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Abstract

We recently proposed a new ensemble clustering algorithm for graphs (ECG) based on

the concept of consensus clustering. In this paper, we provide experimental evidence

to the claim that ECG alleviates the well-known resolution limit issue, and that it leads

to better stability of the partitions. We propose a community strength index based on

ECG results to help quantify the presence of community structure in a graph. We

perform a wide range of experiments both over synthetic and real graphs, showing the

usefulness of ECG over a variety of problems. In particular, we consider measures based

on node partitions as well as topological structure of the communities, and we apply

ECG to community-aware anomaly detection. Finally, we show that ECG can be used in

a semi-supervised context to zoom in on the sub-graph most closely associated with

seed nodes.
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Introduction

Most networks that arise in nature exhibit complex structure (Girvan and Newman 2002;

Newman 2003) with subsets of nodes densely interconnected relative to the rest of the

network, which we call communities or clusters. Binary relational data-sets are typically

represented as graphs G = (V ,E), where nodes (or vertices) v ∈ V represent the enti-

ties, and edges e ∈ E represent the relations between pairs of entities. Graph clustering

aims at finding a partition of the nodes V = C1 ∪ . . . ∪ Cl into good clusters. This is

an ill-posed problem (Fortunato and Hric 2016), as there is no universal definition of

good clusters, leading to a wide variety of graph clustering algorithms (Girvan and New-

man 2002; Clauset et al. 2004; Pons and Latapy 2005; Newman 2006; Raghavan et al.

2007; Reichardt and Bornholdt 2006; Rosvall and Bergstrom 2007; Blondel et al. 2008),

with different objective functions. In a recent study (Yang et al. 2016), several state-of-

the art algorithms implemented in the igraph (Csardi and Nepusz 2006) package were

compared over a wide range of artificial networks generated via the LFR benchmark

(Lancichinetti et al. 2008) and some cluster comparison measures. We consider node par-

titions, also known as non-overlapping communities. Other studies propose methods to

compare overlapping communities using cluster comparison measures (Xie et al. 2013)

or topological features of the clusters (Orman et al. 2012; Jebabli et al. 2018).

We recently introduced a new ensemble clustering algorithm for graphs (ECG), which

compared favorably with leading algorithms (Poulin and Théberge 2019). The ECG

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0162-z&domain=pdf
http://orcid.org/0000-0002-5499-3680
mailto: theberge@ieee.org
http://creativecommons.org/licenses/by/4.0/


Poulin and Théberge Applied Network Science            (2019) 4:51 Page 2 of 13

algorithm is based on the concept of co-association consensus clustering. It is similar

to other consensus clustering algorithms such as (Seifi et al. 2013) and in particular

(Lancichinetti and Fortunato 2012), but differs in two major points: (1) the choice of

an algorithm that alleviates the resolution limit issue for the generation step, and (2)

the restriction to endpoints of edges for co-occurrences of node pairs, which keeps low

computational complexity.

The contributions in the paper are 4-fold: (1) we provide experimental evidence

supporting the claim that ECG alleviates the well-known resolution limit issue of

modularity-based algorithms, and that it improves stability compared to the popu-

lar Louvain algorithm on which it is based; (2) we introduce a community strength

index (CSI) measure based on computed ECG edge weights in order to quantify the

presence of community structure in networks; (3) we provide strong evidence of the use-

fulness of ECG via a wide array of experiments over synthetic and real graphs using

several different measures including some of the topological measures proposed in

