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Abstract In this paper, we study the ensemble clustering problem, where the input is in

the form of multiple clustering solutions. The goal of ensemble clustering algorithms is to

aggregate the solutions into one solution that maximizes the agreement in the input ensem-

ble. We obtain several new results for this problem. Specifically, we show that the notion

of agreement under such circumstances can be better captured using a 2D string encoding

rather than a voting strategy, which is common among existing approaches. Our optimiza-

tion proceeds by first constructing a non-linear objective function which is then transformed

into a 0-1 Semidefinite program (SDP) using novel convexification techniques. This model

can be subsequently relaxed to a polynomial time solvable SDP. In addition to the theoretical

contributions, our experimental results on standard machine learning and synthetic datasets

show that this approach leads to improvements not only in terms of the proposed agreement

measure but also the existing agreement measures based on voting strategies. In addition,

we identify several new application scenarios for this problem. These include combining
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multiple image segmentations and generating tissue maps from multiple-channel Diffusion

Tensor brain images to identify the underlying structure of the brain.

Keywords Ensemble clustering · Semidefinite programming · Cluster ensembles ·
Segmentation aggregation

1 Introduction

Aggregation (of data) from multiple sources is typically used to reduce noise and obtain

a more accurate characterization of information. If data from multiple sources are in the

form of clustering schemes (or clusters), we may want to aggregate such knowledge to de-

rive a better clustering with fewer errors. The Ensemble Clustering problem refers to such

a scenario where the target is to ‘combine’ multiple clustering solutions or partitions of a

set into a single consolidated clustering that maximizes the information shared (or ‘agree-

ment’) among all available clustering solutions. The need for this form of clustering arises

in many applications, especially real world scenarios with a high degree of uncertainty

such as image segmentation with poor contrast, and computer assisted disease diagnosis.

It is quite common that a single clustering algorithm may not yield satisfactory results,

while multiple algorithms may individually make imperfect choices, assigning some ele-

ments to wrong clusters. Usually, by considering the results of several different clustering

algorithms together, one may be able to mitigate degeneracies in individual solutions and

consequently obtain better solutions. These issues have been investigated in the literature

recently in the context of the stability and accuracy of the solutions (Fred and Jain 2006;

Dudoit and Fridlyand 2003; Kuncheva and Vetrov 2006). For instance, Dudoit and Fridlyand

(2003) applied bagging based procedures to cluster analysis in an effort to reduce the vari-

ability via averaging. In a tumor sample clustering application (Dudoit and Fridlyand 2003),

ensemble methods were found to provide robustness to variability in the clustering solution

due to starting conditions or convergence to poor local optimum solutions. The experiments

in Kuncheva and Vetrov (2006) evaluated the stability of the solution (as a measure of the

validity of the clustering). Using the adjusted Rand Index and an entropy based measure

of the consensus to characterize stability, the results (Kuncheva and Vetrov 2006) indicated

a significant improvement relative to individual solutions (especially for a large number

of clusters). A similar behavior was observed in Fred and Jain (2006) on several synthetic

and real data-sets, where the stability of the clustering solutions was evaluated using boot-

strapping techniques.

However, these are just few among many possible applications. There are numerous other

scenarios such as knowledge reuse and applications in distributed computing outlined in

Strehl and Ghosh (2003). The idea has also been employed successfully for microarray

data clustering analysis (Filkov and Skiena 2003) and document cluster analysis (Bansal

et al. 2002). In fact, the problem models a variety of situations where we seek to perform

aggregation to obtain a representative clustering with minimal inconsistency and maximum

mutual agreement.

Formally, given a data set D = (d1, d2, . . . , dn), a set of clustering solutions C =
(C1,C2, . . . ,Cm) obtained from m different clustering algorithms is called a cluster en-

semble. Each solution, Ci , is the partition of the data into at most k different clusters. The

Ensemble Clustering problem requires one to use the individual solutions in C to partition

D into k clusters such that information shared (or agreement) among the solutions of C is

maximized. We will make the notion of ‘agreement’ precise shortly.
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The remainder of this paper is structured as follows. In Sect. 1.1 we discuss some re-

lated work and results on this problem. In Sects. 2, 3, we describe the intuition and main

ideas underlying the algorithm. Sections 4–6 include the body of the paper—we start with

an Integer Program to formalize the problem and finally obtain a Semidefinite program. Sec-

tion 7 outlines a rounding mechanism, and we present some promising experimental results

in Sect. 8. Relative to the conference version of this work (Singh et al. 2007), this paper

includes detailed steps of the modeling and rounding scheme, as well as an extensive set of

experiments in the context of image segmentation applications.

1.1 Previous works

The Ensemble Clustering problem was introduced by Strehl and Ghosh (2003), and has

since generated a great deal of interest. A number of algorithms have been proposed for

Cluster Ensembles or related problems (Strehl and Ghosh 2003; Fern and Brodley 2004;

Monti et al. 2003; Gionis et al. 2005; Ailon et al. 2005; Bansal et al. 2002; Charikar et al.

2005; Giotis and Guruswami 2006). A common feature of many approaches is modeling

an instance of the ensemble clustering problem as a graph with the edges denoting some

measure of example similarity inferred from the ensemble. In the next section, we briefly

review some of the popular techniques such as Instance Based Graph and Cluster Based

Graph from Strehl and Ghosh (2003) to showcase existing approaches to the problem.

The Instance Based Graph Formulation (IBGF) (Strehl and Ghosh 2003)1 first constructs

a fully connected graph G = (V ,W) for the input cluster ensemble C = (C1, . . . ,Cm) and

each node represents an element of D. The weight wij between the node pair (vi, vj ) is

defined as the number of cluster algorithms in C that assign the nodes di and dj to the same

cluster (i.e., wij measures the togetherness frequency of di and dj ). Then, standard tech-

niques are used to solve a graph partitioning problem and obtain a final clustering solution.

Meta clustering algorithm (MCLA) (Strehl and Ghosh 2003) follows a Cluster Based

graph formulation (CBGF), i.e., it is based on clustering clusters. A given cluster ensemble

is represented as C = {C11, . . . ,Cmk} = {C̄1, . . . , C̄mk} where Cij denotes the ith cluster of

the j th algorithm in C. Like IBGF, this approach also constructs a graph, G = (V ,W), to

model the correspondence (or ‘similarity’) relationship among the mk clusters, where the

similarity matrix W reflects the Jaccard similarity measure between the clusters C̄i and C̄j

wij =
|C̄i ∩ C̄j |
|C̄i ∪ C̄j |

.

