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Abstract: Biomedical images contain a huge number of sensor measurements that can provide disease
characteristics. Computer-assisted analysis of such parameters aids in the early detection of disease,
and as a result aids medical professionals in quickly selecting appropriate medications. Human
Activity Recognition, abbreviated as ‘HAR’, is the prediction of common human measurements,
which consist of movements such as walking, running, drinking, cooking, etc. It is extremely
advantageous for services in the sphere of medical care, such as fitness trackers, senior care, and
archiving patient information for future use. The two types of data that can be fed to the HAR system
as input are, first, video sequences or images of human activities, and second, time-series data of
physical movements during different activities recorded through sensors such as accelerometers,
gyroscopes, etc., that are present in smart gadgets. In this paper, we have decided to work with
time-series kind of data as the input. Here, we propose an ensemble of four deep learning-based
classification models, namely, ‘CNN-net’, ‘CNNLSTM-net’, ‘ConvLSTM-net’, and ‘StackedLSTM-net’,
which is termed as ‘Ensem-HAR’. Each of the classification models used in the ensemble is based on
a typical 1D Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network;
however, they differ in terms of their architectural variations. Prediction through the proposed
Ensem-HAR is carried out by stacking predictions from each of the four mentioned classification
models, then training a Blender or Meta-learner on the stacked prediction, which provides the final
prediction on test data. Our proposed model was evaluated over three benchmark datasets, WISDM,
PAMAP2, and UCI-HAR; the proposed Ensem-HAR model for biomedical measurement achieved
98.70%, 97.45%, and 95.05% accuracy, respectively, on the mentioned datasets. The results from
the experiments reveal that the suggested model performs better than the other multiple generated
measurements to which it was compared.

Keywords: Human Activity Recognition; Ensem-HAR; elderly health monitoring; deep learning;
WISDM; PAMAP2; UCI-HAR

1. Introduction

Human Activity Recognition (HAR) is one of the most active and fascinating study
fields in computer vision and human–computer interaction. In the fields of ubiquitous
computing, interpersonal interactions, and human behavior analysis, automatically recog-
nizing human physical activities has become a serious challenge. Because of the enormous
advancements in microelectronics over the last decade, several complicated and high

Biosensors 2022, 12, 393. https://doi.org/10.3390/bios12060393 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios12060393
https://doi.org/10.3390/bios12060393
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0001-5326-6249
https://orcid.org/0000-0002-9304-4808
https://orcid.org/0000-0001-5177-8072
https://orcid.org/0000-0001-5206-272X
https://orcid.org/0000-0002-9598-7981
https://doi.org/10.3390/bios12060393
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios12060393?type=check_update&version=2


Biosensors 2022, 12, 393 2 of 25

computational power devices have been developed capable of doing more complex tasks
than ever before. Because of their compact size, low cost, tremendous computing capacity,
and low power consumption, these devices have become a part of people’s daily lives.
Recognizing human actions, in particular, has been a hot topic in the discipline, particularly
for medical, military, and security applications.

Signals obtained in real-time from many body-worn inertial sensors are used to
recognize human activities. Sensors such as accelerometers, gyroscopes, and others are
utilized in smart devices (often smartphones). The accelerometer, magnetometer, and
gyroscope are now standard features on most smartphones. Physical human activity can
be recognized by evaluating data collected from numerous smart wearable sensing devices
and processed and evaluated using a classification system. Activity prediction is useful
because it allows individuals to track their daily routines. Cell phones have become an
integral part of our lives, and they are outfitted with sensors that can monitor people’s
movements. These sensor data help us to recognize actions such as walking, sleeping,
sprinting, sitting, walking downstairs, upstairs, etc. Various sensors are used based on the
various actions that we are attempting to forecast based on our requirements. In addition to
sensor data, images and videos can be used for the task of recognizing human activities [1].

HAR can be used in various sectors, a few of which are mentioned below.
Monitoring is employed to prevent crimes and deadly terrorist acts from occurring in

public places, such as in a system that provides a comprehensive and deployable activity
recognition system with on-demand real-time activity recognition based on crowd input
from public security surveillance cameras.

HAR is used in numerous sectors, particularly in the residential, hospital, and restruc-
turing sectors. HAR has been integrated with smart devices to keep track of the day-to-day
activities of older persons who stay at home or in rehabilitation centres. This helps to
keep older people healthy and prevents them from contracting harmful diseases through
monitoring of different activities such as heart rate, oxygen levels, calorie intake, calorie
burn, and other activities. HAR has become a highly effective way to control and regulate
patients’ physical daily activities by following up and keeping track of their devices and
activities and maintaining patient health accordingly in order to minimize the risk of a
variety of life-threatening diseases such as diabetes, overexposure, and cardio activity [2].

For conducting trials with sensor-based HAR data, information fusion is an intelli-
gent method based on constructing an ensemble of classifiers, although it is essentially
unexplored in this sector [3]. The construction of the ensemble is useful as it takes into
account the decisions of multiple models instead of depending on a particular single model.
Many classification issues, including HAR, have recently benefited from the use of an
ensemble of different models. Mukherjee et al. [4], using various combinations such as
‘majority voting’, ‘sum rule’, ‘score fusion’, etc. between existing deep learning classifiers,
was able to enhance overall model performance. Das et al. [5] formed an ensemble from the
outputs they obtained from models trained on RGB images and sensor data, and observed
a significant enhancement in the performance of their HAR model. The key factor in
designing an effective ensemble of classification models is the uniqueness of each of the
constituent classifiers, as there is no purpose in using them to construct the ensemble if
every constituent wrongly predicts a label and they exhibit identical characteristics in the
forecasting an instance [3]. Figure 1 shows an overview of our proposed work.



