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Ensemble Algorithms in Reinforcement Learning
Marco A. Wiering and Hado van Hasselt

Abstract—This paper describes several ensemble methods
that combine multiple different reinforcement learning (RL)
algorithms in a single agent. The aim is to enhance learning
speed and final performance by combining the chosen actions
or action probabilities of different RL algorithms. We designed
and implemented four different ensemble methods combining five
different reinforcement learning algorithms: Q-learning, Sarsa,
Actor-Critic, QV-learning, and ACLA. The intuitively designed
ensemble methods: majority voting, rank voting, Boltzmann
multiplication, and Boltzmann addition, combine the policies
derived from the value functions of the different RL algorithms,
in contrast to previous work where ensemble methods have
been used in RL for representing and learning a single value
function. We show experiments on five maze problems of varying
complexity, the first problem is simple, but the other four maze
tasks are of a dynamic or partially observable nature. The results
indicate that the Boltzmann multiplication and majority voting
ensembles significantly outperform the single RL algorithms.

I. INTRODUCTION

Reinforcement learning (RL) algorithms [1], [2] are very

suitable for learning to control an agent by letting it inter-

act with an environment. There are a number of different

online model-free value-function-based reinforcement learning

algorithms that use the discounted future reward criterion. Q-

learning [3], Sarsa [4], [5], and Actor-Critic methods [1] are

well known, and there are also two more recent algorithms:

QV-learning [6] and ACLA [6]. Furthermore, a number of

policy search and policy gradient algorithms have been pro-

posed [7], [8], and there exist model-based [9] and batch

reinforcement learning algorithms [10].

In this paper we describe several ensemble methods that

combine multiple reinforcement learning algorithms in a sin-

gle agent. The aim is to enhance learning speed and fi-

nal performance by combining the chosen actions or action

probabilities of different algorithms. In supervised learning,

ensemble methods such as bagging [11], boosting [12], and

mixtures of experts [13] have been used a lot. Such ensembles

are used for learning and combining multiple classifiers by

using for example a (weighted) majority voting scheme. In

reinforcement learning, ensemble methods have been used for

representing and learning the value function [14], [15], [16],

[17]. In contrast to this previous research, here we introduce

ensembles that combine different reinforcement learning al-

gorithms in a single agent. The system learns multiple value

functions and the ensembles combine the policies derived

from the value functions in a final policy for the agent. We

designed the following ensemble methods for combining RL

algorithms: (1) The majority voting (MV) method combines
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the best action of each algorithm and bases its final decision on

the number of times an action is preferred by each algorithm,

(2) The rank voting (RV) method lets each algorithm rank

the different actions and combines these rankings to select a

final action, (3) The Boltzmann multiplication (BM) method

is based on using Boltzmann exploration for each algorithm

and multiplies the Boltzmann probabilities of each action

computed by each algorithm, and (4) The Boltzmann addition

(BA) method is similar to the BM method, but adds the

Boltzmann probabilities of actions.

Outline. Section II describes a number of online reinforce-

ment learning algorithms that will be used in the experiments.

Section III describes different ensemble methods for combin-

ing multiple RL algorithms. Then, Section IV describes the re-

sults of a number of experiments on maze problems of varying

complexities with tabular and neural network representations.

Section V discusses the results and concludes this paper.

II. REINFORCEMENT LEARNING

Reinforcement learning algorithms are able to let an agent

learn from the experiences generated by its interaction with

an environment. We assume an underlying Markov decision

process (MDP) which does not have to be known by the

agent. A finite MDP is defined as; (1) The state-space S =
{s1, s2, . . . , sn}, and st ∈ S denotes the state of the system at

time t; (2) A set of actions available to the agent in each state

A(s), where at ∈ A(st) denotes the action executed at time

t; (3) A transition function T (s, a, s′) mapping state-action

pairs s, a to a probability distribution over successor states s′;

(4) A reward function R(s, a, s′) which denotes the average

reward obtained when the agent makes a transition from state

s to state s′ using action a, where rt denotes the (possibly

stochastic) reward obtained at time t.