The similarity measure is then used to partition the graph so that the clusters of the same

group are similar to one another. Once a partition of the clusters is obtained a final clustering

is determined by considering each group of clusters as a metacluster; elements are assigned

to the metacluster with which they are most frequently associated. We note that variations

of the problem have connections to other well known problems such as Rank Aggregation

Clustering for which constant factor approximation algorithms have been proposed (Ailon et

al. 2005). In addition to the above mentioned approaches, some simpler learning algorithms

have also been proposed. These include Topchy et al. (2003) which proposed generating

weak clustering by projection onto 1D plane or bisection by random hyperplanes followed

1Note that IBGF was terminology used in Fern and Brodley (2004) to refer to and review the Cluster based

similarity partitioning algorithm (CSPA) in Strehl and Ghosh (2003).
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by k-means clustering and Topchy et al. (2003) which proposed a mixture modeling based

approach for ensemble clustering.

In summary, most existing algorithms rely, at least at the basic level, on a graph con-

struction. Element pairs (cluster pairs or item pairs) are then evaluated and their edges are

assigned a weight that reflects their similarity. In the next section, we will discuss these

issues in more detail.

2 Two is company, three is a crowd

Consider an example where one is ‘aggregating’ recommendations made by a group of

family and friends for dinner table seating assignments at a wedding. The hosts would like

each ‘table’ to be able to find a common topic of dinner conversation. Now, consider three

persons, Tom, Dick, and Harry invited to this reception. Tom and Dick share a common

interest in Shakespeare, Dick and Harry are both surfboard enthusiasts, and Harry and Tom

attended college together. Because they had strong pairwise similarities, they were seated

together but had a rather dull evening.

The three guests indeed had strong common interests when considered two at a time,

but there was weak communion as a group. All existing algorithms represent the similarity

measure between elements in D as a scalar value assigned to the edge joining their corre-

sponding nodes in the graph. This weight is essentially a ‘vote’ reflecting the number of

algorithms in the ensemble that assigned those two elements to the same cluster. The mech-

anism seems perfect until we ask if strong pairwise coupling necessarily implies coupling

for a larger group as well. The weight metric considering two elements does not retain in-

formation about which algorithms assigned them together. This information is perhaps not

useful directly, but when we seek to characterize higher order interactions (similarity) and

expanding the group to include more elements, it is not quite clear if a common feature even

exists such that the larger group is similar (if one considers that feature). It seems natural to

assign a higher priority to triples or larger groups of people that were recommended to be

seated together (must be similar under at least one feature) compared to groups that were

never assigned to the same table by any person in the recommendation group (clustering

algorithm), notwithstanding pairwise evaluations. While this problem seems to be a distinc-

tive disadvantage for only the IBGF approach; it also affects the meta-clustering approach.

Here the analogy of pairwise similarity extends to clusters. While the overlap of pairwise

clusters may be high, it is still difficult to precisely infer the degree of consent in a cluster

that comprises of all items of these clusters.

We provide a simple toy example (see Fig. 1) to convey this intuition. Consider nodes

a, b, c, d , and e in D and four clustering algorithms (C1, . . . ,C4) dividing D into three

clusters. For a voting based algorithm, �acd (Fig. 1(b)) and �abc (Fig. 1(c)) are equivalent

because they have equal weights (i.e., 4). However, closer inspection shows that these two

sets of points are quite different in terms of which clusters put them together. In �acd ,

each pair of elements is put in the same cluster by one algorithm, but no solution put a,

c, and d in the same cluster. However in �abc, all three nodes were assigned to the same

cluster at least by one algorithm (i.e., C1). Voting strategies are unable to incorporate such

information. This problem may naturally amplify in larger datasets.

The two examples above bring out one central idea. It is reasonable to expect that the

solution from an ‘ensemble’ algorithm be such that each cluster has a high vote as a group

as a result of a high cohesiveness among members across a feature set (the solutions from

multiple clustering algorithms). Pairwise (scalar) edge weights do not provide sufficient in-

formation for inputs where cluster sizes and the feature set on which clustering is performed
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Fig. 1 An input ensemble represented as a graph in (a) and a table in (d). (b) and (c) evaluate the goodness

of two subgraphs with equal weight w.r.t. pairwise evaluations

are larger. Regardless of the sophistication of the graph partitioning algorithm employed on

such graphs later on, it is likely to yield sub-optimal results.

3 Main ideas

To model the intuition above, we generalize the similarity metric to maximize similarity or

‘agreement’ by an appropriate encoding of the solutions obtained from individual clustering

algorithms. More precisely, in our generalization the similarity is no longer just a scalar

value but a multidimensional string. The ensemble clustering problem thus reduces to a

form of string clustering problem where our objective is to assign similar strings to the

same cluster.

The encoding into a string is done as follows. The set of data points is given as D with

|D| = n, where | · | will denote the number of examples/items in a set. Let m be the number

of clustering algorithms with each solution having no more than k clusters. We represent all

input information (ensemble) as a single 3D matrix, A ∈ ℜn×m×k . For every data element

dl ∈ D, Al ∈ ℜm×k is a matrix whose elements are defined by

Alij =

{

1 if dl is assigned to cluster i by Cj ;

0 otherwise
(1)

It is easy to see that the summation over every row of Al equals 1. We call each Al an A-

string. Our goal is to cluster the elements D = (d1, d2, . . . , dn) based on similarity of their

corresponding binary matrices (or A-strings).

We now consider how to compute the clusters based on the similarity (or dissimilarity)

of strings. We note that Gasieniec et al. (2000) discussed the so-called Hamming radius p-

clustering (HRC) and Hamming diameter p-clustering (HDC) problems on strings. Though

their results shed considerable light on the hardness of string clustering with the selected

distance measures, their proposed method is polynomial time solvable only if the string

sizes or the number of strings are considered fixed, which is not feasible with our model.

Fortunately, our analysis reveals that a simpler objective is sufficient to capture the essence

of similarity maximization in clusters using certain special properties of the A-strings.

Our approach is partly inspired by the classical k-means clustering where all data points

are assigned to the cluster based on the shortest distance to the cluster center. Imagine an

ideal input instance for the ensemble clustering problem (all clustering algorithms behave

similarly). Here, we will have only k unique members among n A-strings. The partitioning

simply assigns similar strings to the same partition. The representative for each cluster is
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exactly like the members of the clusters, i.e. a valid A-string, and can be viewed as a center

in a geometric sense. General input instances will obviously be non-ideal and are likely to

contain far more than k unique members. Naturally, the centers of the clusters will vary from

its members. This variation is noise or disagreement within the clusters, our objective is to

find a set of clusters (and centers) such that the noise is minimized and we move very close

to the ideal case.