(Orman et al. 2012), and (4) we show that ECG can be used in a semi-supervised con-

text via a "dimmer-like" process to zoom in on important sub-graph(s) given some seed

node(s). The rest of the paper is organized as follows. We briefly describe the ECG algo-

rithm, the LFR benchmark and the cluster comparisonmeasures used in the “Background

knowledge” section. Some of the advantages of ECG are its stability and its ability to alle-

viate the well known resolution limit issue. We illustrate those properties in “Resolution

limit and stability” section. In the “Weight distribution and community structure” section,

we propose a community strength index (CSI) to quantify the presence of community

structure in a graph. In the “Experiments” section, ECG is compared to other state-of-the-

art algorithms over a wide array of tests, including LFR benchmark and real graphs. We

also look at ECG’s performance over some measures based on the topological structure

of communities. In “Anomaly detection on graphs” section, we re-visit a recently pro-

posed framework (Helling et al. 2019) aimed at finding anomalous nodes in graphs using

ECG. In “Semi-supervised learning with ECG” section, we show how ECG weights can

be used to zoom-in on significant sub-graphs given some seed nodes. We wrap-up in the

“Conclusion” section.

Background knowledge

Let G = (V ,E) be a graph where V = {1, 2, . . . , n} is the set of nodes, and E ⊆

{(u, v) | u, v ∈ V , u < v} is the set of edges. We consider undirected graphs.

Edges can have weights w(e) > 0 for each e ∈ E. For un-weighted graphs, we let

w(e) = 1 for all e ∈ E. The 2-core of a graph G is its maximal subgraph whose

nodes have degree at least 2. Let Pi =
{

C1
i , . . . ,C

li
i

}

be a partition of V of size li.

We refer to the C
j
i as clusters of nodes. We use 1

C
j
i
(v) to denote the indicator function

for v ∈ C
j
i .

The ECG algorithm

The ECG algorithm is a consensus clustering algorithm for graphs. Its generation step

consists of independently obtaining k randomized level-1 partitions from the multilevel-

Louvain (ML) algorithm (Blondel et al. 2008): P = {P1, . . . ,Pk}. Its integration step is

performed by running ML on a re-weighted version of the initial graph G = (V ,E). The
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ECG weights are obtained through co-association. The weight of an edge e = (u, v) ∈ E

is defined as:

WP(u, v) =

⎧

⎨

⎩

w∗ + (1 − w∗) ·

(

∑k
i=1 αPi (u,v)

k

)

, (u, v) ∈ 2-core ofG

w∗, otherwise

(1)

where 0 < w∗ < 1 is someminimumweight and αPi(u, v) =
∑li

j=1 1C
j
i
(u) ·1

C
j
i
(v) indicates

if the nodes u and v co-occur in a cluster of Pi or not. When running the ECG algorithm,

the size k of the ensemble and the minimum edge weight w∗ are the only parameters

that need to be supplied. Guidelines for the parameters are given in Poulin and Théberge

(2019), where we also show that the results are not too sensitive with respect to those

parameters.

Previous study and the LFR benchmark

In Poulin and Théberge (2019), we re-visited a recently published study of graph cluster-

ing algorithms, comparing the best performing algorithms from that study with the ECG

algorithm. In general, we found ECG to yield better clusters with respect to all of the

measures considered. Moreover, ECG generally found a number of communities much

closer to the true value. The algorithms are compared on graphs generated with the LFR

benchmark for undirected and unweighted graphs and with non-overlapping communi-

ties. In the LFR benchmark, three important parameters are: the mixing parameter (µ)

which sets the expected proportion of edges for which the two endpoints are in different

communities, the (negative) degree distribution power law exponent (γ1), and the (nega-

tive) community size distribution power law exponent (γ2). It is generally recommended

to use 2 ≤ γ1 ≤ 3 and 1 ≤ γ2 ≤ 2 to model realistic networks (Lancichinetti and Fortu-

nato 2009; Barabasi 2016). In our previous study, the power law exponents were fixed at

γ1 = 2 and γ2 = 1, with .03 ≤ µ ≤ .75.