In optimal control or reinforcement learning (RL), we are

interested in computing or learning an optimal policy for

mapping states to actions. An optimal policy can be defined

as the policy that receives the highest possible cumulative

discounted rewards in its future from all states. In order to

learn an optimal policy, value-function-based RL [1] estimates

value-functions using past experiences of the agent. Qπ(s, a)
is defined as the expected cumulative discounted future reward

if the agent is in state s, executes action a, and follows policy

π afterwards:

Qπ(s, a) = E(

∞∑

i=0

γiri|s0 = s, a0 = a, π)

where 0 ≤ γ ≤ 1 is the discount factor that values later

rewards less compared to immediate rewards. Another possible

objective is to maximize the average reward intake. If the

optimal Q-function Q∗ is known, the agent can select optimal
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actions by selecting the action with the largest value in a state:

π∗(s) = argmaxa Q∗(s, a).
In the experiments we will use five different online model-

free RL algorithms that optimize the discounted cumulative

future reward intake of an agent while it is interacting with

an (unknown) environment. Q-learning [3], [18] and Sarsa [4],

[5] will not be described here, since they are very well known

methods.

Actor-Critic. The Actor-Critic (AC) method is an on-policy

algorithm like Sarsa. In contrast to Q-learning and Sarsa, AC

methods keep track of two functions; a Critic that evaluates

states and an Actor that maps states to a preference value

for each action [1]. After an experience (st, at, rt, st+1) AC

makes a temporal difference (TD) update to the Critic’s value-

function V :

V (st) := V (st) + β(rt + γV (st+1) − V (st)) (1)

where β is the learning rate. AC updates the Actor’s values

P (st, at) as follows:

P (st, at) := P (st, at) + α(rt + γV (st+1) − V (st))

where α is the learning rate for the Actor. The P-values should

be seen as preference values and not as exact Q-values.

QV-learning. QV-learning [6] works by keeping track of

both the Q- and V-functions. In QV-learning the state value-

function V is learned with TD-methods [19]. This is similar

to Actor-Critic methods. The new idea is that the Q-values

simply learn from the V-values using the one-step Q-learning

algorithm. In contrast to AC these learned values can be seen

as actual Q-values and not as preference values. The updates

after an experience (st, at, rt, st+1) of QV-learning are the use

of Equation 1 and:

Q(st, at) := Q(st, at) + α(rt + γV (st+1) − Q(st, at))

Note that the V-value used in this second update rule is learned

by QV-learning and not defined in terms of Q-values. There is

a strong resemblance with the Actor-Critic method; the only

difference is the second learning rule where V (st) is replaced

by Q(st, at) in QV-learning.

ACLA. The Actor Critic Learning Automaton (ACLA) [6]

learns a state value-function in the same way as AC and QV-

learning, but ACLA uses a learning automaton-like update rule

[20] for changing the policy mapping states to probabilities

(or preferences) for actions. The updates after an experience

(st, at, rt, st+1) of ACLA are the use of Equation 1, and

now we use an update rule that examines whether the last

performed action was good (in which case the state-value was

increased) or not. We do this with the following update rule:

If δt ≥ 0 ∆P (st, at) = α(1 − P (st, at)) and

∀a 6= at ∆P (st, a) = α(0 − P (st, a))

Else ∆P (st, at) = α(0 − P (st, at)) and

∀a 6= at ∆P (st, a) = α( P (st,a)∑
b6=at

P (st,b)
− P (st, a))

where δt = γV (st+1)+ rt −V (st), and ∆P (s, a) is added to

P (s, a). ACLA uses some additional rules to ensure the targets

are always between 0 and 1, independent of the initialization

(e.g. of neural network weights). This is done by using 1 if

the target is larger than 1, and 0 if the target is smaller than

0. If the denominator is less than or equal to 0, all targets

in the last part of the update rule get the value 1
|A|−1 where

|A| is the number of actions. ACLA was shown to outperform

Q-learning and Sarsa on a number of problems when ǫ-greedy

exploration was used [6].

