
Ensemble-based characterization of
unbound and bound states on protein
energy landscape

Anatoly M. Ruvinsky,1* Tatsiana Kirys,1,2 Alexander V. Tuzikov,2

and Ilya A. Vakser1,3

1Center for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047
2United Institute of Informatics Problems, National Academy of Sciences, 220012 Minsk, Belarus
3Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045

Received 18 November 2012; Revised 2 February 2013; Accepted 15 March 2013
DOI: 10.1002/pro.2256

Published online 23 March 2013 proteinscience.org

Abstract: Physicochemical description of numerous cell processes is fundamentally based on the

energy landscapes of protein molecules involved. Although the whole energy landscape is difficult

to reconstruct, increased attention to particular targets has provided enough structures for
mapping functionally important subspaces associated with the unbound and bound protein

structures. The subspace mapping produces a discrete representation of the landscape, further

called energy spectrum. We compiled and characterized ensembles of bound and unbound
conformations of six small proteins and explored their spectra in implicit solvent. First, the analysis

of the unbound-to-bound changes points to conformational selection as the binding mechanism

for four proteins. Second, results show that bound and unbound spectra often significantly overlap.
Moreover, the larger the overlap the smaller the root mean square deviation (RMSD) between the

bound and unbound conformational ensembles. Third, the center of the unbound spectrum has a

higher energy than the center of the corresponding bound spectrum of the dimeric and multimeric
states for most of the proteins. This suggests that the unbound states often have larger entropy

than the bound states. Fourth, the exhaustively long minimization, making small intrarotamer

adjustments (all-atom RMSD� 0.7 Å), dramatically reduces the distance between the centers of the
bound and unbound spectra as well as the spectra extent. It condenses unbound and bound

energy levels into a thin layer at the bottom of the energy landscape with the energy spacing that

varies between 0.8–4.6 and 3.5–10.5 kcal/mol for the unbound and bound states correspondingly.
Finally, the analysis of protein energy fluctuations showed that protein vibrations itself can excite

the interstate transitions, including the unbound-to-bound ones.
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Introduction
Relationships between protein energy landscape,

structure, and function have been a subject of numer-

ous studies resulted in the development of the funnel

shape energy landscape theory.1–4 This theory has

been further extended by the conformational selection

paradigm to include the ensemble-based description of

proteins and protein–protein interactions.4–7 The con-

cept suggests that bound and bound-like conforma-

tions may coexist in solution within a large ensemble

of unbound conformations. By shifting equilibrium in

the unbound ensemble toward the bound-like confor-

mations, binding forces select a bound conformation

corresponding to the free energy minimum. Recent

studies focused on the reconstruction of the native
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ensembles.8–11 An ensemble of ubiquitin structures

reflecting dynamics up to the microsecond time scale

was refined against residual dipolar couplings (RDCs).

All crystallographically determined bound conforma-

tions of ubiquitin were found within 0.8 Å root mean

square deviation (RMSD) of the Ca atoms.10 Another

RDC-optimized ensemble of ubiquitin consistent with

the microsecond time scale dynamics was created by

Monte Carlo sampling of the “Backrub” motions.11

Cold denaturation and protein encapsulation were

combined with nuclear magnetic resonance (NMR) to

probe the ensemble.12 Single-molecule experiments

corroborated the theory of multiple interconverting

conformations and revealed their relation to the fluctu-

ating catalytic reactivity.13 Room-temperature X-ray

crystallography was able to detect such conformations

in proline isomeraze.14 Best et al.8 showed that an

ensemble of highly homologous X-ray structures can

also reproduce structural diversity in the native en-

semble probed by NMR spectroscopy in solution. A pro-

tocol combining molecular dynamics (MD) simulations

of an X-ray structure with information from the NMR

relaxation experiments has been suggested for study-

ing protein conformational ensembles in solution.15 In

general MD simulations have been instrumental in

mapping the conformational space.16–19 Alternative

methods for generating conformational ensembles

without solving explicit equations of motion have been

actively developed (see Ref. 20 for a review). Large con-

formational ensembles are routinely used in protein

structure prediction21,22 and studies of allosteric

interactions.23,24

Despite the significant progress achieved in gen-

erating protein ensembles, their energetic properties

and relation to the unbound-to-bound conforma-

tional changes are not well understood.25 How to

generate a bound-like structure from the unbound

one is one of the main problems in structure predic-

tion of protein complexes. Although MD simulations

showed that some of the interface side chains—

“anchor residues”—sample bound-like conforma-

tions,26,27 criteria for selecting such conformations

from the MD snapshots are yet to be determined.