Biosensors 2022, 12, 393 3 of 25Biosensors 2022, 12, x FOR PEER REVIEW 3 of 25 
 

 
Figure 1. Illustrative overview of collecting the raw data from sensors, pre-processing and window 
segmentation on that raw data, and finally our proposed Ensem-HAR model for predicting human 
activities with that pre-processed data. 

2. Literature Review 
HAR is a challenging research topic in the area of computer vision. For a long time, 

researchers all around the world have been working on developing a near-perfect recog-
nition model. HAR has previously been the subject of a great deal of research. This section 
focuses primarily on summarizing previous activities taken concerning the datasets cho-
sen here. 

Deep learning algorithms are very good at processing time-series signals for feature 
extraction and classification, taking advantage of local dependencies. Scholars have re-
cently become attracted to the application of profound deep learning methods such as 
Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and hybrid 
models for better recognition of human activity [6]. 

In the field of classifying images as well as for forecasting raw time-series signals, 
CNN models are highly capable. Several scholars have taken full advantage of this by 
using CNN algorithms to recognise raw inertial data from sensor devices and detect hu-
man motion. 

Chen and Xue [7] proposed a CNN model that recognizes simple motions based on 
the three-axial signals collected from accelerometers integrated into a smartphone. To pro-
cess the signals, they built a CNN model and changed the convolutional kernel accord-
ingly. Ronao and Cho [8] developed a unique CNN design for extracting complicated fea-
tures that makes use of an exploited (1 × 91 × 14) convolutional layer with a small pooling 
size (1 × 2–1 × 3). The proposed method has been tested using raw data and the temporal 
properties of Fast Fourier Transformed signals using the created CNN. 

The WISDM project was introduced by Kwapisz et al. [9], who chose 29 users to col-
lect data from. On the WISDM dataset, Quispe et al. employed traditional machine learn-
ing-based classifiers K Nearest Neighbor (KNN) [10] and achieved the state-of-the-art re-
sults. Table 1 highlights previous measurement research on the WISDM dataset. 

Table 1. Performance measurement of some latest HAR approaches on the WISDM dataset. 

Author Year of Publication Model/Classifier Accuracy (in %) 
Kwapisz et al. [9] 2010 MLP 91.7% 
Zhang et al. [11] 2018 U-Net 97% 
Quispe et al. [10] 2018 KNN 96.2% 
Pienaar et al. [12] 2020 RNN-LSTM 94% 

Figure 1. Illustrative overview of collecting the raw data from sensors, pre-processing and window
segmentation on that raw data, and finally our proposed Ensem-HAR model for predicting human
activities with that pre-processed data.

2. Literature Review

HAR is a challenging research topic in the area of computer vision. For a long time, re-
searchers all around the world have been working on developing a near-perfect recognition
model. HAR has previously been the subject of a great deal of research. This section focuses
primarily on summarizing previous activities taken concerning the datasets chosen here.

Deep learning algorithms are very good at processing time-series signals for feature
extraction and classification, taking advantage of local dependencies. Scholars have re-
cently become attracted to the application of profound deep learning methods such as
Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and hybrid
models for better recognition of human activity [6].

In the field of classifying images as well as for forecasting raw time-series signals, CNN
models are highly capable. Several scholars have taken full advantage of this by using CNN
algorithms to recognise raw inertial data from sensor devices and detect human motion.

Chen and Xue [7] proposed a CNN model that recognizes simple motions based on the
three-axial signals collected from accelerometers integrated into a smartphone. To process
the signals, they built a CNN model and changed the convolutional kernel accordingly.
Ronao and Cho [8] developed a unique CNN design for extracting complicated features
that makes use of an exploited (1 × 91 × 14) convolutional layer with a small pooling size
(1 × 2–1 × 3). The proposed method has been tested using raw data and the temporal
properties of Fast Fourier Transformed signals using the created CNN.

The WISDM project was introduced by Kwapisz et al. [9], who chose 29 users to
collect data from. On the WISDM dataset, Quispe et al. employed traditional machine
learning-based classifiers K Nearest Neighbor (KNN) [10] and achieved the state-of-the-art
results. Table 1 highlights previous measurement research on the WISDM dataset.

Table 1. Performance measurement of some latest HAR approaches on the WISDM dataset.

Author Year of Publication Model/Classifier Accuracy (in %)

Kwapisz et al. [9] 2010 MLP 91.7%
Zhang et al. [11] 2018 U-Net 97%
Quispe et al. [10] 2018 KNN 96.2%
Pienaar et al. [12] 2020 RNN-LSTM 94%

Ignatov [13] combined statistical features with CNN to obtain information of raw
signals. Wan et al. [14] used CNN in the extraction of the local features of sensor data
obtained from smartphone signals, reducing the cost of energy consumption. The impact
of signal duration on performance was investigated in this study by adjusting the sliding
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window up to 1 s. Avilés-Cruz et al. [15] established a deep learning method for classifying
and analyzing exclusive user-dependent activity recognition using the CNN model. Table 2
highlights previous measurement research on the PAMAP2 dataset.

