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Abstract: Physicochemical description of numerous cell processes is fundamentally based on the
energy landscapes of protein molecules involved. Although the whole energy landscape is difficult
to reconstruct, increased attention to particular targets has provided enough structures for
mapping functionally important subspaces associated with the unbound and bound protein
structures. The subspace mapping produces a discrete representation of the landscape, further
called energy spectrum. We compiled and characterized ensembles of bound and unbound
conformations of six small proteins and explored their spectra in implicit solvent. First, the analysis
of the unbound-to-bound changes points to conformational selection as the binding mechanism
for four proteins. Second, results show that bound and unbound spectra often significantly overlap.
Moreover, the larger the overlap the smaller the root mean square deviation (RMSD) between the
bound and unbound conformational ensembles. Third, the center of the unbound spectrum has a
higher energy than the center of the corresponding bound spectrum of the dimeric and multimeric
states for most of the proteins. This suggests that the unbound states often have larger entropy
than the bound states. Fourth, the exhaustively long minimization, making small intrarotamer
adjustments (all-atom RMSD < 0.7 i\), dramatically reduces the distance between the centers of the
bound and unbound spectra as well as the spectra extent. It condenses unbound and bound
energy levels into a thin layer at the bottom of the energy landscape with the energy spacing that
varies between 0.8-4.6 and 3.5-10.5 kcal/mol for the unbound and bound states correspondingly.
Finally, the analysis of protein energy fluctuations showed that protein vibrations itself can excite
the interstate transitions, including the unbound-to-bound ones.
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Introduction

Relationships between protein energy landscape,
structure, and function have been a subject of numer-
ous studies resulted in the development of the funnel
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shape energy landscape theory.!™ This theory has
been further extended by the conformational selection
paradigm to include the ensemble-based description of
proteins and protein—protein interactions.*” The con-
cept suggests that bound and bound-like conforma-
tions may coexist in solution within a large ensemble
of unbound conformations. By shifting equilibrium in
the unbound ensemble toward the bound-like confor-
mations, binding forces select a bound conformation
corresponding to the free energy minimum. Recent
studies focused on the reconstruction of the native
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ensembles.® 1! An ensemble of ubiquitin structures
reflecting dynamics up to the microsecond time scale
was refined against residual dipolar couplings (RDCs).
All crystallographically determined bound conforma-
tions of ubiquitin were found within 0.8 A root mean
square deviation (RMSD) of the C, atoms.!® Another
RDC-optimized ensemble of ubiquitin consistent with
the microsecond time scale dynamics was created by
Monte Carlo sampling of the “Backrub” motions.!!
Cold denaturation and protein encapsulation were
combined with nuclear magnetic resonance (NMR) to
probe the ensemble.'? Single-molecule experiments
corroborated the theory of multiple interconverting
conformations and revealed their relation to the fluctu-
ating catalytic reactivity.®> Room-temperature X-ray
crystallography was able to detect such conformations
in proline isomeraze.!* Best et al.® showed that an
ensemble of highly homologous X-ray structures can
also reproduce structural diversity in the native en-
semble probed by NMR spectroscopy in solution. A pro-
tocol combining molecular dynamics (MD) simulations
of an X-ray structure with information from the NMR
relaxation experiments has been suggested for study-
ing protein conformational ensembles in solution.® In
general MD simulations have been instrumental in
mapping the conformational space.!'° Alternative
methods for generating conformational ensembles
without solving explicit equations of motion have been
actively developed (see Ref. 20 for a review). Large con-
formational ensembles are routinely used in protein
structure prediction®?? and studies of allosteric
interactions.?2*

Despite the significant progress achieved in gen-
erating protein ensembles, their energetic properties
and relation to the unbound-to-bound conforma-
tional changes are not well understood.??> How to
generate a bound-like structure from the unbound
one is one of the main problems in structure predic-
tion of protein complexes. Although MD simulations
showed that some of the interface side chains—
“anchor residues”—sample bound-like conforma-
tions,2%27 criteria for selecting such conformations
from the MD snapshots are yet to be determined.
Current docking protocols are much more successful
when bound conformations are used, but become
less reliable in a common case when only unbound
structures are known.2®?° To advance the docking
protocols, the relation between the energy landscape
and conformational changes upon binding should be
unraveled. Recent large-scale studies of conforma-
tional changes upon binding focused on the relation-
ship between single bound and single unbound
conformations.?*3® However, how well the change
between two selected conformations characterizes
transition between the unbound and bound states
within conformational ensembles as well as the
transformation of the (free) energy landscapes is still
unclear.