Comparison between the algorithms. It is known that

better convergence guarantees exist for on-policy methods

when combined with function approximators [1], since it has

been shown that Q-learning can diverge in this case [21],

[22]. Therefore theoretically there are advantages for using

one of the on-policy algorithms. A possible advantage of QV-

learning, ACLA, and AC compared to Q-learning and Sarsa, is

that they learn a separate state-value function. This state-value

function does not depend on the action and therefore is trained

using more experiences than a state-action value function

that is only updated if a specific action is selected. When

the state-value function is trained faster, this may also cause

faster bootstrapping of the Q-values or preference values. A

disadvantage of QV-learning, ACLA, and AC is that they need

an additional learning parameter that has to be tuned.

III. ENSEMBLE ALGORITHMS IN RL

Ensemble methods have been shown to be effective in

combining single classifiers in a system, leading to a higher

accuracy than obtainable with a single classifier. Bagging [11]

is a simple method that trains multiple classifiers using a

different partitioning of the training set and combines them

by majority voting. If the errors of the single classifiers are

not strongly correlated, this can significantly improve the

classification accuracy. In reinforcement learning, ensemble

methods have been used for combining function approximators

to store the value function [14], [15], [16], [17], and this can

be an efficient way for improving an RL algorithm. In contrast

to previous research, we combine different RL algorithms that

learn separate value functions and policies. Since the value

functions of for example Actor-Critic that learns preference

values and Q-learning that learns state-action values are of

a different nature, it is impossible to combine their value

functions directly. Therefore in our ensemble approaches we

combine the different policies derived from the value functions

learned by the RL algorithms. We designed four different

ensemble methods which are related to ensembles used in

supervised learning, although a big difference is that we have

to take into account that RL agents need exploration.

Below we present the different ensemble methods we use

for combining the RL algorithms described before. The best

action according to algorithm j at time t will be denoted

by a
j
t . The action selection policy of this algorithm is π

j
t .

We also enumerate the set of possible actions for each state,

for ease of use: A(st) = {a[1], . . . , a[m]}. The first two

ensemble methods, majority voting and rank voting, use a

Boltzmann distribution over the preference values pt of the

ensemble for each action, which ensures exploration. The
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resulting ensemble policy in those cases is:

πt(st, a[i]) =
ept(st,a[i])/τ

∑
k ept(st,a[k])/τ

where τ is a temperature parameter and pt is defined for the

different cases below. The other two ensemble methods, Boltz-

mann multiplication and Boltzmann addition, work already

with probabilities generated by the Boltzmann distribution

over actions according to independent RL algorithms, and do

not use another Boltzmann distribution. Instead they use:

πt(st, a[i]) =
pt(st, a[i])

1

τ

∑
k pt(st, a[k])

1

τ

After calculating the action probabilities, the ensemble selects

an action and all algorithms learn from this selected action.

Note that this is the only sensible thing to do, since the effects

of not executed actions are unknown.

Majority Voting. The preference values calculated by the

majority voting ensemble using n different RL algorithms are:

pt(st, a[i]) =

n∑

j=1

I(a[i], aj
t )

where I(x, y) is the indicator function that outputs 1 when

x = y and 0 otherwise. The most probable action is simply

the action that is most often the best action according to

the algorithms. This method resembles a bagging ensemble

method for combining classifiers with majority voting, with

the big difference that because of exploration we do not always

select the action which is preferred by most algorithms.