To minimize the memory and computational expenses of typical CNNs, Lego fil-
ters were employed instead of convolutional filters by Tang et al. [16]. The suggested
lightweight model does not need any particular network formation or computer resources,
and it improves the efficiency and scalability of the experiments. Similar to [16], Cheng
et al. [17] presented a new computer-efficient HAR for mobile and wearable devices which
uses conditionally parameterized HAR convolution. Experiments were carried out to
demonstrate the efficiency of the larger baseline model network.

The CNN models discussed above are capable enough to attain greater accuracy in
the recognition of human activities. An assembly of CNNs with variable layers and filters
to eliminate accuracy variations was presented by Zhu et al. [18]. Their model recognizes
the confused actions and dynamic activity of persons with fewer training data.

Table 2. Performance measurement of the latest HAR approaches on the PAMAP2 dataset.

Author Year of Publication Model/Classifier Accuracy (in %)

Challa et al. [19] 2021 CNN-BiLSTM 94.29%
Dua et al. [20] 2021 CNN-GRU 95.27%
Wan et al. [14] 2020 CNN 91%

Tang et al. [21] 2019
CNN with Lego

Bricks with lower
Dimensional filter

91.40%

Instead of classifying images with CNN models, LSTM models are very good at
predicting raw time-series signal sequences. CNN models use “spatial correlations” to
categorize images, whereas an LSTM model classifies time series data by processing a
complete sequence of data through a feedback link. Researchers have presented various
strategies for LSTM-based HAR models.

Agarwal et al. [22] suggested a lightweight profound learning approach to construct-
ing a HAR with fewer computational resources and less delay, allowing the proposed
model to be easily employed in real-world applications. Rashid et al. [23] extended the
CNN program [22] and offered a low-power adaptive CNN that is energy-efficient and
memorable. Zhao et al. [24] developed a bi-directional residual LSTM architecture with
the benefit of combining forward and backwards-looking states and a good- and bad-
looking direction in time. The residual link used between the stacked cells prevents the
problem of gradient disappearance. Table 3 highlights previous measurement research on
the UCI-HAR dataset.

The usual solution for the HAR system is to use mostly local features gathered using
heuristic approaches. A profound hybrid approach based on integrating CNN with LSTM
has been proposed in a study by Sun et al. [25]. Another important challenge in HAR is
analyzing the poorly labelled sensor data to deal with the LSTM model. In order to improve
performance with weakly labelled sensor data, Zhou et al. [26] designed a semi-surveyed
LSTM learning architecture employing a Deep Q-Network.

Hybrid models are thought to be more effective than standard deep learning models in a
variety of situations, including adequate training, perplexing actions, and device placement [27].

Table 3. Performance measurement of the latest HAR approaches on the UCI-HAR dataset.

Author Year of Publication Model/Classifier Accuracy (in %)

Zhao et al. [24] 2018 Residual Bi LSTM 93.6%
Xia et al. [28] 2020 LSTM-CNN 95.78%

Wang and Liu [29] 2020 Hierarchical Deep LSTM 91.65%
Cruciani et al. [30] 2020 CNN 91.98%
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Using LSTM models coupled with convolutional layers and global pools, Xia et al. [28]
demonstrated a profound hybrid method (GAP). Instead of a conventionally connected
layer, GAP was used. Moreover, after GAP, batch standardization was added to accelerate
the convergence of the proposed system.

Although CNN, LSTM, and hybrid models are important in HAR problems, CNN-
based models have several drawbacks; they require a large quantity of data during their
training and are both time- and cost-ineffective. To solve the aforementioned difficulties,
Mondal et al. [31] implemented Graph Neural Network (GNN) to transform time-series
data into a structural representation of graphs.

He et al. [32] suggested a moderate supervised HAR method that deals with sensor
data using ‘recurrent attention learning’. Here, the CNN features are retrieved through
multiple iterations using a rewarding method of reinforcement learning. Because it is harder
to label a dataset collection for a long and complicated series of actions, Zhu et al. [33]
used interim assembly of LSTM. Li et al. [34] proposed a model based on residual block
and BiLSTM. Residual block is utilised to extract spatial features from multidimensional
signals, and the forward and backward dependencies of the feature sequence are derived
using BiLSTM.

In the preceding section, we have addressed the use of CNN, LSTM, and hybrid
models in the area of HAR. In this paper, we discuss the deep learning-based paradigm and
our construction of an ensemble with four deep learning classifiers designed with CNN,
LSTM, and hybrid architectures, which can effectively predict human activities across three
conventional benchmark datasets of time series.

3. Materials and Methods

We considered the following four deep learning-based models.
1. CNN-net (a 1D CNN model with three levels); 2. CNN-LSTM-net (a 1D CNN model

with three levels and an LSTM model); 3. ConvLSTM-net (a time-distributed CNN fed to
an LSTM before a dense layer); and 4. StackedLSTM-net (a two-layered LSTM) as our base
models. By using these base models, we formed our ensemble, called Ensem-HAR, which
is discussed in the following sections. First, we discuss each of the base models in brief and
present their diagrams.

3.1. CNN-Net Model

A CNN is a deep cascaded artificial neural network (ANN) that is made up of many
layers of neural networks, each with a number of neurons. Several critical network layers,
such as the “Convolutional Layer”, the “Pooling Layer”, and the “Dense Layer”, play
diverse functions in CNNs. The architectural overview of the proposed convolutional
neural network model (CNN-net) is depicted in Figure 2.