Algorithms andmeasures

It was shown (Poulin and Théberge 2018) that graph-agnostic measures such as the

adjusted RAND index (ARI) and adjusted mutual information (AMI) (Vinh et al. 2009)

yield high scores for refinements of the true partition, while a graph-aware version (AGRI)

gives high scores for coarsenings of the true partition when measuring graph partition

similarities. We use both types of measures to compare algorithms. We compared the

true communities with those found by the ECG algorithm as well as three other state-of-

the-art algorithms: InfoMap (IM) (Rosvall and Bergstrom 2007), WalkTrap (WT) (Pons

and Latapy 2005) and multilevel-Louvain (ML) (Blondel et al. 2008). The quality of the

results from ECG are clear from the first two plots of Fig. 1, and the number of communi-

ties found with ECG remains much closer to the true number as the proportion of noise

increases, as shown in the third plot. Those conclusions are illustrative of the results we

reported in Poulin and Théberge (2019).

Resolution limit and stability

At the heart of ECG is the fact that we use multiple runs of the single-level Louvain algo-

rithm to build an ensemble of weak (or local) partitionings of the nodes. In this section,

we illustrate the two main reasons for this choice.
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Fig. 1 In the first two plots, we compare the accuracy of ECG with state-of-the-art algorithms: InfoMap (IM),

WalkTrap (WT) and Louvain (ML). Results from each algorithm are compared with the true communities for

LFR graphs with n = 22, 186 nodes, and for various values of µ, the proportion of noisy edges. For each value

of µ, we average over 10 LFR graphs; the shaded area shows the standard deviation. We see that ECG

outperforms all other algorithms. In the third plot, we look at the ratio of the number of computed vs true

communities. We see that ECG remains very close to the desired value Ĉ/C = 1, as opposed to the other

algorithms

Resolution issue: ring of cliques illustration

The resolution limit issue is well illustrated by the infamous ring of cliques example, where

the n nodes form l cliques (full sub-graphs) of size m, wired together as a ring. For some

choices of l and m, grouping pairs of adjacent cliques yields a higher modularity value

than the natural choice of each clique forming its own cluster (Fortunato and Barthélemy

2007). The latter yields higher modularity if and only ifm(m − 1) > l − 2. In (Poulin and

Théberge 2019), we show that choosing a small value for w∗ in (1) can alleviate this issue.

In particular, choosing w∗ < 1/n avoids the issue altogether.

In Fig. 2, we look at rings of l cliques of sizem = 5, with 1 to 5 edges between contiguous

cliques. For the ML algorithm, we see the resolution limit issue when l > 20 (with 1 edge

between contiguous cliques), which agrees with the known results. The IM algorithm is

stable when only a few edges link the cliques, but quickly becomes unstable as more edges

are added, while the ECG algorithm remains very stable keeping the default choice of

w∗ = .05.

We further illustrate this stability in Fig. 3, where we add up to 15 edges between the

cliques of size 5 in a ring with 4 cliques. We see that even when the number of edges

linking the cliques is comparable to the number of edges within each clique, the signal

Fig. 2 In each plot, we consider l cliques of sizem = 5 where contiguous cliques are linked by 1 to 5 edges,

respectively. We compare the number of communities found by the InfoMap (IM), Louvain (ML) and ECG

algorithms. The resolution limit phenomenon is clearly seen with the ML algorithm. The IM algorithm fails to

find the right number of communities when we increase the number of edges between the cliques, while

ECG remains more stable
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Fig. 3 We add 1 to 15 edges between contiguous cliques in a ring of 4 cliques of size 5, and we look at the

effect on the ECG edge weights for edges internal to the cliques, or external edges linking the contiguous

cliques. In the right plot, we look at the case with 15 edges between cliques; thick edges are the ones where

the ECG weight is 0.8 or above

obtained with the ECG weights still favours the cliques. This behaviour allow to better

identify communities in noisy graphs. In the right plot of Fig. 3, we show the case where

15 edges are added between contiguous cliques. Thicker edges are the ones where the

ECG weights are above 0.8. We see that most of the clique structure is still captured when

looking only at those high weight edges.

