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ABSTRACT

The sensitivity of forecasts to observations is evaluated using an ensemble approach with data drawn from

a pseudo-operational ensemble Kalman filter. For Gaussian statistics and a forecast metric defined as a

scalar function of the forecast variables, the effect of observations on the forecast metric is quantified by

changes in the metric mean and variance. For a single observation, expressions for these changes involve a

product of scalar quantities, which can be rapidly evaluated for large numbers of observations. This tech-

nique is applied to determining climatological forecast sensitivity and predicting the impact of observations

on sea level pressure and precipitation forecast metrics. The climatological 24-h forecast sensitivity of the

average pressure over western Washington State shows a region of maximum sensitivity to the west of the

region, which tilts gently westward with height. The accuracy of ensemble sensitivity predictions is tested by

withholding a single buoy pressure observation from this region and comparing this perturbed forecast with

the control case where the buoy is assimilated. For 30 cases, there is excellent agreement between these

forecast differences and the ensemble predictions, as measured by the forecast metric. This agreement

decreases for increasing numbers of observations. Nevertheless, by using statistical confidence tests to

address sampling error, the impact of thousands of observations on forecast-metric variance is shown to be

well estimated by a subset of the O(100) most significant observations.

1. Introduction

Forecast sensitivity analysis provides an objective

means of evaluating how changes to an initial condition

affect a forecast. Typically the analysis applies to linear

changes as measured by a scalar metric of the forecast

variables. In a predictability context, sensitivity analysis

provides a basis for understanding the dynamics of

forecast errors, and also the locations for which addi-

tional observations may be gathered to reduce errors,

as measured by the forecast metric.

Previous studies on initial condition sensitivity have

involved using the adjoint of a linearized forecast

model. Adjoint sensitivity and singular vector analyses

for extratropical cyclones emphasize structures in the

lower troposphere, which have large vertical tilts and

are not always obviously related to the major synoptic

features (e.g., Errico and Vukicevic 1992; Langland et

al. 1995; Rabier et al. 1996; Zou et al. 1998; Hoskins et

al. 2000). Difficulties with these techniques include cod-

ing the adjoint of a tangent linear model, which is es-

pecially challenging for on–off processes within bound-

ary layer and microphysical parameterizations, and as-

sumed linearity.

Here we consider an ensemble approach to sensitiv-

ity analysis, where sample statistics are used to estimate

relationships between forecast metrics and initial con-

ditions. Such an approach was proposed by Anderson

(2001) to construct an adaptive observing system by

using ensemble data to provide estimates of the joint

distribution of the model state at earlier times with the

state at the present time. Hamill and Snyder (2002)

applied a similar technique to estimate the impact of

observations on analysis variance, but did not consider

forecast impact. Ensemble sensitivity was formally ap-

plied to an extratropical cyclone by Hakim and Torn

(2008), while Ancell and Hakim (2007) compared en-

semble sensitivity with adjoint sensitivity analysis for a

wintertime flow pattern. For the case examined by An-

cell and Hakim (2007), they found that ensemble sen-

sitivity provides accurate estimates of the impact of ini-
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tial condition changes to a forecast metric. Further-

more, their results indicate that the technique is useful

for identifying a target region for additional observa-

tions because, unlike adjoint sensitivity, the analysis-

error statistics are included in the ensemble calculation.

Ensemble sensitivity analysis is applied here to a six-

month sample of ensemble analyses and forecasts gen-

erated by a pseudo-operational ensemble Kalman fil-

ter. One goal is to illustrate how ensemble sensitivity

can easily be used to determine climatological sensitiv-

ity for a given forecast metric. This can be done “off-

line” without further model integrations, provided en-

semble analyses and forecasts are available. This may

be useful for observing-network design, with a goal of

constructing an optimal network to minimize errors in a

particular forecast metric (Khare and Anderson 2006).

A second goal is to test the accuracy of the ensemble

sensitivity predictions of the impact of observations on

a forecast metric. Having the ability to estimate obser-

vation impact on a metric may prove useful for thinning

a large set of observations to a smaller one during data

assimilation, and also for providing rapid real-time up-

dates to a forecast metric without having to wait for

completion of the full assimilation and forecast process.

Whitaker et al. (2008) propose an ensemble-based ob-

servation thinning algorithm based on analysis-error

variance reduction, which we extend here to forecast

metrics and to statistically significant changes in the

metric mean value.

The outline of the paper is as follows. An overview of

the pseudo-operational ensemble Kalman filter and en-

semble sensitivity analysis are given in section 2. Sen-

sitivity results for a 6-month period, and the most sen-

sitive cases in the period, are discussed in sections 3 and

4, respectively. The accuracy of the ensemble sensitivity

predictions for ensemble forecasts are tested through

observation denial experiments in section 5, and for the

full data assimilation cycle over a large sample of cases

in section 6. In section 7, we apply this method to link

observations to forecast verification. A concluding

summary is given in section 8.

2. Experiment setup

Ensemble-based initial condition sensitivity for the

west coast of North America is evaluated using data

drawn from the University of Washington ensemble

Kalman filter (UW EnKF) system (Torn and Hakim

2007, manuscript submitted to Mon. Wea. Rev.) during

1 January–30 June 2005. This system assimilates obser-

vations every 6 h (0000, 0600, 1200, and 1800 UTC)

using a square root version of the EnKF (Whitaker and

Hamill 2002) for a 90-member ensemble. Observations

assimilated include Automated Surface Observing Sys-

tem (ASOS) stations, ships, buoys, rawinsondes, Air-

craft Communications Addressing and Reporting Sys-

tem (ACARS), and cloud-motion vectors (Velden et al.

2005); Table 1 summarizes the type and average num-

ber of observations assimilated during each analysis

time. To minimize spurious long-distance covariances,

the influence of observations is localized using the Gas-

pari and Cohn (1999) fifth-order piecewise rational

function given by their Eq. (4.10), which in our imple-

mentation reduces to zero 2000 km from the observa-

tion location; vertical covariance localization is not ap-

plied. Moreover, the tendency for small ensembles to

underestimate covariance magnitude is treated by in-

flating the deviations from the ensemble mean by re-

placing the posterior perturbations with a linear com-

bination of the prior and posterior perturbations where

the prior (posterior) is weighted by 0.80 (0.20) (Snyder

and Zhang 2003).

