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Abstract—In this paper, we propose a novel ensemble-based
approach to boost performance of traditional Linear Discriminant
Analysis (LDA)-based methods used in face recognition. The
ensemble-based approach is based on the recently emerged tech-
nique known as “boosting.” However, it is generally believed that
boosting-like learning rules are not suited to a strong and stable
learner such as LDA. To break the limitation, a novel weakness
analysis theory is developed here. The theory attempts to boost a
strong learner by increasing the diversity between the classifiers
created by the learner, at the expense of decreasing their margins,
so as to achieve a tradeoff suggested by recent boosting studies
for a low generalization error. In addition, a novel distribution
accounting for the pairwise class discriminant information is
introduced for effective interaction between the booster and the
LDA-based learner. The integration of all these methodologies
proposed here leads to the novel ensemble-based discriminant
learning approach, capable of taking advantage of both the
boosting and LDA techniques. Promising experimental results ob-
tained on various difficult face recognition scenarios demonstrate
the effectiveness of the proposed approach. We believe that this
work is especially beneficial in extending the boosting framework
to accommodate general (strong/weak) learners.

Index Terms—Boosting, face recognition (FR), linear discrimi-
nant analysis, machine learning, mixture of linear models, small-
sample-size (SSS) problem, strong learner.

I. INTRODUCTION

A. Face Recognition

FACE RECOGNITION (FR) has a wide range of appli-
cations, such as face-based video indexing and browsing

engines, biometric identity authentication, human-computer
interaction, and multimedia monitoring/surveillance. Within
the past two decades, numerous FR algorithms have been
proposed, and detailed surveys of the developments in the
area have appeared in the literature [1]–[6]. Among various
FR methodologies used, the most popular are the so-called
appearance-based approaches, which include the three most
well-known FR methods, namely Eigenfaces [7], Fisherfaces
[8], and Bayes Matching [9]. With focus on low-dimensional
statistical feature extraction, the appearance-based approaches
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generally operate directly on appearance images of face object
and process them as two-dimensional (2-D) holistic patterns
to avoid difficulties associated with three-dimensional (3-D)
modeling, and shape or landmark detection [5]. Of the appear-
ance-based FR methods, those based on linear discriminant
analysis (LDA) have shown promising results as it is demon-
strated in [8], [10]–[15]. However, statistical learning methods
such as the LDA-based ones often suffer from the so-called
“small-sample-size” (SSS) problem [16], encountered in
high-dimensional pattern recognition tasks where the number
of training samples available for each subject is smaller than the
dimensionality of the samples. For example, in the experiments
reported here only training samples per subject
are available while the dimensionality of the sample space
is up to . In addition, the performance of linear
appearance-based methods including LDA often deteriorates
rapidly when face patterns are subject to large variations in
viewpoints, illumination or facial expression. These variations
result in a highly nonconvex and complex distribution of face
images [17]. Thus, the limited success of these methods should
be attributed to their linear nature.

In general, a nonconvex distribution can be handled either
by globally nonlinear models or by a mixture of locally linear
models (or ensemble-based methods as they are known in the
machine learning literature [18]). Globally nonlinear methods
are not without problems. Approaches such as those based on
kernel machines [19]–[26] require the optimization of many de-
sign parameters, tend to overfit easily due to the increased al-
gorithmic complexity, and they are computationally expensive
compared to their linear counterparts. The last point is particu-
larly important for tasks such as face recognition, which are per-
formed in a high-dimensional input space. On the other hand,
ensemble-based approaches embody the principle of “divide
and conquer,” by which a complex recognition task is decom-
posed into a set of simpler ones, in each of which a locally
linear pattern distribution can be generalized and dealt with by
a relatively simple linear solution. As such, the ensemble-based
methods are simpler, easier to implement, and more cost effec-
tive compared to the nonlinear ones. However, most existing en-
semble-based FR methods are developed based on traditional
cluster analysis [27]–[30]. As a consequence, a disadvantage to
classification tasks is that the submodels’ division/combination
criteria used in these clustering techniques are not directly re-
lated to the classification error rate (CER) of the resulting clas-
sifier, especially the true CER (often referred to as the general-
ization error rate).
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B. Ensemble-Based Learning With Boosting

Recently, a machine-learning technique known as “boosting”
has received considerable attention in the pattern recognition
community, due to its usefulness in designing ensemble-based
classifiers [31], [32]. The idea behind boosting is to sequentially
employ a base classifier on a weighted version of the training
sample set to generalize a set of classifiers of its kind. Often
the base classifier is also called “learner.” These weights are
updated at each iteration through a classification-error-driven
mechanism. Although any individual classifier produced by the
learner may perform slightly better than random guessing, the
formed ensemble can provide a very accurate (strong) classifier.
It has been shown, both theoretically and experimentally, that
boosting is particularly robust in preventing overfitting and re-
ducing the generalization error by increasing the so-called mar-
gins of the training examples [32]–[35]. The margin is defined
as the minimal distance of an example to the decision surface of
classification [36]. For a classifier, a larger expected margin of
training data generally leads to a lower generalization error.

Since its introduction, AdaBoost became known as the most
accurate general purpose classification algorithm available [37].
However, the machine-learning community generally regards
ensemble-based learning rules, including boosting and bagging
[38], not suited to a strong and stable learner, such as LDA [35],
[39]. The reason behind this belief is that the effectiveness
of these rules depends, to a great extent, on the learner’s
“instability,” which means that small changes in the training
set could cause large changes in the resulting classifier [35].
On the other hand, it has been found in practical applications
that boosting may fail given a too weak learner [32]. In recent
boosting studies, Murua [40] introduced a useful notion of
weak dependence between classifiers constructed with the same
training data, and proposed an interesting upper bound on the
generalization error with respect to the margins of the classifiers
and their dependence. Murua’s bound reveals that to achieve
a low generalization error, the boosting procedure should not
only create the classifiers with large expected margins, but also
keep their dependence low or weak. This suggests in theory
that there exists a tradeoff between the large margins and the
weak dependence.

The requirement for an appropriately weak learner signifi-
cantly restricts the applicability of the boosting algorithms in
practical applications, given the fact that most of state-of-the-art
recognition methods involve the utilization of a strong learner.
Therefore, it is highly desirable to improve the traditional
boosting frameworks, so that they are capable of accommo-
dating more general learners in both the pattern recognition and
machine learning communities.

C. Overview of the Contributions

In this paper, a novel weakness analysis theory is developed to
overcome the limitation of the weak learners, which are neces-
sary in existing boosting algorithms. To this end, a new variable
called “learning difficulty degree” (LDD) is introduced along
with a cross-validation method. They are used to analyze and
appropriately regulate the weakness of the classifiers general-
ized by a strong learner via the training data. In addition, a new

loss function with respect to the LDD is proposed to quantita-
tively estimate the generalization power of these produced clas-
sifiers. This is achieved in the loss function by balancing the
averaged empirical error of the classifiers and their mutual de-
pendence. They are two key factors to the generalization error
of the formed ensemble classifier as shown in Murua’s theory
[40].

The proposed weakness analysis theory is applied to boost
the performance of the traditional LDA-based approaches
in complex FR tasks. Thus, the learners in this work are the
LDA-based ones, which differ from the traditional learners used
in boosting at two aspects: 1) They are rather strong and stable
and 2) they are feature extractors rather than pure classifiers.
The latter makes this work similar in spirit to those of Viola,
Tieu and Jones [41]–[43], where the boosting process is viewed
as a feature selection process. Particularly, to boost the specific
LDA-based learners, a new variable called “pairwise class
discriminant distribution” (PCDD) is also introduced to build
an effective interaction mechanism between the booster and
the learner. As a result, a novel ensemble-based discriminant
learning method is developed here under the boosting frame-
work through the utilization of the PCDD and the weakness
analysis theory. In the proposed method, each round of boosting
generalizes a new LDA subspace particularly targeting those
examples from the hard-to-separate pairs of classes indicated
by its preceding PCDD, so that the separability between these
classes is enhanced in the new LDA subspace. The final result
obtained by the process is an ensemble of multiple relatively
weak but very specific LDA solutions. The ensemble-based
solution is able to take advantage of both boosting and LDA.
It is shown by the FR experiments to outperform the single
solutions created by the LDA-based learners in various difficult
learning scenarios, which include the cases with different SSS
settings and the case with increased nonlinear variations.