Current docking protocols are much more successful

when bound conformations are used, but become

less reliable in a common case when only unbound

structures are known.28,29 To advance the docking

protocols, the relation between the energy landscape

and conformational changes upon binding should be

unraveled. Recent large-scale studies of conforma-

tional changes upon binding focused on the relation-

ship between single bound and single unbound

conformations.30–33 However, how well the change

between two selected conformations characterizes

transition between the unbound and bound states

within conformational ensembles as well as the

transformation of the (free) energy landscapes is still

unclear.

In this study, we investigate structural similar-

ity between the ensembles of bound and unbound

conformations for six proteins and characterize cor-

responding segments of their energy landscapes

mapped by these ensembles. Wherever available,

protein conformations extracted from multimers are

considered separately from the conformations

extracted from dimers. Within each ensemble, ener-

gies of protein conformations are considered as the

corresponding energy spectrum. We investigate the

impact of the energy minimization in the General-

ized Born (GB) model on the distance between the

ensembles of bound and unbound conformations and

the ensembles’ spectral properties (the energy spac-

ing, the spectrum gap between the lowest states,

and the spectrum width), which are a proxy for the

folding energy landscape. Knowledge of the energy

spacing allows one to infer the smoothness of the

energy landscape: the larger the spacing the rougher

the landscape.34 This property is central for the

principle of minimal frustration and the related

theory of protein folding on a funneled energy land-

scape.35,36 The spectrum gap and the spectrum

width of the folded states characterize thermody-

namic stability of the native and near-native

states.37 The analogy between folding and binding

energy landscapes was used to quantify the specific-

ity of protein–protein binding by the ratio of the

spectrum width to the roughness of the binding

energy landscape.38

Our focus on the energy minimization in

implicit solvent was motivated by a recent study39

showing that ranking protein structures by mini-

mized GB energies can distinguish the near-native

structures from decoys better than ranking based on

the energy minimization either in vacuum or explicit

solvent. First, our study shows that although the

shortly minimized GB energies of the bound and

unbound ensembles often significantly overlap, the

center of the unbound spectrum tends to have a

higher energy than the centers of the bound spec-

trum of the dimeric and multimeric states. More-

over, the larger the overlap the smaller the RMSD

between bound and unbound conformational ensem-

bles. Second, the existence of the structurally differ-

ent equipotential states in both ensembles suggests

that unbound states have larger entropy than the

bound states. The entropy-driven modeling of the

unbound-to-bound conformational changes suggests

a novel direction in advancing protein–protein dock-

ing algorithms, which, in fact, commonly neglect

entropy effects. Third, the results show that the

bound conformations of the RNase A interface

pre-exist in the unbound ensemble, indicating con-

formational selection as the binding mechanism.

Pancreatic trypsin inhibitor (PTI), ubiquitin, and ly-

sozyme C also have high similarity between bound

and unbound interfaces as well as small deviations
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that can be attributed to flash cooling40,41 or varia-

tions in the crystallization conditions. Fourth, the

exhaustively long minimization (LM) by the Adopted

Basis Newton–Raphson algorithm results in small

mostly intrarotamer adjustments that drastically

reduce the distance between the centers of the bound

and unbound spectra as well as the spectra extent. It

condenses unbound and bound energy levels into a

thin layer at the bottom of the energy landscape. At

the same time, the whole spectrum from the shortly

minimized states to the bottom of the folding funnel

can cover up to 40.3% of the lowest energy, indicating

that the folded states may significantly differ in

energy. The average energy spacing at the bottom of

the energy landscape varies between 0.8–4.6 and

3.5–10.5 kcal/mol for the unbound and bound states

correspondingly. The energy gap between the two

lowest states varies between 0.9 and 12.1 kcal/mol.

Finally, the results show that protein vibrations itself

can stimulate the interstate transitions, thus support-

ing the conformational selection theory. We suggest

an approach for estimating the number of normal

modes involved in conformational transition and

show that, on average, 20 low-energy normal modes

are needed to describe transition between two neigh-

boring energy states. At the same time, transitions

between the two lowest states may involve an order

of magnitude larger number of the modes.