Next, we use an example to illustrate how to construct the center A strings and how

disagreement in the cluster can be captured in this framework. Let a cluster i in an optimal

solution contain items (d1, d2, . . . , d7). A certain algorithm Cj in the input ensemble clusters

items (d1, d2, d3, d4) in cluster s and (d5, d6, d7) in cluster p. If the center of cluster i were

an example in the input, we can estimate its assignment by algorithm Cj . The probability

it assigns the center to cluster s (and respectively, p) is 4/7 (and respectively, 3/7). That

is, we pick the choice with the higher probability and assign the center to such a cluster.

It can be verified that this choice minimizes the dissent (w.r.t. the center) of all examples

in cluster i. The A-string for the center of cluster i will have a “1” at position (j, s). The

assignment of A-string (items) to clusters is unknown; however, if it were provided, we

could find the centers for all other clusters i ∈ {1, . . . , k} by computing the average value

at every cell of the A matrices (i.e., cluster members) and rounding the largest value in

every row to 1 (rest to 0) and assigning this as the cluster center. Hence, the dissent within

a cluster can be quantified simply by averaging the matrices of elements belonging to the

cluster and computing the difference to the center. Our goal is to find such an assignment and

group the data items so that the sum of the absolute differences of the averages of clusters to

their centers (i.e., dissent) is minimized. Note that when the number of clusters in the input

ensemble is different, we can simply “pad” the A strings with zeros appropriately.

In the subsequent sections, we will introduce our optimization framework for ensemble

clustering based on the discussed ideas.

4 Integer Program for Model 1

We start with a discussion of an Mixed Integer Program (MIP, for short) formulation for

ensemble clustering. For convenience, we denote the final clustering solution by C∗ =
{C∗

1 ,C∗
2 , . . . ,C∗

k } and Cij the cluster i by the algorithm j . Each cluster denotes a set of

elements. The variables (or unknowns) which the IP on the completion of its optimization

will assign values to are X ∈ ℜn×k and s ∈ ℜk×m×k . Here X denotes the assignment matrix

of the data items to the clusters in the final ensemble output and s denotes the A-string of the

center of clusters in the output ensemble. To denote individual elements of these matrices,

we use the notations Xlp and sijp respectively. These variables are defined as follows.

Xlp =

{

1 if dl ∈ C∗
p;

0 otherwise
(2)

sijp =

{

1 if C∗
p = arg maxi=1,...,k{|C∗

p ∩ Cij |}
0 otherwise

(3)

This indicates Xlp is set to 1 if data item dl is assigned to cluster C∗
p (zero otherwise) and

sijp , is set to 1 only if the overlap of cluster C∗
p with cluster Cij is greater than or equal to its

overlap with all other clusters Ci′j : i ′ �= i. We mention that the above definition implies that

for a fixed index p, its center, sijp also provides an indicator to the cluster most similar to
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C∗
p in the set of clusters produced by the clustering algorithm Cj . At the cost of repetition,

the dimension of the A strings are n × m × k, as defined in Sect. 3. We can now introduce

the following MIP.

min
s,X

k
∑

p=1

k
∑

i=1

m
∑

j=1

∣
∣
∣
∣
sijp −

∑n

l=1 AlijXlp
∑n

l=1 Xlp

∣
∣
∣
∣

(4)

s.t.

k
∑

p=1

Xlp = 1 ∀l ∈ {1, . . . , n}, (5)

n
∑

l=1

Xlp ≥ 1 ∀p ∈ {1, . . . , k}, (6)

k
∑

i=1

sijp = 1 ∀j ∈ {1, . . . ,m}, ∀p ∈ {1, . . . , k}, (7)

Xlp ∈ {0,1}, sijp ∈ {0,1}. (8)

The objective function in (4) minimizes the sum of the difference between sijp (the center

for cluster C∗
p) and the average of all Alij bits of the data elements dl assigned to cluster C∗

p .

Recall that sijp will be 1 if Cij is the most similar cluster to C∗
p among all the clusters pro-

duced by algorithm Cj . Hence, if sijp = 0 and
∑n

l=1 Alij Xlp
∑n

l=1 Xlp
�= 0, the value |sijp −

∑n
l=1 Alij Xlp
∑n

l=1 Xlp
|

represents the percentage of data elements in C∗
p that do not consent with the majority of the

other elements in the group w.r.t. the clustering solution provided by Cj . In other words, we

are trying to minimize the dissent and maximize the consent simultaneously. The remain-

ing constraints are relatively simple—(5) enforces the condition that a data element should

belong to precisely one cluster in the final solution and that every cluster must have size at

least 1; (7) ensures that s is an appropriate A-string for every cluster center.

5 0-1 Semidefinite Program for Model 1

The formulation given by (4)–(8) is a mixed integer program (MIP, for short) with a

nonlinear objective function in (4). Solving this model optimally, however, is extremely

challenging—(a) the variables as per the constraint (8) are discrete; (b) the objective is non-

linear and non-convex. One possible way of attacking the problem is to ‘relax’ it to some

polynomially solvable problems such as SDP.

We now model the integer program of Sect. 4 into a 0-1 SDP. Our primary focus would be

to convert the nonlinear form in (4) into a 0-1 SDP form. By introducing additional variable

matrices t ∈ Rk×m×k , and c ∈ Rk×m×k whose sizes are same as s, we rewrite (4) as

min
s,X,t

k
∑

i=1

m
∑

j=1

k
∑

p=1

tijp (9)

sijp − cijp ≤ tijp ∀i,p, j, (10)

cijp − sijp ≤ tijp ∀i,p, j, (11)
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where the term cijp represents the second term in (4) defined by

cijp =
∑n

l=1 AlijXlp
∑n

l=1 Xlp

∀i,p, j. (12)

Since both Alij and Xlp are binary, (12) can be rewritten as

cijp =
∑n

l=1 A2
lijX

2
lp

∑n

l=1 X2
lp

∀i,p, j. (13)

Let us introduce a matrix variable y ∈ ℜn×n where lth element of column vector yp is defined

as

ylp =
Xlp

√
∑n

l=1 X2
lp

(14)

Since Aij ∈ ℜn is a vector whose lth element has value Alij which allows us to represent

(13) as

cijp = tr(yT
p Bijyp) ∀i, j,p, (15)

where Bij = diag(Aij ) is a diagonal matrix in ℜn×n with (Bij )ll = Alij . Equation (15) can

then be written as

cijp = tr(BijZp), (16)

where Zp = ypyT
p is a positive semidefinite matrix in ℜn×n satisfying the properties