The rest of the paper is organized as follows. In Section II, we
briefly review the AdaBoost approach and its multiclass exten-
sions. Then, in Section III, the theory and algorithm of how to
boost a LDA-based strong learner are introduced and described
in detail. Section IV reports on a set of experiments conducted
on the FERET face database to demonstrate the effectiveness
of the proposed methodologies. Finally, conclusions are sum-
marized in Section V. In addition, a brief introduction to the
adopted LDA-based learners is given in Appendix I.

II. RELATED WORK

Since the boosting method proposed here is developed from
AdaBoost [31], we begin with a brief review of the algorithm
and its multiclass extensions.

In the case of pattern classification, the task of learning from
examples can be formulated in the following way: Given a
training set, , containing classes with each
class consisting of a number of exam-
ples and their corresponding class labels , a total of

examples are available in the set. Let be the
sample space: , and be the label set:

. Taking as input such a set , the objective of
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Fig. 1. Algorithm of boosting a LDA-style learner (simply replacing the learner with JD-LDA or EFM in step 3 to obtain B-JD-LDA or B-EFM). Either A (p; q)
or Â (p; q) can be used to replace each other during the boosting process.

learning is to estimate a function or classifier ,
such that will correctly classify unseen examples .

To this end, AdaBoost works by repeatedly applying a given
weak learner to a weighted version of the training set in a se-
ries of rounds , and then linearly combining these
weak classifiers constructed in each round into a single
strong classifier . The most interesting feature of AdaBoost is
its surprising ability to reduce the amount of overfitting and the
generalization error of classification, even as becomes large
[31], [34]. To explain the property, quite a number of perspec-
tives on AdaBoost have emerged since its introduction [44]. The
dominant amongst them is the margin theory, which regards Ad-
aBoost to be an efficient method for maximizing the margin
[34]. However, many researchers have shown that the margin
theory provides only partial answers to the puzzle [45], [46].
As a result, AdaBoost still remains as a mysterious algorithm,
which is considered one of the most important unsolved prob-
lems in machine learning [37]. On the other hand, the limita-
tion in the theoretical explanation does not seem to hamper the
success of AdaBoost-style approaches in practical applications.
For example, Viola and Jones [43] build the first real-time face
detection system by using AdaBoost, which is considered a dra-
matic breakthrough in the face detection research.

AdaBoost is originally developed to support binary classifi-
cation tasks. Its multiclass extensions include two variants, Ad-
aBoost.M1 and AdaBoost.M2 [31]. AdaBoost.M1 is the most
straightforward generalization. However, the algorithm halts if
the classification error rate (CER) of the weak classifier pro-
duced in any iterative step is %. Research indicates that this
limitation often terminates the procedure too early, resulting in
insufficient classification capabilities [32], [34]. To avoid the
problem, rather than the ordinary CER, AdaBoost.M2 attempts
to minimize a more sophisticated error measure called “pseu-
doloss,” , which is expressed as

(1)

where (see steps 7,8 of Fig. 1 for definition) is the
so-called “mislabel distribution” defined over the set of all mis-
labels:

. With the pseudoloss, the boosting process can continue
as long as the weak classifier produced has pseudoloss slightly
better than random guessing. In addition, the introduction of the
mislabel distribution enhances the communication between the
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learner and the booster. In this way, AdaBoost.M2 can focus the
learner not only on hard-to-classify examples, but more specif-
ically, on the incorrect labels [31]. For all these reasons, we de-
velop the ensemble-based discriminant algorithm proposed in
the next section following the AdaBoost.M2 paradigm.

There are two LDA-based FR approaches (or learners) that
are boosted in this work. One is the so-called “Enhanced Fisher
LDA Model” (hereafter EFM) [13], and the other is called “Re-
vised Direct LDA” (hereafter JD-LDA) [47] proposed by the
authors recently. The EFM method is an improvement of the
Fisherfaces method [8], while the JD-LDA method is a LDA
variant introduced specifically for face recognition in high-di-
mensional, small-sample-size scenarios. For completeness, the
details of the two learners are described in Appendix I. Com-
pared to traditional learners used in the boosting algorithms,
the two LDA-based learners should be emphasized again at the
following two points. 1) They are strong and stable learners,
which can be successfully used as stand-alone procedures in
FR tasks [13], [47], [48]. That obviously contradicts the gen-
eral belief that boosting solutions should operate only on top of
weak learners. 2) The EFM or JD-LDA learner is composed of
a LDA-based feature extractor and a nearest center classifier. As
it can be seen in Appendix I, the learning focus of such a learner
is on the feature extractor rather than the classifier. It is rather
different at this point from the original boosting design where
the weak learners are used only as pure classifiers without con-
cerning feature extraction. This makes the AdaBoost learning
tend to be an adaptively feature selection process, some of the
ideas seen in [43]. Therefore, accommodating a learner such as
JD-LDA or EFM requires a generalized boosting framework,
which is not restricted by the assumption of the weak learner
availability. To highlight these difference, we call “gClassifier”
the more general classifier produced by the LDA-based learners
in the rest of the paper.

III. BOOSTING A LDA-STYLE LEARNER

A. Interaction Between the LDA Learner and the Booster

To boost a learner, we first have to build a strong connection
between the learner and the boosting framework. In AdaBoost,
this is implemented by manipulating the so-called “sample dis-
tribution,” which is a measure of how hard to classify an ex-
ample. However, we need a more specific connecting variable
in this work, given the fact that the nature of LDA is a feature
extractor, which goal is to find a linear mapping to enhance the
between-class separability of the samples under learning. For
this purpose, a new distribution called “pairwise class discrimi-
nant distribution” (PCDD), , is introduced here. The PCDD
is developed from the mislabel distribution of AdaBoost.M2.
Defined on any one pair of classes , the
PCDD can be computed at the th iteration as (2), shown at the
bottom of the page, where and are the number of elements

in classes and , respectively. As it is known from the Ad-
aBoost.M2 developments, the mislabel distribution
indicates the extent of difficulty in distinguishing the example

from the incorrect label based on the feedback information
from the preceding gClassifiers. Thus, can be
intuitively considered as a measure of how important it is to dis-
criminate between the classes and when designing the cur-
rent gClassifier . Obviously, a larger value of implies
worse separability between the two classes. It is, therefore, suit-
able to drive a LDA-based learner through , so that it is
focused specifically on the hard-to-separate pairs of classes. To
this end, rather than the ordinary definition of the between-class
scatter matrix where

is the mean of the class and

is the average of the ensemble ), we
introduce a variant of , which can be expressed as

with

(3)

It should be noted at this point that the variant weighted
by embodies the design principle behind the so-called “frac-
tional-step” LDA presented in [49]. According to this principle,
object classes that are difficult to be separated in the low-dimen-
sional output spaces generalized in previous
rounds can potentially result in misclassification. Thus, they
should be paid more attention by being more heavily weighted
in the high-dimensional input space of the current ( th) round, so
that their separability is enhanced in the resulting feature space

. It can be easily seen that the variant reduces to when
is equal to a constant.

Similarly, the weighted version of the within-class scatter ma-
trix can be given as follows:

(4)

where is defined over as the
sample distribution, similar to the one given in AdaBoost. Since

is derived indirectly from the pseudoloss , we call
a “pseudo sample distribution” for the distinguishing

purpose. It can be seen that a larger value of implies a
harder-to-classify example for those preceding gClassifiers.