Ruvinsky et al.

In this study, we investigate structural similar-
ity between the ensembles of bound and unbound
conformations for six proteins and characterize cor-
responding segments of their energy landscapes
mapped by these ensembles. Wherever available,
protein conformations extracted from multimers are
considered separately from the conformations
extracted from dimers. Within each ensemble, ener-
gies of protein conformations are considered as the
corresponding energy spectrum. We investigate the
impact of the energy minimization in the General-
ized Born (GB) model on the distance between the
ensembles of bound and unbound conformations and
the ensembles’ spectral properties (the energy spac-
ing, the spectrum gap between the lowest states,
and the spectrum width), which are a proxy for the
folding energy landscape. Knowledge of the energy
spacing allows one to infer the smoothness of the
energy landscape: the larger the spacing the rougher
the landscape.?* This property is central for the
principle of minimal frustration and the related
theory of protein folding on a funneled energy land-
scape.’®®® The spectrum gap and the spectrum
width of the folded states characterize thermody-
namic stability of the native and near-native
states.3” The analogy between folding and binding
energy landscapes was used to quantify the specific-
ity of protein—protein binding by the ratio of the
spectrum width to the roughness of the binding
energy landscape.>8

Our focus on the energy minimization in
implicit solvent was motivated by a recent study>®
showing that ranking protein structures by mini-
mized GB energies can distinguish the near-native
structures from decoys better than ranking based on
the energy minimization either in vacuum or explicit
solvent. First, our study shows that although the
shortly minimized GB energies of the bound and
unbound ensembles often significantly overlap, the
center of the unbound spectrum tends to have a
higher energy than the centers of the bound spec-
trum of the dimeric and multimeric states. More-
over, the larger the overlap the smaller the RMSD
between bound and unbound conformational ensem-
bles. Second, the existence of the structurally differ-
ent equipotential states in both ensembles suggests
that unbound states have larger entropy than the
bound states. The entropy-driven modeling of the
unbound-to-bound conformational changes suggests
a novel direction in advancing protein—protein dock-
ing algorithms, which, in fact, commonly neglect
entropy effects. Third, the results show that the
bound conformations of the RNase A interface
pre-exist in the unbound ensemble, indicating con-
formational selection as the binding mechanism.
Pancreatic trypsin inhibitor (PTI), ubiquitin, and ly-
sozyme C also have high similarity between bound
and unbound interfaces as well as small deviations
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that can be attributed to flash cooling
tions in the crystallization conditions. Fourth, the
exhaustively long minimization (LM) by the Adopted
Basis Newton—Raphson algorithm results in small
mostly intrarotamer adjustments that drastically
reduce the distance between the centers of the bound
and unbound spectra as well as the spectra extent. It
condenses unbound and bound energy levels into a
thin layer at the bottom of the energy landscape. At
the same time, the whole spectrum from the shortly
minimized states to the bottom of the folding funnel
can cover up to 40.3% of the lowest energy, indicating
that the folded states may significantly differ in
energy. The average energy spacing at the bottom of
the energy landscape varies between 0.8—4.6 and
3.5-10.5 kcal/mol for the unbound and bound states
correspondingly. The energy gap between the two
lowest states varies between 0.9 and 12.1 kcal/mol.
Finally, the results show that protein vibrations itself
can stimulate the interstate transitions, thus support-
ing the conformational selection theory. We suggest
an approach for estimating the number of normal
modes involved in conformational transition and
show that, on average, 20 low-energy normal modes
are needed to describe transition between two neigh-
boring energy states. At the same time, transitions
between the two lowest states may involve an order
of magnitude larger number of the modes.