We use the Advanced Research version (ARW) of

the Weather Research and Forecasting (WRF) model

(Skamarock et al. 2005) on a numerical grid with 45-km

horizontal grid spacing and 33 vertical levels over a

domain that includes the Gulf of Alaska and western

North America. The model uses the WRF three-class

microphysics scheme (Hong et al. 2004), Kain–Fritsch

cumulus parameterization (Kain and Fritsch 1990),

Mellor–Yamada–Janjic boundary layer scheme (Janjic

2002), and the Noah land surface model (Ek et al.

2003). An ensemble of lateral boundary conditions are

generated using the fixed covariance perturbation

(FCP) technique of Torn et al. (2006) with a scaling

factor and autocorrelation coefficient of 1.6 and 0.4,

respectively. Ensemble-mean forecasts on the lateral

boundaries are obtained from the National Centers for

Environmental Prediction (NCEP) Global Forecasting

System (GFS) forecast from the previous forecast cycle

valid at the appropriate time. At 0000 and 1200 UTC,

24-h ensemble forecasts are generated by advancing all

90 ensemble members with FCP ensemble boundary

conditions.

The sensitivity of a forecast metric to the initial con-

TABLE 1. Observation types and average number of observa-

tions assimilated during each forecast cycle by the UW EnKF

system during January–July 2005. There are 30 rawinsonde

launches at 0000 and 1200 UTC.

Observation Type

Analysis time (UTC)

0000 0600 1200 1800

Surface Alt, u, � 430 420 420 440

Rawinsonde u, �, T, RH 1000 0 1000 0

ACARS u, �, T 1650 1390 740 1860

Cloud winds u, � 2030 1740 1670 1510

Total 5110 3550 3830 3810
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ditions is computed using the ensemble sensitivity tech-

nique first outlined in Hakim and Torn (2008) and fur-

ther explored by Ancell and Hakim (2007). For an en-

semble of size M, the sensitivity of the ensemble-mean

value of the forecast metric J to an analysis state vari-

able x is determined by

�J

�x
�

cov�J, x�

var�x�
. �1�

Here x and J are 1 � M ensemble estimates of the state

variable and forecast metric, respectively, with the en-

semble mean removed; cov denotes the covariance be-

tween the two arguments; and var is the variance. A

derivation of (1) and its relationship to adjoint sensi-

tivity analysis is found in Ancell and Hakim (2007). The

above equation represents linear regression where the

independent variable is an analysis grid point and the

dependent variable is the forecast metric. In the follow-

ing sections, initial condition sensitivities are deter-

mined for the 24-h forecast of average sea level pres-

sure (SLP) and average precipitation within a box that

includes the western half of Washington State (“west-

ern Washington”). This region is often impacted by

short-term forecast failures resulting from initial condi-

tion errors (McMurdie and Mass 2004) and is of interest

to the authors by proximity. We note that, in general,

the ensemble sensitivity technique is not limited to the

metrics and forecast lead hour we describe here.

3. Climatological results

Data drawn from the UW EnKF system are used to

determine the climatological sensitivity of pressure and

precipitation averaged in a box over western Washing-

ton. Climatological sensitivity is defined here as the

percentage of analysis cycles for which the ensemble

sensitivity of the forecast metric with respect to an

analysis grid point is different from zero at a certain

level of confidence. Specifically, a state variable can

produce a statistically significant change in the forecast

metric if

��J

�x
�� �s , �2�

where �s is the confidence interval on the linear regres-

sion coefficient (e.g., Wilks 2005, section 6.2.5). For ex-

ample, taking �s to be the 95% confidence interval (the

value used for the climatological results given below), if

(2) is satisfied, we may reject the null hypothesis that

changes to x do not change the forecast metric with

95% confidence. Regions with a high percentage of

sensitive forecast cycles may be regarded as potential

locations for siting new observations.

Figure 1a shows results for sensitivity of the 24-h

forecast of average SLP in the box over western Wash-

ington to SLP analyses. The region with the largest

percentage of sensitive forecast cycles is located over

the Pacific Ocean, with a maximum value of 44% of

cycles at (45°N, 132°W). This pattern qualitatively re-

flects the progression of weather systems from west to

east at a mean translation speed of 9 m s�1, which is

roughly consistent with the average speed of individual

eddies in the Northern Hemisphere midlatitude flow

(e.g., Hakim 2003). For shorter lead times, the region of

maximum sensitivity is located closer to western Wash-

ington (not shown).

Regions of consistent sensitivity in Fig. 1a predict

where additional SLP observations would most fre-

quently change the SLP forecast metric. The location of

maximum sensitivity is close to buoy 46005 (white dot).

In fact, this buoy failed on 26 December 2004 and

therefore observations from this location were not

available during the time period of this experiment.

This suggests that the absence of observations from

buoy 46005 may have adversely affected forecasts over

western Washington during these six months. In light of

this possibility, we will revisit this problem in section 5,

where the change in the 24-h SLP forecast associated

with a missing buoy is quantified by withholding a

nearby buoy from the analysis and comparing the pre-

dicted and actual changes in the forecast metric.

The forecast SLP metric is also frequently sensitive

to analyses of 850-hPa temperature and 500-hPa geo-

potential height. For 850-hPa temperature, there are

two main sensitive regions, one to the southwest of

Washington State near 43°N, 130°W, and another to the

east of the metric box (Fig. 1b). For 500-hPa geopoten-

tial height (Fig. 1c), the forecast metric is sensitive more

than 20% of the time to the region bounded by 40°–

60°N and 120°–160°W. We note that this region is lo-

cated a few hundred kilometers upstream of the region

of maximum SLP sensitivity, reflecting a moderate up-

stream tilt typical of baroclinic waves in the westerlies.