Recently, it is shown that to achieve a low generalization
error, the boosting procedure should not only create classifiers
with large expected margins, but also keep their dependence
low or weak [40]. Obviously, classifiers trained with more
overlapping examples will result in stronger dependence
among them. A way to avoid building similar gClassifiers

if

otherwise
(2)
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repeatedly is to artificially introduce some randomness in the
construction of the training data. To this end, a modified PCDD
is introduced as (5), shown at the bottom of the page, where

. As a result of using
instead of , it can be seen that only those subject sets

that include the examples mislabeled by the last gClassi-
fier are contributing to the construction of the current
gClassifier (through ). By manipulating , we can
reduce the extent of overlapping between the training exam-
ples used to build different gClassifiers, and thus achieve the
goal of weakening the dependence among these gClassifiers.
Also, this has the effect of forcing every gClassifier to focus
only on the hard-to-separate pairs of classes suggested by its
preceding gClassifier, resulting in a more diverse committee of
gClassifiers to be generalized in the end. On the other hand,
the classification ability of the individual gClassifier is
weakened to some extent due to less training examples involved
in its construction. This weakening results in decrease in the
examples’ margins. However, it should be noted at this point
that there appears to be a tradeoff between weak dependence
and large expected margins to achieve a low generalization
error [40]. Our experimentation indicates that in some cases,
the utilization of may yield a better balance than that
obtained by , improving the classification performance.

Based on the introduction of
and , we can now give a new boosting solution, depicted
in Fig. 1, from which it can be seen that the LDA-style learner
at every iteration is tuned to conquer a particular subproblem
generalized by the feedback in a manner similar to “auto-
matic gain control,” and the final solution is a mixture of LDA
subspaces by weighted linear combination. Either JD-LDA or
EFM can be adopted as the LDA learner in the step 3 during
the boosting process. In the remainder of the paper, we call
“B-JD-LDA” the algorithm utilizing JD-LDA, while “B-EFM”
indicates the one employing EFM.

B. A Cross-Validation Mechanism to Weaken the Strong
Learner

As we mentioned earlier, JD-LDA or EFM itself has been
a rather strong and stable learner in terms of classification
ability. As a consequence, two problems are often encountered:
1) gClassifiers created exhibit a high similarity or mutual
dependence, given the same training data; 2) the pseudoloss

is often obtained halting the boosting process too
early. To solve the problems, we have to artificially weaken the
gClassifiers and increase their diversity accordingly. Generally
speaking, the learning capacity of any LDA-like algorithm
is directly proportional to the number of training examples
per subject, , and reciprocally proportional to the number of
the subjects, . Combining the two factors, we can define a
variable called Learning Difficulty Degree (LDD): ,
to roughly estimate the degree of difficulty for the discriminant

Fig. 2. Flow chart of the cross-validation mechanism embedded in the
proposed boosting framework to weaken the LDA-style learner. The flow chart
is based on one iteration, and the NCC denotes the nearest center classifier.

learning task on hand. It should be noted that the average
is considered as subjects are allowed to

have different number of training examples, . Obviously,
a smaller value implies a more difficult learning task. In
other words, if a learner is trained with different sample sets,
the classification strength of the obtained gClassifiers will be
different: A sample set with a smaller value leads to a weaker
gClassifier. Thus, from the training data point of view, the
LDD provides a qualitative measure of the weakness of the
gClassifiers created by the same learner. For the purpose of
distinguishing the two meanings, we denote the LDD as
when it is used to express the degree of difficulty for a learning
task, while denotes the weakness of a gClassifier.

Based on the above analysis, we can introduce into the pro-
posed boosting framework the cross-validation mechanism de-
picted in Fig. 2 With the mechanism in place, only a subset of
the entire training set , is used to train the LDA-style
learner. The subset is formed in each iteration by choosing
the hardest-to-classify examples per class based on cur-
rent values of . Please note that , where

denotes the size of . In the sequence, the obtained LDA
feature extractor
(see Appendix I for details of ) are used to build a gClas-
sifier, based on the nearest center rule.
The gClassifier is applied to the entire training set including
those unseen, to the learner, examples . All the vari-
ables defined on such as , and (or ) are then
reported and used in the next iteration. The detailed implemen-
tation steps of the mechanism have been embedded in Fig. 1.

if

otherwise
(5)
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It can be seen that under the proposed strategy, the LDD
value of the sample set used to train the strong learner decreases
to from (note: ) in each iteration. Fol-
lowing the weakness analysis described above, this equivalently
weakens the gClassifiers produced by the learner. At the same
time, since each iteration feeds the learner a different subset
of the entire training set, this essentially increases the diversity
among these gClassifiers. Also, it should be added at this point
that one of side-effects of using only examples per subject
during the construction of each gClassifier is obtaining a better
estimate of the pseudoloss . This is achieved by using what
Leo Breiman calls the “out-of-bag” samples (those samples not
used during the training of the classifier) to estimate the error
rate [50]. Hence finding the optimal also provides a balance
between good classifier performance and an improved estimate
of the misclassification.

C. Estimation of Appropriate Weakness

The cross-validation mechanism introduced above greatly en-
hances the strength of the proposed boosting algorithm, but also
raises the problem of model selection, that is, the determination
of the optimal . As we know from the analysis in
last section, a smaller/larger value will equivalently lead to
a weaker/stronger gClassifier, given the same learner. However,
boosting may fail when either too weak (e.g., ) or too
strong (e.g., ) gClassifiers are constructed for combination
[32]. Consequently, we can conjecture that a gClassifier with
appropriate weakness should have a value in between
and . Intuitively, it is reasonable to further assume that a
stronger gClassifier should lead to a lower empirical CER, while
a learner, trained on a smaller fraction of the training set i.e., a
smaller size , should generalize a weaker but more diverse
committee of gClassifiers with each one having a more honest
estimate of misclassification. Thus, a sort of loss function with
respect to that balances the two factors can be used to drive the
model selection process. The proposed here function is defined
as

(6)

where is the empirical CER obtained
by applying the gClassifier constructed by to the
training set , and is a
regularization parameter that controls the tradeoff between the
weakness and the diversity of the gClassifiers. It can be seen
that the tradeoff embodied in (6) implements the design princi-
ples described earlier in the sense that in order to compensate
for high empirical error, the gClassifiers should have low mu-
tual dependence, and vice versa. With the introduction of the
loss, determining the set of gClassifiers with the optimal
value is equivalent to minimizing with respect to . As will
be seen in the experiments reported here, the estimation results
through look rather accurate across various settings of the
parameters .

In this paper, the weakness analysis theory, including the
cross-validation mechanism of weakening a strong learner and

the subsequent estimation method of appropriate weakness,
is developed for the LDA-style learners. However, it can be
seen from the previous presentations that both the two methods
are dependent only on the training set, where each subject is
required to have at least two examples. As a result, a traditional
boosting framework enhanced with the weakness analysis
theory is applicable to work with any general (weak/strong)
learners. This exhibits a considerably promising approach to
break the traditional limitation of the weak learners in the
boosting literature.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed boosting
methodology by applying it to a challenging pattern classifi-
cation task, namely face recognition. Due to space limitations,
only the results of B-JD-LDA and B-EFM with the PCDD

are reported here (The interested readers can refer to
[51] for the results obtained with ).

A. The Face Database and FR Evaluation Design

To show the high complexity of the face pattern distribution,
the two evaluation databases used in the experiments are taken
from the well-known FERET database, which has been consid-
ered the largest, most comprehensive and representative face
database to be used for evaluating the state-of-the-art in face
recognition [52], [53]. The evaluation databases are constructed
in two stages. First, for the purpose of preprocessing, we find
in the FERET database all grayscale face images that are sup-
plied along with the coordinate information of eyes, nose tip
and mouth center to form a set . The set contains in total
3817 face images of 1200 subjects. In the sequence, the first
evaluation database denoted as is formed by choosing in the
set all (1051) images of 104 subjects with each one having at
least seven images. Thus we can generalize a set of SSS learning
tasks, ranging from to , to study
the corresponding performance changes of the boosting algo-
rithms. Similarly, the second evaluation database denoted as
(including ) is constructed by choosing all (1703) images of
256 subjects in with at least four images per subject. This
database is utilized to test the learning capacity of the al-
gorithms as the size of the evaluation database becomes larger.
The details of the images included in and are depicted in
Table I, where the naming convention for the imagery categories
can be found in [53], [54].