The CNN model subsequently processes the segmented data. This model comprises
three levels of CNN, each consisting of CNN layers, with filters of different kernel sizes in
each layer.

• Each CNN level consists of four convolution layers (1D) and incorporates the ReLU
activation function, which reduces non-linearity. The filters are of different kernel
sizes for each layer, while the number of filters is the same for each level.

• At the very first level, every convolution layer present extracts features from the input
windows based on different sized kernels. The features retrieved from each layer in the
first level are concatenated, then a max-pooling layer with a five-size pool generates a
summary of the extracted features provided by the convolution layers reducing the
computation costs.

• The features extracted from the first MaxPool layer are then fed into the second and
third set of a four-layered CNN consecutively in a similar fashion. The layers in both
the second and third levels have different sizes of kernels, as in the first level; however,
the count of filters used in each layer is the same for the respective levels (64 and 32).
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• The output from the third MaxPool layer is flattened and fed to the classification
layer. This layer is made up of two fully connected (FC) layers that use the SoftMax
Activation function on their inputs.

• The addition of dropout after the first layer of the FC layer is performed for regular-
ization, i.e., to minimize the likelihood of overfitting. The Adam optimization method
is used by all of the systems for weight updating and loss computation.
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3.2. CNN-LSTM-Net Model

Long short-term memory networks, or “LSTMs”, are a type of recurrent neural net-
work that can learn long-term dependencies. Their default behaviour is to keep information
in their memory for longer periods.

The mentioned architecture is an extension of the previously proposed model, CNN-
net. In this proposed model, we added an LSTM network in parallel with the CNN-net;
the features extracted from them were passed through the dense layer and a dropout
layer, respectively, then concatenated and fed to the classification layer and SoftMax activa-



Biosensors 2022, 12, 393 7 of 25

tion function. The architectural overview of the proposed CNN-LSTM-net is depicted in
Figure 3.
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3.3. ConvLSTM-Net Model

In the ConvLSTM architecture, the CNN layers collect features from input data, while
LSTMs facilitate sequence prediction [35]. The ConvLSTM model receives subsets of the
main set of input as blocks and extracts features out of each block, then lets the LSTM
analyze those features to obtain the prediction. In order to operationalize this concept, we
took the approach of dividing each window of n time steps into equal-sized sub-sequences
for the CNN architecture to process. In this proposed model, we divided each window of
128-time steps into four corresponding sub-sequences of 32 time steps.
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We then created a CNN architecture that reads the sequences of 32-time steps with
n features.

• We wrapped the complete CNN model in a time-distributed layer, allowing it to read
in each of the four sub-sequences.

• In the proposed model, we have used three time-distributed layers of the mentioned
type, and the output from them was provided to a two-layer stacked LSTM.

• The output obtained from the LSTM layer was forwarded to the classification layer,
which was made up of two fully connected (FC)layers that use the SoftMax Activation
function on their inputs.

• The number of filters and kernel size of the 1D convolutional layers and the number of
hidden units present in the LSTM layers were determined by implementing a random
search for a range of values for these parameters.

The overall architecture of the proposed ConvLSTM-net is shown in Figure 4.
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3.4. StackedLSTM-Net Model

Stacked LSTMs have become a well-established approach for solving difficult sequence
prediction challenges in deep learning. The Stacked LSTM architecture is made up of
multiple LSTM layers present one after another, all processing data one by one. An LSTM
layer above sends a sequence of values to the LSTM layer below as input instead of
providing a single value. In our proposed model, the Stacked LSTM model comprises two
LSTM layers.

• Each LSTM layer consisted of 128 hidden units and a dropout layer added to reduce
overfitting.

• Batch normalization was added after each LSTM layer to standardize the inputs to a
layer for each mini-batch.

• The output from the stacked-LSTM was fed to the classification layer, comprising two
fully connected (FC) layers, which subject their inputs to the SoftMax activation function.
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The overall architecture of the proposed StackedLSTM-net is shown in Figure 5.
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The predictions from these four foundation models are combined to generate the
ensemble. The technique we employed for the ensemble of these base models is called
stacking (short for stacked generalization) [36], based on the simple idea that rather than
utilizing basic functions (such as hard voting) to combine the predictions of all base models
in an ensemble, why not train a machine learning model to do it?

Figure 6 demonstrates a prediction job performed by such an ensemble on a new
instance. The bottom three predictors each predict a different value (P1, P2, P3), and the
final predictor (known as a blender or a metalearner) uses these predictions as inputs to
generate the final prediction (Pf).
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Keeping a hold-out set is a standard method for training a blender. The training data
set is initially divided into two subsets. Here, we trained the first layer predictors (or base
models) with the first subset (see Figure 7).
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Then, we take predictions on the second (held-out) set using the first layer predictors.
Because the predictors never encountered these events during training, the predictions
here are “clean”. Now, these fresh predictions are stacked to make a new feature set, and
the blender is trained using this new feature set and the original target values/labels of the
held-out set (see Figure 8).
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As the blender is trained (in this study, we used a Random Forest Classifier), the
predictions based on the test data are taken sequentially (see Figure 9). This is done by
taking predictions from the base models or predictors of the first layer on the test set, then
stacking those predictions to make a new feature set; finally, the trained blender provides
the final prediction on this stacked feature set.
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From the above discussion of how our proposed Ensem-HAR model works, it can
be seen that the proposed Ensem-HAR model is not a stand-alone model; instead, it is a
combination (technically called an ensemble) of four deep learning classifiers. Thus, the
errors made in prediction by any particular classifier can be neutralized by other classifiers
in the final ensemble. The main factor to be considered here is that the classifiers should
be distinct enough that that they exhibit different characteristics in their predictions, and
hence can complement each other’s errors, which in turn lead to higher final recognition
accuracy in predicting human activities.
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4. Result and Analysis
4.1. Dataset Description
4.1.1. WISDM Dataset

