'(L), where n=4(I?) and we fix associated data G, ..., &,
which we extend by linearity to a well-defined datum & associated to sel(L).
Any other datum ¢ associated to s is of type 6 =6 +5', s'el'(L). Now consider in
I'(I®?) sections of the form

62 +exy065+bs?+st+ot (A)
and
st+ot (A")

There are some obvious cases in which they vanish identically: in case (A"),
ifs=0=0,0rifs=0,6=t;incase (A"),if s=put and 6 = put with uek*, orif s= =0,
or s=t=0, or t=1=0. We call these the trivial relations. Writing

s=Y X8,

e=Y X; 6+ Y U s,
t=) ¥ 5

T=) G+, (Vi +exuy)s;

we obtain

o62+eyos+bs*+st+ot
=Y x} (G2 +ex G, 5,+bs?)
+ Z (ex X; x;+y; x;+y; x,)(G;5;+07; )
i<j
+Z(uiz+vixi+uiyi) s?
+ Z(Ui x]'+vj x,-+u,- yj+u1 y,) Si Sj~

i<j
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In the same way, setting v;=v;+ ¢4 u; we find
st+at=Y (y;x;+y; x)(G;5;+5;5s)
i<j
+ Z (v x; +u; y;) 5i2
+ WX+ 0 X+ v+ v) 88

i<j
Now let V' be a vector space over k, with basis denoted by ¢;, ¢;;, €}, €};, 0Si<j<n
and let M’ be the algebraic cone in V consisting of points

inz e+ Z(sx X X+ X+ Y; X)) e

i<j
+Y W4 x4+ u;y) e+ Y (v X;+0; X+ u v+ u;y) e

i<j
and in the same way let M” be the algebraic cone in V consisting of points

Z(}’ixj+}’jxi)eij+Z(Uixi'*'uiYi)eE
i<j
+ Z(Uixj+vjxi+ui Yj+qui)e§j-
i<j
The main fact is:
O M=MuUM" isclosed in V,
(i) dim M =4n+2.

If yr: V— I'(L®?) is the homomorphism
Y(e)=57+ex G5, +bst,
xﬁ(eij)=&,- $;+0;5;,
Y(e)=s7,
Yl j) =S;5;
then its kernel is a linear subspace of V of codimension
codim ker () <dim I'(I®%)=4n+1

by Lemma 5, hence by (i) and (ii) there is a point me M, m+0, with y(m)=0. Thus
we obtain a relation of the form (4')=0 or (4”)=0 and this relation is non-trivial
since trivial relations correspond to the origin of the cone, while m=0.

We claim that div (s} is reducible and is not the sum of two non-singular
rational curves. Suppose for example that the relation is

62 +eyas+bs’+st+ot=0

and that div (s) is irreducible; note that s is not 0, because the relation is non-
trivial. Hence

s(t+exo+bs)=0a(t+0)
and, denoting restriction to U; by a subscript, we find either

0;=58, &el(U, Oy
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or
ti+o,=s,8, gel'(U,0x)

because we assume that div(s) is irreducible. This implies easily, using g,—

fij0;=s; a;;, that either

ijs
o,=s;g; forevery U,
or
ti+o;=s;8, forevery U

holds. Replacing the representative ¢ by ¢+ if needed, we obtain g;=s; g; for
every U;. This implies that

a;=g,—g; on Unlj

with g,eI'(U, Ox), hence {q;;} would be a 1-coboundary, which is a contradiction.

Now assume that div(s)=E'+E” where E’, E” are non-singular rational
curves on X. Let {f}, {fj} be 1-cocycles in Z'({U}, O%), with f;;=f;; fi}, te-
presenting the classes of Ox(E’) and Ox(E") in Pic(X) and let §', s” be corre-

[

sponding sections with s=s"s”. Reasoning as before, we can assume that
g,=s5;g; on U
with g,eI'(U;, 0y), and we get that
S;,aij:gi_fi;‘,gj on l]imljj’
hence
HY(Oy) > H'(Ox(E"))  is the zero map.
This contradicts the exact sequence
H(Op (E") > H' (Ox) = H'(Ox(E"),

because E". E" = —2, hence H°(0..(E"))=(0).
The same argument applies in case of a relation of type (4”")=0. Q.E.D.

We now return to the proof of Theorem 3. Let p=21(C?)+1 be the smallest
genus of irreducible curves C with C2>0, and let De|C| be a reducible element
as in the previous Proposition. We conclude our proof in the following steps:

Step 1. If E is an irreducible component of D, then p(E) < p(C) hence p(E)=0or 1.
In fact, let D=E+D’. We have, since C is irreducible and C2>0, DD'=CD'=0
hence DE< C2. Now DE=E?+ED and D, is connected by the degeneration
principle of Enriques-Zariski, hence either ED'>0 or E*<0, and in both cases
E?<C? QE.D.