Stability of ECG

We illustrate another advantage of ECG which is to significantly reduce the instability in

the ML algorithm. To test for stability, we run the same algorithm twice on each graph

considered, and we compare the two partitions obtained with the ARI (or AGRI) measure.

In Fig. 4, we did this for the ML and ECG algorithms over LFR graphs with the same

parameters as in the previous section. We see that in all cases, ECG greatly improves the

stability of the Louvain algorithm.

Weight distribution and community structure

When we compare the ECG weight distribution over LFR graphs with varying mix-

ing parameter as well as random graphs, we see that a bi-modal distribution of the

weights near the boundaries (0 and 1) is indicative of strong community structure. We

Fig. 4 We compare the stability of the communities found by the Louvain (ML) and ECG algorithms over LFR

graphs with 5 different choice of power law exponents. Partitions obtained in distinct runs for each algorithm

are compared via the ARI measure. We see the much improved stability with ECG. Conclusions are the same

with the AGRI measure (not shown)
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thus propose a simple community strength indicator (CSI) based on the point-mass

Wasserstein distance. For all edges (u, v) ∈ E, withWP(u, v) from (1), we define:

CSI = 1 − 2 ·
1

|E|

∑

(u,v)∈E

min (WP(u, v), 1 − WP(u, v)) (2)

such that 0 ≤ CSI ≤ 1, where a value close to 1 is indicative of strong community

structure, random weights WP(u, v) yield a value close to 0.5, and CSI = 0 when all

WP(u, v) = 0.5. In Fig. 5, we see the bi-modal distribution of the weights for low and

mid-range choices of µ, along with high CSI values. For larger values of µ, the distribu-

tion is not as clear, and there are less and less edges with weight close to 1, which indicates

a weak community structure, as confirmed by the CSI values. The random graphs have

low weights only, which is indicative of the absence of community structure. This exam-

ple illustrates how the distribution of edge weights obtained with ECG, along with the

proposed CSI, can be used to assess the strength of community structure in a graph.

Experiments

In this section, we experimentally compare ECG to other graph clustering algorithms.

First, we consider artificial graphs generated with the LFR benchmark over a choice of

parameters which, as we show, yield different community structures. Next, we compare

graph clustering algorithms over two real networks with known community struc-

ture: a college football graph and a Youtube friendship graph. We further validate the

results of ECG by considering some measures based on the topological properties of the

communities.

Results on LFR benchmark graphs

In studies involving LFR benchmark graphs, the power law exponents described earlier

are often fixed, while the mixing parameter µ is varied to generate graphs with different

community strength. However, the choice of power law exponents has strong influence on

the type of communities we obtain. In Fig. 6, we show some topological graph differences

over 5 choices of parameters (γ1, γ2) in the recommended range (see Barabasi (2016)).We

see that for larger values of those parameters, the communities generated are small and of

similar size while smaller values yield graphs with more heterogeneous community sizes.

Fig. 5 Violin plots of the ECG weight distribution for a family of LFR graphs with n = 22, 186 nodes,

parameters γ1 = 2, γ2 = 1 and .21 ≤ µ ≤ .75. We also compare with a random graph of the same size and

degree distribution as the graph with µ = 0.21. We see the bi-modal distribution over LFR graphs up to a

very high noise level. For large µ, the signal gets weaker. It is even weaker for the random graph. The

Community Strength Indicator (CSI) is also reported
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Fig. 6 We selected 5 choices for the power law parameters (γ1 , γ2) which are representative of various types

of networks obtained with the LFR benchmark, and we look at the distribution of the sizes of communities. We

see that with the largest recommended values (γ1 , γ2) = (3, 2), we get small communities of homogeneous

size. As the exponents decrease, the sizes of the communities get more heterogeneous. All results were

obtained by averaging over 10 graphs with 22,186 nodes for every choice of parameters (µ, γ1 , γ2)

Thus, considering different values for those parameters amounts to looking at a wider

variety of community structures.