Kwapisz et al., 2011 [9] created the mentioned dataset by capturing different human
activities such as ‘sitting’, ‘walking’, ‘jogging’, ‘standing’, ‘walking downstairs’, and ‘walk-
ing upstairs’ with a sampling rate of 20 Hz using an accelerometer integrated with the
participants’ smartphones; 36 participants completed the six exercises listed above, and
for each exercise, acceleration was recorded along three axes (x, y, z), constituting three
features. Then, the raw-sensor data were segmented into fixed-sized windows with 50%
overlap (128 readings per window).

4.1.2. PAMAP2 Dataset

A physical activity tracking dataset was developed by A. Reiss and D. Stricker [37]
which includes a variety of activities carried out by nine participants. All of the partic-
ipants were given eighteen different activities to complete (out of which six activities
were optional), including ‘rope Jumping’, ‘running’, ‘soccer’, etc. Three sensors placed
at different sites on the participants’ bodies were utilized to capture activity-related data.
At a sampling rate of 100 Hz (i.e., in each second 100 samples are recorded), a total of
52 features were recorded. In this study, twelve out of the eighteen daily activities were
used for experimental purposes. In addition, the researchers segmented the sensor data
into fixed-sized windows with a 50-per cent overlap (128 readings per window).

4.1.3. UCI-HAR Dataset

Anguita et al. [38] compiled the mentioned dataset. A total of 30 individuals took
part in the study, which included daily human activities such as ‘sitting’, ‘lying’, ‘walking’,
‘standing’, ‘walking upstairs’, and ‘walking downstairs’. Through an accelerometer and
a gyroscope installed on subjects’ smartphones, the authors were able to capture linear
acceleration and angular velocities along three axes (i.e., x, y, z). At a sampling rate of
50 Hz (i.e., each second, 50 samples are recorded), a total of nine features were captured
and with a 50% overlap, the data was segmented into fixed-sized windows (128 readings
per window). There are a total of 10,299 samples in the mentioned dataset, which is already
segregated according to user ID.

4.2. Machine Specification

We performed the training and the testing of the base models and the proposed
ensemble of them on a machine equipped with an AMD Ryzen5 2500U CPU, 16Gigs
of RAM, and an NVIDIA GeForce GTX 1050 GPU. The machine runs on a Windows 10
operating system with 64 Bits. For the development of the proposed model, we used the
Python (3.9), TensorFlow (2.7.0), Keras, and Scikit-learn libraries.

4.3. Evaluation Metrics

The dataset was divided into two sets for the evaluation procedure, a training set and
a testing set. The model was then adjusted to fit the training set. The prediction is made on
the basis of the test set,.

To train each of the base models used in the ensemble, certain hyperparameters were
used; for instance, we used 64 as batch size, and the count of epochs was 30. The loss
caused in the training was quantified using the categorical cross-entropy, which was then
optimized using an efficient gradient-descent technique called the Adam optimizer. In
the following discussion, we describe the fundamental performance metrics used in this
HAR study.
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The performance metrics “Precision”, “Recall”, “F1-Score”, and “Accuracy” were used
to evaluate our HAR models. First, we defined accuracy, which was estimated by dividing
the number of accurately categorized instances by the total number of samples.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

TP (True Positive) is the number of correctly categorized records belonging to the
positive class, while TN (True Negative) is the number of correctly categorized records
belonging to the negative class. FP (False Positive) and FN (False Negative) represent
the number of incorrectly categorized records belonging to the positive and the negative
classes, respectively.

By the two terms, “Precision” and “Recall”, we mean the ratio of the number of positive
samples classified correctly to the number of samples predicted positive and the number of
samples that are actually positive, respectively.

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

Another important metric is the F1-measure (F1-score), which is a single metric that
integrates precision and recall. Therefore, the F1-score is more accurate in terms of perfor-
mance measurement of a model than accuracy. Additionally, as the classes are ranked in
importance according to their sample fraction, the F1-score is considered the best choice in
cases of class imbalance. The F1-score is expressed as follows:

F1-score = (2 ∗ Precision ∗ Recall)/(Precision + Recall) (4)

Apart from these evaluation metrics, another important measure of performance in
classification models is the “Receiver Operating Characteristic” or ROC curve. It is a
graphical representation between the true positive rate (TPR) and false positive rate (FPR)
at all levels of classification thresholds. The “Area Under the ROC Curve”, or simply AUC,
is the two-dimensional area underneath the ROC curve. Its value lies between 0 and 1. A
value of AUC close to 1 indicates that the model is more sensible, while an AUC value of
less than 0.5 indicates that the model cannot be considered for making the prediction.