The second metric we consider is precipitation aver-

aged in the box over western Washington. Since sensi-

tivity can only be determined when the forecast metric

has nonzero variance, the percentage of sensitive cycles

is computed with respect to the total number of cycles

where the area-averaged precipitation in the box ex-

ceeds 1 mm in the ensemble-mean forecast for hours

18–24; 58% of all forecasts exceed this threshold. Sen-

sitivity of this metric to SLP shows a maximum of 40%

over the Pacific Ocean in a meridionally elongated re-
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gion near 132°W (Fig. 2a). Whereas the northern half of

this region is relatively well observed by the near-shore

buoy network, the southern half is observed by fewer

buoys, especially since buoy 46005 was not functioning.

For 850-hPa temperature analyses, the precipitation

metric is sensitive more than 20% of the time to the

southwest of western Washington, with maximum sen-

sitivity near 132°W (Fig. 2b). Precipitation forecast sen-

sitivity to 500-hPa geopotential height is similar to

other fields, with maximum values along 132°W (Fig.

2c). The main sensitive region for 500-hPa height is

slightly upstream of the region of maximum SLP sen-

sitivity; thus the sensitivity fields for this metric are also

tilted westward with height.

In summary, 24-h forecasts of SLP and precipitation

averaged over western Washington are consistently

sensitive to analysis errors to the west of the forecast

box in an area characterized by few in situ observations.

The relatively close proximity of the main sensitivity

regions for both SLP and precipitation metrics with re-

spect to a variety of state variables suggests that west-

ern Washington short-term forecasts may benefit from

the introduction of new regular observations over a

relatively small region. An important caveat to these

conclusions is that these experiments do not include

satellite radiance observations. Adding these observa-

tions could change the sensitive regions and “whiten”

analysis errors, thus making it more difficult to find

sensitive regions with small ensembles (e.g., Hamill et

al. 2002). Nevertheless, our main point is that ensemble

sensitivity analysis provides a simple, well-defined

method for observing network design for which the re-

sults are tied to the forecast model, but the method is

not (cf. adjoint sensitivity).

4. Most sensitive cases

Whereas the previous section showed how often a

forecast metric is sensitive to changes in a state vari-

able, composite averages are used here to determine

the spatial pattern of sensitivity that occurs for forecasts

having the largest sensitivity. These distributions show

locations where small errors can, on average, lead to

←

FIG. 1. Percentage of forecast cycles with gridpoint sensitivity

statistically significant at the 95% confidence level for western

WA 24-h SLP forecasts sensitivity for (a) SLP, (b) 850-hPa tem-

perature, and (c) 500-hPa height. Forecasts are initialized at 0000

and 1200 UTC from 1 Jan to 30 Jun. The forecast SLP is averaged

over the region indicated by the smaller box in (a). Dots in (a)

indicate the position of fixed buoys, and the larger box denotes

the NAC metric region used in Figs. 8 and 9.
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large changes in the metric. The most sensitive western

Washington SLP and precipitation forecasts are deter-

mined by computing a domain-average forecast sensi-

tivity (DAS):

DAS �
1

Nh
�
i�1

Nh

��J

�xi

�, �3�

where xi is the SLP at a grid point i, and Nh is the

number of horizontal grid points. This norm is used to

determine the most sensitive cycles because SLP is a

column-integrated quantity and is expected to have the

largest sensitivity values since the forecast metric is

area-averaged SLP. Composite patterns of forecast sen-

sitivities for the 30 cycles with the largest DAS values

are calculated by

�J �
1

Nt
�
t�1

Nt

� �J

�xi

�
t

�xt
�, �4�

where 	xt
is the standard deviation of xi at time t, and Nt

is the number of cycles used in the composite, which is

30.1 Multiplying 
J/
x by 	xt
gives the change in J

brought about by a one standard deviation change in x,

and thus a quantitative comparison of how perturba-

tions in various analysis fields change J. Regions of high

composite sensitivity indicate where additional obser-

vations could have the largest impact during the most

sensitive forecasts.

Figure 3a shows the composite sensitivity of the 24-h

forecast of average SLP in the box over western Wash-

ington to SLP analyses. Increasing (decreasing) x at one

grid point by one standard deviation within regions of

largest sensitivity values implies a 0.9 hPa increase (de-

crease) in the forecast metric. The region of largest

sensitivity is in an area characterized by few buoys at

(47°N, 135°W) and is located north of the region having

the largest percentage of sensitive cycles (Fig. 1a).

For 850-hPa temperature, the average sensitivity is

less coherent than for SLP, although sensitivity appears

both east and west of the forecast-metric box (Fig. 3b).

1 We chose 30 cycles so that a few forecast cycles with large

sensitivity values do not bias the horizontal distribution and mag-

nitude of the average sensitivity.

←

FIG. 2. As in Fig. 1, but for the 24-h forecast of precipitation

averaged over the western WA region. Here the percentage of

forecast cycles is computed with respect to the number of cycles

where the precipitation in the box exceeds 1 mm for forecast

hours 18–24.
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Furthermore, this region of high sensitivity is to the

north of the region of consistent sensitivity in Fig. 1b;

thus while the average SLP forecast is more often sen-

sitive to the 850-hPa temperature southwest of the met-

ric box, the largest magnitude sensitivities are to the

northwest of Washington. Increasing (decreasing) the

temperature in the regions with the largest values by

one standard deviation only leads to a 0.5-hPa decrease

(increase) in the SLP in the box 24 h later. For 500-hPa

height, the SLP forecast is sensitive to a meridionally

elongated region near 140°W; a one standard deviation

change in x within the regions of largest sensitivity is

associated with a 0.6-hPa change in the forecast metric

(Fig. 3c). This region is located a few hundred kilome-

ters upstream of the region of maximum SLP sensitiv-

ity, indicating that the moderate baroclinic tilt of the

sensitivity field is a common property among these re-

sults.