The original images in the FERET database are raw face im-
ages that include not only the face, but also some irrelevant, for
face recognition, data, such as hair, neck, shoulder and back-
ground, as shown in Fig. 3: Left. To avoid incorrect evaluations
[55], we follow the preprocessing sequence recommended in
[53], which includes four steps: 1) Images are translated, rotated
and scaled (to size 150 130) so that the centers of the eyes are
placed on specific pixels; 2) a standard mask, as shown in Fig. 3:
Middle is applied to remove the nonface portions; 3) histogram
equalization is performed in the masked facial pixels; 4) face
data are further normalized to have zero mean and unit standard
deviation. Figs. 3: Right and 4 depict some examples after the
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TABLE I
NUMBER OF IMAGES DIVIDED INTO THE STANDARD FERET IMAGERY

CATEGORIES IN THE EVALUATION DATABASES, AND THE POSE ANGLE

(DEGREE) OF EACH CATEGORY

Fig. 3. Left: Original samples in the FERET database. Middle: The standard
mask. Right: The samples after preprocessing.

Fig. 4. Examples for six subjects drawn from the two normalized FERET
subsets, G and G .

preprocessing sequence is applied. For the computational pur-
pose, each image is finally represented as a column vector of
length .

Following standard FR practices [56], the database
is randomly partitioned into two subsets: The

training set and test set . The training set is composed of
images: images per subject are randomly chosen,

where denotes the size of . The remaining images are used
to form the test set . Any FR method evaluated here
is first trained with , and the resulting face recognizer is then
applied to to produce a classification error rate (CER), which
is defined as the fraction of the test examples wrongly classified.
To enhance the accuracy of the assessment, all the CERs reported
below are averaged over five runs. Each run is executed on such
a random partition of the database into and .

B. The Comparison of FR Performance in Terms of CER

Besides the two proposed boosting methods, B-JD-LDA
and B-EFM, their corresponding stand-alone JD-LDA and
EFM methods (without boosting) were performed to measure
the improvement brought by boosting. Meanwhile, three FR
algorithms, the Eigenfaces method [7], the Fisherfaces method
[8] and the Bayes matching method [9], were also implemented
to provide performance baselines. Both Eigenfaces and Fisher-
faces are considered to be among the most cited and influential
FR algorithms [5], while the Bayes method is the top performer
in the 1996/1997 FERET competitions [53].

TABLE II
COMPARISON OF THE CERs (%) AS A FUNCTION OF (� (L); � (r)) OBTAINED

ON THE DATABASE G

The first experiment conducted on is designed to test
the sensitivity of the CER measure to (i.e., various SSS
learning tasks arising from different database partitions) and

(i.e., various weakness extents of gClassifiers in each
task). For all the seven methods compared here, the CER is a
function of the number of extracted feature vectors, , and
the number of available training examples per subject, . In
addition, the performance of B-JD-LDA and B-EFM is affected
by , the number of examples per subject that is used to control
the weakness of the produced gClassifiers during the boosting
process. Considering the huge computational cost, we simply
fixed the feature number for B-JD-LDA and
for B-EFM rather than seek their respective optimal . The
maximal iteration number used in boosting was set as ,
beyond which it was empirically observed that boosting was
very likely to overfit. The lowest CERs finally obtained by
the seven methods under various settings of and
are depicted in Tables II and III, where denotes the
CER of B-JD-LDA or B-EFM with the best found iteration
number and , while denotes the CER of the
five nonboosting methods with the best found feature number

. All these variables have been averaged over five runs
as we mentioned earlier. To further facilitate the comparison
of boosting performance, we define a quantitative statistic
regarding the biggest CER improvement achieved by boosting,
denoted as , where

and denote the CERs of a boosting-based
method (B-JD-LDA or B-EFM) and its corresponding
nonboosting version (JD-LDA or EFM), respectively, and

. The results are summarized in
Table IV, from which it can be clearly seen that B-JD-LDA and
B-EFM with appropriate values have boosted the performance
of JD-LDA and EFM, respectively, across various SSS learning
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TABLE III
THE CERs, �e (M ), OBTAINED BY THE THREE BENCHMARK METHODS ON G

TABLE IV
THE BIGGEST CER IMPROVEMENT ACHIEVED BY B-JD-LDA AND

B-EFM IN VARIOUS TASKS

scenarios ranging from to . Particularly,
the performance enhancement is more aggressive in the worse
SSS scenarios. This demonstrates the effectiveness of the two
boosting approaches against the SSS problem. The biggest
improvement, %, is achieved by B-JD-LDA when

in the most difficult task .

The second experiment conducted on is designed to test
the CER performance changes as the size of the evaluation
dataset increases. Since the two boosting methods require at
least three training samples per subject, we are allowed to
create only one partition case from , i.e., , which leads
to an SSS learning task with . Correspondingly,
the lowest CERs obtained by the seven methods are shown in
Table V. It can be seen from these results that a stable boosting
performance is achieved by both boosting approaches. The
quantitative statistic goes up to % and % for
B-JD-LDA and B-EFM, respectively. The results indicate
only a slightly better boosting performance compared to that
achieved under the assumption in the first exper-
iment, although in theory a higher performance improvement
is expected when more pattern variations are introduced. The
reason may be explained by the fact that most new samples
added to the database come from the fa and fb sets, the
simplest categories in the FERET database, as shown in Table
I. As a result, the performance margins between different
methods is reduced to some extent.

In both of the two experiments, Eigenfaces is the worst per-
former among the seven methods. From the results delivered by
the most popular benchmark method, we can roughly learn how
difficult it is to conduct face recognition on the two evaluation
datasets, and . Also, it is of interest to compare the perfor-
mance of B-JD-LDA and B-EFM with that of the Bayes method.
Published results indicate that the latter generally outperforms,
in terms of CER, most subspace-based FR approaches including
those using traditional LDA, Kernel Principal Component Anal-
ysis (K-PCA) or Independent Component Analysis techniques
(ICA) by a margin of at least ten percent [57]. However, as it
can be seen from Tables II, III, and V, both boosting methods are
superior to the Bayes method. Especially, B-JD-LDA leads the
state-of-the-art method up to 4.38% and 4.91% in the two most
difficult learning tasks, and in

the first experiment. Although we admit that our implementa-
tion of the Bayes method1 may not be as good as the original
implementation of Moghaddam et al. [9], this comparison still
provides a promising perspective: It is possible to boost a tradi-
tional FR algorithm to the state-of-the-art level under the pro-
posed framework. Moreover, it should be mentioned again at
this point that unlike the five nonboosting methods, we did not
seek the CERs with the optimal values for the two boosting
approaches. Obviously or , as a substitute for , is
only suboptimal. We expect that a higher boosting performance
gain can be obtained when a better value is used.

C. Weakness Analysis of the gClassifiers

As it was mentioned earlier, the proposed boosting ap-
proaches would fail, in theory, to perform well when too weak
or too strong gClassifiers are utilized. Clearly, it can be exper-
imentally observed at this point from the example shown in
Fig. 5, where the results are obtained by B-JD-LDA in the task

. In this example, the weakest and strongest
gClassifiers are produced by B-JD-LDA when and ,
respectively. However, the generalization performance of the
former is only slightly better than that of the single JD-LDA,
while the latter tends to overfit quickly, although it yields the
lowest training error. In contrast with this, appropriately weak
gClassifiers are produced when are used. In these
cases, it can be seen from Fig. 5 that the B-JD-LDA exhibits the
beautiful property of boosting: The test CER is continuously
improved, even long after the training error has dropped down
to zero. Similar phenomena have been also observed with the
B-EFM method.