4.4. Analysis on Conventional Datasets
4.4.1. Analysis on WISDM Dataset

The samples of the pre-processed WISDM dataset were split into the training (70%)
and test (30%) datasets for the training of the previously mentioned base models and then
for the testing on the ensemble of those models, respectively. The confusion matrix obtained
from the evaluation of the trained proposed model on the test data is shown in Figure 10.
According to the obtained confusion matrix, the classification accuracy of our proposed
model is more than around 97% for all six activity classes and the overall accuracy is
98.71%, whereas the base models, viz., ‘CNN-net’, ‘CNN-LSTM-net’, ‘ConvLSTM-net’, and
‘StackedLSTM-net’, have accuracies of 96.62%, 97.84%, 97.33%, and 98.61%, respectively, as
shown in Figure 11.
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From the confusion matrix in Figure 10 it can be seen that except for the ‘Downstairs’
and ‘Upstairs’ activities, all four other activities were perfectly classified (accuracies are
almost 100%) by the proposed ensemble of the base models. It can be observed that around
3.2% of samples in the ‘Upstairs’ activity were misclassified to ‘Downstairs’ activity and
around 2.4% of samples belonging to ‘Downstairs’ activity were wrongly classified to
‘Upstairs’ activity, as they are opposing kinds of activities.

A visual comparison of the four individual base models’ performance, as well as
our proposed Ensem-HAR model, in terms of Precision, Recall and F1-score is shown
in Figure 12.
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It can be observed from the ROC curve shown in Figure 13 that the area under ROC
or AUC of every class with respect to the others is almost ‘1′, which indicates that our
proposed model was able to classify all activity classes efficiently, as seen earlier using the
confusion matrix.
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4.4.2. Analysis on PAMAP2 Dataset

The samples present in the processed PAMAP2 dataset were split into the training
(70%) and test (30%) datasets for the training of the previously mentioned base models
and then for testing on the ensemble of those models, respectively. The Confusion Matrix
achieved on evaluation of our trained model on the test data is shown in Figure 14. Accord-
ing to the obtained confusion matrix, the classification accuracy of our proposed model is
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around 96% in ten out of twelve activity classes, excepting two activity classes (‘Ascend-
ing_Stairs’ and ’Descending_Stairs’). However, the overall accuracy is 97.73%, where the
base models ‘CNN-net’, ‘CNN-LSTM-net’, ‘ConvLSTM-net’, and ‘StackedLSTM-net’ have
accuracies of 97.01%, 96.91%, 96.88%, and 95.96%, respectively, as shown in Figure 15.
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Figure 15. Accuracy (in %) comparison between four base models and Ensem-HAR model on the
PAMAP2 dataset.

It can be seen from the confusion matrix shown in Figure 14 that except for two (‘As-
cending_Stairs’ and ’Descending_Stairs’), the activities are well classified by the proposed
ensemble of the base models. It can be observed that around 4% of samples for both
the ‘Ascending_Stairs’ and ’Descending_Stairs’ activities were misclassified, as they are
opposing kinds of activities. There was another a misclassification by our proposed model
between the ‘Ironing’ and ‘Standing’ activities; around 3% of the sample for ‘Standing’ is
misclassified as ‘Ironing’, as both cases involve comparable linear acceleration.

The graphical comparison of the four individual models’ performance and our pro-
posed Ensem-HAR model with respect to Precision, Recall, and F1-score values for each
activity class of the PAMAP2 dataset is shown in Figure 16.
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Recall, and F1-score between ‘CNN-net’, ‘CNN-LSTM-net’, ‘ConvLSTM-net’, ‘StackedLSTM-net’,
and ‘Ensem-HAR’ models on PAMAP2 dataset.

It can be observed from the ROC curve shown in Figure 17 that the area under ROC
or AUC of every class with respect to the others is almost ‘1′, which indicates that our
proposed model was able to classify all activity classes efficiently, as earlier discussed using
the confusion matrix.
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4.4.3. Analysis on UCI-HAR Dataset

Out of the total samples present in the UCI-HAR dataset, 7352 samples (training
data) were used to train each of the proposed base models and 2947 samples were used
as testing data to evaluate the performance of our final ensemble model. The confusion
matrix obtained from evaluation of the trained proposed model on the test data is shown
in Figure 18. According to the obtained confusion matrix, the classification accuracy of
our proposed model is greater than 94% in four out of six activity classes, excepting the
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activity class ‘Sitting’ and ‘Standing’. However, the overall accuracy is 95.05%, where the
base models ‘CNN-net’, ‘CNN-LSTM-net’, ‘ConvLSTM-net’, and ‘StackedLSTM-net’ have
accuracies of 92.64%, 93.52%, 92.53%, and 92.16%, respectively, as shown in Figure 19.

Biosensors 2022, 12, x FOR PEER REVIEW 18 of 25 
 

 
Figure 18. Confusion matrix achieved from the evaluation of our proposed Ensem-HAR model on 
the UCI-HAR dataset. 

From the confusion matrix (Figure 18), it can be observed that except for two activity 
classes, i.e., ‘Sitting’ and ‘Standing’; all other activity labels are classified fairly well. Due 
to the comparable nature of linear acceleration, misclassification occurred between these 
two classes. In addition, our model misclassified samples of ‘Walking’ activity into ‘Walk-
ing_Upstairs’ and ‘Walking_Downstairs’ activities, as these acts of ascending and de-
scending while walking had similarity with normal ‘Walking’ for aged persons, as they 
do these at a slow rate. 