Average sensitivity for the 30 most sensitive precipi-

tation forecasts is determined in a manner similar to the

30 most sensitive SLP forecasts described above. Al-

though one should expect precipitation to have a non-

Gaussian distribution since it is bounded from below by

zero, Gaussian statistics are nevertheless assumed in

these calculations. Results for the precipitation metric

show a more pronounced composite-average low pres-

sure system in the Gulf of Alaska and maximum sen-

sitivity to SLP near (44°N, 133°W), just south of the

results for the SLP metric (Fig. 4a). Sensitivity to 850-

hPa temperature (Fig. 4b) falls within a relatively small

region near a thermal ridge to the southeast of the com-

posite cyclone. Sensitivity to 500-hPa height (Fig. 4c)

exhibits largest sensitivity a few hundred kilometers

west of the region of maximum sensitivity to SLP and

downstream of a composite trough in the height field.

For periods when the average precipitation in the box is

greater than 2 mm, a one standard deviation change to

the SLP and 500-hPa height field in the region of largest

sensitivity is predicted to change the precipitation met-

ric by 0.4 mm, and for 850-hPa temperature by 0.3 mm;

thus we conclude that, as for SLP forecasts, precipita-

tion forecasts are less sensitive to 850-hPa temperature

than SLP or 500-hPa height.

←

FIG. 3. Composite sensitivity patterns for western WA 24-h SLP

forecasts (shading; hPa) to analyses of (a) SLP (hPa), (b) 850-hPa

temperature (K), and (c) 500-hPa height (m). Each field repre-

sents the sensitivity multiplied by the analysis std dev at each

analysis grid point for the 30 most sensitive western WA SLP

forecasts between 1 Jan and 30 Jun 2005. Contours denote the

composite-average ensemble-mean analysis for these 30 cases

(hPa).
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5. Observation denial experiments for single

observations

Recall from section 3 that buoy 46005 is located in a

region of frequent sensitivity, but was not functional

during the period considered. The change in western

Washington 24-h SLP forecasts due to a missing buoy

within the consistently sensitive region is assessed by

withholding a nearby reliable buoy (buoy 46036,

42.3°N, 133.8°W) from the analysis and comparing the

resulting forecasts. In addition to providing an estimate

of the importance of offshore buoy observations, these

data-denial experiments are used to quantify the accu-

racy of ensemble-based calculations of the change in a

forecast metric.

The change in the 24-h western Washington SLP

forecast associated with assimilating buoy 46036’s SLP

observation is assessed for the 30 forecast cycles for

which this metric is most sensitive to this buoy’s obser-

vation using the following method. A “control” analysis

is generated by the assimilation method described in

section 2, with the exception that buoy 46036’s SLP

observation is assimilated without applying covariance

localization. When covariance localization is applied,

the magnitude of the ensemble estimated change is con-

sistently larger than the actual change in the metric

obtained from nonlinear forecasts. Since the forecast

ensemble has no information on analysis localization,

observation increments that are localized may not

properly project onto the forecast metric. This contrasts

with the results of Hamill and Snyder (2002), who

found that predictions of analysis-error variance reduc-

tion matched the actual reduction including localiza-

tion; presumably this result is due to the fact that the

analysis increments are not propagated with a model.

A “no buoy” analysis is generated by the identical

procedure as the “control,” but without buoy 46036’s

SLP observation; therefore, the differences between

these two analyses is due solely to the assimilation of

buoy 46036. The change in the mean value of the

forecast metric due to observation assimilation is esti-

mated by

�J � J�HX
b
�
T
�HP

b
H

T � R�
�1

�y � H�xb
�
, �5�

where H is an operator that maps from state space to

observation space, H is a linearized version of H , xb is

the background ensemble-mean state vector (N � 1,

where N is the number of degrees of freedom in the

model), X
b is the N � M ensemble state matrix with the

mean removed, P
b is the background error covariance

matrix, R is the observation error covariance matrix,

and y is the observation values (Ancell and Hakim

2007). This equation represents linear regression,FIG. 4. As in Fig. 3, but for the 24-h forecast of precipitation

(mm) for the western WA metric box.
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where the independent variable is the innovation, y �

H(xb), the dependent variable is the forecast metric,

and the “slope” is given by the covariance between the

forecast metric and the model estimate of the observa-

tion, J(HX
b)T, divided by the covariance of the inde-

pendent variables (innovation covariance). For a single

observation, the innovation, innovation covariance, and

slope are all scalars, and the calculation can be evalu-

ated rapidly. When the forecast metric is a function of

the forecast state vector, we shall refer to �J as the

change in the forecast metric associated with the obser-

vation, and when the forecast metric refers to a forecast

error, we shall refer to �J as the observation impact.

In addition to assessing the change in the expected

value of the metric, we also assess the change in the

forecast-metric variance due to observation assimila-

tion via (Ancell and Hakim 2007)

�� � �J�HX
b
�
T
�HP

b
H

T � R�
�1

HX
bJT. �6�

For a single observation, this expression can be evalu-

ated as a product of two scalars: the inverse of the

innovation variance, (HP
b
H

T � R)�1, and the forecast-

metric-observation-estimate covariance, J(HX
b)T. Fur-

thermore, we observe that (6) is negative definite since

the right-hand side is proportional to the square of the

forecast-metric-observation-estimate covariance.

These predictions of �J and �	 are computed from

the ensemble without the buoy and are verified against

perturbed forecasts generated from an analysis where a

single buoy pressure observation is withheld. We pro-

ceed by describing the change in the average SLP due

to assimilating the buoy during one case characterized

by an eastern Pacific cyclogenesis event, and then sum-

marize all 30 cases.

Figure 5a shows the UW EnKF ensemble-mean SLP

analysis and forecast sensitivities for 1200 UTC 5 Feb-

ruary 2005. A frontal wave is situated on the eastern

edge of a deeper cyclone near the international date

line; during the next 24 h, this wave deepens as it moves

east toward the North American coast. Forecast sensi-

tivities are maximized along the eastern edge of the

frontal wave near buoy 46036 (dot). Increasing (de-

creasing) the SLP in this region of the analysis by 1 hPa,

which amounts to shifting the frontal wave to the north-

west (southeast), leads to a 1.5-hPa increase (decrease)

in the forecast metric.