In Fig. 7, we compare ECG with IM, WT and ML over a wide range of LFR parame-

ters γ1, γ2 and µ, using both the ARI measure and its graph-aware counterpart AGRI.

For the larger values of (γ1, γ2) in the left column, we see that the ML algorithm does

not do very well, with ECG doing much better and IM yielding the best results. As the

exponents decrease moving toward the right column, we consider graphs with more het-

erogeneous community size distribution. For those graphs, we see that the ML algorithm

Fig. 7 Wemeasure the quality of the communities found by the InfoMap (IM), WalkTrap (WT), Louvain (ML)

and ECG algorithms over LFR graphs with 5 different choice of power law exponents. Comparison to

ground-truth is done with the ARI (top) and AGRI (bottom) measures. The LFR exponents vary in each column,

in the same order as in Fig. 6. On the leftmost column plots, we see that ML does not do very well, ECG does

much better and IM yields the best results. Recall that those graphs have many small communities of similar

sizes. As we look toward the plots on the right, ML does progressively better and ECG yields the best results
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does better, and ECG gives the best results overall. One issue with small communities is

that the resolution limit inherent to modularity-based algorithms is more severe. For a

ring of size m cliques, we saw that merging some cliques increases the modularity when

m is small, a special case of “small communities”. The IM algorithm on the other hand is

not modularity-based (it uses random walks) and does well in such cases.

Results on two real networks

We now depart from artificial graphs to look at two real world examples. First, we con-

sider the college football graph studied in Girvan and Newman (2002), which consists of

613 games played between 115 teams which are grouped in 12 conferences (the commu-

nities). As noted in Lu et al. (2018), teams generally play more games against other teams

in their conference, but there are a few exceptions to this rule. One of the conference is

actually a group of independent teams that mainly play against other conferences, and

another conference is divided in two groups where most games are within the respective

groups. There are also a few outlying teams playing most games with other conference

teams. This graph exhibits strong community structure, with average vertex transitivity

of .40 and community strength index CSI = 0.91. The results are summarized in Table 1,

where we report the mean results over 100 runs for each algorithm considered earlier.

We also report the standard deviation if it is significant (to the third digit). From those

results, we see that IM and ECG yield the best results. Moreover, we see that the variance

is greatly reduced by using ECG instead of ML, an illustration of the improved stability of

ECG already discussed.

For the next example, we look at the Youtube friendship graph available at (Leskovec

and Krevl 2014). There are 1,134,890 nodes (the users) and 2,987,624 edges which consist

of friendship between two users. There are 8,385 communities, which are the user-defined

groups. The 2-core of this graph spans only about 41.4% of the nodes but nevertheless, it

exhibits some community structure with average vertex transitivity of 0.22 in the 2-core,

and CSI = 0.86. The communities (user groups) are however very weak from a topological

point of view according to the definition of weak community in equation (9.2) of (Barabasi

2016). From this definition, a community C is a weak community if the ratio of its external

degree (edges out of C) to its total degree is smaller than 0.5. In the Youtube graph, only

12 communities fulfill this condition. In order to compare algorithms over reasonably

coherent communities, we relax the above definition to communities where this ratio is

smaller that some weak community threshold τ for a range of values .5 <= τ <= .75.

This quantity τ plays a similar role to the mixing parameter µ in LFR benchmark. We

apply each clustering algorithm to the entire Youtube graph, except for WT which has

complexity O(n2 log n) where n is the number of nodes. In Fig. 8, we compare the results

Table 1We run each clustering algorithm 100 times on the college football dataset, namely: ECG,

Louvain (ML), WalkTrap (WT) and InfoMap (IM)

Results for the college football graph

ECG ML WT IM

ARI .889±.016 .763 ± .052 .815 .897

AMI .900±.005 .843 ± .020 .856 .899

AGRI .869±.005 .815 ± .019 .837 .872

We compute three different measures with respect to the ground-truth communities (12 conferences). Where significant, we also

report the standard deviation. Best results in bold
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Fig. 8 We compare the partitions obtained with ECG, Louvain (ML) and Infomap (IM) over the Youtube graph.