Results and Discussion

To compile ensembles of bound and unbound states,
we first selected a subset of 165 protein—protein
complexes from the non-redundant DOCKGROUND
set 3.0 of 233 protein—protein complexes.*? This sub-
set characterized by small unbound-to-bound confor-
mational changes (all-atom RMSD < 2 A) represents
a majority of the protein complexes (71%). Then,
proteins that are monomers in the unbound state
were selected from the subset and screened against
the Protein Data Bank (PDB) for highly homologous
proteins. Keeping PDB structures with small num-
ber of missing residues or mutations (see Methods
section) resulted in a set of only six proteins (ovomu-
coid, PTI, ubiquitin, RNase A, CheY, and lysozyme
C) that have more than five PDB structures in its
unbound and bound/dimeric ensembles (Table I and
Supporting Information Table SI). We found that
only 1.8% of the proteins in the DOCKGROUND
subset have corresponding multistate conformational
ensembles. To exclude energy fluctuations related to
structural disorder and mutations, a program Profix

Table I. Ensembles of Bound and Unbound Proteins

Bound structures®

Unbound
Protein structures Dimers Multimers
RNase A 49 32 3
Pancreatic 27 18 29
trypsin
inhibitor (PTI)
Chemotaxis 73 6
protein CheY
Ubiquitin 394 8
Ovomucoid 124 6
Lysozyme C 45 19 24

# Considered separately from the other subunit(s) in the
dimers/multimers.

was used to build the disordered residues and miss-
ing atoms and to reverse all point mutations.

Table I shows that, as expected, all unbound
ensembles have more conformations than the corre-
sponding dimeric ensembles. On the other hand, only
three proteins were found to form multimers. Among
them, lysozyme C and PTI have more conformations in
their multimeric ensembles than that in the dimeric
ones. The ensemble population and its heterogeneity
are the key factors for the following analysis. Best et
al® showed that from 20 to 40 structures were
required to reproduce side-chain heterogeneity in the
unbound protein. All our unbound ensembles satisfy
this requirement (Table I). Variations in crystallization
conditions such as pH or ionic strength provide confor-
mational heterogeneity in the ensembles and enable
characterization of different subspaces on the land-
scape. An extra heterogeneity comes with the combina-
tion of X-ray and NMR structures, which represent
protein dynamics at different time scales. X-ray struc-
tures carry on effects of crystal packing interactions
and the flash cooling technique,*! which may lock and
optimize one of the conformations available in solution.

The GB energy of each of the selected structures
was subject to a two-stage minimization by the
GBMV2 module implemented in the Chemistry at
HARvard Macromolecular Mechanics (CHARMM)
package. The first stage consisted of 50 steps of the
steepest descent minimization [short minimization
(SM)] followed by 10* steps of the Adopted Basis
Newton—Raphson minimization (LM). The GB energy
included polar and nonpolar solvation energies, and
an internal energy described by the CHARMM22
molecular force fields. The GBMV2 as well as other
GB models enable fast calculations of the Poisson—
Boltzmann (PB) electrostatic solvation energy by
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Figure 1. Energy spectrum of the unbound and bound proteins. (A) PTI, (B) RNase A, (C) lysozyme C, (D) CheY, (E) ovomucoid,
and (F) ubiquitin. SM and LM indicate the spectrum after the short minimization (50 steps of the steepest descent minimization)
and long minimization (SM followed by 10 steps of the Adopted Basis Newton-Raphson minimization). U, D, and M are unbound
proteins (green), proteins crystallized as dimers (red), and multimers (blue). Open squares with error bars show the average energy

(the band’s center) and the standard deviation.

where r;; is a distance between atoms i and j, g; and
q; are the partial charges, ¢, and &, are the solute
and solvent dielectric constants, Rl-GB is an effective
Born radius of the atom i, and K is a Still factor.*®
The GBMV2 applied here was shown to be one of
the best GB approaches among 23 CHARMM/
AMBER/OPLS-based GB models.** It showed a con-
sistently small error of less than 1% for relative sol-
vation energies between different conformations of
the same protein, making this model well suitable
for the analysis of energies in protein ensembles. In
addition, this model reproduced PB solvation ener-
gies within 1% error on average for large sets of
proteins®*® and showed 0.9992 correlation
between PB and GB energies.*® The nonpolar solva-
tion energy including the formation of a protein
cavity in the solvent and protein—solvent interac-
tions were calculated by Gyp= Zi (c;A;+E;),*6
where A; is a solvent-accessible surface area of the
atom i, o; is the atomic solvation parameter for the
atom i, E; is a reference solvation energy of the
atom i.