The difference between the control and no-buoy

analysis and their resulting 24-h forecast differences are

shown in Figs. 5b and 5c, respectively. For the control

analysis, the SLP is 0.4 hPa lower to the south of the

wave and 0.2 hPa higher to the north of the wave; thus

FIG. 5. (a) Sensitivity of the western WA 24-h SLP forecast to

the SLP analysis (shading; hPa hPa�1) and the UW EnKF en-

semble-mean analysis of SLP (contours; hPa) for the forecast ini-

tialized at 1200 UTC 5 Feb 2005. (b) Difference between the

no-buoy ensemble-mean analysis SLP field and the control en-

semble-mean analysis SLP field at 1200 UTC 5 Feb 2005 (shading;

hPa). The no-buoy ensemble-mean analysis of SLP is given by the

solid lines (hPa). (c) As in (b), but for the 24-h forecast of SLP

valid at 1200 UTC 6 Feb 2005.
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the buoy’s observation shifts the wave to the south. The

largest 24-h forecast differences are associated with the

resulting cyclone along the Washington coast; the fore-

cast initialized from the control analysis has SLP values

that are up to 0.8 hPa lower. The ensemble-based pre-

diction of a 0.60-hPa (0.15-hPa) decrease in the ex-

pected value (spread) of the metric compares closely

with the 0.63-hPa (0.18-hPa) change obtained from the

nonlinear forecasts.

Repeating the above process for the remaining 29

forecast cycles indicates that ensemble-based predic-

tions provide accurate estimates of the changes in the

forecast metric. Figure 6 shows that the ensemble-

based prediction of the change in the expected value

and spread is in good agreement with the actual change

obtained from the nonlinear model (R2 � 0.985); in

90% of cases considered, the error in the expected

value (spread) is less than 0.1 hPa (0.05 hPa). More-

over, these results indicate that a buoy within the most

sensitive region could produce up to a 0.8-hPa change

in the expected value and a 0.5-hPa reduction in the

spread of the 24-h western Washington area-averaged

SLP forecasts.

6. Observation denial experiments for multiple

observations

Here we extend the results of the previous section

from a single observation to larger sets. These experi-

ments are performed to quantify the accuracy of en-

semble-based estimates of how multiple observations

change a forecast metric and to evaluate the value of

various observation platforms in the UW EnKF system.

We note that the objective here is similar to that of

Langland and Baker (2004), who use an adjoint-based

technique to estimate the impact of observations on the

error in global forecasts.

For the remainder of this section, we consider 12-h

forecast cycles and compare forecast metrics for the test

case where observations are assimilated at hour 6, with

the control case where no observations are assimilated

at hour 6. Specifically, the change in the forecast met-

rics valid 6 h later due to observations assimilated at

0600 and 1800 UTC is assessed during March 2005.

Observations are processed one at a time using the se-

rial assimilation procedure described in section 2. Fur-

thermore, rather than solve (6), the ensemble forecast-

metric values are updated in the same manner as the

analysis state variables. The change in ensemble spread

may then be evaluated from the updated ensemble met-

ric values, which reflect the influence of all prior ob-

servations. This method of updating the forecast-metric

values with observations is similar to what is used for

parameter estimation with an EnKF (e.g., Evensen

2003; Aksoy et al. 2006; Tong and Xue 2008).

Before assessing the changes in western Washington

SLP forecasts due to the assimilation of all observa-

tions, we first evaluate the change in this metric due to

the assimilation of select surface observations. These

experiments are meant to be intermediary between the

single observation experiments of the previous section

and experiments using all observations that will be de-

scribed later in this section. For each analysis time, the

sensitivity of the forecast-metric expected value to the

FIG. 6. Change (hPa) in the (a) expected value and (b) spread of the 24-h western WA SLP

forecast due to the assimilation of buoy 46036’s SLP observation as determined by the dif-

ference between two nonlinear forecasts (ordinate) and the ensemble-based sensitivity pre-

diction (abscissa) for the 30 most sensitive forecast cycles during January–July 2005. The

dashed line is the linear least squares fit to the data. Values on the main diagonal (solid line)

indicate perfect agreement between the ensemble-based prediction and the WRF model

solutions.
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model estimate of each surface observation is com-

puted using (1) and tested for statistical significance at

the 99% confidence level using (2). Significant obser-

vations are assimilated and the change in the forecast

metric is evaluated (�20 observations per cycle). En-

semble-based predictions of �J and �	 are verified by

advancing the resulting analysis ensemble forward 6 h

using the WRF model.

Results show good agreement between the ensemble

predictions and WRF verification of �J and �	 (Fig. 7).

The correlation between the predicted and actual �J

and �	 is 0.82 and 0.87, respectively. Whereas the bias

in �J is small, the ensemble-based estimate of �	 is

consistently larger than the actual value by 0.19 hPa.

Differences between the predicted and actual change

are due to sampling error and nonlinearity; sampling

error is discussed further in the conclusions section.

The change in the western Washington SLP forecast

metric due to the of all observations available to the

UW EnKF system is now assessed. For each analysis

time, all observations are assimilated (�3700 per cycle);

however, the estimated change due to an individual

observation is computed only if the sensitivity to the

model estimate of the observation is significant at the

99% confidence interval (�100 per cycle). This confi-

dence interval is found to give the best agreement be-

tween the predicted and actual values for �J and �	.

When statistically insignificant observations are in-

cluded in the calculation, spurious covariances increase

the RMS difference between the predicted and actual

values by a factor of 2 or more (not shown). For these

calculations, covariance localization is achieved using

the Gaspari and Cohn localization, which reduces to

zero 5000 km from the observation. This broad local-

ization function prevents observations from adjusting

state variables at unreasonable distances; similar results

are obtained when covariance localization is not ap-

plied. For simplicity, covariance inflation is not consid-

ered in these experiments.

Figures 8a and 8b indicate that the predicted change

in western Washington SLP due to observations is in

good agreement with the actual difference. On average,

observations change the expected value of this metric

by 0.86 hPa and reduce the spread by 0.59 hPa.

Whereas the correlation between the predicted and ac-

tual �J and �	 is 0.49 and 0.93 respectively, there is

more scatter about the line of perfect agreement when

compared to Fig. 7. In contrast to the select surface

observation results, the ensemble-based prediction of

�	 here exhibits little bias.