Rank Voting. Let r
j
t (a[1]), . . . , rj

t (a[m]) denote the weights

according to the ranks of the action selection probabilities,

such that if π
j
t (a[i]) ≥ π

j
t (a[k]) then r

j
t (a[i]) ≥ r

j
t (a[k]). For

example, the most probable action could be weighted m times,

the second most probable m− 1 times and so on. This is the

weighting we used in our experiments. The preference values

of the ensemble are:

pt(st, a[i]) =
∑

j

r
j
t (a[i])

Boltzmann Multiplication. Another possibility is multiply-

ing all the action selection probabilities for each action based

on the policies of the algorithms. The preference values of the

ensemble are:

pt(st, a[i]) =
∏

j

π
j
t (st, a[i])

A potential problem with this method is that one algorithm

can set the preference values of any number of actions to zero

when it has a zero probability of choosing those actions. Since

all our algorithms use Boltzmann exploration, this was not an

issue in our experiments.

Boltzmann Addition. As a last method, we can also sum

the action selection probabilities of the different algorithms.

Essentially, this is a variant of rank voting, using r
j
t = π

j
t .

The preference values of the ensemble are:

pt(st, a[i]) =
∑

j

π
j
t (st, a[i])

IV. EXPERIMENTS

We performed experiments with five different maze tasks

(one simple and four more complex problems) to compare the

different ensemble methods to the individual algorithms. In

the first experiment, the RL algorithms are combined with

tabular representations and are compared on a small maze

task. In the second experiment a partially observable maze

is used and neural networks as function approximators. In the

third experiment a dynamic maze is used where the obstacles

are not placed at fixed positions and neural network function

approximators are used. In the fourth experiment a dynamic

maze is used where the goal is not placed at a fixed position

and neural networks are used as function approximators. In

the fifth and final experiment a generalized maze [23] task

is used where the goal and the obstacles are not placed at

fixed positions and again neural networks are used as function

approximators.

A. Small Maze Experiment

The different ensemble methods: majority voting, rank

voting, Boltzmann addition, and Boltzmann multiplication, are

compared to the 5 individual algorithms: Q-learning, Sarsa,

AC, QV-learning, and ACLA. We performed experiments with

Sutton’s Dyna maze shown in Figure 1(A). This simple maze

consists of 9 × 6 states and there are 4 actions; north, east,

south, and west. The goal is to arrive at the goal state G as

soon as possible starting from the starting state S under the

influence of stochastic (noisy) actions. We kept the maze small,

since we want to compare the results with the experiments on

the more complex maze tasks, which would otherwise cost too

much computational time.

S

G

P

G

S

Fig. 1. (A) Sutton’s Dyna maze. The starting position is indicated by S and
the goal position is indicated by G. In the partially observable maze of the
second experiment the goal position is P and the starting position is arbitrary.
(B) The 9×6 maze with dynamic obstacles used in the third experiment. The
starting position is denoted by S and the goal position is indicated by G. The
obstacles indicated in black are dynamically generated at the start of each
new trial.

Experimental set-up. The reward for arriving at the goal

is 100. When the agent bumps against a wall or border of

the environment it stays still and receives a reward of -2.

For other steps the agent receives a reward of -0.1. A trial

is finished after the agent hits the goal or 1000 actions have

been performed. The random replacement (noise) in action

execution is 20%. This reward function and noise is used in

all experiments of this paper.

We used a tabular representation and first performed simu-

lations to find the best learning rates, discount factors, and

greediness (inverse of the temperature) used in Boltzmann

exploration. All parameters were optimized for the single RL

algorithms, where they were evaluated using the average re-

ward intake and the final performance is optimized. Although
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in general it can cause problems to learn to optimize the

discounted reward intake while evaluating with the average

reward intake, for the studied problems the dominating ob-

jective is to move each step closer to the goal, which is

optimized using both criteria if the discount factor is large

enough. We also optimize the discount factors, since we found

that they had a large influence on the results. If we would

have always used the same discount factor for all algorithms,

the results of some algorithms would have been much worse,

and therefore it would be impossible to select a fair discount

factor. Since we evaluate all methods using the average reward

criterion, the different discount factors do not influence the

comparison between algorithms. The ensemble methods used

the parameters of the individually optimized algorithms, so

that only the ensemble’s temperature had to be set.