Results and Discussion

To compile ensembles of bound and unbound states,

we first selected a subset of 165 protein–protein

complexes from the non-redundant DOCKGROUND

set 3.0 of 233 protein–protein complexes.42 This sub-

set characterized by small unbound-to-bound confor-

mational changes (all-atom RMSD� 2 Å) represents

a majority of the protein complexes (71%). Then,

proteins that are monomers in the unbound state

were selected from the subset and screened against

the Protein Data Bank (PDB) for highly homologous

proteins. Keeping PDB structures with small num-

ber of missing residues or mutations (see Methods

section) resulted in a set of only six proteins (ovomu-

coid, PTI, ubiquitin, RNase A, CheY, and lysozyme

C) that have more than five PDB structures in its

unbound and bound/dimeric ensembles (Table I and

Supporting Information Table SI). We found that

only 1.8% of the proteins in the DOCKGROUND

subset have corresponding multistate conformational

ensembles. To exclude energy fluctuations related to

structural disorder and mutations, a program Profix

was used to build the disordered residues and miss-

ing atoms and to reverse all point mutations.

Table I shows that, as expected, all unbound

ensembles have more conformations than the corre-

sponding dimeric ensembles. On the other hand, only

three proteins were found to form multimers. Among

them, lysozyme C and PTI have more conformations in

their multimeric ensembles than that in the dimeric

ones. The ensemble population and its heterogeneity

are the key factors for the following analysis. Best et

al.8 showed that from 20 to 40 structures were

required to reproduce side-chain heterogeneity in the

unbound protein. All our unbound ensembles satisfy

this requirement (Table I). Variations in crystallization

conditions such as pH or ionic strength provide confor-

mational heterogeneity in the ensembles and enable

characterization of different subspaces on the land-

scape. An extra heterogeneity comes with the combina-

tion of X-ray and NMR structures, which represent

protein dynamics at different time scales. X-ray struc-

tures carry on effects of crystal packing interactions

and the flash cooling technique,41 which may lock and

optimize one of the conformations available in solution.

The GB energy of each of the selected structures

was subject to a two-stage minimization by the

GBMV2 module implemented in the Chemistry at

HARvard Macromolecular Mechanics (CHARMM)

package. The first stage consisted of 50 steps of the

steepest descent minimization [short minimization

(SM)] followed by 104 steps of the Adopted Basis

Newton–Raphson minimization (LM). The GB energy

included polar and nonpolar solvation energies, and

an internal energy described by the CHARMM22

molecular force fields. The GBMV2 as well as other

GB models enable fast calculations of the Poisson–

Boltzmann (PB) electrostatic solvation energy by

Gelec 52
1

2

1

ep
2

1

es

� �X
ij

qiqjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ij1RGB
i RGB

j exp 2r2
ij=KRGB

i RGB
j

� �r ; (1)

Table I. Ensembles of Bound and Unbound Proteins

Protein
Unbound
structures

Bound structuresa

Dimers Multimers

RNase A 49 32 3
Pancreatic

trypsin
inhibitor (PTI)

27 18 29

Chemotaxis
protein CheY

73 6

Ubiquitin 394 8
Ovomucoid 124 6
Lysozyme C 45 19 24

a Considered separately from the other subunit(s) in the
dimers/multimers.
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where rij is a distance between atoms i and j, qi and

qj are the partial charges, Ep and Es are the solute

and solvent dielectric constants, RGB
i is an effective

Born radius of the atom i, and K is a Still factor.43

The GBMV2 applied here was shown to be one of

the best GB approaches among 23 CHARMM/

AMBER/OPLS-based GB models.44 It showed a con-

sistently small error of less than 1% for relative sol-

vation energies between different conformations of

the same protein, making this model well suitable

for the analysis of energies in protein ensembles. In

addition, this model reproduced PB solvation ener-

gies within 1% error on average for large sets of

proteins44,45 and showed 0.9992 correlation

between PB and GB energies.45 The nonpolar solva-

tion energy including the formation of a protein

cavity in the solvent and protein–solvent interac-

tions were calculated by Gnp 5
X

i
riAi1Eið Þ;46

where Ai is a solvent-accessible surface area of the

atom i, ri is the atomic solvation parameter for the

atom i, Ei is a reference solvation energy of the

atom i.

Bound and unbound energy bands

Figure 1 shows minimized energy spectra of six pro-

teins (see Methods section) represented by the

ensembles of their conformations determined by

X-ray crystallography and NMR (Table I and Sup-

porting Information Table SI). SM and LM were

applied to characterize the topography of the energy

landscape in the GB model (see Methods section).