Based on the theory developed in Section III-C, the gClassi-
fiers with the best weakness or the optimal can be found
by minimizing a generalization loss function (6) with re-
spect to , i.e., . To test the estimation ac-
curacy of the method, we applied the loss function to the var-
ious learning tasks designed in the first experiment. The ob-
tained results including , and the worst value
are depicted in Tables VI and VII for B-JD-LDA and B-EFM,
respectively, where the values of were found empirically. It
should be mentioned here that it is not a difficult task to find an
appropriate value within [0, 1]. In fact, our experiments reveal
that there exist a range of values which produce the same esti-
mation for the preference rankings of the values, for example,

for B-JD-LDA found in the experiment. Com-
paring the rankings to the CER results shown in Table II, it can

1To reduce the effect of reimplementation related issue, we use the maximum
likelihood (ML) version of the Bayes method instead of the maximum a pos-
teriori (MAP) version. The former is much easier to be implemented than the
latter. However, there is only a very slight performance difference between the
ML and MAP versions as shown in the works of [58].
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TABLE V
COMPARISON OF THE CERs (%) OBTAINED ON THE DATABASE G

Fig. 5. Training and test CERs of B-JD-LDA with varying weakness extents of gClassifiers as a function of T in the task � (L) = 5=104. The CER of JD-LDA
is the one obtained with M = M .

TABLE VI
THE GENERALIZATION LOSSR(r; L) WITH � = 0:62, THE BEST r ESTIMATE

(r ) AND THE WORST r ESTIMATE (r ) OBTAINED BY B-JD-LDA
ON THE DATABASE G

be seen that the values of the loss correctly indicate the optimal
, the worst , and even the goodness of the values between

them in most cases, for example, the second, third, and fourth
best values.

TABLE VII
THE GENERALIZATION LOSS R(r; L) WITH � = 0:62, THE BEST r

ESTIMATE (r ) AND THE WORST r ESTIMATE (r ) OBTAINED BY B-EFM
ON THE DATABASE G

D. Some Discussions on the Convergence of Boosting

From Fig. 5, it can be seen that given an appropriately weak
learner, the generalization error of often continues to drop
as becomes large even long after the training error reaches
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zero. However, the phenomenon also leads to the difficulty in
determining when the boosting procedure should be stopped in
order to avoid possible overfitting.

Considering the relationship between boosting and the
margin theory, intuitively, it is reasonable to use the cumulative
margin distribution of the training examples as an indicator to
roughly estimate an appropriate value of . In other words, we
can observe the changes of the margins of the training examples
at every boosting iteration, and consider it convergent when
the margins of most training examples stop increasing or are
increasing slowly. Our experiments indicate that this approach
works well in many cases (see [51] for details). However, as
mentioned earlier, the margin theory alone is insufficient to
explain the behaviors of boosting [40], [45], [46]. It is therefore
unrealistic to expect that the heuristic approach can accurately
estimate the optimal value of . For example, it is found in
our experiments that JD-LDA with the best found often
yielded much better cumulative margin distributions than its
boosting version [51].

Also, compared to many other boosting methods that usu-
ally need hundreds of iterations, it should be noted that only
around iterations are required to find an excellent
result using the B-JD-LDA and B-EFM algorithms in the ex-
periments reported in Tables II and V. Considering that each
gClassifier works in a considerably lower-dimensional subspace

compared to those nonboosting methods, such
a computational cost is affordable for most existing personal
computers.

V. CONCLUSION

In this paper, a novel weakness analysis theory has been
developed to overcome the limitation of the weak learners in
traditional boosting techniques. The theory proposed here is
composed of a cross-validation mechanism of weakening a
strong learner and a subsequent estimation method of appro-
priate weakness for the classifiers created by the learner. With
the introduction of the weakness analysis theory, a traditional
boosting algorithm can be used to work effectively with a gen-
eral (strong or weak) learner. To demonstrate the effectiveness,
the new boosting framework is applied to two strong LDA-style
learners, which are generally believed to be rather difficult to
be boosted. To this end, a novel variable, the pairwise class
discriminant distribution, is introduced to build an effective
connection between the booster and the learners. As a result,
two novel ensemble-based discriminant learning methods,
B-JD-LDA and B-EFM, are introduced. By manipulating the
boosting process, a set of specific LDA feature spaces can be
constructed effectively in a manner of similar to “automatic
gain control.” Unlike most traditional mixture models of linear
subspaces that are based on cluster analysis [59], these LDA
subspaces are generalized in the context of classification error
minimization.

The effectiveness of the proposed B-JD-LDA and B-EFM ap-
proaches including boosting power, estimation accuracy of the
loss function, and robustness against the overfitting and SSS
problems has been demonstrated through the FR experimenta-
tion performed on the FERET database. It is further anticipated

that in addition to JD-LDA and EFM, other existing traditional
face recognizers such as those based on PCA or ICA techniques
may be boosted to higher levels through integration into the pro-
posed boosting framework.

APPENDIX I
TWO LDA-STYLE LEARNERS: EFM AND JD-LDA

In face recognition applications, each sample is a face
image, represented as a column vector of length ,
i.e., , where is the image size, and

denotes the -dimensional real space. A LDA-style learner
mainly functions as a feature extractor, which determines a set of
optimal discriminant basis vectors, denoted as where

and , by optimizing the Fisher’s discriminant
criterion

with (7)

where and are the between- and within-class scatter
matrices of the training set, respectively. However, the estima-
tion for either or is extremely ill-posed due to the SSS
problem in most FR tasks. Generally, two kinds of discriminant
feature bases are considered for the solution: 1)
and ; and 2) and .
Some researchers such as [8], [10], [13], prefer the feature (1)
based on the consideration that the small/zero eigenvalues of

tend to capture noise. Other researchers such as [11], [12],
[47], consider (2) the optimal discriminant feature bases, since
they maximize the ratio of (7). Particularly, EFM [13] is an
extension to Fisherfaces [8], while JD-LDA [47] is an improve-
ment of [12]. Based on the experience of the authors, it is hard
to say which kind of features are better. Different experimental
settings often lead to different conclusions as shown in Table II.
Both EFM and JD-LDA return , where

is the center of the class . For sim-
plicity, we denote EFM or JD-LDA as a function , which
has . For the limitation of space, only
the pseudocode implementation of the less known JD-LDA
is depicted as a learner in Fig. 6. With the example, the EFM
learner can be implemented easily in a similar way.

For an input face image , its LDA-based representation
can be obtained by a linear mapping: . The
subsequent classification in the feature space can be performed
using any classifier. However, from the viewpoint of reducing
the overfitting chances in the context of boosting, a simple dis-
criminant function that explains most of the data is preferable to
a complex one. Consequently, a classic nearest center classifier
(NCC) is adopted here for the classification task. The NCC is
based on a normalized Euclidean distance, given by

(8)

where , and
. Based on the nearest center rule,

the class label of the input can be inferred through
. The classification score

has values in [0, 1], and thus it can fulfill the functional require-
ment of the boosting algorithm (AdaBoost.M2 [31]), indicating
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Fig. 6. Pseudocode implementation of the JD-LDA feature extractor:L(Z ) in the tth boosting iteration, where the inputZ = R , andR � Z is an adaptively
updated subset defined in Section III-B.

a “degree of plausibility” for labeling as the class . Since a
classifier such as the NCC discussed here usually yields two
outputs, the classification score and the class label

, we denote , and for the
distinguishing purpose.

ACKNOWLEDGMENT

Portions of the research in this paper use the FERET database
of facial images collected under the FERET program [54]. The
authors would like to thank the FERET Technical Agent, the
U.S. National Institute of Standards and Technology (NIST) for
providing the FERET database.