TABLE I
TABULAR LEARNING RATES α/β , DISCOUNT FACTOR AND GREEDINESS

(INVERSE OF THE TEMPERATURE FOR BOLTZMANN EXPLORATION) FOR

THE ALGORITHMS. THE LAST FOUR COLUMNS SHOW FINAL AND

CUMULATIVE RESULTS FOR THE TABULAR REPRESENTATION AND THE

RANKS OF THE DIFFERENT ALGORITHMS (SIGNIFICANCE OF T-TEST

p = 0.05). RESULTS ARE AVERAGES OF 500 SIMULATIONS.

Method α β γ G Final Rank Cumulative Rank

Q 0.2 – 0.9 1 5.14 ± 0.49 8 84.9 ± 11.5 9

Sarsa 0.2 – 0.9 1 5.26 ± 0.31 3-5 90.3 ± 8.3 5-8

AC 0.1 0.2 0.95 1 5.21 ± 0.17 6-7 91.1 ± 3.3 5-7

QV 0.2 0.2 0.9 1 5.25 ± 0.25 4-5 91.4 ± 7.8 4-7

ACLA+ 0.005 0.1 0.99 9 5.20 ± 0.23 6-7 90.2 ± 5.2 7-8

Majority voting – – – 1.6 5.33 ± 0.12 1-2 96.7 ± 2.2 1

Rank voting – – – 0.6 5.01 ± 0.36 9 92.2 ± 7.9 4-5

Boltzmann mult – – – 0.2 5.34 ± 0.15 1-2 95.3 ± 3.9 2

Boltzmann add – – – 1 5.28 ± 0.12 3-4 93.5 ± 1.9 3

In Table I we show average results and standard deviations

of 500 simulations of the final reward intake during the last

2500 learning-steps and the total summed reward (adding all

20 average reward intakes after each 2,500 steps) during the

entire trial lasting 50,000 learning-steps. This latter evaluation

measure shows the overall performance and the learning rate

with which good solutions are obtained. The ranks are com-

puted using the student t-test with p = 0.05. Note that since

500 simulations were performed, small differences may still

turn out to be significant. The results show that the majority

voting and Boltzmann multiplication ensembles outperform

all other methods. To show that the chosen discount factors

matter, we also experimented with Sarsa with a discount factor

of 0.95 and with ACLA using a discount factor of 0.9. Using

the best found other learning parameters, Sarsa’s performance

was 4.89± 1.14 for the final performance and 84.7± 20.0 for

the total learning performance. Using the best other learning

parameters, ACLA’s performance was 4.86±0.86 for the final

performance and 82.7±18.6 for the total learning performance.

This clearly shows that care should be taken to optimize

the discount factor if one wishes to compare different RL

algorithms. All algorithms converge to a stable performance

within 15,000 learning steps, but the best ensembles reach

better performance levels and initially learn faster.

B. Partially Observable Maze

In this experiment we use Markov localization and neural

networks to solve a partially observable Markov decision

process in the case where the model of the environment is

known. We use Markov localization to track the belief state (or

probability distribution over the states) of the agent given an

action and observation after each time-step. This belief state is

then the input for the neural network. We used 20 sigmoidal

hidden neurons in our experiments, and the maze shown in

Figure 1(A) with the goal indicated by P and each state can be

a starting state. The initial belief state is a uniform distribution

where only states that are not obstacles get assigned a non-zero

belief. After each action at the belief state bt(s) is updated

with the observation ot+1:

bt+1(s) = ηP (ot+1|s)
∑

s′

T (s′, at, s)bt(s
′)

where η is some normalization factor. The observations are

whether there is a wall to the north, east, south, and west.

Thus, there are 16 possible observations. We use 20% noise

in the action execution and 10% noise for observing each

independent wall (or empty cell) at the sides. That means that

an observation is correct with probability 0.94 = 66%. Note

that we use a model of the environment to be able to compute

the belief state, and the model is based on the uncertainties in

the transition and observation functions.