Step 2. We may assume D= m;, E; where ) m;2 3 and the E; are non-singular
rational curves with E?= —2 and E, E;<2. In fact, p(E;)=1 implies that E; is of
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canonical type, hence X would be elliptic or quasi-elliptic. If instead p(E,)=0 for
all i, then Zmig3 by the previous Proposition. Finally, E; E; <2, otherwise (E; +
E j)ng, and dim |E;+E;|21 by the Riemann-Roch Theorem. Now |E;+E |+
(D—E,—E)<|C|, and a general element of |[E;+ E|| is irreducible; if Fe|E;+E||,
then F2 < C? by the argument in Step 1, which contradicts p(C)=minimum.
Q.E.D.

Final Step. X contains a curve of canonical type. If E;E;=2, then E;+E; is of
canonical type, and we are done. So assume E, E;<1 for all i, j. Consider the con-
nected graph with vertices E; and edges connecting E;, E; if E; E;=1. If the graph
contains a subgraph which is a complete Dynkin diagram 4, D, E, E,, E, (e.g.
A, is a loop) then we find a curve of canonical type: e.g., for E4 the curve

€)
|
0—0—©-0-0-0-0-0

where the numbers denote the multiplicities of the components. Otherwise, the
graph must itself be a Dynkin diagram, and since the associated self-intersection

quadratic form is negative definite we would obtain D? <0, a contradiction.
Q.E.D.

From the computation of the canonical bundle of an elliptic or quasi-elliptic
surface in Part I, we also get:

Proposition 11. Let f: X — IP! be an elliptic or quasi-elliptic fibration on an Enriques
surface. Then we have:

(i) if X is classical, f has 2 ordinary double fibres and
R £,(03) = Op(— 1);
(ii) if X is non-classical, f has exactly one wild double fibre 2P=f""(x) and
R'f,(0)20p(~2) @k,
where k. is a sheaf with support x and stalk k there.
Theorem 4. If X is an Enriques’ surface then its Picard number is p=B,=10.
Proof. If X is quasi-elliptic, this comes from the following more general result:
Proposition 12. For all quasi-elliptic surfaces we have p=B,.

Proof of Proposition. By the results of Section 1, there is a smooth ruled surface
Y and a proper map n: Y — X of degree p=char (k). Now use

"Pic(Y)®Z,— HL Y, Z)

n* t Ty LR e

Pic (X)®Z,—— H4(X,Z)

where [+p. Since n, n* =mult. by p, we obtain that Pic(X)®Z, —»H}(X,Z)
is onto. Q.E.D.

Now suppose that X is elliptic. We have:
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Proposition 13. Let X -5 C be an elliptic surface and let J(X) be the associated
Jacobian surface. Then if p=B, for J(X) we have also p=B, for X.

Proof of Proposition. We use an idea of M. Artin. From the Kummer sequence
l-y,—-6G, 56,1

we get the exact sequence
0 — Pic (X)" — H*(X, w,)— H*(X, G,),—0

where H*(X, G,,), is the subgroup of H*(X, G,,) killed by multiplication by n,
and where Pic (X)™ = Pic (X)/n Pic (X). This gives, for each prime [+ p, that
B,(X)—p(X)=corank H*(X, G,)(})

where the symbol (/) denotes the [-torsion part.
Now the Leray spectral sequence for f: X — C shows that, denoting by =~
an homomorphism with finite kernel and cokernel, we have:

H*(X,G,)~H'(C,R'f, G,);

also, if n denotes the generic point of C and if i: # — C is the inclusion, then if J
is the Jacobian of the generic fibre we have:

HY(C,R'f, G, )~H'(C,i,J)
(cfr. [3], §4 and [9]). Since the last group is the same for both fibrations X — C
and J(X)— C we obtain

B,(X)—p(X)=B,(J(X))—p(J (X))
and Proposition 13 is proven. Q.E.D.
Proof of Theorem 4. We have to show that p(J(X))=B,(J (X))'where J(X) is
the Jacobian fibering of the elliptic Enriques’ surface X. Now the elliptic surface
J(X) has the same Betti numbers as X and has a section, hence no multiple fibres.
The canonical bundle formula proved in Part II of this work now shows that a
canonical divisor on J(X) is given by the opposite of a fibre, hence all plurigenera

of J(X) vanish and J(X) is rational by Castelnuovo’s criterion. Hence B,(J(X))—
pJ(X)=0. Q.E.D.