We performed a second test to address how the size

of the forecast-metric box affects the results obtained

above. The change in the forecast of average SLP in a

box over the western North American coast (NAC; re-

gion given by the larger box in Fig. 1a) due to obser-

vations is determined by repeating the procedure used

for the western Washington SLP metric. Ensemble-

based predictions of the change in NAC show compa-

rable skill to the results obtained for western Washing-

ton SLP (Figs. 8c,d). The correlation between the pre-

dicted and actual �J and �	 is 0.42 and 0.71,

respectively. Observations produce a slightly smaller

change in the expected value (0.75 hPa) and spread

(0.37 hPa) of the NAC SLP metric as compared to the

western Washington SLP metric because there is less

variability in SLP when averaged over a larger area.

FIG. 7. Change (hPa) in the (a) expected value and (b) spread of 6-h forecasts of western

Washington SLP due to assimilating all statistically significant (at the 99% confidence level)

surface observations. Ensemble predictions (abscissa) and compared with results for differ-

ences between perturbed WRF forecasts (ordinate) during March 2005. Dashed lines give the

linear least squares fit, while the solid line indicates perfect agreement between the ensemble-

based prediction and the WRF model solution.
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7. Impact of observations on forecast verification

Although the impact of observations on a forecast

metric is well predicted by this technique, this does not

guarantee that the observations actually improve the

forecasts. As a consequence, we repeat the ensemble

sensitivity procedure to assess how observations impact

the RMS error in SLP within the western Washington

and NAC regions. In this case, J is the RMS error in the

box and, unlike the previous calculations, this metric

can only be evaluated when an analysis is available for

verification. An ensemble of RMS error values within

each box is determined based on each ensemble mem-

ber’s forecast verified against the appropriate en-

semble-mean analysis; negative values of �J indicate

that observation assimilation decreases the RMS error.

Figures 9a and 9b indicate that ensemble-based im-

pact predictions for western Washington SLP error

have skill comparable to the western Washington aver-

age SLP forecast metric; the correlation between the

predicted and actual �J and �	 is 0.48 and 0.79, respec-

tively. On average, assimilating observations reduces

the RMS error in Washington SLP forecasts by 0.67

hPa. Comparable results are obtained for the RMS er-

ror in SLP over the NAC region. In this case, the cor-

relation between the predicted and actual �J (0.42) and

�	 (0.71) are similar to the results obtained from the

average NAC SLP metric. For both regional metrics,

there are multiple cycles where the ensemble-based es-

timate of �J is off by at least 1 hPa. Each of these

forecasts is characterized by a cyclone undergoing rapid

cyclogenesis or cyclolysis near the edge of the respec-

tive box, which suggests sensitivity to the cyclone posi-

tion.

The ensemble-based observation impact estimates

are partitioned by observation type to determine which

observations have the largest impact on the RMS error

in SLP forecasts. Figure 10 shows the probability den-

FIG. 8. Change (hPa) in the (a) expected value and (b) spread of 6-h forecasts of western

Washington SLP forecasts due to assimilating all available observations. Ensemble predictions

(abscissa) are compared with results for differences between perturbed WRF forecasts (or-

dinate) during March 2005. Dashed lines give the linear least squares fit, while the solid line

indicates perfect agreement between the ensemble-based prediction and the WRF model

solution. (c), (d) Similar to (a) and (b), but applied to the average SLP within the larger NAC

box (see Fig. 1).
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sity functions (PDFs) for the impact of the individual

statistically significant observations (99% confidence)

on the expected value and spread of the RMS error in

western Washington SLP forecasts. The results for the

RMS error in NAC SLP forecasts are qualitatively simi-

lar and are not shown. For all observation types, the

PDFs are sharply peaked near zero, which indicates

that most observations have little impact on SLP errors

within this region. These PDFs are qualitatively similar

to histograms for observation impacts on forecast er-

rors in a quasigeostrophic channel model discussed in

Morss and Emanuel (2002; see their Fig. 8). The long

tails in the surface observation PDFs indicate that these

observations are more likely to have a large impact on

the SLP error when compared to ACARS and cloud

winds. In Figs. 10c and 10e, the PDFs are symmetric

about zero, which implies that ACARS and cloud-wind

observations are equally likely to have a positive or

negative impact on the RMS error in SLP. In contrast,

the surface observation PDF (Fig. 10a) is skewed to-

ward negative values, indicating that surface observa-

tions are more likely to reduce, rather than increase,

the RMS error in SLP. Moreover, the surface observa-

tions having highest impact are taken by buoys located

approximately 500 km offshore, which is consistent

with earlier results indicating this is a region of high

sensitivity (not shown). It should be noted that the im-

pact of different observation types may change depend-

ing on the metric chosen. While ACARS and cloud-

wind observations may not have a significant impact in

the SLP metrics, these observation types may have

larger impact on metrics that measure upper-

tropospheric forecasts.

8. Discussion and conclusions

The ensemble sensitivity technique described by

Hakim and Torn (2008) and Ancell and Hakim (2007)

is tested using data drawn from a pseudo-operational

ensemble Kalman filter. Ensemble analyses and fore-

casts from January to July 2005 are used to determine

locations of frequent sensitivity for selected forecast

metrics near western North America. The skill of en-

semble sensitivity analysis in predicting the change in a

forecast-metric mean, �J, and variance, �	, due to ob-

servation assimilation is also tested. Although this

FIG. 9. As in Fig. 8, but for the RMS error in SLP (hPa) forecasts within the (a), (b)

western WA region and (c), (d) NAC region valid 6 h later.
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study focuses mainly on metrics near the west coast of

North America, we emphasize that the technique is

general and may be applied to any scalar forecast met-

ric.