TABLE II
FINAL RESULTS (AVERAGE REWARD FOR LAST 5,000 STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE PARTIALLY OBSERVABLE MAZE. RESULTS ARE AVERAGES OF 100
SIMULATIONS.

Method α β γ G Final Rank Cumulative Rank

Q 0.02 – 0.95 1 9.65 ± 0.33 1-4 154.1 ± 7.3 4

Sarsa 0.02 – 0.95 1 9.41 ± 1.26 1-8 137.6 ± 21.1 5-9

AC 0.02 0.03 0.95 1 9.33 ± 0.31 4-7 159.4 ± 3.5 3

QV 0.02 0.01 0.9 1 9.59 ± 0.31 1-4 135.3 ± 12.3 6-9

ACLA+ 0.035 0.005 0.99 10 8.44 ± 0.27 9 135.1 ± 3.7 6-9

Majority voting – – – 1.4 9.37 ± 0.31 4-7 139.8 ± 8.2 5-6

Rank voting – – – 0.8 9.30 ± 0.28 4-7 133.1 ± 13.3 6-9

Boltzmann mult – – – 0.2 9.56 ± 0.32 1-4 174.6 ± 2.9 1

Boltzmann add – – – 1 9.11 ± 0.31 7-8 162.2 ± 2.6 2

We performed experiments consisting of 100,000 learning

steps with a neural network representation and the Boltzmann

exploration rule. For evaluation after each 5,000 steps we

measured the average reward intake during that period. Table

II shows that the Boltzmann multiplication ensemble method

learns fastest in this problem. We also experimented with a

Boltzmann multiplication ensemble consisting of five differ-

ently initialized Q-learning algorithms. The performance of

this ensemble was 9.61 ± 0.31 for the final performance and

153.1 ± 8.0 for the total learning performance. This shows

that combining different RL algorithms speeds up learning

performance compared to an ensemble of the best single RL

algorithm. All algorithms converge to a stable performance

within 60,000 learning steps, but the best ensembles reach a

good performance much earlier.

C. Solving a Maze with Dynamic Obstacles

We also compared the algorithms on a dynamic maze, where

in each trial there are several obstacles at random locations (see

Fig. 1(b)). In order to deal with this task the agent uses a neural

network that receives as inputs whether a particular state-cell

contains an obstacle (1) or not (0). The neural network uses

2 × 54 = 108 inputs including the position of the agent and

60 sigmoidal hidden units. At the start of each new trial there
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are between 4 and 8 obstacles generated at random positions

and it is made sure that a path to the goal exists from the

fixed starting location S. Since there are many instances of

this maze, the neural network has to learn the knowledge of a

path planner. A simulation lasts for 3,000,000 learning steps

and we measure performance after each 150,000 steps.

TABLE III
FINAL RESULTS (AVERAGE REWARD FOR LAST 150,000 STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE MAZE WITH DYNAMIC OBSTACLES. RESULTS ARE AVERAGES OF 50
SIMULATIONS.