Z2
p = Zp, Zp � 0, (17)

the symbol, �, denotes positive semidefiniteness. Now, we rewrite the constraints for X in

terms of Z. Equation (5) can be transformed to

k
∑

p=1

n
∑

l′=1

Zpll′ = 1 ∀l ∈ [1, n], (18)

where Zpll′ refers to the (l, l′) entry of matrix Zp . Notice that (6) is automatically satisfied

by the following constraints on the elements of Zp .

n
∑

l=1

Zpll′ = 1 ∀p ∈ [1, k], (19)

n
∑

l′=1

Zpll′ ≤ 1 ∀p ∈ [1, k],∀l ∈ [1, n]. (20)

Since Zp is a symmetric projection matrix by construction, (9)–(19) constitute a precisely

defined 0-1 SDP that can be expressed in trace form as follows.

min
s,Z,t

k
∑

p=1

tr(diag(tpek)) (21)
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s.t. (sijp − tijp − cijp) ≤ 0 ∀i, j,p, (22)

(cijp − sijp − tp) ≤ 0 ∀i, j,p, (23)

(
k

∑

p=1

Zp

)

en = en ∀p ∈ [1, k], (24)

tr(Zp) = 1 ∀p ∈ [1, k] (25)

Spek = em ∀p ∈ [1, k], (26)

Z ≥ 0, Z2
p = Zp, Zp = ZT

p , Sp ∈ {0,1}, (27)

where cijp = tr(BijZp), tp refers to the k × m matrix whose elements are tijp for all (i, j)

and en ∈ ℜn is a vector of all 1s.

The experimental results for this model indicate that it performs very well in practice (see

Sect. 8). However, because we must solve the model while maintaining the requirement that

Sp be binary (otherwise, the problem becomes ill-posed), a branch and bound type method

is needed. In the subsequent sections, we will make several changes to this framework based

on additional observations in order to obtain a polynomial algorithm for the problem.

6 Integer Program and 0-1 Semidefinite Program for Model 2

Recall the definition of the variables cijp , which can be interpreted as the size of the overlap

between the cluster C∗
p in the final solution and Cij , and is proportional to the cardinality of

C∗
p . Let us define

ci∗jp = max
i=1,...,k

cijp.

We also define vector variables qjp whose i th element is sijp − cijp . In the IP Model 1, we

try to minimize the sum of all the L1-norms of qjp . The main difficulty in the previous for-

mulation stems from the fact that cijp is a fractional function w.r.t. the assignment matrix X.

Fortunately, we note that since entries of cijp are fractional satisfying
∑k

i=1 cijp = 1 for any

fixed j,p, their sum of squares is maximized when its largest entry is as high as possible.

Thus, minimizing the function 1 −
∑k

i=1(cijp)2 is a reasonable substitute to minimizing the

sum of the L1-norms in the IP model 1. The primary advantage of this observation is that we

do not need to know the ‘index’ (i∗) of the maximal element ci∗jp . There is also an intuitive

explanation why such an objective can be used in place of the 1-norm objective in Model 1.

Consider a variable t ∈ [0,1]. We observe that 1− t2 ≥ 1− t for all t in [0,1]. This becomes

an equality only at integral values of t (i.e., t = 0 or t = 1). If we minimize our objective,

thus intuitively the use of the squared model (of the form 1 − t2) will force us to find a solu-

tion closer to the original model (i.e., one with binary constraints on the variables), relative

to a linear model based on (1 − t). We now explain our model. As before, X denotes the

assignment matrix. We no longer need the variable s, as it can be easily determined from

the solution. This yields the following MIP.

min
X

k
∑

p=1

m
∑

j=1

(
n

∑

l=1

Xlp

)(

1 −
k

∑

i=1

(cijp)2

)

(28)
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s.t.

k
∑

p=1

Xlp = 1 ∀l ∈ [1, n], (29)

n
∑

l=1

Xlp ≥ 1 ∀p ∈ [1, k], (30)

Xlp ∈ {0,1}. (31)

We next discuss how to transform the above problem to a 0-1 SDP. For this, we first note

that the objective function (28) can be expressed as follows.

min
X

k
∑

p=1

m
∑

j=1

((
n

∑

l=1

Xlp

)

−
k

∑

i=1

(
∑n

l=1 AlijXlp)2

∑n

l=1 Xlp

)

, (32)

which can be equivalently stated as

min
X

(

nm −
k

∑

p=1

m
∑

j=1

k
∑

i=1

(
∑n

l=1 AlijXlp)2

∑n

l=1 Xlp
︸ ︷︷ ︸

term 2

)

. (33)

The numerator of term-2 above can be rewritten as

(
n

∑

l=1

AlijXlp

)2

= (A1ijX1p + · · · + AnijXnp)2 = (AT
ijXp)2 = XT

p AijA
T
ijXp, (34)

where Xp is the pth column vector of X. Therefore, the second term of (33) can be written

as

= tr

(
k

∑

p=1

m
∑

j=1

k
∑

i=1

XT
p AijA

T
ij (X

T
p Xp)−1Xp

)

= tr

(
k

∑

p=1

m
∑

j=1

k
∑

i=1

AijA
T
ijZp

)

= tr

(
m

∑

j=1

k
∑

i=1

AijA
T
ijZ

)

= tr

(
m

∑

j=1

BjZ

)

= tr(BZ). (35)

In (35), Zp = Xp(XT
p Xp)−1XT

p (same as in IP model 1), and Z =
∑k

p=1 Zp and B =
∑m

j=1 Bj . Since each matrix Zp is a symmetric projection matrix and Xi′
1

and Xi′
2

are or-

thogonal to each other when i ′
1 �= i ′

2, we immediately have the following result.

Lemma 1 Z is a projection matrix of the form X(XT X)−1X.
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The above property used also in Peng and Wei (2007) is originally attributed to an anony-

mous referee in Gordon and Henderson (1977). Finally, we derive the 0-1 SDP formulation

for the problem (28)–(31) as follows.

min
Z

(nm − tr(BZ)) (36)

s.t. Zen = en, (37)

tr(Z) = k, (38)

Z ≥ 0, Z2 = Z, Z = ZT . (39)

7 Relaxation and rounding

Overview The relaxation to (36)–(39) exploits the fact that Z is a projection matrix sat-

isfying Z2 = Z. This allows replacing the last three constraints in (39) as I � Z � 0. By

establishing the result that any feasible solution to the second formulation of 0-1 SDP, Zfeas

is a rank k matrix, we first solve the relaxed SDP using SeDuMi (Sturm 1999) and Yalmip

(Löfberg 2004), take the rank k projection of Z∗ and then adopt a rounding based on a vari-

ant of the winner-takes-all approach to obtain a solution in polynomial time. The details

follow.