Climatological sensitivity fields for 24-h western

Washington SLP and precipitation forecasts are most

often sensitive to the upstream mass field and to a

lesser extent the temperature field. While a large frac-

tion of the frequently sensitive region is observed by

the fixed buoy network, the buoy closest to the sensi-

tivity maximum was not functioning during the period

and thus could have adversely affected western Wash-

ington forecasts. Composite patterns for the most sen-

sitive forecasts indicate that the region of largest sen-

sitivity for 24-h western Washington SLP and precipi-

tation forecasts is located approximately 1000 km west

of the metric box and exhibits modest upshear tilt in the

vertical. A one-standard-deviation change in the most

sensitive region of the mass field would produce a

larger change in both SLP and precipitation metrics as

compared to a one standard deviation change in the

most sensitive region of the temperature field, which

suggests that targeted buoy and ship SLP observations

could produce the largest change in short-range, sur-

face-based forecast metrics in this area.

The change in western Washington SLP forecasts

due to removing a buoy from the region of frequent

sensitivity is evaluated for the 30 most sensitive cases.

Removing the buoy pressure observation from the as-

similation process yields a perturbed forecast metric

that is compared with the prediction from ensemble

sensitivity analysis. For all forecast cycles, the en-

semble-based estimate is in good agreement with the

actual change obtained from perturbed nonlinear

model forecasts. These results indicate that a single

SLP observation within the region of consistent sensi-

tivity can change 24-h western Washington area-

averaged SLP forecasts by up to 0.8 hPa and reduce the

forecast spread by 0.5 hPa.

The single observation calculations are extended to

estimate the change in 12-h forecasts associated with

assimilating a large number of observations. Approxi-

mately 100 observations per analysis time produce a

statistically significant change on the forecast-metric

mean value at the 99% confidence level. Therefore, this

approach attempts to predict the change in the forecast-

FIG. 10. PDFs (hectopascals per cycle) of the impact of individual statistically significant

(99% confidence) (top) surface, (middle) ACARS, and (bottom) cloud-wind observations

assimilated at 0600 and 1800 UTC on the (left) expected value and (right) spread on the RMS

error in SLP forecasts within the western WA region valid 6 h later during March 2005. The

value at the top of each panel indicates the average impact of each observation type during a

data assimilation cycle.
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metric mean and variance with approximately 100 ob-

servations from the several thousand observations that

are assimilated. An attractive attribute of this approach

is that it can be applied “offline” to an existing dataset

of ensemble analyses and forecasts without running the

model or cycling a data assimilation system. Results

show that the ensemble-based estimates provide a rela-

tively accurate prediction of observation changes to the

spread of the forecast metric, although agreement is not

as good as for the case of a single observation. Similar

results are found for a forecast metric that covers a

much larger portion of western North America, sug-

gesting that the results are not limited to metrics cov-

ering small geographical areas.

We also tested ensemble sensitivity for predicting

forecast error in a manner similar to the case just sum-

marized. For an error metric defined by the root-mean-

square error in a box over western Washington state,

results again show that ensemble sensitivity provides

accurate estimates of the reduction in error spread, and

to a lesser extent the error expected value. Partitioning

the error estimates by observation type indicates that

surface observations are more likely to reduce the error

in SLP forecasts when compared to ACARS and cloud-

wind observations. In particular, the fixed-position

buoys 500 km from the North American coast have the

greatest impact because they are in a region of consis-

tent sensitivity. We note that the impact of these ob-

servation platforms may vary depending on the forecast

metric, season, model, and particular observation set.

For the experiments and metrics considered here, it

appears that ensemble sensitivity analysis is more reli-

able in predicting changes in the spread (variance) of a

forecast metric when compared to the mean value of

the metric. We propose that, in the absence of signifi-

cant nonlinearity and model error, this difference may

be understood through the effect of sampling error on

these calculations. The key quantity in Eqs. (5) and (6)

is the covariance between the forecast metric and the

model estimate of an observation, J(HX
b)T, which af-

fects the predicted changes in the metric mean and

spread differently. If sampling error for this covariance

has zero mean, then the predicted changes to the metric

mean value will also be unbiased, and the scatter about

the line of perfect prediction will be proportional to the

sampling-error variance. In contrast, the error in the

predicted change in the metric spread is proportional to

the sampling error variance, which introduces a bias

even when the sampling error itself is unbiased (see Fig.

7b); essentially, sampling error leads to an overpredic-

tion in the variance reduction. Using a confidence test

on the covariance, as we have done here, reduces the

effect of sampling error, but also limits the number of

observations that are included in the calculation. A

point of diminishing returns is reached when, for con-

fidence levels approaching 100%, important observa-

tions are excluded and thus the ability to predict the

impact on a forecast metric is adversely affected. For

the experiments considered here, this point of dimin-

ishing returns is reached around the 99% confidence

level.

The results presented here suggest that ensemble

sensitivity analysis provides an attractive alternative to

adjoint sensitivity analysis. In addition, the results sug-

gest that this technique may prove useful for observa-

tion thinning, where a large sample of observations is

reduced to a set that is expected to decrease forecast-

metric spread the most, while also producing a statisti-

cally significant change in the forecast-metric mean

value. Unlike previously proposed observation thinning

algorithms (e.g., Liu and Rabier 2002; Ochotta et al.

2005), this technique selects observations based on the

forecast metric of interest. Similarly, ensemble sensi-

tivities may be useful for observation targeting because

the impact of a hypothetical observation on the fore-

cast-metric variance can be determined prior to know-

ing the observation value and, unlike other targeting

techniques, it considers the data assimilation scheme

and analysis-error statistics (Berliner et al. 1999; Lang-

land 2005). Ensemble sensitivity analysis may also

prove useful for selecting observations based on their

predicted effect on forecast-error variance in previous

forecasts.

Acknowledgments. We thank Chris Velden and Dave

Stettner of CIMSS/SSEC for providing cloud winds for

the UW EnKF system and Rolf Langland of the U.S.

Naval Research Laboratory (Monterey) for discussions

on forecast error. We are also grateful to Tom Hamill

and Jeff Anderson for constructive comments in review

that improved the manuscript. This study was made

possible in part because of the data that were made

available to the Earth System Research Laboratory/

Global Systems Division by the following commercial

airlines: American, Delta, Federal Express, Northwest,

United, and United Parcel Service. This work was sup-

ported by NSF Grant ITR-0205648, NOAA CSTAR

Grant NA17RJ1232, and ONR Grant N00014-06-1-0510.