Method α β γ G Final Rank Cumulative Rank

Q 0.01 – 0.95 1 6.79 ± 0.21 3 116.2 ± 2.7 3

Sarsa 0.01 – 0.95 1 6.66 ± 0.37 4-5 112.6 ± 5.9 4

AC 0.015 0.003 0.95 1 5.98 ± 0.31 8 97.7 ± 9.4 8

QV 0.01 0.01 0.9 0.4 6.27 ± 0.20 6 108.3 ± 2.7 5-7

ACLA+ 0.06 0.002 0.98 6 5.39 ± 0.15 9 89.2 ± 1.3 9

Majority voting – – – 2.6 6.93 ± 0.14 2 122.1 ± 1.4 2

Rank voting – – – 0.8 6.59 ± 0.21 4-5 108.0 ± 2.6 5-7

Boltzmann mult – – – 0.2 7.04 ± 0.13 1 125.0 ± 1.6 1

Boltzmann add – – – 1 6.08 ± 0.12 7 107.7 ± 1.3 5-7

Table III shows the final and total performance of the

different algorithms. The Boltzmann multiplication ensemble

outperforms the other algorithms on this problem: it reaches

the best final performance and also has the best overall

learning performance. We also experimented with a Boltzmann

multiplication ensemble consisting of five differently initial-

ized Q-learning algorithms. The performance of this ensemble

was 6.87 ± 0.22 for the final performance and 117.0 ± 2.7
for the total learning performance. This shows again that

combining different RL algorithms in an ensemble performs

better than an ensemble consisting of the best single RL

algorithm. The best ensembles reach a better performance at

the end than the single RL algorithms.

D. Solving a Maze with Dynamic Goal Positions

In this fourth maze experiment, we use the same small

maze as before (see Figure 1(A)) where the starting position

is indicated by S, but now the goal is placed at a different

location in each trial. To deal with this, we use a neural

network function approximator that receives the position of

the goal as input. Therefore there are 54 × 2 inputs, that

indicate the position of the agent and the position of the goal.

A simulation lasts for 3,000,000 learning steps and we measure

performance after each 150,000 steps. We used feedforward

neural networks with 20 sigmoidal hidden units.

TABLE IV
FINAL RESULTS (AVERAGE REWARD FOR LAST 150,000 STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE MAZE WITH DYNAMIC GOAL POSITIONS. RESULTS ARE AVERAGES OF

50 SIMULATIONS.

Method α β γ G Final Rank Cumulative Rank

Q 0.005 – 0.95 0.5 10.05 ± 0.37 7-9 152.7 ± 8.3 7

Sarsa 0.008 – 0.95 0.6 10.69 ± 0.47 2-7 176.9 ± 8.7 4

AC 0.006 0.008 0.95 0.6 10.65 ± 0.11 3-7 180.5 ± 3.3 3

QV 0.012 0.004 0.95 0.6 10.66 ± 1.16 2-7 169.4 ± 20.2 5-6

ACLA+ 0.06 0.006 0.98 10 10.11 ± 1.80 3-9 121.5 ± 25.6 8

Majority voting – – – 2.4 11.06 ± 0.06 1 188.6 ± 2.1 1

Rank voting – – – 1.2 10.58 ± 2.08 2-7 82.4 ± 30.8 9

Boltzmann mult – – – 0.2 10.74 ± 0.06 2-5 187.8 ± 1.9 2

Boltzmann add – – – 1 10.12 ± 0.09 7-9 170.7 ± 2.5 5-6

Table IV shows the final and total performance of the

different algorithms. The majority voting ensemble outper-

forms the other algorithms on this problem: it reaches the

best final performance and also has the best overall learning

performance. We also experimented with a majority voting

ensemble consisting of five differently initialized Sarsa algo-

rithms. The performance of this ensemble was 11.02 ± 0.22
for the final performance and 176.7±4.9 for the total learning

performance. This shows again that a combination of different

RL algorithms in an ensemble learns faster than an ensemble

consisting of the best single RL algorithm, although an en-

semble of the same RL algorithm can also increase the final

performance of that algorithm. The best ensembles reach a

better performance at the end than the single RL algorithms

and initially have a faster learning speed.

E. Solving the Generalized Maze

In this last maze experiment, we use the same small

maze as before, but now the goal and walls are placed at

a different location in each trial. This is what Werbos calls

the “Generalized Maze” [23] experiment. To deal with this, a

neural network function approximator receives the position of

the agent, goal and the dynamic walls as input. Therefore there

are 54 × 3 inputs. A simulation lasts for 15,000,000 learning

steps and we measure performance after each 750,000 steps.

The feedforward neural networks have 100 sigmoidal hidden

units.