REFERENCES

[1] A. Samal and P. A. Iyengar, “Automatic recognition and analysis of
human faces and facial expressions: A survey,” Pattern Recognit., vol.
25, pp. 65–77, 1992.

[2] D. Valentin, H. A. Alice, J. O. Toole, and G. W. Cottrell, “Connectionist
models of face processing: A survey,” Pattern Recognit., vol. 27, no. 9,
pp. 1209–1230, 1994.

[3] R. Chellappa, C. L. Wilson, and S. Sirohey, “Human and machine recog-
nition of faces: A survey,” Proc. IEEE, vol. 83, no. 5, pp. 705–740, May
1995.

[4] S. Gong, S. J. McKenna, and A. Psarrou, Dynamic Vision From Images
to Face Recognition, Singapore: World Scientific , May 2000.

[5] M. Turk, “A random walk through eigenspace,” IEICE Trans. Inf. Syst.,
vol. E84-D, no. 12, pp. 1586–1695, Dec. 2001.

[6] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recog-
nition: A literature survey,” ACM Comput. Surv., vol. 35, no. 4, pp.
399–458, Dec. 2003.

[7] M. A. Turk and A. P. Pentland, “Eigenfaces for recognition,” J. Cogn.
Neurosci., vol. 3, no. 1, pp. 71–86, 1991.

[8] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997.

[9] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recognition,”
Pattern Recognit., vol. 33, pp. 1771–1782, 2000.

[10] W. Zhao, R. Chellappa, and J. Phillips, “Subspace linear discriminant
analysis for face recognition,” Univ. Maryland, College Park, MD, Tech.
Rep., CS-TR4009, 1999.

[11] L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu, “A new
LDA-based face recognition system which can solve the small sample
size problem,” Pattern Recognit., vol. 33, pp. 1713–1726, 2000.

[12] H. Yu and J. Yang, “A direct LDA algorithm for high-dimensional
data—With application to face recognition,” Pattern Recognit., vol. 34,
pp. 2067–2070, Oct. 2001.

[13] C. Liu and H. Wechsler, “Gabor feature based classification using the
enhanced fisher linear discriminant model for face recognition,” IEEE
Trans. Image Process., vol. 11, no. 4, pp. 467–476, Apr. 2002.

[14] J. Ye and Q. Li, “LDA/QR: An efficient and effective dimension reduc-
tion algorithm and its theoretical foundation,” Pattern Recognit., vol. 37,
no. 4, pp. 851–854, Apr. 2004.

[15] M. J. Er, W. Chen, and S. Wu, “High-speed face recognition based on
discrete cosine transform and rbf neural networks,” IEEE Trans. Neural
Netw., vol. 16, no. 3, pp. 679–691, May 2005.

[16] S. J. Raudys and A. K. Jain, “Small sample size effects in statistical
pattern recognition: Recommendations for practitioners,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 13, no. 3, pp. 252–264, Mar. 1991.

[17] M. Bichsel and A. P. Pentland, “Human face recognition and the face
image set’s topology,” CVGIP: Image Understanding, vol. 59, pp.
254–261, 1994.

[18] S. Kutin, “Algorithmic Stability and Ensemble-Based Learning,” Ph.D.
Thesis, Faculty Div. Phys. Sci., Univ. Chicago, June 2002.

[19] B. Schölkopf, A. Smola, and K. R. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, pp.
1299–1319, 1999.

[20] G. Baudat and F. Anouar, “Generalized discriminant analysis using a
kernel approach,” Neural Comput., vol. 12, pp. 2385–2404, 2000.

[21] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An
introduction to kernel-based learning algorithms,” IEEE Trans. Neural
Netw., vol. 12, no. 2, pp. 181–201, Mar. 2001.

[22] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Face recognition
using feature optimization and �-support vector learning,” in Proc. IEEE
Int. Workshop Neural Networks for Signal Processing, Falmouth, MA,
Sep. 2001, pp. 373–382.

[23] , “Face recognition using kernel direct discriminant analysis algo-
rithms,” IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 117–126, Jan.
2003.

[24] M. Wang and S. Chen, “Enhanced fmam based on empirical kernel
map,” IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 557–564, May
2005.



LU et al.: ENSEMBLE-BASED DISCRIMINANT LEARNING WITH BOOSTING FOR FACE RECOGNITION 177

[25] S. Pang, D. Kim, and S. Y. Bang, “Face membership authentication using
svm classification tree generated by membership-based lle data parti-
tion,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 436–446, Mar. 2005.

[26] H. Xiong, M. N. S. Swamy, and M. O. Ahmad, “Optimizing the kernel
in the empirical feature space,” IEEE Trans. Neural Netw., vol. 16, no.
2, pp. 460–474, Mar. 2005.

[27] A. Pentland, B. Moghaddam, and T. Starner, “View-based and modular
eigenspaces for face recognition,” in Proc. Computer Vision and Pattern
Recognition Conf. , June 1994, pp. 1–7.

[28] K.-K. Sung and T. Poggio, “Example-based learning for view-based
human face detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 1, pp. 39–51, Jan. 1998.

[29] B. J. Frey, A. Colmenarez, and T. S. Huang, “Mixtures of local linear
subspaces for face recognition,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, Santa Barbara, CA, Jun. 1998, pp. 32–37.

[30] J. Lu and K. N. Plataniotis, “Boosting face recognition on a large-scale
database,” in Proc. IEEE Int. Conf. Image Processing, Rochester, NY,
Sep. 2002, pp. II.109–II.112.

[31] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[32] R. E. Schapire, “The boosting approach to machine learning: An
overview,” MSRI Workshop Nonlinear Estimation and Classification,
pp. 149–172, 2002.

[33] H. Drucker and C. Cortes, “Boosting decision trees,” Adv. Neural Inform.
Process. Syst. 8, pp. 479–485, 1996.

[34] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the
margin: A new explanation for the effectiveness of voting methods,” in
Proc. 14th Int. Conf. Machine Learning , 1997, pp. 322–330.

[35] L. Breiman, “Arcing classifiers,” Ann. Statistics, vol. 26, no. 3, pp.
801–849, 1998.

[36] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[37] L. Breiman, “Population theory for boosting ensembles,” Ann. Statistics,
vol. 32, no. 1, pp. 1–11, 2004.

[38] , “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140,
1996.

[39] M. Skurichina and R. P. W. Duin, “Bagging, boosting and the random
subspace method for linear classifiers,” Pattern Anal. Appl., vol. 5, no.
2, pp. 121–135, Jun. 2002.

[40] A. Murua, “Upper bounds for error rates of linear combinations of
classifiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp.
591–602, May 2002.

[41] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using patterns
of motion and appearance,” in Proc. 9th IEEE Int. Conf. Computer Vision
, vol. 2, Oct. 2003, pp. 734–741.

[42] K. Tieu and P. Viola, “Boosting image retrieval,” Int. J. Comput. Vis.,
vol. 56, no. 1, pp. 17–36, 2004.

[43] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.
Comput. Vis., vol. 57, pp. 137–154, May 2004.

[44] Y. Freund and R. E. Schapire, “A discussion of “process consistency for
adaboost” by wenxin jiang, “on the bayes-risk consistency of regular-
ized boosting methods” by gbor lugosi and nicolas vayatis, “statistical
behavior and consistency of classification methods based on convex risk
minimization” by tong zhang,” Ann. Statist., vol. 32, no. 1, 2004.

[45] A. J. Grove and D. Schuurmans, “Boosting in the limit: Maximizing the
margin of learned ensembles,” in Proc. 15th Nat. Conf. Artifical Intelli-
gence , July 1998, pp. 692–699.

[46] C. Rudin, R. E. Schapire, and I. Daubechies, “Boosting based on
a smooth margin,” in COLT (Computational Learning Theory), J.
Shawe-Taylor and Y. Singer, Eds. New York: Springer-Verlag, 2004.