REFERENCES

Aksoy, A., F. Zhang, and J. W. Nielsen-Gammon, 2006: En-

semble-based simultaneous state and parameter estimation in

a two-dimensional sea-breeze model. Mon. Wea. Rev., 134,

2951–2970.

Ancell, B., and G. J. Hakim, 2007: Comparing adjoint- and en-

semble-sensitivity analysis with applications to observation

trageting. Mon. Wea. Rev., 135, 4117–4134.

676 M O N T H L Y W E A T H E R R E V I E W VOLUME 136



Anderson, J. L., 2001: An ensemble adjustment Kalman filter for

data assimilation. Mon. Wea. Rev., 129, 2884–2903.

Berliner, M. L., Z.-Q. Lu, and C. Snyder, 1999: Statistical design

for adaptive weather observations. J. Atmos. Sci., 56, 2536–

2552.

Ek, M. B., K. E. Mitchell, Y. Lin, E. Rodgers, P. Grunmann, V.

Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of

Noah land surface model advances in the National Centers

for Environmental Prediction operational mesoscale Eta

Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

Errico, R. M., and T. Vukicevic, 1992: Sensitivity analysis using an

adjoint of the PSU-NCAR mesoscale model. Mon. Wea.

Rev., 120, 1644–1660.

Evensen, G., 2003: The ensemble Kalman filter: Theoretical for-

mulation and practical implementation. Ocean Dyn., 53, 343–

367.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation

functions in two and three dimensions. Quart. J. Roy. Meteor.

Soc., 125, 723–757.

Hakim, G. J., 2003: Developing wave packets in the North Pacific

storm track. Mon. Wea. Rev., 131, 2824–2837.

——, and R. D. Torn, 2008: Ensemble synoptic analysis. Sanders

Symposium Monograph, Meteor. Monogr., No. 55, Amer.

Meteor. Soc., in press.

Hamill, T. M., and C. Snyder, 2002: Using improved background-

error covariances from an ensemble Kalman filter for adap-

tive observations. Mon. Wea. Rev., 130, 1552–1572.

——, ——, and R. E. Morss, 2002: Analysis-error statistics of a

quasi-geostrophic model using three-dimensional variational

assimilation. Mon. Wea. Rev., 130, 2777–2790.

Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach

to ice microphysical processes for the bulk parameterization

of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.

Hoskins, B. J., R. Buizza, and J. Badger, 2000: The nature of

singular vector growth and structure. Quart. J. Roy. Meteor.

Soc., 126, 1565–1580.

Janjic, Z. I., 2002: Nonsingular implementation of the Mellor–

Yamada level 2.5 scheme in the NCEP Meso model. NCEP

Office Note 437, National Centers for Environmental Predic-

tion, Camp Springs, MD, 61 pp.

Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining

detraining plume model and its application in convective pa-

rameterization. J. Atmos. Sci., 47, 2784–2802.

Khare, S. P., and J. L. Anderson, 2006: A methodology for fixed

observational network design: Theory and application to a

simulated global prediction system. Tellus, 58A, 523–537.

Langland, R. H., 2005: Issues in targeted observing. Quart. J. Roy.

Meteor. Soc., 131, 3409–3425.

——, and N. L. Baker, 2004: Estimation of observation impact

using the NRL atmospheric variational data assimilation ad-

joint system. Tellus, 56A, 189–201.

——, R. L. Elsberry, and R. M. Errico, 1995: Evaluation of physi-

cal processes in an idealized extratropical cyclone using ad-

joint sensitivity. Quart. J. Roy. Meteor. Soc., 121, 1349–1386.

Liu, Z.-Q., and F. Rabier, 2002: The interaction between model

resolution, observation resolution and observation density in

data assimilation: A one-dimensional study. Quart. J. Roy.

Meteor. Soc., 128, 1367–1386.

McMurdie, L., and C. Mass, 2004: Major numerical forecast fail-

ures in the northeast Pacific. Wea. Forecasting, 19, 338–356.

Morss, R. E., and K. A. Emanuel, 2002: Influence of added ob-

servations on analysis and forecast errors: Results from ide-

alized systems. Quart. J. Roy. Meteor. Soc., 128, 285–321.

Ochotta, T., C. Gebhardt, D. Saupe, and W. Wergen, 2005: Adap-

tive thinning of atmospheric observations in data assimilation

with vector quantization and filtering methods. Quart. J. Roy.

Meteor. Soc., 131, 3427–3437.

Rabier, F., E. Klinker, P. Courtier, and A. Hollingsworth, 1996:

Sensitivity of forecast errors to initial conditions. Quart. J.

Roy. Meteor. Soc., 122, 121–150.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M.

Barker, W. Wang, and J. G. Powers, 2005: A description of

the Advanced Research WRF Version 2. NCAR Tech. Note

468�STR, National Center for Atmospheric Research, Boul-

der, CO, 88 pp.

Snyder, C., and F. Zhang, 2003: Assimilation of simulated Dopp-

ler radar observations with an ensemble Kalman filter. Mon.

Wea. Rev., 131, 1663–1677.

Tong, M., and M. Xue, 2008: Simultaneous estimation of micro-

physical parameters and atmospheric state with radar data

and ensemble square-root Kalman filter. Part II: Parameter

estimation experiments. Mon. Wea. Rev., in press.

Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary condi-

tions for limited-area ensemble Kalman filters. Mon. Wea.

Rev., 134, 2490–2502.

Velden, C., and Coauthors, 2005: Recent innovations in deriving

tropospheric winds from meteorological satellites. Bull.

Amer. Meteor. Soc., 86, 205–223.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimila-

tion without perturbed observations. Mon. Wea. Rev., 130,

1913–1924.

——, ——, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data

assimilation with the NCEP Global Forecast System. Mon.

Wea. Rev., 136, 463–482.

Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences.

Elsevier Academic, 648 pp.

Zou, X., Y.-H. Kuo, and S. Low-Nam, 1998: Medium-range pre-

diction of an extratropical oceanic cyclone: Impact of initial

state. Mon. Wea. Rev., 126, 2737–2763.

FEBRUARY 2008 T O R N A N D H A K I M 677