The SM removed atom clashes inside protein struc-

tures and relaxed surface side chains involved in

crystal contacts. Both energy minimizations caused

small intra-rotamer readjustments of the exposed

side chains resulting in a typical RMSD�0.7 Å

between the minimized and the nonminimized struc-

tures, which did not substantially change neither

the sizes of the bound and unbound ensembles nor

the RMSD between them (Table II). Nevertheless,

these changes were enough to significantly condense

both spectra of the unbound and bound proteins.

Figure 1 shows that the span of the spectra and the

spacing between energy minima after LM are signif-

icantly smaller than that after SM. The ratio

between the overall energy span (including the SM

and LM bands) in the unbound ensemble and the

lowest energy in the protein spectrum is 40.3% for

ovomucoid, 13.7% for PTI, 26.9% for ubiquitin,

21.5% for RNase A, 22.8% for CheY, and 24.2% for

lysozyme C. Excluding the lowest ratio for PTI as an

outlier, the ratio for other five proteins decreases 1.7

times, with a 2.5 times increase in the number of

atoms from ovomucoid to lysozyme C. The ratio

decrease is expected because the lowest energy is a

function of the total number of protein residues,

whereas the energy extent relates mainly to the sur-

face residues that are able to change their conforma-

tions in solution. The outlying ratio for PTI may

result from the insufficient size of its unbound en-

semble, which is the smallest among the proteins in

our set (Table I). Ovomucoid has 51 residues,

compared to 56 residues of PTI, but its unbound

ensemble is 4.6 times larger than the ensemble of

PTI.

The ratio between the energy span of the LM

band and the lowest energy is 7.0% for ovomucoid,

4.9% for PTI, 14.0% for ubiquitin, 5.5% for RNase A,

5.0% for CheY, and 3.1% for lysozyme C (Fig. 2).

Figure 1. Energy spectrum of the unbound and bound proteins. (A) PTI, (B) RNase A, (C) lysozyme C, (D) CheY, (E) ovomucoid,

and (F) ubiquitin. SM and LM indicate the spectrum after the short minimization (50 steps of the steepest descent minimization)

and long minimization (SM followed by 104 steps of the Adopted Basis Newton–Raphson minimization). U, D, and M are unbound

proteins (green), proteins crystallized as dimers (red), and multimers (blue). Open squares with error bars show the average energy

(the band’s center) and the standard deviation.
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Thus, LM reduces the width of the energy bands,

condensing protein states into a thin layer at the

bottom of the energy landscape. The energy distance

(the ruggedness) between the centers of the SM and

LM energy bands was calculated as an arithmetic

mean of energies in a protein ensemble after SM

and LM (see Methods section). Interestingly, the

energies of the unbound ensembles decrease more

upon minimization than the energies of the bound

ensembles (Supporting Information Fig. S1) despite

the fact that both ensembles have equipotential

energy levels (Fig. 1). On average, the unbound pro-

teins lose 0.6 kcal/mol per heavy atom or 4.6 kcal/

mol per residue. The bound structures from dimers

and multimers lose less: 0.4 and 0.3 kcal/mol per

heavy atom or 3.1 and 2.5 kcal/mol per residue

accordingly.

The centers of the unbound energies after SM

were higher than the centers of the bound energies

for all proteins, with the exception of ubiquitin. This

suggests that the unbound-to-bound conformational

changes guided by intermolecular interactions often

follow a path that decreases the internal energy of

the binding proteins. Such mechanism additionally

increases binding affinity

DG5 Ec2TScð Þ2 EA2TSAð Þ2 EB2TSBð Þ
5V1 E0A2EA

� �
1 E0B2EB

� �
2TSc1TSA1TSB; (2)

where Ec5V1E0A1E0B is the enthalpy of the complex,

V is the interaction energy between proteins A and

B in the complex, E0A;EA and E0B;EB are internal

energies of the bound and unbound conformations of

proteins A and B, Sc; SA, and SB are the entropies

of the complex and unbound proteins A and B. The

energy decrease can be achieved by improving the

interface packing upon binding. The prevalence of

the disorder-to-order interface transitions over the

reverse transitions corroborates this hypothesis.30

Equation (2) shows that binding forces may favor

low-entropy (less flexible) conformations. Effective

binding to a more-flexible high-entropy conformation

Figure 2. The ratio of the ensemble width after long minimi-

zation to the lowest energy in the joint ensemble. The data

are shown for unbound (�) and bound ensembles, extracted

from dimers (�) and multimers (�).