We only consider the groud-truth communities where the ratio of external to total degree is below some

threshold, which we vary from 0.5 to 0.75 on the x-axis. Results are compared via the ARI and AMI measures

using the ARI and AMI measures. We see that ECG gives very good results in general,

with IM also giving good results in particular with respect to the ARI measure. We also

see that the performance of ECG decays less rapidly than ML as we saw with LFR graphs,

an indication that it is able to capture the local community structure even in the presence

of high noise, which was already demonstrated for ring of cliques.

Topological properties

Quantitative measures such as ARI or AMI are based on the actual clusters found by each

algorithm, which are compared to some ground-truth partition. Other types of measures

were proposed which are based on topological properties of the clusters; this is useful to

ensure that the clusters found by algorithms have structure similar to the real commu-

nities. Several such measures are proposed in Orman et al. (2012). We consider two of

those measure: the scaled density (a variant of edge density), and the internal transitivity

(based on classic local transitivity). As in Orman et al. (2012), we plot those as a function

of the community size for the true communities as well as for the ones found by the dif-

ferent algorithms. Using an LFR graph with parameters µ = .39, γ1 = 2 and γ2 = 1, we

show the results for the internal transitivity measure in Fig. 9. We see that both ECG and

to a lesser extent IM follow a distribution similar to the ground-truth communities. For

ML, the main issue is that the clusters found are generally larger, an illustration of the res-

olution limit issue which is much reduced with ECG. In fact, it was shown in Dao et al.

(2019) that the distribution of cluster sizes can be a strong indicator of similarity between

community detection algorithms. Similar conclusions arise with the scaled density mea-

sure, and this plot is available as supplementary material, as well as plots for the college

football graph.

Anomaly detection on graphs

In Helling et al. (2019), the authors propose CADA, a community-aware method for

detecting anomalous nodes. For each node v ∈ V , letN(v) represent the number of neigh-

bors of v, and Nc(v) the number of neighbors of v that belong to the most represented
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Fig. 9 For an LFR graph with parameters µ = .39, γ1 = 2 and γ2 = 1, we plot the internal transitivity of the

ground-truth communities as a function of their sizes and compare with the clusters found with ECG,

Louvain (ML) and Infomap (IM). The resolution issue with ML (larger size communities) is not present with

ECG, which shows structure very close to the ground-truth

community obtained with the IM or ML algorithm. They define: CADAx(v) = N(v)
Nc(v)

where x ∈ {IM,ML} indicates the clustering algorithm used. They compare their algo-

rithm to other methods by generating LFR graphs with degree exponent γ1 = 3 and

community size exponent γ2 = 2. As we saw earlier, this choice corresponds to small com-

munities of homogeneous size, where the ML algorithm performs poorly. We re-visited

this approach with ECG, considering different values for the power law exponents. We

generated LFR graphs with n = 22, 186 nodes and various values for the mixing parame-

ters. For each graph, we introduced 200 random anomalous nodes with the same degree

distribution, as in Fig. 1 of (Helling et al. 2019).

In Fig. 10, we compare CADAECG with CADAIM and CADAML using the areas under

the ROC curves (AUC). We see that for large choices of the power law exponents, the

IM version does best. This is the only choice of parameters used in Helling et al. (2019).

As we decrease the values of the exponents, we see that using ECG becomes a better

choice, which is supported by our previous results in the “Experiments” section. We also

get better results for large values of µ, thanks to the increased stability and the ability to

distinguish the signal from the noise provided by the ECG weights, which we illustrated

earlier in “Resolution limit and stability” section.