[47] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Face recognition
using LDA based algorithms,” IEEE Trans. Neural Netw., vol. 14, no. 1,
pp. 195–200, Jan. 2003.

[48] , “Regularized discriminant analysis for the small sample size
problem in face recognition,” Pattern Recognit. Lett., vol. 24, no. 16,
pp. 3079–3087, Dec. 2003.

[49] R. Lotlikar and R. Kothari, “Fractional-step dimensionality reduction,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 6, pp. 623–627, Jun.
2000.

[50] Out-of-Bag Estimation, L. Breiman. (1996). [Online]. Available:
ftp://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.Z

[51] J. Lu, “Discriminant learning for face recognition,” Ph.D. Dissertation,
The Edward S. Rogers Sr. Dept. Elect. Comp. Eng., Univ. Toronto,
Toronto, Canada, Jun. 2004.

[52] Image Group, Information Access Division, ITL, NIST (2004, Jan.).
[Online]. Available: http://www.itl.nist.gov/iad/humanid/feret/

[53] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The FERET evalua-
tion methodology for face-recognition algorithms,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 22, no. 10, pp. 1090–1104, Oct. 2000.

[54] P. J. Phillips, H. Wechsler, J. Huang, and P. Rauss, “The FERET database
and evaluation procedure for face recognition algorithms,” Image Vis.
Comput. J., vol. 16, no. 5, pp. 295–306, 1998.

[55] L.-F. Chen, H.-Y. M. Liao, J.-C. Lin, and C.-C. Han, “Why recognition
in a statistics-based face recognition system should be based on the pure
face portion: A probabilistic decision-based proof,” Pattern Recognit.,
vol. 34, no. 7, pp. 1393–1403, 2001.

[56] P. J. Phillips and E. M. Newton, “Meta-analysis of face recognition algo-
rithms,” in Proc. 5th IEEE Int. Conf. Automatic Face and Gesture Recog-
nition, Washinton, DC, May 20–21, 2002, pp. 235–241.

[57] B. Moghaddam, “Principal manifolds and probabilistic subspaces for
visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 6, pp. 780–788, Jun. 2002.

[58] Evaluation of Face Recognition Algorithms Website, R. Bev-
eridge and B. Draper. (2004, Dec.). [Online]. Available:
http://www.cs.colostate.edu/evalfacerec

[59] R. Xu and D. Wunsch II, “Survey of clustering algorithms,” IEEE Trans.
Neural Netw., vol. 16, no. 3, pp. 645–678, May 2005.

Juwei Lu (M’00) received the B.Eng. degree in
electrical engineering from Nanjing University of
Aeronautics and Astronautics, China, in 1994, the
M.Eng. degree in electrical and electronic engi-
neering from Nanyang Technological University,
Singapore, in 1999, and the Ph.D. degree in elec-
trical and computer engineering from University of
Toronto, Canada, in 2004.

From July 1999 to January 2001, he was a
Research Engineer with the Center for Signal Pro-
cessing, Singapore. From April 2004 to December

2004, he was a Postdoctoral Researcher at the Bell Canada Multimedia Labora-
tory, Edward S. Rogers Sr. Department of Electrical and Computer Engineering,
University of Toronto. Currently, he is a Senior Software Developer at the
Epson Canada Limited, Toronto, ON, Canada. His research interests include
multimedia signal processing, visual object detection and recognition, kernel
methods, support vector machines, neural networks, and boosting technologies.
He has published 28 refereed papers and book chapters in these areas.

Dr. Lu is a member IEEE Computational Intelligence Society. He is a re-
viewer of many journals, such as IEEE TRANSACTIONS ON PATTERN ANALYSIS

AND MACHINE INTELLIGENCE, IEEE TRANSACTIONS ON SYSTEMS, MAN AND

CYBERNETICS - PART B and Pattern Recognition Letters.

Konstantinos N. (Kostas) Plataniotis
(S’90–M’92–SM’03) received the B. Eng. degree in
computer engineering informatics from University
of Patras, Greece, in 1988, and the M.S and the
Ph.D. degrees in electrical engineering from Florida
Institute of Technology (Florida Tech) in Melbourne,
Florida, in 1992 and 1994, respectively.

He is an Associate Professor with The Edward S.
Rogers Sr. Department of Electrical and Computer
Engineering at the University of Toronto, Toronto,
ON, Canada, a Nortel Institute for Telecommunica-

tions Associate, a member of the Knowledge Media Design Institute at the Uni-
versity of Toronto and an Adjunct Professor with the School of Computer Sci-
ence at Ryerson University. His research interests include adaptive systems, bio-
metrics, image and signal processing, stochastic estimation, and pattern recog-
nition.

Dr. Plataniotis is the Vice Chair of the 9th International IEEE Conference on
Intelligent Transportation Systems (ISTC 06), September 18-20 2006, Toronto,
Canada, and the Technical Program Co-Chair for the IEEE International Con-
ference on Multimedia Expo (ICME) 2006, July 9–12, Toronto, Canada. He is
an Associate Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS.



178 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 1, JANUARY 2006

Anastasios N. Venetsanopoulos (S’66–M’69–
SM’79–F’88) received the Diploma in engineering
degree from the National Technical University
of Athens (NTU), Athens, Greece, in 1965, and
the M.S., M.Phil., and Ph.D. degrees in electrical
engineering from Yale University, New Heaven, CT,
in 1966, 1968, and 1969, respectively.

He joined the Department of Electrical and Com-
puter Engineering of the University of Toronto, ON,
Canada, in September 1968, as a Lecturer and he was
promoted to Assistant Professor in 1970, Associate

Professor in 1973, and Professor in 1981. Since July 1997, he has been Asso-
ciate Chair: Graduate Studies of the Edward S. Rogers Sr. Department of Elec-
trical and Computer Engineering and was Acting Chair during the spring term
of 1998–1999. Since July 2001, he has served as the 12th Dean of the Fac-
ulty of Applied Science and Engineering of the University of Toronto. He has
served as Chair of the Communications Group and Associate Chair of the De-
partment of Electrical Engineering and Associate Chair: Graduate Studies for
the Department of Electrical and Computer Engineering. He was on research
leave at Imperial College of Science and Technology, the National Technical
University of Athens, the Swiss Federal Institute of Technology, the University
of Florence and the Federal University of Rio de Janeiro, and has also served
as Adjunct Professor at Concordia University. He has served as lecturer in 138
short courses to industry and continuing education programs and as Consultant
to numerous organizations; he is a contributor to twenty eight (28) books, a coau-
thor of Color Image Processing and Applications (New York: Springer-Verlag,
2000), Nonlinear Filters in Image Processing: Principles Applications (Nor-
well, MA: Kluwer, 1990), Artificial Neural Networks: Learning Algorithms,
Performance Evaluation and Applications (Norwell, MA: Kluwer, 1993), and
Fuzzy Reasoning in Information Decision and Control systems (Norwell, MA:
Kluwer 1994). He has served as Chair on numerous boards, councils and tech-
nical conference committees of the Institute of Electrical and Electronic En-
gineers (IEEE), such as the Toronto Section (1977–1979) and the IEEE Cen-
tral Canada Council (1980–1982); he was President of the Canadian Society
for Electrical Engineering and Vice President of the Engineering Institute of
Canada (EIC) (1983–1986). He was a Guest Editor or Associate Editor for
several IEEE Journals and the Editor of the Canadian Electrical Engineering
Journal (1981–1983). He was the Technical Program Co-Chair of the IEEE In-
ternational Conference on Image Processing (ICIP’01). He has published 750
papers in refereed journals and conference PROCEEDINGS on digital signal and
image processing, and digital communications.