Table II. Bound-to-Bound and Bound-to-Unbound RMSDs

Protein

RMSD between bound structures (Å) RMSD between bound and unbound structures (Å)

All atoms Interface All atoms Interface

Ia SMb LMc I SM LM I SM LM I SM LM

RNase A
min 0.3 0.3 0.3 0.1 0.1 0.2 0.7 0.8 0.7 0.3 0.3 0.4
maxd 7.1 7.2 7.2 11.6 11.8 11.7 7.3 7.4 7.4 11.7 11.9 11.8

PTI
min 0.1 0.1 0.3 0.0 0.0 0.2 1.0 1.0 0.9 1.1 1.1 1.0
max 2.3 2.4 2.3 2.7 2.7 2.7 2.5 2.5 2.4 2.7 2.7 2.8

CheY
min 0.6 0.6 0.6 0.5 0.5 0.6 1.9 1.9 1.8 1.6 1.6 1.3
max 1.2 1.1 1.2 1.7 1.7 1.8 2.9 2.9 3.0 3.1 3.1 2.9

Ubiquitin
min 0.3 0.1 0.4 0.4 0.1 0.5 1.0 1.0 0.9 1.1 1.1 1.0
max 1.6 1.7 1.5 2.4 2.5 2.3 4.1 4.1 4.0 5.9 5.9 6.1

Ovomucoid
min 0.6 0.6 0.7 0.5 0.5 0.5 1.2 1.1 0.9 1.3 1.2 1.1
max 1.2 1.2 1.2 1.6 1.6 1.8 2.2 2.2 2.1 3.5 3.4 3.1

Lysozyme C
min 0.2 0.2 0.4 0.1 0.1 0.2 0.8 0.8 0.8 0.7 0.7 0.7
max 1.8 1.8 1.9 3.0 3.2 3.1 1.9 1.9 1.9 3.1 3.1 3.3

a Initial (not minimized) protein structures.
b Structures subjected to 50 steps of the steepest descent minimization (short minimization).
c Structures subjected to 50 steps of the steepest descent minimization, followed by 104 steps of the Adopted Basis Newton–
Raphson minimization (long minimization).
d Minimum and maximum RMSDs.
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would require stronger intermolecular forces to

overcome a large entropy loss upon binding. The

generality of this observation for molecular associ-

ation processes was discussed in Ref. 47, where a

correlation was found between the increased affin-

ities for ligand binding and the decreased struc-

tural flexibility in a series of antibody molecules.

The two-sample t-test showed statistical signifi-

cance of the difference between the bound and

unbound SM-bands’ centers at the 5% level for all

proteins, except ubiquitin (Supporting Informa-

tion Table SII). LM resulted in a significant

decrease in the distance between the centers and

a cancellation of the statistical significance of the

difference between the centers of the unbound ener-

gies and bound energies for dimeric states of lyso-

zyme C and ovomucoid, and multimeric states of

PTI and lysozyme C. Comparison of the centers of

the bound spectra of the structures extracted from

dimers and multimers (Supporting Information Ta-

ble SIII) shows that LM resulted in statistically sig-

nificant difference between the corresponding

centers for RNase and PTI. For these proteins, the

center of the dimeric bound band of the dimer

states is lower than the center of the multimeric

bound band.

An overlap between the unbound and bound

energies in the SM and LM bands, shown in Figure

1, suggests that conformational selection of a bound

conformation may be dictated by entropy. Indeed, let

us for simplicity consider binding of a protein A to a

protein B that exists in one of two conformations

only. The binding free energy of A 1 Bi () AB

can be written as DGi5 Ec2TScð Þ2 EA2TSAð Þ2
EBi

2TSBi
ð Þ; where i equal to 1 or 2 is a number of

the protein B conformation, EBi
and SBi

are the en-

thalpy and the entropy of protein B in the ith state.

Therefore, if both conformations of protein B have

equal energies EB1
� EB2

, then the choice of the pre-

ferred unbound conformation of protein B is dictated

solely by the entropy contribution to the binding

free energy. In this case, DG reaches its minimum

for the unbound conformation with the lowest en-

tropy. This observation can be related to the energy

landscape properties by SBi
5Rln Ni; where Ni is

the number of microstates associated with the con-

formation i, and R is the gas constant. Since a less-

populated state has a lower entropy, then the less-

populated conformation is the most effective binder,

in agreement with the concept of conformational

selection.48 This further suggests that conformations

selected by binding forces in solution can reside in

narrow (low entropy) basins formed by the intramo-

lecular interactions. We intend to verify this hypoth-

esis in our future study. Sampling of the low-entropy

conformations may improve performance of protein–

protein docking algorithms, which commonly neglect

entropy effects.