7.1 Relaxation

In this subsection, we describe our relaxation method that allows us to obtain a solution to

SDP Model 2. SDP relaxation approaches have a rich history with several such schemes

proposed for max-cut (Goemans and Williamson 1995; Anjos and Wolkowicz 1999) and

0-1 non-linear problems (Lasserre 2001). In addition, some of the SDP relaxation models

most closely related to this approach are Peng and Wei (2007), Xing and Jordan (2003).

Recall that Z is a projection matrix satisfying Z2 = Z, which implies that Z is also a

positive semidefinite matrix. A straightforward relaxation to (35) of 0-1 SDP Model 2 can

be done by replacing it with the following relaxed condition,

I � Z � 0. (40)

Further, the conditions on Z in (35) ensure that all entries of Z are non-negative and the

sum of each row is equal to 1. This means that the eigen values of Z are less than or equal

to 1. Hence, the constraint I � Z can be waived. Thus, the SDP relaxation can be obtained

by converting the constraint as follows.

Z � 0, Z ≥ 0. (41)

The relaxed program is feasible and bounded and is restated as follows.

min
Z

(nm − tr(BZ)) (42)

s.t. Zen = en,

tr(Z) = k,

I � Z � 0, Z ≥ 0. (43)
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7.2 Rounding

Due to relaxation, the approximate solution obtained by solving the relaxed problem may

not always be a feasible solution for our 0-1 SDP model. Specifically, the approximate Zp

may not be of the form ypyT
p . So, we need to recover the closest feasible solution to our

0-1 SDP from the obtained solution through a rounding procedure. We will discuss a few

technical results before proceeding.

Fact 1 If A has eigen values s1, s2, . . . , sn, then ‖A‖2
F =

∑

s2
i .

Fact 2 A projection matrix A has eigen values either 0 or 1.

Lemma 2 Let Zfeas

p be the feasible solution for cluster p in the final solution based of the

definition in Sect. 5. Any feasible solution to the first formulation of 0-1 SDP, Zfeas

p is a

rank 1 matrix.

Proof Let Xp denote column p in X. Xp has 1’s in positions where the corresponding data

item belongs to cluster p. Let the cardinality of cluster p be p. Then, Xp will have exactly

p ≤ n 1’s in its entries. ‖Xp‖2 will be 1√
p

. Recall that

y(l)
p =

Xlp

‖Xp‖2

. (44)

A direct implication is that yp will have 1√
p

in positions corresponding to non-zero entries

of Xp . Since Zp = ypyT
p , Zp will have ( 1

p
) in exactly p2 positions, all other entries being

zero. Therefore, the sum of squares of all elements in Zp is given by ‖Zp‖2
F = p2 · ( 1

p
)2 +

(n2 − p2) · 0 = 1. From Fact (2), we know that the eigen values of Zp will be 1 or 0 since it

is a projection matrix. Using Fact (1) and Fact (2), Zp must have one non-zero eigen value,

all other eigen values must be 0. Since rank of a matrix is simply the number of non-zero

eigen values, a feasible solution Zp to the 0-1 SDP must be a rank one matrix. �

Lemma 3 Any feasible solution to the second formulation of 0-1 SDP, Zfeas is a rank k

matrix.

Proof Lemma 1 states that Zfeas is a projection matrix satisfying Z2 = Z. Hence, the eigen

values of Zfeas are either 1 or 0. From Lemma 2, we know that ‖Zp‖2
F = 1,∀p ∈ [1, k].

Also, from the construction of the SDP model, we get Zfeas =
∑k

p=1 Zp . Observe that

since the clusters are disjoint, the sum of Zp will result in no two non-zero element being

added, i.e., the union of the set of non-zero elements of all Zp matrices are also the non-zero

elements of Zfeas. Therefore, ‖Zfeas‖2
F =

∑k

p=1 ‖Zp‖2
F = k, which is the sum of eigen

values of Zfeas. The statement of the lemma follows. �

We restate a well known result in the following lemma.

Lemma 4 Let A be a m × n matrix with eigen values values si ≥ s2 ≥ · · · ≥ sn and cor-

responding eigen vectors v1,v1, . . . ,vn. If A has rank r , then for any k < r , a best rank k

approximation of A is A′ =
∑k

i=1 visiv
T
i .
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7.3 Rounding algorithm

Based on the above observations, the rounding scheme we adopt is roughly as follows.

Step 1 For the Z obtained by solving the relaxed SDP, we find a rank k approxi-

mation Zk using Lemma (4).

Step 2 If [v{1},v{2}, . . . ,v{k}] are the eigen vectors corresponding to the k largest

eigen value of Zk, then Xfrac
p = v{p},p ∈ [1, k].

Step 3 To obtain X which is a solution to our problem we do the following. For

each row of Xfrac, we select its largest entry and set the corresponding X

position to 1 and all other positions in that row to 0.

Since the solution obtained by solving the relaxed SDP may not necessarily be a rank

k matrix, we first find its closest rank k approximation in Step 1. But it still may not be a

projection matrix, where all non zeros entries in any row are equal. Therefore, we perform

the Singular Value decomposition to obtain column vectors Xfrac
p . Finally, to obtain X, we

round the largest entry of each row to 1 and all other entries to 0. Our rounding scheme

proposed above follows a similar idea as in so-called spectral clustering (Xing and Jordan

2003; Ng et al. 2001). In these papers, PCA has been used to project the data into a lower

dimensional space spanned by the eigen vectors of the k largest eigen values. This was

followed by k-means clustering. In our model, we found that applying k-means sometimes

leads to numerical instability. Rather, adopting the strategy mentioned above leads to more

stable solutions.

Theorem 1 The relaxed SDP model of (42)–(43) can be solved and rounded, both in poly-

nomial time.

Proof Polynomial time algorithms for solving SDP are known (Vandenberghe and Boyd

1996). In addition, we need to compute a rank k approximation of a n×n matrix in Sect. 7.3.

This leads to a O(kn2) time for the rounding algorithm. �

8 Experiments

Our experiments included evaluations on several publicly available datasets, segmentation

databases, face recognition and biomedical imaging data. We discuss these in the following

sections.

8.1 UCI datasets

Our first set of experimental evaluation illustrates an application to several datasets from the

UCI Machine Learning Repository http://mlearn.ics.uci.edu/MLSummary.html as follows.