Bound and unbound energy bands

Figure 1 shows minimized energy spectra of six pro-
teins (see Methods section) represented by the
ensembles of their conformations determined by
X-ray crystallography and NMR (Table I and Sup-
porting Information Table SI). SM and LM were
applied to characterize the topography of the energy
landscape in the GB model (see Methods section).
The SM removed atom clashes inside protein struc-
tures and relaxed surface side chains involved in
crystal contacts. Both energy minimizations caused
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small intra-rotamer readjustments of the exposed
side chains resulting in a typical RMSD <0.7 A
between the minimized and the nonminimized struc-
tures, which did not substantially change neither
the sizes of the bound and unbound ensembles nor
the RMSD between them (Table II). Nevertheless,
these changes were enough to significantly condense
both spectra of the unbound and bound proteins.
Figure 1 shows that the span of the spectra and the
spacing between energy minima after LM are signif-
icantly smaller than that after SM. The ratio
between the overall energy span (including the SM
and LM bands) in the unbound ensemble and the
lowest energy in the protein spectrum is 40.3% for
ovomucoid, 13.7% for PTI, 26.9% for ubiquitin,
21.5% for RNase A, 22.8% for CheY, and 24.2% for
lysozyme C. Excluding the lowest ratio for PTI as an
outlier, the ratio for other five proteins decreases 1.7
times, with a 2.5 times increase in the number of
atoms from ovomucoid to lysozyme C. The ratio
decrease is expected because the lowest energy is a
function of the total number of protein residues,
whereas the energy extent relates mainly to the sur-
face residues that are able to change their conforma-
tions in solution. The outlying ratio for PTI may
result from the insufficient size of its unbound en-
semble, which is the smallest among the proteins in
our set (Table I). Ovomucoid has 51 residues,
compared to 56 residues of PTI, but its unbound
ensemble is 4.6 times larger than the ensemble of
PTL

The ratio between the energy span of the LM
band and the lowest energy is 7.0% for ovomucoid,
4.9% for PTI, 14.0% for ubiquitin, 5.5% for RNase A,
5.0% for CheY, and 3.1% for lysozyme C (Fig. 2).
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Table II.

Bound-to-Bound and Bound-to-Unbound RMSDs

RMSD between bound structures (A)

RMSD between bound and unbound structures (A)

All atoms Interface All atoms Interface

Protein I# SMP LM® 1 SM LM I SM LM I SM LM
RNase A

min 0.3 0.3 0.3 0.1 0.1 0.2 0.7 0.8 0.7 0.3 0.3 0.4

max? 7.1 7.2 7.2 11.6 11.8 11.7 7.3 7.4 7.4 11.7 11.9 11.8
PTI

min 0.1 0.1 0.3 0.0 0.0 0.2 1.0 1.0 0.9 1.1 1.1 1.0

max 2.3 2.4 2.3 2.7 2.7 2.7 2.5 2.5 2.4 2.7 2.7 2.8
CheY

min 0.6 0.6 0.6 0.5 0.5 0.6 1.9 1.9 1.8 1.6 1.6 1.3

max 1.2 1.1 1.2 1.7 1.7 1.8 2.9 2.9 3.0 3.1 3.1 2.9
Ubiquitin

min 0.3 0.1 0.4 0.4 0.1 0.5 1.0 1.0 0.9 1.1 1.1 1.0

max 1.6 1.7 1.5 2.4 2.5 2.3 4.1 4.1 4.0 5.9 5.9 6.1
Ovomucoid

min 0.6 0.6 0.7 0.5 0.5 0.5 1.2 1.1 0.9 1.3 1.2 1.1

max 1.2 1.2 1.2 1.6 1.6 1.8 2.2 2.2 2.1 3.5 3.4 3.1
Lysozyme C

min 0.2 0.2 0.4 0.1 0.1 0.2 0.8 0.8 0.8 0.7 0.7 0.7

max 1.8 1.8 1.9 3.0 3.2 3.1 1.9 1.9 1.9 3.1 3.1 3.3

2 Initial (not minimized) protein structures.

b Structures subjected to 50 steps of the steepest descent minimization (short minimization).
¢ Structures subjected to 50 steps of the steepest descent minimization, followed by 10* steps of the Adopted Basis Newton—

Raphson minimization (long minimization).
4 Minimum and maximum RMSDs.