Energy spacing, fluctuations, and
conformational changes

Figure 3 summarizes calculations of the energy

spacing in the ensembles. The spacing in the

unbound ensembles averaged over the protein set is

2.9 kcal/mol, which is two times less than the aver-

age spacing in the bound ensembles. On average,

the dimeric and multimeric states are separated by

6.0 and 6.4 kcal/mol accordingly. Larger variations

of the energy spacing in bound ensembles may be a

result of a smaller size of these ensembles (Table I).

Considering the proteins separately, one can see

that the energy spacing between the unbound states

varies between 0.8 and 4.6 kcal/mol, which includes

the Hyeon and Thirumalai’s49 estimate of 0–3 kcal/

mol for the energy landscape roughness or the bar-

rier and 3.2–3.5 kcal/mol barrier measured by sin-

gle-molecule dynamic force spectroscopy for a

complex of GTPase Ran and the nuclear transport

receptor importin-b.50 Note that the average spacing

of 2.9 kcal/mol is approximately equal to the maxi-

mum barrier found in the Hyeon and Thirumalai49

study but less then the maximum barrier found by

Nevo et al.50 The energy spacing between the bound

states is larger and falls in the intervals of 3.5–10.5

and 3.8–10.2 kcal/mol for the dimeric and multi-

meric states correspondingly. The energy gap

between the two lowest energy minima in the joint

ensemble of the bound and unbound states is

0.9 kcal/mol for RNase A, 6.1 kcal/mol for PTI,

12.1 kcal/mol for CheY, 7.9 kcal/mol for ubiquitin,

6.5 kcal/mol for ovomucoid, and 9.9 kcal/mol for lyso-

zyme C. The smallest energy gap was found for

RNase A, which has the smallest interface and all-

atom RMSD between bound and unbound states

(Table II). On the other hand, the largest gap in the

Figure 3. Energy spacing at the bottom of the folding funnel.

The figure shows the energy gap between the two lowest

energy minima (~) in the joint ensemble of the bound and

unbound states and the average distance between energy min-

ima after the long minimization in the unbound (�) and bound

ensembles, extracted from dimers (�) and multimers (�).
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CheY spectrum corresponds to the largest RMSD

between its bound and unbound ensembles.

To explore whether an interstate transition in

principle can result from protein vibrations, one can

estimate a number of the normal modes that needs to

be involved in the protein energy fluctuation equal to

the interstate barrier. The molecular energy fluctua-

tion in a canonical ensemble can be calculated as

dE5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hDE2i

p
5RT

ffiffiffiffiffiffi
cV
p

; where cV5cT1cR1co Tð Þ is a

specific heat capacity per molecule at constant vol-

ume, cT5cR53=2 are the contributions of three trans-

lational and three rotational degrees of freedom, and

co Tð Þ5
X

i
ci

o Tð Þ is the contribution of the 3Nat 26 in-

ternal vibrations in a protein with Nat atoms. For

low-energy modes �hxi � kT and therefore ci
o Tð Þ � 1

and co Tð Þ � n1
X

i5n11
ci

o Tð Þ; where n is a number

of the low-energy modes. For high-energy modes

�hxi � kT and ci
o Tð Þ exponentially goes to zero. One

can find the low-bound estimate for the number of

low-energy modes needed for a transition between

any two states separated by the dE barrier:

n5 dE=RTð Þ223. It gives 23 and 32 normal modes for

the standard ambient temperature of 298.15 K and

the barrier of 3.0 and 3.5 kcal/mol correspondingly.

Since functional modes are often found among the

lowest 20–30 modes,51–55 we can suggest that the pro-

tein vibrations indeed can excite the interstate transi-

tions related to protein function. Thus, an external

stimulus (e.g., a ligand or a partner protein) may not

be needed for changing protein conformation, which

supports the conformational selection paradigm.

Interestingly, many more modes are needed for an

energy fluctuation covering the distance between the

two lowest states in all the proteins in our set, except

RNase A, which shows the smallest distance between

bound and unbound ensembles. This is supported by

a study of conformational changes in myosin, calmod-

ulin, NtrC, and hemoglobin,56 which showed that the

first 20 modes contribute �50% of the conformational

changes in these molecules. The first 30 modes of the

[AChET]4–ColQ complex account for 75% of the con-

formational change in the tetramer.54 For a typical

1000 atoms protein having 2994 normal modes, a

fluctuation of 12.1 kcal/mol is achieved when at least

13% of the normal modes get involved. It was shown

that the protein energy fluctuation can increase up to

38 kcal/mol,57 which is more than enough for a tran-

sition over the largest gap/barrier considered in this

study.