1. Lung Cancer dataset: 2 classes, 57 attributes, 32 instances.

2. Diabetes dataset: 2 classes, 8 attributes, 768 instances.

3. Wine dataset: 3 classes, 13 attributes, 178 instances.

4. Iris dataset: 3 classes, 4 attributes, 150 instances.

http://mlearn.ics.uci.edu/MLSummary.html
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Fig. 2 Lung Cancer dataset. The fraction of mislabeled cases ([0,1]) in our consensus solution (∗) is com-

pared to the number of mislabeled cases (�) in individual clustering algorithms in (a), a comparison of our

solution to those obtained by Strehl and Ghosh on the same ensemble in (b)

The datasets also include the real class labels, we discard this information in the clus-

tering process and use them only for evaluation. To create the ensemble, we used a set of

4, . . . ,10 clustering schemes (by varying the clustering criterion and/or algorithm) from the

CLUTO clustering toolkit along with other standard clustering algorithms such as k-means,

fuzzy cmeans, k-medoid, and max-margin clustering. The multiple solutions together com-

prised the cluster ensemble, our model was then used to determine a solution that maximized

the agreement between these solutions. The same set of base clusterings were also used to

as input to the algorithm of Strehl and Ghosh (2003). Then, the solutions from each scheme

and the ensemble solution from our algorithm (Model 2) were compared with the truth. The

accuracy results are shown in Figs. 2–5, calculated as the number of examples assigned to

an incorrect cluster once cluster-to-cluster correspondence has been established between the

given ground truth and the ensemble solution (in other words, the 0-1 loss in the unsuper-

vised setting). In Fig. 2, we show the results on the Lung Cancer dataset, in Fig. 2(a), we

see that the ensemble solution is better than the best solution in the ensemble in all cases.

In Fig. 2(b), we compare the performance of our ensemble solution with those obtained by

running the algorithm by Strehl and Ghosh (2003) (referred to as SG).2 We see that the algo-

rithms compare favorably for smaller m values, but for m = {7,8,9,10} the solution from

our model is better.

In Fig. 3, the solution from our model is not only better than all individual clustering

algorithms but is also superior to Strehl and Ghosh (2003) in all cases. We see essentially

the same behavior for the Wine dataset in Fig. 4. An ensemble solution is useful in such

cases because we do not know a priori (in the absence of ground truth) that which algorithm

will perform the best. Finally in Fig. 5, we see the performance on the Iris dataset. While the

ensemble solution is always better than the input solutions, we notice that Strehl and Ghosh

(2003) reports a solution with a slightly lower misclassification error than our solution in

some cases. We attribute this to errors that were introduced in the rounding phase.

We also compare our approach with the method outlined by Topchy et al. (2003) for each

dataset from the UCI dataset. For fairness of comparison, we use the same set of base cluster-

ing as input for both methods. In addition, for Topchy et al. (2003), the 2D A strings created

2Note that SG runs the IBGF and MCLA formulations and outputs a single solution (determined by a measure

of the goodness of the solution); here we evaluate both our models individually to the output solution of SG.
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Fig. 3 Diabetes dataset. The fraction of mislabeled cases ([0,1]) in our consensus solution (∗) is compared

to the number of mislabeled cases (�) in individual clustering algorithms in (a), a comparison of our solution

to those obtained by Strehl and Ghosh on the same ensemble in (b)

Fig. 4 Wine dataset. The fraction of mislabeled cases ([0,1]) in our consensus solution (∗) is compared to

the number of mislabeled cases (�) in individual clustering algorithms in (a), a comparison of our solution

to those obtained by Strehl and Ghosh on the same ensemble in (b)

Table 1 Normalized mutual information values (and standard deviations) for our approach and that of Strehl

and Ghosh (2003) for an input of 10 clusterings on each UCI data

Dataset Ours Topchy et al. (2003) SG (Strehl and Ghosh 2003)

Lung Cancer 0.56 (0.015) 0.53 (0.02) 0.55 (0.018)

Diabetes 0.27 (0.02) 0.25 (0.05) 0.23 (0.01)

Wine 0.59 (0.03) 0.59 (0.02) 0.41 (0.03)

Iris 0.74 (0.004) 0.73 (0.03) 0.74 (0.004)

were converted into a vector representation and then clustered using k-means clustering. The

results of these comparison is shown in Table 1. Here, we see the average misclassification

errors for each of the 5 datasets mentioned above. Our approach performs better in all cases

than Topchy et al. (2003).
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Fig. 5 Iris dataset. The fraction of mislabeled cases ([0,1]) in our consensus solution (∗) is compared to the

number of mislabeled cases (�) in individual clustering algorithms in (a), a comparison of our solution to

those obtained by Strehl and Ghosh on the same ensemble in (b)

Table 2 Mean of misclassification errors in % (with standard deviation) of our approach compared to Topchy

et al. (2003) and Strehl and Ghosh (2003)

Dataset Ours Topchy et al. (2003) SG (Strehl and Ghosh 2003)

Lung Cancer 36.16 (2.45) 44.37 (4.92) 39.28 (4.72)

Diabetes 25.26 (0.025) 40.90 (1.46) 35.20 (1.03)

Wine 17.33 (0.06) 19.00 (6.44) 18.20 (6.52)

Iris 3.80 (1.1) 3.90 (1.31) 3.30 (0.66)

8.2 Application to image segmentation

Though the use of ensembling in conventional clustering has been investigated by several

researchers in the recent past, methodical ensemble methods in context of improving image

segmentation is still a relatively unexplored area; our second set of evaluations focuses on

this novel application. The motivation stems from the fact that even sophisticated segmen-

tation algorithms may yield ‘different’ results on the same image—one may capture some

features of the image better than the others. The task of obtaining a good segmentation be-

comes particularly challenging because we do not know a priori (without visual analysis)

whether a given method will yield good results. When multiple segmentations are avail-

able, it seems reasonable to ‘combine’ segmentations in a methodical manner in an effort to

reduce degeneracies. The concept of cluster ensemble seems appropriate for this purpose.

Note that for the small fraction of images where all segmentations are ‘good’, the ensemble

cannot introduce degeneracies and is as good as the input set. The interesting (and majority)

case is when most algorithms do not perform very well, when details in the image may be

selectively recognized by a subgroup of the algorithms and missed by others. Our experi-

mental results indicate that in almost all cases, we can obtain a better overall segmentation

that captures (more) details in the images more accurately with fewer outlying clusters.

We note that the few prior applications of ensemble approaches to the segmentation do-

main can mostly be found in medical imaging problems; examples include atlas based image

segmentation approaches for segmenting microscopic brain images (Rohlfing and Maurer

2005), shape based averaging (Rohlfing and Maurer 2005) and segmentation of mammo-

grams (de Silva et al. 2000). We note that a number of recent medical imaging papers have
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used the STAPLE algorithm (Warfield et al. 2004) for combining and estimating the perfor-

mance of segmentations. These results are not intended to show that the proposed algorithm

is the best available means for combining segmentations (which will clearly require ad-

ditional analysis), but to demonstrate the applicability of the algorithm to this important

problem.