 
Figure 19. Accuracy (in %) comparison between four base models and Ensem-HAR model on the 
UCI-HAR dataset. 

A visual comparison of the four individual models’ performance, as well as our pro-
posed Ensem-HAR model, is shown in Figure 20. 

Figure 18. Confusion matrix achieved from the evaluation of our proposed Ensem-HAR model on
the UCI-HAR dataset.

Biosensors 2022, 12, x FOR PEER REVIEW 18 of 25 
 

 
Figure 18. Confusion matrix achieved from the evaluation of our proposed Ensem-HAR model on 
the UCI-HAR dataset. 

From the confusion matrix (Figure 18), it can be observed that except for two activity 
classes, i.e., ‘Sitting’ and ‘Standing’; all other activity labels are classified fairly well. Due 
to the comparable nature of linear acceleration, misclassification occurred between these 
two classes. In addition, our model misclassified samples of ‘Walking’ activity into ‘Walk-
ing_Upstairs’ and ‘Walking_Downstairs’ activities, as these acts of ascending and de-
scending while walking had similarity with normal ‘Walking’ for aged persons, as they 
do these at a slow rate. 

 
Figure 19. Accuracy (in %) comparison between four base models and Ensem-HAR model on the 
UCI-HAR dataset. 

A visual comparison of the four individual models’ performance, as well as our pro-
posed Ensem-HAR model, is shown in Figure 20. 

Figure 19. Accuracy (in %) comparison between four base models and Ensem-HAR model on the
UCI-HAR dataset.

From the confusion matrix (Figure 18), it can be observed that except for two activ-
ity classes, i.e., ‘Sitting’ and ‘Standing’; all other activity labels are classified fairly well.
Due to the comparable nature of linear acceleration, misclassification occurred between
these two classes. In addition, our model misclassified samples of ‘Walking’ activity into
‘Walking_Upstairs’ and ‘Walking_Downstairs’ activities, as these acts of ascending and
descending while walking had similarity with normal ‘Walking’ for aged persons, as they
do these at a slow rate.

A visual comparison of the four individual models’ performance, as well as our
proposed Ensem-HAR model, is shown in Figure 20.
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4.5. Statistical Test

In the previous section, we have performed a detailed analysis of the performance
of our proposed model on three benchmark HAR datasets and found that the proposed
ensemble of the four base models outperforms each of them in terms of accuracy. For
the concrete establishment of the superiority and effectiveness of our proposed ensemble
model over the base models, we performed a non-parametric statistical test called the
Friedman test [39].

For the Friedman test, we randomly chose ten different subsets, each consisting of
50 samples from the test data for each considered dataset, where all the class labels have
equal representation. Then, the classification accuracies of each model over those samples
were measured and ranked according to their accuracies and we calculated the mean rank
for each model over all the ten samples using the formula

Rj =
1
N ∑N

i=1 ri
j (5)

where, ri
j is the rank of jth classifier or model for the ith sample. The calculated mean ranks

of the classifiers are shown in Table 4.

Table 4. Mean ranks assigned to the four base models and the proposed Ensem-HAR model, accord-
ing to their accuracies on ten different subsets of each HAR dataset.

Model
Mean Rank of Each Model for Each HAR Dataset

WISDM PAMAP2 UCI-HAR

CNN-net 3.55 3.65 3.65
CNN-LSTM-net 3.5 3.55 3.45
ConvLSTM-net 3.2 3.40 3.60

StackedLSTM-net 3.55 3.35 3.15
Proposed Ensem-HAR 1.2 1.05 1.15

The null hypothesis (H0) states that all the classifiers or models are the same. Therefore,
their rank must be equal. For the justification of the null hypothesis, we calculated the
value of the Friedman statistic by the following formula [40]:

x2
F =

12N
(k + 1)k

[
∑j Rj2 − k(k + 1)2

4

]
(6)

where k is the number of classifiers (here, 5) and N is the number of sample datasets (here,
10). The calculated value of the statistic for the three different HAR datasets used in this
experiment is shown in Table 5.

Table 5. Calculated value of Friedman statistic for each HAR dataset.

Dataset Friedman Statistic Value

WISDM 14.04
PAMAP2 15.39
UCI-HAR 16.47

It can be seen from the Chi-square table (shown in Figure 22) that at k − 1 (here 4)
degrees of freedom (d.o.f), the standard Friedman static value at significance level 0.05 is
found to be 9.49 which is much less than the calculated ones in Table 5. Hence, we can reject
the null hypothesis. It can be said from the above experiment that the results achieved by the
base models and proposed ensemble model are statistically significant, i.e., not equivalent.
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Figure 22. Chi-Square Table.

As it can be seen that the classifiers (or models) are not equivalent, in order to establish
the effectiveness of our proposed model we performed a post hoc analysis through the
Nemenyi test [40] and calculated the pairwise Nemenyi score, which is the pairwise p-value
between two classifiers (or models), and plotted them through a heat map (as illustrated
in Figure 23).
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From Figure 23, it can be observed that the pairwise p-values between our proposed
Ensem-HAR model and the other base models are less than the significance level of 0.05.
Hence, it can be concluded that our proposed model is more effective than the four base
models, which verifies the effectiveness of the ensemble setup.