Distance between unbound and bound
conformational ensembles and binding

mechanisms

The size of the ensemble is controlled by ambient

parameters (temperature, pH, salt concentration,

etc.) and dependent on protein sequence composition

(Table II). Protein–protein interactions can either

select a group of bound-like conformations from the

unbound ensemble or transform the whole ensemble

into a new group of bound-like conformations. To

find out which mechanism takes place, all-atom and

interface RMSDs were calculated between all bound

and unbound structures (Table II). Interface resi-

dues were defined as those losing >1 Å2 of their sur-

face upon binding. The smallest RMSD between the

bound and unbound ensembles was found for RNase

A and lysozyme C. RNase A shows the all-atom/

interface RMSD of 0.7/0.3 Å. The ensembles of lyso-

zyme C are separated by 0.8/0.7 Å of the all-atom/

interface RMSD. Interestingly, the unbound ensem-

ble of lysozyme C encompasses X-ray structures

only. The unbound ensemble of RNase including

both X-ray and NMR structures has the second larg-

est share 100%3NX-ray = NX-ray 1NNMR

� �
535%

� �
of

the X-ray structures (NX-ray ) in its unbound ensem-

ble among the proteins in our set. The low bound of

the unbound-to-bound all-atom and interface

RMSDs varies within 0.7–1.9 and 0.3–1.6 Å. The

largest RMSD between the bound and unbound

ensembles of CheY corresponds to the smallest over-

lap between their bound and unbound SM spectra

(Fig. 1), which disappears after LM. Thus, the ma-

jority of the SM and all LM bound conformations of

CheY have lower energies than the unbound ones. It

is likely that the entropy discussed above makes

these lower energy states unfavorable for the

unbound ensemble.

In addition to the RMSD analysis, we calculated

the share of the unbound residues within 1 Å of their

bound conformations for all pairs of the bound and

unbound structures (Figs. 4 and 5). Each unbound

structure was consequently aligned to each bound

structure of the same protein by TM-align,58 producing

a number of the alignments equal to the product of

populations of the bound and unbound ensemble. Then

for each alignment the RMSD between the side chains

in the bound and unbound structures was calculated

for each protein residue. The share of the unbound res-

idues within 1 Å of their bound conformation was cal-

culated as mi5100%3Ni
RMSD�1=N; where N is the

protein sequence length, and Ni
RMSD�1 is a number of

protein residues that deviate by less than 1 Å in the

alignment i. This metric also showed the lowest simi-

larity between the CheY ensembles at 0.39 level (39%

of all the residues, Fig. 5). The ensembles of RNase A,

lysozyme C, and PTI had the highest similarity at 0.9,

0.89, and 0.86 levels correspondingly. Comparison of

the bound and unbound interfaces revealed 13

unbound structures of RNase A with all interface resi-

dues within 1 Å from the bound conformations (Fig. 4).

Note that 2 Å is a typical size of a rotamer.32 Thus,

dimerization of RNase A with another protein can be

completely described by the conformational selection

mechanism.4–7 Contrary to that, forming a multimer
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involving RNase A invokes induced fit to expose its

C-terminal (Supporting Information Fig. S2), which

forms an interface b-strand that swaps with the N-ter-

minal helix in the RNase trimer. None of the unbound

structures has the exposed C-terminal. This further

suggests that some proteins may employ various

binding mechanisms, from the induced fit, to

“lock-and-key” and conformational selection, and their

combination, depending on the binding partner.5,6

Interestingly, flash cooling used to determine

approximately 90% of macromolecular structures40

results in a 0.2–0.8 Å backbone RMSD between the

structures determined at cryogenic and room tem-

peratures.41 It can also change the conformational

distribution of up to one-third of the protein side

chains.59 Taking this into account, we can assume

that crystallographic conditions may distort the

structure by 1 Å RMSD of all atoms. The low bound

Figure 4. Similarity of bound and unbound interface conformations. (A) PTI, (B) RNase A, (C) lysozyme C, (D) CheY, (E) ovomu-

coid, and (F) ubiquitin. The similarity is calculated for each pair of bound and unbound structures as the share of the unbound

interface residues within 1 Å RMSD from the bound interface residues. Bars and circles show the interface similarity between

dimeric/multimeric and unbound conformations accordingly. The horizontal axis shows conformation in the bound ensembles.