Thus, LM reduces the width of the energy bands,
condensing protein states into a thin layer at the
bottom of the energy landscape. The energy distance
(the ruggedness) between the centers of the SM and
LM energy bands was calculated as an arithmetic
mean of energies in a protein ensemble after SM
and LM (see Methods section). Interestingly, the
energies of the unbound ensembles decrease more
upon minimization than the energies of the bound
ensembles (Supporting Information Fig. S1) despite
the fact that both ensembles have equipotential
energy levels (Fig. 1). On average, the unbound pro-
teins lose 0.6 kcal/mol per heavy atom or 4.6 kcal/
mol per residue. The bound structures from dimers
and multimers lose less: 0.4 and 0.3 kcal/mol per
heavy atom or 3.1 and 2.5 kcal/mol per residue
accordingly.

The centers of the unbound energies after SM
were higher than the centers of the bound energies
for all proteins, with the exception of ubiquitin. This
suggests that the unbound-to-bound conformational
changes guided by intermolecular interactions often
follow a path that decreases the internal energy of
the binding proteins. Such mechanism additionally
increases binding affinity

AG:(EC—TSC)—(EA—TSA)—(EB—TSB)

=V+ (E’A—EA)+(E%—EB)—TSC+TSA+TSB., 2)

where E.=V+E/, +Ej, is the enthalpy of the complex,
V is the interaction energy between proteins A and
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B in the complex, E,,E5, and Ep,Eg are internal
energies of the bound and unbound conformations of
proteins A and B, S, Sa, and Sg are the entropies
of the complex and unbound proteins A and B. The
energy decrease can be achieved by improving the
interface packing upon binding. The prevalence of
the disorder-to-order interface transitions over the
reverse transitions corroborates this hypothesis.®°
Equation (2) shows that binding forces may favor
low-entropy (less flexible) conformations. Effective
binding to a more-flexible high-entropy conformation

16
Ubiquitin
| |
12
X
=
-
= mOvomucoid
H'-i | o RNase A
& . mPTI BRNEChey
4L s s
. A ° . =Lysozymec
j 9
0 L . L 9 e !
40 60 120 140

Number of residues

Figure 2. The ratio of the ensemble width after long minimi-
zation to the lowest energy in the joint ensemble. The data
are shown for unbound (M) and bound ensembles, extracted
from dimers (@) and multimers (O).
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would require stronger intermolecular forces to
overcome a large entropy loss upon binding. The
generality of this observation for molecular associ-
ation processes was discussed in Ref. 47, where a
correlation was found between the increased affin-
ities for ligand binding and the decreased struc-
tural flexibility in a series of antibody molecules.
The two-sample ¢-test showed statistical signifi-
cance of the difference between the bound and
unbound SM-bands’ centers at the 5% level for all
proteins, except ubiquitin (Supporting Informa-
tion Table SII). LM resulted in a significant
decrease in the distance between the centers and
a cancellation of the statistical significance of the
difference between the centers of the unbound ener-
gies and bound energies for dimeric states of lyso-
zyme C and ovomucoid, and multimeric states of
PTI and lysozyme C. Comparison of the centers of
the bound spectra of the structures extracted from
dimers and multimers (Supporting Information Ta-
ble SIII) shows that LM resulted in statistically sig-
nificant difference between the corresponding
centers for RNase and PTI. For these proteins, the
center of the dimeric bound band of the dimer
states is lower than the center of the multimeric
bound band.

An overlap between the unbound and bound
energies in the SM and LM bands, shown in Figure
1, suggests that conformational selection of a bound
conformation may be dictated by entropy. Indeed, let
us for simplicity consider binding of a protein A to a
protein B that exists in one of two conformations
only. The binding free energy of A+ B; < AB
can be written as AGi=(E.—TS.)—(Ea—TSx)—
(E,—TSg,), where i equal to 1 or 2 is a number of
the protein B conformation, Eg, and Sp, are the en-
thalpy and the entropy of protein B in the ith state.
Therefore, if both conformations of protein B have
equal energies Ep, ~ Eg,, then the choice of the pre-
ferred unbound conformation of protein B is dictated
solely by the entropy contribution to the binding
free energy. In this case, AG reaches its minimum
for the unbound conformation with the lowest en-
tropy. This observation can be related to the energy
landscape properties by Sp,=RInN;, where N; is
the number of microstates associated with the con-
formation i, and R is the gas constant. Since a less-
populated state has a lower entropy, then the less-
populated conformation is the most effective binder,
in agreement with the concept of conformational
selection.*® This further suggests that conformations
selected by binding forces in solution can reside in
narrow (low entropy) basins formed by the intramo-
lecular interactions. We intend to verify this hypoth-
esis in our future study. Sampling of the low-entropy
conformations may improve performance of protein—
protein docking algorithms, which commonly neglect
entropy effects.
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Figure 3. Energy spacing at the bottom of the folding funnel.
The figure shows the energy gap between the two lowest
energy minima (A) in the joint ensemble of the bound and
unbound states and the average distance between energy min-
ima after the long minimization in the unbound (M) and bound
ensembles, extracted from dimers (®) and multimers (O).