In this following sections, we provide a framework for applying our approach for gen-

erating an ensemble given a few input segmentation results. One may suspect that since

images typically have large number of pixels, application of cluster ensembling approach

to all pixels in the image may be computationally time consuming. However, we observe

that the segmentation ensembles need not be generated for all pixels in image. This does not

refer to any sampling, in most cases we generate an equivalent solution as discussed below.

8.2.1 Preprocessing or sub-sampling methods

Let segmentation algorithms α1, α2, . . . , αm yield m different segmentations with l1, l2, . . . ,

lm labeled regions (resp.). Let C be the number of classes desired in the ensemble seg-

mentation and each labeled region in the segmentations produced by αj be identified by

{α1j , α2j , . . . , αlj j }. Let fj (p), j = 1, . . . ,m be the class assigned to pixel p in segmenta-

tion αj . We first divide the pixels of the image into non-overlapping subsets {S1, S2, . . . , Sn}
such that each pixel in particular subset is assigned the same label by all segmentation algo-

rithms i.e., for any p,q ∈ Si, fj (p) = fj (q), j = 1, . . . ,m. Notice that that since there is no

disagreement among pixels in any Si , it is unnecessary to ensemble each pixel in this group

individually. Instead we can create a representative data item (super-pixel) denoted as pSi
,

such that the super-pixel is assigned the label of the group for every segmentation algorithm

i.e., fj (pSi
) = fj (q) ∀j ∈ [1,m], ∀q ∈ Si . This creates a new input set for the segmentation

ensemble problem which consists of PS = {pS1
,pS2

, . . . , pSn}. The size of this set is at least

max(l1, l2, . . . , lm) and at most the number of pixels in the image, though the latter case is

very unlikely. Once the ensemble is generated for PS , the class of each pSi
is also assigned

the class for each pixel in the set Si .

8.2.2 Experimental results

We evaluated our method of ensemble segmentation using images from Berkeley Segmen-

tation Database (The Berkeley Segmentation Database and Benchmark 2009). The image

segmentations were generated using several powerful and popular algorithms—(1) Normal-

ized Cuts (Shi and Malik 2000), (2) Graph Cuts (Boykov et al. 2001), (3) Curve Evolution

(Curve Evolution Segmentation Dataset 2009) and (4) Graph-based segmentation (Felzen-

szwalb and Huttenlocher 2004). In Fig. 6, we illustrate the results on the images using the

above algorithms. Notice that each algorithm performs well but misses out on some details

in Fig. 6 (top row). For instance, (a) and (b) divide the stem of the mushroom into two parts,

(c) induces an additional cut in the background between the two shrubs, and (d) misses the

left boundary of the mushroom stem completely. The ensemble (right-most) on the other

hand is able to segment these details nicely by combining (a)–(d).

The example in Fig. 6 (bottom row) shows a case where the segmentation algorithms

(Shi and Malik 2000; Boykov et al. 2001; Felzenszwalb and Huttenlocher 2004) generate

reasonable segmentations. Nonetheless, we can see that (a) misses the lower contour of the

cap and the lip region, (b) misses the inner boundaries of the right hand, (c) induces an

additional cut across the face while (d) incorrectly detects the lower boundaries of the cap.

The ensemble on the other hand is able to nicely aggregate the details from the individual

segmentations.
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Fig. 6 A segmentation ensemble on images from the Berkeley Segmentation dataset. Segmentation methods

used were (3) with different parameter settings, see Sect. 8.2.2 for details

Fig. 7 A segmentation ensemble on an image from the Berkeley Segmentation dataset. (a)–(d) show the

individual segmentations overlaid on the input image, the right-most image shows the segmentation generated

from ensemble clustering. Segmentation methods used for (a)–(d) were (1), (3) with two parameter settings,

and (4), see Sect. 8.2.2 for details

In Fig. 7, we illustrate the results on another example from Berkeley dataset. Again, each

algorithm performs well but misses out on some details. For instance, (a) and (d) do not seg-

ment the eyes; (b) does well in segmenting the shirt collar region but can only recognize one

of the eyes and (c) distinguishes both eyes but creates an additional cut across the forehead.

The ensemble (extreme right) on the other hand is able to segment these details (eyes, shirt

collar and cap) nicely by combining (a)–(d).

8.3 Application to face recognition

In addition to combining clustering results of multiple clustering algorithms, ensemble clus-

tering can be also be used to aggregate the solutions of a single clustering algorithm executed
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Fig. 8 Sample face images from ORL Face recognition dataset

multiple times using a subset of features (for each run). A nice example of this is in con-

text of face recognition applications. It is well known that images of faces are intrinsically

low dimensional data living in very high dimensional space, hence, we may expect that a

large number of features can be omitted without a proportional loss of information content.

A number of popular face recognition algorithms try to exploit this property by projecting

the data into a lower dimensional space using techniques such as PCA (Perlibakas 2004)

and ICA (Liu and Wechsler 2003), see Turk and Pentland (1991). A relatively less explored

dimensionality reduction approach for face recognition in particular is the Random Projec-

tion (RP) method based on the Johnson-Lindenstrauss lemma, see Vempala (2004), Johnson

and Lindenstrauss (1984). Recently, some authors have reported on experiments using RP

for face detection (Goel et al. 2005). However, as noted by Fern and Brodley (2003), the

main disadvantage with Random Projections in practice is that “they are not very stable”,

different runs on the same data may yield different solutions. To improve the empirical per-

formance, they proposed the idea of ensembling multiple solutions of RP using Strehl and

Ghosh (2003) on datasets having dimensions of at most 180. In this section, we discuss how

our ensemble algorithm can be used to perform unsupervised clustering on face data sets

using Random Projections.