Prof. A.N. Venetsanopoulos is a member of the IEEE Communications, Cir-
cuits and Systems, Computer, and Signal Processing Societies of IEEE, as well
as a member of Sigma Xi, the Technical Chamber of Greece, the European As-
sociation of Signal Processing, the Association of Professional Engineers of
Ontario (APEO) and Greece. He was elected as a Fellow of the IEEE “for con-
tributions to digital signal and image processing.” He is also a Fellow of the
EIC, “for contributions to electrical engineering,” and was awarded an Hon-
orary Doctorate from the National Technical University of Athens, in October
1994. In October 1996, he was awarded the “Excellence in Innovation Award”
of the Information Technology Research Center of Ontario and Royal Bank of
Canada, “for innovative work in color image processing.”

Stan Z. Li received the B.Eng. degree from Hunan
University, P. R. China, the M.Eng. degree from Na-
tional University of Defense Technology, P. R. China,
and the Ph.D. degree from Surrey University, U.K.

He is a Researcher at National Lab of Pattern
Recognition (NLPR), Institute of Automation,
Chinese Academy of Sciences (CASIA), China,
Beijing, P. R. China, and the Director of the Center
for Biometrics and Security Research (CBSR), Bei-
jing, P. R. China. He worked at Microsoft Research
Asia, Beijing, P. R. China, as a Researcher, from

May 2000 to August 2004 . Prior to that, he was an Associate Professor of
Nanyang Technological University, Singapore. His current research interest is
in face recognition technologies, biometrics, intelligent surveillance, pattern
recognition, and machine learning. He has published several books, including
Handbook of Face Recognition (New York: Springer-Verlag, 2004) and Markov
Random Field Modeling in Image Analysis (New York: Springer-Verlag, 2nd
edition in 2001), and over 200 refereed papers and book chapters in these areas.


	toc
	Ensemble-Based Discriminant Learning With Boosting for Face Reco
	Juwei Lu, Member, IEEE, K. N. Plataniotis, Senior Member, IEEE, 
	I. I NTRODUCTION
	A. Face Recognition
	B. Ensemble-Based Learning With Boosting
	C. Overview of the Contributions

	II. R ELATED W ORK

	Fig.€1. Algorithm of boosting a LDA-style learner (simply replac
	III. B OOSTING A LDA-S TYLE L EARNER
	A. Interaction Between the LDA Learner and the Booster
	B. A Cross-Validation Mechanism to Weaken the Strong Learner


	Fig.€2. Flow chart of the cross-validation mechanism embedded in
	C. Estimation of Appropriate Weakness
	IV. E XPERIMENTAL R ESULTS
	A. The Face Database and FR Evaluation Design


	TABLE I N umber OF I MAGES D IVIDED I NTO THE S TANDARD FERET I 
	Fig.€3. Left: Original samples in the FERET database. Middle: Th
	Fig.€4. Examples for six subjects drawn from the two normalized 
	B. The Comparison of FR Performance in Terms of CER

	TABLE II C OMPARISON OF THE CERs (%) AS A F UNCTION OF $(\rho_t(
	TABLE III T HE CERs, $\bar {e}^*(M^*)$, O BTAINED BY THE T HREE 
	TABLE IV T HE B IGGEST CER I MPROVEMENT A CHIEVED BY B-JD-LDA AN
	C. Weakness Analysis of the gClassifiers

	TABLE V C OMPARISON OF THE CERs (%) O BTAINED ON THE D ATABASE $
	Fig.€5. Training and test CERs of B-JD-LDA with varying weakness
	TABLE VI T HE G ENERALIZATION L OSS ${\bf R}(r,L)$ W ITH $\lambd
	TABLE VII T HE G ENERALIZATION L OSS ${\bf R}(r,L)$ W ITH $\lamb
	D. Some Discussions on the Convergence of Boosting
	V. C ONCLUSION
	T WO LDA-S TYLE L EARNERS: EFM AND JD-LDA

	Fig.€6. Pseudocode implementation of the JD-LDA feature extracto
	A. Samal and P. A. Iyengar, Automatic recognition and analysis o
	D. Valentin, H. A. Alice, J. O. Toole, and G. W. Cottrell, Conne
	R. Chellappa, C. L. Wilson, and S. Sirohey, Human and machine re
	S. Gong, S. J. McKenna, and A. Psarrou, Dynamic Vision From Imag
	M. Turk, A random walk through eigenspace, IEICE Trans. Inf. Sys
	W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, Face re
	M. A. Turk and A. P. Pentland, Eigenfaces for recognition, J. Co
	P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, Eigenfaces 
	B. Moghaddam, T. Jebara, and A. Pentland, Bayesian face recognit
	W. Zhao, R. Chellappa, and J. Phillips, Subspace linear discrimi
	L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu, A 
	H. Yu and J. Yang, A direct LDA algorithm for high-dimensional d
	C. Liu and H. Wechsler, Gabor feature based classification using
	J. Ye and Q. Li, LDA/QR: An efficient and effective dimension re
	M. J. Er, W. Chen, and S. Wu, High-speed face recognition based 
	S. J. Raudys and A. K. Jain, Small sample size effects in statis
	M. Bichsel and A. P. Pentland, Human face recognition and the fa
	S. Kutin, Algorithmic Stability and Ensemble-Based Learning, Ph.
	B. Schölkopf, A. Smola, and K. R. Müller, Nonlinear component an
	G. Baudat and F. Anouar, Generalized discriminant analysis using
	K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, An
	J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, Face recogn
	M. Wang and S. Chen, Enhanced fmam based on empirical kernel map
	S. Pang, D. Kim, and S. Y. Bang, Face membership authentication 
	H. Xiong, M. N. S. Swamy, and M. O. Ahmad, Optimizing the kernel
	A. Pentland, B. Moghaddam, and T. Starner, View-based and modula
	K.-K. Sung and T. Poggio, Example-based learning for view-based 
	B. J. Frey, A. Colmenarez, and T. S. Huang, Mixtures of local li
	J. Lu and K. N. Plataniotis, Boosting face recognition on a larg
	Y. Freund and R. E. Schapire, A decision-theoretic generalizatio
	R. E. Schapire, The boosting approach to machine learning: An ov
	H. Drucker and C. Cortes, Boosting decision trees, Adv. Neural I
	R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, Boosting 
	L. Breiman, Arcing classifiers, Ann. Statistics, vol. 26, no. 3
	V. N. Vapnik, The Nature of Statistical Learning Theory . New Yo
	L. Breiman, Population theory for boosting ensembles, Ann. Stati
	M. Skurichina and R. P. W. Duin, Bagging, boosting and the rando
	A. Murua, Upper bounds for error rates of linear combinations of
	P. Viola, M. J. Jones, and D. Snow, Detecting pedestrians using 
	K. Tieu and P. Viola, Boosting image retrieval, Int. J. Comput. 
	P. Viola and M. J. Jones, Robust real-time face detection, Int. 
	Y. Freund and R. E. Schapire, A discussion of process consistenc
	A. J. Grove and D. Schuurmans, Boosting in the limit: Maximizing
	C. Rudin, R. E. Schapire, and I. Daubechies, Boosting based on a
	J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, Face recogn
	R. Lotlikar and R. Kothari, Fractional-step dimensionality reduc
	Out-of-Bag Estimation, L. Breiman . (1996). [Online] . Available
	J. Lu, Discriminant learning for face recognition, Ph.D. Dissert

	Image Group, Information Access Division, ITL, NIST (2004, Jan.)
	P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, The FERET
	P. J. Phillips, H. Wechsler, J. Huang, and P. Rauss, The FERET d
	L.-F. Chen, H.-Y. M. Liao, J.-C. Lin, and C.-C. Han, Why recogni
	P. J. Phillips and E. M. Newton, Meta-analysis of face recogniti
	B. Moghaddam, Principal manifolds and probabilistic subspaces fo
	Evaluation of Face Recognition Algorithms Website, R. Beveridge 
	R. Xu and D. Wunsch II, Survey of clustering algorithms, IEEE Tr