TABLE V
FINAL RESULTS (AVERAGE REWARD FOR LAST 750,000 STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE GENERALIZED MAZE. RESULTS ARE AVERAGES OF 50 SIMULATIONS

FOR THE SINGLE ALGORITHMS AND 10 SIMULATIONS FOR THE

ENSEMBLES.

Method α β γ G Final Rank Cumulative Rank

Q 0.003 – 0.95 0.3 6.92 ± 0.16 1 96.6 ± 1.1 3

Sarsa 0.003 – 0.92 0.3 1.06 ± 0.20 9 13.3 ± 0.9 9

AC 0.014 0.0015 0.95 0.5 5.84 ± 0.15 5 89.0 ± 1.0 4

QV 0.002 0.001 0.95 0.2 5.17 ± 0.16 7 76.6 ± 1.1 6

ACLA+ 0.1 0.001 0.98 5 4.81 ± 0.12 8 56.7 ± 1.5 7

Majority voting – – – 2.4 6.68 ± 0.23 2-3 102.6 ± 0.8 1

Rank voting – – – 1.0 6.02 ± 0.16 4 48.6 ± 2.2 8

Boltzmann mult – – – 0.2 6.54 ± 0.13 2-3 100.8 ± 1.0 2

Boltzmann add – – – 1 5.65 ± 0.14 6 86.0 ± 0.8 5

Table V shows the final and total performance of the differ-

ent algorithms. Here Q-learning obtains the best final results,

but the majority voting ensemble has the best overall learning

performance. It is surprising that Sarsa obtains much worse

results than the other algorithms, even though we optimized all

its learning parameters. We also experimented with a majority

voting ensemble consisting of five Q-learning algorithms. The

performance of this ensemble was 7.20 ± 0.16 for the final

performance and 103.4±0.9 for the total learning performance,

so this ensemble reaches the best final performance, and its

learning speed is almost significantly better than the majority

voting ensemble using different RL algorithms. This is the

only experiment where an ensemble consisting of the same

best single RL algorithm leads to a significantly better final

performance compared to the best ensemble consisting of

different single RL algorithms. This results can be explained

by the fact that in this problem Q-learning performs much

better than the other algorithms. At the end of the learning

trial Q-learning outperforms the best ensembles, although the

ensembles initially have a faster learning speed.
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V. DISCUSSION

From the results it is clear that the Boltzmann multiplica-

tion (BM) and majority voting (MV) ensembles significantly

outperform the other methods in terms of final performance.

The Boltzmann multiplication (BM) ensemble significantly

outperforms the other methods in terms of total learning

performance and the majority voting method comes as second

best. The rank voting and Boltzmann addition ensembles do

not outperform single RL algorithms.

The results showed that the best ensemble always learns

fastest, but one may have noticed that the ensembles cost

more computational time. Although this is true, many real

world scenarios such as robotics require the least number

of experiences, since the actions taken in real time require

much more time than the actual calculation done by the

learning algorithms. Furthermore, in all experiments, the best

ensemble has a better or equal final performance compared to

the best single RL algorithm. Even in the generalized maze, the

ensemble consisting of five Q-learning algorithms outperforms

the single Q-learning algorithm. Experiments also showed that

an ensemble with different RL algorithms often outperforms

an ensemble consisting of the best RL algorithm, even though

some RL algorithms perform considerably worse. This is due

to the fact that ensembles improve independent algorithms

most if the algorithms’ predictions are less correlated. We

think that good ensemble algorithms outperform single RL

algorithms because the ensemble can make a better trade-off

between exploration and exploitation by determining action

choices based on the uncertainties of all algorithms. If the al-

gorithms want to choose the same action, it is more likely that

this action will be exploited than when algorithms disagree.

In future work we want to focus on batch [10] and model-

based RL algorithms [9], which can be very useful for reducing

the number or experiences. We are also currently studying

methods for learning to weigh each independent RL algorithm,

which could increase the performance of the ensembles even

further. Finally, we want to compare all algorithms on the

partially observable generalized maze problem.
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