Energy spacing, fluctuations, and
conformational changes

Figure 3 summarizes calculations of the energy
spacing in the ensembles. The spacing in the
unbound ensembles averaged over the protein set is
2.9 kcal/mol, which is two times less than the aver-
age spacing in the bound ensembles. On average,
the dimeric and multimeric states are separated by
6.0 and 6.4 kcal/mol accordingly. Larger variations
of the energy spacing in bound ensembles may be a
result of a smaller size of these ensembles (Table I).
Considering the proteins separately, one can see
that the energy spacing between the unbound states
varies between 0.8 and 4.6 kcal/mol, which includes
the Hyeon and Thirumalai’s*® estimate of 0-3 kcal/
mol for the energy landscape roughness or the bar-
rier and 3.2-3.5 kcal/mol barrier measured by sin-
gle-molecule dynamic force spectroscopy for a
complex of GTPase Ran and the nuclear transport
receptor importin-b.?® Note that the average spacing
of 2.9 kcal/mol is approximately equal to the maxi-
mum barrier found in the Hyeon and Thirumalai*®
study but less then the maximum barrier found by
Nevo et al.’° The energy spacing between the bound
states is larger and falls in the intervals of 3.5-10.5
and 3.8-10.2 kcal/mol for the dimeric and multi-
meric correspondingly. The energy gap
between the two lowest energy minima in the joint
ensemble of the bound and unbound states is
0.9 kcal/mol for RNase A, 6.1 kcal/mol for PTI,
12.1 kcal/mol for CheY, 7.9 kcal/mol for ubiquitin,
6.5 kcal/mol for ovomucoid, and 9.9 kcal/mol for lyso-
zyme C. The smallest energy gap was found for
RNase A, which has the smallest interface and all-
atom RMSD between bound and unbound states
(Table II). On the other hand, the largest gap in the

states
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CheY spectrum corresponds to the largest RMSD
between its bound and unbound ensembles.

To explore whether an interstate transition in
principle can result from protein vibrations, one can
estimate a number of the normal modes that needs to
be involved in the protein energy fluctuation equal to
the interstate barrier. The molecular energy fluctua-
tion in a canonical ensemble can be calculated as
dE=\/(AE?)=RT,/cy, where cy=cp+cg+c,(T) is a
specific heat capacity per molecule at constant vol-
ume, cp=cgr=3/2 are the contributions of three trans-
lational and three rotational degrees of freedom, and
co(T)= Zi ci (T) is the contribution of the 3N, —6 in-
ternal vibrations in a protein with N, atoms. For
low-energy modes ho; < kT and therefore ci(T) = 1
and ¢,(T) ~ n+ Zi:nﬂcé(T), where n is a number
of the low-energy modes. For high-energy modes

hw; > kT and ¢! (T) exponentially goes to zero. One
can find the low-bound estimate for the number of
low-energy modes needed for a transition between
any two states separated by the &E Dbarrier:

n=(3E/RT)*-3. It gives 23 and 32 normal modes for
the standard ambient temperature of 298.15 K and
the barrier of 3.0 and 3.5 kcal/mol correspondingly.
Since functional modes are often found among the
lowest 20—30 modes,’ ™ we can suggest that the pro-
tein vibrations indeed can excite the interstate transi-
tions related to protein function. Thus, an external
stimulus (e.g., a ligand or a partner protein) may not
be needed for changing protein conformation, which
supports the conformational selection paradigm.
Interestingly, many more modes are needed for an
energy fluctuation covering the distance between the
two lowest states in all the proteins in our set, except
RNase A, which shows the smallest distance between
bound and unbound ensembles. This is supported by
a study of conformational changes in myosin, calmod-
ulin, NtrC, and hemoglobin,56 which showed that the
first 20 modes contribute <50% of the conformational
changes in these molecules. The first 30 modes of the
[AChEr];—ColQ complex account for 75% of the con-
formational change in the tetramer.’* For a typical
1000 atoms protein having 2994 normal modes, a
fluctuation of 12.1 kcal/mol is achieved when at least
13% of the normal modes get involved. It was shown
that the protein energy fluctuation can increase up to
38 kcal/mol,>” which is more than enough for a tran-
sition over the largest gap/barrier considered in this
study.