§ 5. Two Examples

Let X be a supersingular Enriques surface. We have seen in §3 of this work that
X has a regular 1-form # which is locally of the form #n=db,, and also X has a
nowhere vanishing regular 2-form w. Now the formula

df nn=@f)w
defines a regular vector field 3 on X. Since we are in char. 2, we also have

92=49
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for some constant §; replacing n by a multiple, we may assume that
=649,
with d,=1 or 0.

Proposition 14. If 6,=1 then n has exactly 12 isolated simple zeros. If instead
0x =0 then all zeros of n have even multiplicity.

Proof. Let u,v be local formal parameters at a point P of X. Now write w=
@dundv,n=db=>b,du+b,dv. A simple computation now shows that
5X=(¢—l)u bv+(p_1 buv+((p_1)u bu

where the subscripts denote partial derivatives. Taking the partial derivatives
with respect to u, v we see that (¢~ 1),, b,=(¢ "), b, =0, hence ¢,, is identically
0. Thus we must have

p=A*+uB*+0vC?
for some power series 4, B, C with A(0,0)+0. If we introduce the new local
parameters

fi=u(4%+ C?v),

§=v(1+(B/A)* u)
we easily check that

o=(A%2+uB*+vC?* du ndv=dit AdP,

whence we have shown that changing the local parameters u, v by multiplication
with suitable units, we have the normal form w=du Adv for w. It then follows
that §,=b,, and now we can write

b=A*+uB?>+vC*+dyuv
for suitable power series A, B, C. Hence
N=(0x v+ B*)du+(Syu+ C?)dv.

If # vanishes at P, then B(0,0)=C(0,0)=0; if =0, then n vanishes at P to
even order, while if 5, =1 then # has a simple isolated zero at P, since v+ B? and
u+ C? generate the maximal ideal of the formal local ring of X at P. Noting that
¢,(X)=12 we get the required result. Q.E.D.

Let Y— X be the a,-covering associated to X defined in §3; this is locally
of type z*=b, hence of type

22=38, uv+uB?+vC2

It follows from this that if 6y =1 then Y has exactly 12 ordinary rational double
points, i.e. those over the zeros of the 1-form #.

Proposition 15, Let X be a supersingular Enrigques surface with (zx= 1, and let ¥
be a non-singular minimal model of the associated surface Y. Then Y is a K 3-surface
and its Picard number is p(Y)=B,(Y)=22, i.e. Y is a supersingular K 3-surface.
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Proof. We know already that Y is K 3-like, that is y(¢y)=2 and w,>~0y. Since Y
has only 12 rational double points, ¥ is a K 3-surface. Now Theorem 4, together
with the method of proof of Proposition 12, shows that p(Y)=p(X)+12=22=
B, (Y), since the resolution of the 12 singular points brings in 12 new independent
curveson Y. Q.E.D.

We have computed two examples using the construction at the end of §3. In
the first example, X is obtained from the a,-covering Y — X, where Y is the
complete intersection of the three quadrics

XP 4%y X+ X34 %; Yy 4%,y +¥3=0,

X3+ %; X3+ X3+X; Y3+ x5 ¥, + 97 =0,

X3+%3 % +xF+x3y+x, v3+yi=0.

The surface Y has exactly 12 rational double points, namely: the point

(1,1, 1,1, 1, 1),
the 9 points

(Lt t, 1, 8%, 1%,

(t Lt % t,1%),

(tt, 1,3 6%
where £ + 1?4+ 1=0, and the 2 points

(1,¢1¢%,0,0,0)

where 2 +t+1=0.

The quotient surface X by the a,-action (x;, y;) — (x;, ex;+y;) where £*=0,
is a smooth supersingular Enriques surface with é,=1.

In our second example, Y is the complete intersection of the three quadrics

X{+x, X+ Y34y X5+ %, ¥, =0,
X3+x; X3+ Y24y, X3+ %, ¥3=0,
X34+x; X3+ Y34y X3+%; y3=0.
The surface Y has exactly 6 isolated singular points, namely: the point
1,1,1,0,0,0),
the 3 points
(,1,2,¢61)
where 3 +t*+1=0, and the 2 points
(&, 51,18, 1)

where t*+1+1=0.

The quotient surface X by the a,-action (x;, y;) = (x;, £x;+y;) where &=0,
is a smooth supersingular Enriques surface with é;,=0. The regular i-form 5
on X has now exactly 6 double zeros (cf. Proposition 14).
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