Semi-supervised learning with ECG

Given some seed nodes in a graph, we want to look at the main interactions around

those nodes. Taking the seeds’ ego-centered communities is one possibility (Danisch et al.
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Fig. 10 We compare three flavours of the CADA algorithm using InfoMap (IM), Louvain (ML) and ECG. For

each value of .3 ≤ µ ≤ .75, we generated 10 LFR graphs of size 22,186, along with 200 random anomalous

nodes with the same degree distribution. We considered 5 different choices for the LFR power law

exponents. Results are compared via the area under the ROC curve (AUC)

2013). Another approach is to consider the entire cluster(s) from a partition which con-

tain the seed nodes, but those could be very large. The weights provided by ECG can be

used to define a dimmer-like process around the seed nodes, similar to the concept of α-

cores in Seifi et al. (2013), enabling us to highlight the sub-graphs that are the most tightly

connected to the seeds. Consider a graph G, a seed node v and Gv ⊂ G the sub-graph of

G formed by keeping only the ECG cluster containing node v. Given some threshold θ , we

delete all edges in Gv with ECG weights below θ , and we keep the connected component

sub-graph containing node v. Increasing θ from 0 to 1 provides a hierarchy of sub-graphs

of decreasing size which all contain v.

As an illustration of this process, we consider the Amazon co-purchasing graph avail-

able from the SNAP repository (Leskovec and Krevl 2014). This graph has 334,863 nodes

and 925,872 edges. There are over 75,000 communities, 5000 of which are identified as

the top ones. We picked a node v that belongs to one of those top communities1. We ran

ECG, and isolated the sub-graph Gv induced by the nodes in the ECG cluster that con-

tains v. In Fig. 11, we gradually increase the threshold θ , keeping only edges in Gv with

ECG weight above that threshold, and showing the connected component containing v.

In the first plot, we set θ = 0, thus showing Gv (v is shown with larger size). Nodes in red

belong to the same ground truth community as v. While we see a lot of spurious nodes in

the first plot, discarding edges with low ECG weights (setting θ = 0.1) yields the second

Fig. 11 We consider a seed node (shown with larger size) from the Amazon co-purchasing graph. Nodes

from the same ground truth communities are displayed in red, and other nodes are displayed in black. From

left to right, we display respectively (i) the entire sub-graph obtained from the ECG part that contains the

seed, (ii) a connected sub-graph with ECG edge weights above 0.1 containing the seed, and (iii) a connected

sub-graph with ECG edge weights above 0.72 containing the seed. While the first plot has many spurious

nodes, as we zoom in, most nodes we retain are in the same true community as the seed node
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Table 2 Parameters used for the LFR benchmark graphs

LFR Benchmark Parameters

γ1 γ2 avg. degree max. degree

2.0 1.0 20 2219

2.25 1.25 18 1600

2.5 1.5 15 1000

2.75 1.75 12 304

3.0 2.0 9 149

We generated graphs with n = 22, 186 nodes with those choices of parameters, and with mixing parameter .03 ≤ µ ≤ .75

sub-graph, where all ground truth nodes are retained. The last plot shows a more aggres-

sive filtering, where we retain only edges with high ECG weights (setting θ = 0.72). This

reveals a tightly connected subset around the seed v.

Conclusion

In this paper, we provided empirical evidence for two claimed advantages of ECG: its abil-

ity to greatly reduce the resolution limit issue ofmodularity-based algorithms, and its high

stability.We also introduced a new index to quantify the presence of community structure

in a graph using the ensemble weights in ECG.We validated the above advantages by com-

paring ECG with state-of-the-art algorithms over a wide range of experiments, including

some real graphs and the use of topological features for comparison. We showed ECG to

be the best performing algorithm in most cases. Finally, we proposed a framework using

ECG in a semi-supervised fashion to extract relevant sub-graphs around seed nodes. The

LFR benchmark was used extensively in our experiments. In Orman et al. (2013), two

alternatives to the configuration model used in LFR are proposed, and are shown to be

more realistic with respect to some topological properties. Those are based respectively

on the Barabasi-Albert and the evolutionary preferential attachment models. As future

work, we plan to investigate the performance of ECG with respect to those benchmarks.
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