For the above-mentioned statistical tests, it should be noted that we randomly con-
sidered ten different subsets from the test data. Due to this randomness in selecting the
samples, the results of the same test may vary. This means that if the same statistical tests
are performed again by selecting random subsets just as before, the accuracies of the base
models as well as the final ensemble may change significantly. This can subsequently lead
to an alteration in the ranks of the models, and hence the calculated Friedman statistic value
may be changed. As a result, the final ensemble model can become statistically insignificant
at the significance level of 0.05. Similarly, either for a new HAR dataset other than the
datasets used in this experiment or for any other specific application, it should be kept in
mind that the proposed Ensem-HAR model may not perform well as the one in this study
compared to the four base models.

4.6. Performance Comparison to Cutting-Edge HAR Methods

Table 6 shows a comparative study of our proposed Ensem-HAR model with other
approaches that have been used for HAR-based problems on the selected benchmark
datasets. Based on the comparison of the proposed model to various previous approaches,
it can be concluded that our method outperforms the ones listed below. Although there
are several approaches mentioned in Table 6, such as U-Net by Zhang et al. [11], which
have better accuracy on the UCI-HAR dataset, our model outperforms them in the WISDM
dataset. Similarly, the ST-deepHAR proposed by Abdel-Basset et al. [40] has slightly better
accuracy for the WISDM dataset in comparison with our proposed Ensem-HAR model;
however, the computational complexity of this work is high compared to our proposed
Ensem-HAR model.

Table 6. Performance Comparison (in %) between several of the latest HAR approaches and our
proposed Ensem-HAR model.

Dataset Author Year Model/Classifier Accuracy Description

WISDM

Pienaar &Malekian 2019 RNN-LSTM [12] 94% Raw data sampled into fixed-sized
windows with 50% overlap

Zhang et al. 2020 U-Net [11] 97% Raw data sampled into fixed-sized
windows with 50% overlap

Abdel-Basset et al. 2021 ST-deepHAR [41] 98.9% Raw data sampled into fixed-sized
windows with 50% overlap

Bhattacharya et al. 2022 Ensem-HAR 98.70%

Raw data sampled into fixed-sized
windows with 50% overlap, and also

oversampling done to remove
class imbalance

PAMAP2

Wan et al. 2020 CNN [14] 91% Raw data sampled into fixed-sized
windows with 50% overlap

Challa et al. 2021 CNN-BiLSTM [19] 94.27% Raw data sampled into fixed-sized
windows with 50% overlap

Dua et al. 2021 CNN-GRU [20] 95.27% Raw data sampled into fixed-sized
windows with 50% overlap

Bhattacharya et al. 2022 Ensem-HAR 97.45% Raw data sampled into fixed-sized
windows with 50% overlap

UCI-HAR

Cruciani et al. 2020 CNN [30] 91.98% 70% for training and 30% for testing
Nair et al. 2018 ED-TCN [42] 94.6% 70% for training and 30% for testing

Zhang et al. 2020 U-Net [11] 98.4% 70% for training and 30% for testing
Bhattacharya et al. 2022 Ensem-HAR 95.05% 70% for training and 30% for testing
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4.7. Performance Comparison with Other Ensemble Methods

Table 7 shows that our proposed ensemble method (Ensem-HAR) is better than several
well-known state-of-the-art ensemble techniques, viz., Max Voting, Average (based on the
average of class probabilities of each model), and Weighted Average (based on average of
class probabilities multiplied by model’s weight) in terms of classification accuracy tested
on three HAR datasets.

Table 7. Performance comparison (measured in terms of accuracy) of our proposed Ensem-HAR
model with three state-of-the-art ensemble techniques for three HAR datasets.

Dataset Ensemble Method Accuracy

WISDM

Max Voting 98.50%
Average 97.90%

Weighted Average 98.20%
Ensem-HAR 98.71%

PAMAP2

Max Voting 97.26%
Average 97.01%

Weighted Average 97.07%
Ensem-HAR 97.73%

UCI-HAR

Max Voting 94.26%
Average 93.98%

Weighted Average 94.60%
Ensem-HAR 95.05%

5. Conclusions

In this paper, we have presented an ensemble measurement-based deep learning-based
model utilizing four CNN and LSTM-based models called Ensem-HAR for smartphone
sensor-based HAR problems. We considered three conventional and publicly available
datasets; our proposed model performed well on these datasets and did a commendable
job in the prediction of activities with good accuracy. Although in certain cases a high
correlation between activities leads to misclassification, it was able to outperformed several
recent methods applied to the mentioned datasets. This work, however, has room for
improvement. The models we used to construct the ensemble can be selected in such a
way that they are slightly distinct from one another. As a result, each component of the
ensemble can show more diversity in its traits. This makes the ensemble more accurate. In
addition, it is possible to take different measurement approaches to forming the ensemble
of the base models. Furthermore, before being fitted into a model, extra work on time-series
data processing can be carried out. Each time-series of raw sensor data can be converted
into an image or matrix using concepts such as “Gramian Angular Fields (GAF)” and
“Markov Transition Fields (MTF)” [43]. Then, transfer learning techniques [44] can be used
on those images, or alternatively can be used in models build with CNN and other deep
learning measurement architectures [45]. Moreover, it is possible to apply deep temporal
Conv-LSTM architecture [46] in order to improve the overall performance of HAR by using
both temporal features from sensor data as well as the relationship of sliding windows.
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