Figure 5. Similarity of bound and unbound structures. (A) PTI, (B) RNase A, (C) lysozyme C, (D) CheY, (E) ovomucoid, and (F)

ubiquitin. The similarity is calculated for each pair of bound and unbound structures as the share of the unbound residues

within 1 Å RMSD from the bound ones. Bars and circles show the similarity between dimeric/multimeric and unbound confor-

mations accordingly. The horizontal axis shows conformation in the bound ensembles.
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of the all-atom RMSD between bound and unbound

ensembles (Table II) suggests that, in addition to

RNase A, the conformational selection likely guides

binding processes of PTI, ubiquitin (also see Ref.

10), and lysozyme C.

Materials and Methods

Generation of the protein set

To compile a set of proteins with multiple bound and

unbound conformations, a subset of protein com-

plexes with small changes in the backbone upon

binding (all-atom RMSD� 2 Å) was selected from

the nonredundant DOCKGROUND set 3.0.42 The

subset covers 71% of the DOCKGROUND set of 233

complexes. The subset was narrowed down to pro-

teins that are monomers in the unbound state of the

biological assembly. Their sequences were used to

identify homologous proteins in PDB (sequence iden-

tity> 98% by BLAST60). The unbound protein struc-

tures with small ligands were excluded. All PDB

entries found for each query protein were put into

three ensembles: unbound monomers, dimers, and

multimers. Only proteins with more than five

unbound and bound structures were retained.

Selected structures were analyzed for disordered

residues and mutations. If some of the structures

had a disordered terminal, it was deleted in all

members of the ensemble. All fragments with �3

disordered residues at the interface and �5 at the

non-interface were reconstructed by a program Profix

from the Jackal package (http://wiki.c2b2.columbia.

edu/honiglab_public/index.php/Software). Structures

with disordered fragments longer than five residues

were discarded. Point mutations were reversed by

Profix. The resulting set consisted of six proteins

(Table I and Supporting Information Table SI) with

multiple X-ray and NMR-derived bound and unbound

conformational states and 100% sequence identity

between the states.

Minimization protocol

The MMTSB tool set61 and the GB method that cal-

culates Born radii by analytic volume integration

(CHARMM: GBMV method 2) were used to mini-

mize solvation free energy of the proteins.44,62 The

method was parameterized to accurately reproduce

electrostatic solvation energies from standard Pois-

son theory. A nonpolar contribution to the solvation

free energy was calculated by the ASP model consid-

ering the exposed surface area.46 Each protein was

subjected to 50 steps of the steepest descent minimi-

zation (SM) followed by 104 steps of the Adopted

Basis Newton–Raphson minimization (LM). The

CHARMM22 force field was used. The dielectric con-

stant was set to 1 for protein and 80 for solvent.

Each bound protein was minimized within its com-

plex to keep interface unchanged. The analysis

showed that protein energy changed �1.5% between

500 and 104 steps of LM. The average RMSD

between all heavy atoms of the initial and mini-

mized structures after SM was 0.1 Å. LM produced

the average all-atom RMSD at 0.7 Å between the

initial and the minimized structures. As can be seen

from Table II, LM did not change substantially the

RMSD-based size of the conformational ensembles

and the distance between the unbound and bound

ensembles.

Characterization of the energy spectrum

The ratio of the spectrum width in the ensemble of

the SM and LM unbound structures to the lowest

energy was calculated as the absolute value of

100%� DE11DE2ð Þ=EL; where EL is the lowest protein

energy in the joint ensemble of bound and unbound

structures, and DE1;2 are the energy span in the

unbound ensemble after the SM and LM correspond-

ingly. If the energy spans overlap in the SM and LM

ensembles, then the ratio was calculated as

100%� Emin 2Emaxð Þ=EL; where Emin;max are the lowest

and the highest energies in the unbound spectrum.

The ruggedness of the energy landscape was cal-

culated as �ESM 2�ELM ; where �ESM ; �ELM are the aver-

age energies in a protein ensemble after SM and LM

accordingly. The energy spacing was calculated as

the average distance between energy levels:XN

i51
ELM

i 2ELM
i11

� �
= N21ð Þ5 ELM

H 2ELM
L

� �
= N21ð Þ;

where ELM
i

	 

is an ordered set of the LM energies,

N is the number of structures in the LM ensemble.
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