Distance between unbound and bound
conformational ensembles and binding
mechanisms

The size of the ensemble is controlled by ambient
parameters (temperature, pH, salt concentration,
etc.) and dependent on protein sequence composition
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(Table II). Protein—protein interactions can either
select a group of bound-like conformations from the
unbound ensemble or transform the whole ensemble
into a new group of bound-like conformations. To
find out which mechanism takes place, all-atom and
interface RMSDs were calculated between all bound
and unbound structures (Table II). Interface resi-
dues were defined as those losing >1 A2 of their sur-
face upon binding. The smallest RMSD between the
bound and unbound ensembles was found for RNase
A and lysozyme C. RNase A shows the all-atom/
interface RMSD of 0.7/0.3 A. The ensembles of lyso-
zyme C are separated by 0.8/0.7 A of the all-atom/
interface RMSD. Interestingly, the unbound ensem-
ble of lysozyme C encompasses X-ray structures
only. The unbound ensemble of RNase including
both X-ray and NMR structures has the second larg-
est share (100%XNx-ray/(NX-ray *Nxmr)=35%) of
the X-ray structures (Nx-ray) in its unbound ensem-
ble among the proteins in our set. The low bound of
the unbound-to-bound all-atom and interface
RMSDs varies within 0.7-1.9 and 0.3-1.6 A. The
largest RMSD between the bound and unbound
ensembles of CheY corresponds to the smallest over-
lap between their bound and unbound SM spectra
(Fig. 1), which disappears after LM. Thus, the ma-
jority of the SM and all LM bound conformations of
CheY have lower energies than the unbound ones. It
is likely that the entropy discussed above makes
these lower energy states unfavorable for the
unbound ensemble.

In addition to the RMSD analysis, we calculated
the share of the unbound residues within 1 A of their
bound conformations for all pairs of the bound and
unbound structures (Figs. 4 and 5). Each unbound
structure was consequently aligned to each bound
structure of the same protein by TM-align,®® producing
a number of the alignments equal to the product of
populations of the bound and unbound ensemble. Then
for each alignment the RMSD between the side chains
in the bound and unbound structures was calculated
for each protein residue. The share of the unbound res-
idues within 1 A of their bound conformation was cal-
culated as viIIOO%XNﬁMSD <1/N, where N is the
protein sequence length, and Niyep -, is @ number of
protein residues that deviate by less than 1 A in the
alignment i. This metric also showed the lowest simi-
larity between the CheY ensembles at 0.39 level (39%
of all the residues, Fig. 5). The ensembles of RNase A,
lysozyme C, and PTI had the highest similarity at 0.9,
0.89, and 0.86 levels correspondingly. Comparison of
the bound and wunbound interfaces revealed 13
unbound structures of RNase A with all interface resi-
dues within 1 A from the bound conformations (Fig. 4).
Note that 2 A is a typical size of a rotamer.>? Thus,
dimerization of RNase A with another protein can be
completely described by the conformational selection
mechanism.*” Contrary to that, forming a multimer
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Figure 4. Similarity of bound and unbound interface conformations. (A) PTI, (B) RNase A, (C) lysozyme C, (D) CheY, (E) ovomu-
coid, and (F) ubiquitin. The similarity is calculated for each pair of bound and unbound structures as the share of the unbound
interface residues within 1 A RMSD from the bound interface residues. Bars and circles show the interface similarity between
dimeric/multimeric and unbound conformations accordingly. The horizontal axis shows conformation in the bound ensembles.

involving RNase A invokes induced fit to expose its
C-terminal (Supporting Information Fig. S2), which
forms an interface B-strand that swaps with the N-ter-
minal helix in the RNase trimer. None of the unbound
structures has the exposed C-terminal. This further
suggests that some proteins may employ various
binding mechanisms, from the induced fit, to

“lock-and-key” and conformational selection, and their
5,6

combination, depending on the binding partner.

Interestingly, flash cooling used to determine
approximately 90% of macromolecular structures®’
results in a 0.2-0.8 A backbone RMSD between the
structures determined at cryogenic and room tem-
peratures.®! It can also change the conformational
distribution of up to one-third of the protein side
chains.?® Taking this into account, we can assume
that crystallographic conditions may distort the
structure by 1 A RMSD of all atoms. The low bound
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Bound conformations

Figure 5. Similarity of bound and unbound structures. (A) PTI, (B) RNase A, (C) lysozyme C, (D) CheY, (E) ovomucoid, and (F)
ubiquitin. The similarity is calculated for each pair of bound and unbound structures as the share of the unbound residues
within 1 A RMSD from the bound ones. Bars and circles show the similarity between dimeric/multimeric and unbound confor-
mations accordingly. The horizontal axis shows conformation in the bound ensembles.
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of the all-atom RMSD between bound and unbound
ensembles (Table II) suggests that, in addition to
RNase A, the conformational selection likely guides
binding processes of PTI, ubiquitin (also see Ref.
10), and lysozyme C.

Materials and Methods

Generation of the protein set

To compile a set of proteins with multiple bound and
unbound conformations, a subset of protein com-
plexes with small changes in the backbone upon
binding (all-atom RMSD<2 A) was selected from
the nonredundant DOCKGROUND set 3.0.** The
subset covers 71% of the DOCKGROUND set of 233
complexes. The subset was narrowed down to pro-
teins that are monomers in the unbound state of the
biological assembly. Their sequences were used to
identify homologous proteins in PDB (sequence iden-
tity > 98% by BLAST®?). The unbound protein struc-
tures with small ligands were excluded. All PDB
entries found for each query protein were put into
three ensembles: unbound monomers, dimers, and
multimers. Only proteins with more than five
unbound and bound structures were retained.
Selected structures were analyzed for disordered
residues and mutations. If some of the structures
had a disordered terminal, it was deleted in all
members of the ensemble. All fragments with <3
disordered residues at the interface and <5 at the
non-interface were reconstructed by a program Profix
from the Jackal package (http:/wiki.c2b2.columbia.
edu/honiglab_public/index.php/Software). Structures
with disordered fragments longer than five residues
were discarded. Point mutations were reversed by
Profix. The resulting set consisted of six proteins
(Table I and Supporting Information Table SI) with
multiple X-ray and NMR-derived bound and unbound
conformational states and 100% sequence identity
between the states.

Minimization protocol

The MMTSB tool set®! and the GB method that cal-
culates Born radii by analytic volume integration
(CHARMM: GBMV method 2) were used to mini-
mize solvation free energy of the proteins.**%% The
method was parameterized to accurately reproduce
electrostatic solvation energies from standard Pois-
son theory. A nonpolar contribution to the solvation
free energy was calculated by the ASP model consid-
ering the exposed surface area.*® Each protein was
subjected to 50 steps of the steepest descent minimi-
zation (SM) followed by 10 steps of the Adopted
Basis Newton—Raphson minimization (LM). The
CHARMM22 force field was used. The dielectric con-
stant was set to 1 for protein and 80 for solvent.
Each bound protein was minimized within its com-
plex to keep interface unchanged. The analysis
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showed that protein energy changed <1.5% between
500 and 10* steps of LM. The average RMSD
between all heavy atoms of the initial and mini-
mized structures after SM was 0.1 A. LM produced
the average all-atom RMSD at 0.7 A between the
initial and the minimized structures. As can be seen
from Table II, LM did not change substantially the
RMSD-based size of the conformational ensembles
and the distance between the unbound and bound
ensembles.

Characterization of the energy spectrum
The ratio of the spectrum width in the ensemble of
the SM and LM unbound structures to the lowest
energy was calculated as the absolute value of
100%-(AE1+AEs)/EL, where Ey, is the lowest protein
energy in the joint ensemble of bound and unbound
structures, and AE;, are the energy span in the
unbound ensemble after the SM and LM correspond-
ingly. If the energy spans overlap in the SM and LM
ensembles, then the ratio was calculated as
100%-(Ewin —Emax ) /EL, where Epin max are the lowest
and the highest energies in the unbound spectrum.
The ruggedness of the energy landscape was cal-
culated as Eqy —E1m, where Eqy, Ery are the aver-
age energies in a protein ensemble after SM and LM
accordingly. The energy spacing was calculated as
the average distance between energy levels:
SO (B BB /(V-1)= (B B /(N - 1),
where {EMM} is an ordered set of the LM energies,
N is the number of structures in the LM ensemble.
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