8.3.1 Experimental results

We used the ORL datasets for our experiments. The dataset comprises of 400 images of

40 subjects (10 images per subject). The images reflect variations in pose, expression, il-

lumination and scale, see Fig. 8 for an illustration. The image sizes were 32 × 32, these

were rescaled to yield a 1024D feature vector for each image. For our evaluations, we se-

lected a pair of faces for each execution as in Xu et al. (2005). The feature vectors were

projected onto 3D using RP and then clustering was performed using max-margin clus-

tering algorithm (Peng et al. 2009). This gives m clustering outputs for each pair, and the

results were ensembled using our approach. The process was repeated 780 times (all pairs)

for m = {6,8,10,12,14,16}.
Our goal in this set of experiments is to propose the usefulness of an ensembling approach

for face recognition, we will not comprehensively evaluate the efficacy of RP or max-margin

algorithm for face recognition applications. Recall that in the previous set of experiments

on several UCI data sets in Sect. 8.1, the ensemble solutions in most cases were at least

as good as the best among the input solutions. However, in the present setup (i.e., face

recognition), we see that this may not always be true. Part of the reason is the degree of

randomness in the projections, which leads to input solutions where one or more clusterings

may be arbitrarily worse with as much as 50% misclassification error. Such solutions may

influence the ensemble. However, we see from the results in Fig. 9(a), that in more than

90% of the cases, the ensemble performs better than the mean of the input errors. This

progressively gets better with an increase in the number of solutions in the input ensemble. In

Fig. 9(b), we see the comparison of the ensemble solution to the input solutions ordered w.r.t.

misclassification error. The first set of bar plots under the label, X < A1 show that in 60%

of cases, the ensemble performs at least as good as the best among the input solutions. This
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Fig. 9 Performance evaluations on ORL Face Recognition dataset. Percentage of instances where misclas-

sification error of the computed ensemble is better than (or equal to) the mean of misclassification errors

of input solutions in (a); in (b), percentage of instances where the misclassification error of the computed

ensemble (X) lies between the errors of Ai and Ai+1 where A1 is the lowest error and A = {A1, . . . ,Am}
is the ordering of solutions w.r.t. errors. (c) Plot of the average of misclassification errors of the computed

ensemble as a function of the number of solutions (m) in the input

behavior also depends on the number of solutions (m) in the input. The performance plots

also show a strong concentration in the first three classes, indicating that the ensemble rarely

performs worse than the third-best solution. Finally, we show the average misclassification

error for the ensemble solution as a function of m for the ORL dataset. We see that the

performance improves almost linearly with an increase in the number of input solutions. For

m = 16, we obtain 7% misclassification error for the ORL dataset suggesting that this may

be a viable approach for doing unsupervised face recognition.

8.4 Application to combination of Diffusion Tensor Image segmentations

Diffusion Tensor Imaging (DTI) technique allows the measurement of diffusion of water

molecules in human tissues. DTI images are becoming increasingly popular within neu-

roimaging (and other medical imaging areas) because they may be useful to infer the un-

derlying structure and organizational pattern in the body (e.g., neuronal pathways in the

brain). In such images, each pixel (or voxel) is given as a diffusion tensor, Di located at

each voxel i. Here, Di is a symmetric positive semidefinite matrix of size 3 × 3, and char-

acterizes the diffusivity in a certain direction. To simplify the processing as well as clinical

interpretation of such images, a number of different measures (or channels) are calculated

from the diffusion tensor field (image). This typically includes measures such as Appar-

ent Diffusion Coefficient (ADC), Fractional Anisotropy (FA), and Mean Diffusivity (MD).
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Fig. 10 Ensemble clustering for DTI segmentation. Rows 1–2 show the four channels of the DT image (for

WM/non-WM) and the segmentations. Rows 3–4 show six channels of the DT image (for CSF/non-CSF) and

the segmentations. Row 5 shows the ground truth and ensemble solution for row 1–2 images, the ground truth

and ensemble solution for row 3–4 images, and finally the ensemble segmentation (where the CSF/non-CSF

and WM/non-WM segmentation are overlaid)

Since the contrast offered by each channel may vary spatially, a standard strategy is to per-

form segmentation of each channel separately and then combine the results using a voting

based strategy (Liu et al. 2007). In this section, we present our experiments to demonstrate

that ensemble clustering is a systematic method for combining such segmentations.

We performed our experiments on four DTI brain images with ten channels per image.

Six of these channels are (1) Fractional anisotropy (FA), (2) Relative Anisotropy (RA),

(3) Anisotropy index (CA), (4) Linear anisotropy (CL), (5) Planar anisotropy (CP), and

(6) Fractional anisotropy (LFA). These are used to distinguish white matter (WM) pixels

from non-WM regions. The remaining four channels are (7) Apparent Diffusion coefficient

(ADC), and (8–10) the three eigen values of the diffusion tensor (EV1, EV2, EV3). These

channels are used to separate CSF and non-CSF regions. The discrimination power offered

by each channel to identify the regions of interest varies from one image to the next. Fig-
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Fig. 11 Performance (in terms of volume overlap) of ensemble clustering on the y-axis for combining seg-

mentations of different DTI channels for WM/non-WM regions (top) and CSF/non-CSF regions (bottom).

The ensemble solution is denoted as ENS

ure 11 shows the foreground volume overlaps of the segmentation results for each such

channel with ground truth (manual segmentation by an expert). Since the the proportion of

foreground pixels (region of interest) is less than the background, the misclassification errors

are typically quite small. Therefore, the volume overlap gives a more accurate description

of the performance of the algorithm. In Fig. 10, we show a representative segmentation ob-

tained using ensemble clustering. In general, one channel is never consistently better than

the other channels. As a result, by combining the individual segmentations we are able to

obtain a consistent and reliable segmentation of the CSF/non-CSF regions (rows 1–2, and

last row), and WM and non-WM regions (rows 3–4, and last row). We see that the volume

overlap of the ensemble solution is the same as (or better than) the set of segmentations on

the channels individually. Our results on all four images are summarized in Fig. 11. We note

that the results from Strehl and Ghosh (2003) on this data were nearly identical to those

shown in Fig. 10.

Limitations Before concluding the paper, we point out some of the limitations of the al-

gorithm. A practical limitation of the algorithm is that it is tied to the speed of the un-

derlying SDP solver (e.g., Sedumi (Sturm 1999), SDPT3 (Toh et al. 1999)). For example,

generating the segmentation ensemble shown in Fig. 6 takes up to a minute on a mod-

ern workstation. However, we note that improvements in methods and software for SDP

problems will translate into running time improvements for solving the proposed SDP

model. For large scale problems, a number of first order methods are also available, see

http://plato.asu.edu/dimacs/.

9 Conclusions

In this paper, we have proposed an efficient SDP based model for ensemble clustering. Our

contributions include a mechanism to represent dissent among input clusters as a 2D string,

http://plato.asu.edu/dimacs/
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which is then formulated as a 0-1 Semidefinite program, and further relaxed to a polyno-

mial time solvable SDP. We show several promising experimental results which highlight

different aspects of this approach and also illustrate novel applications such as segmenta-

tion ensembles and biomedical image segmentation. The challenges to applying such an

approach for images lie in the fact that images are generally large in size and also that the

data points or pixels are spatially co-related, a property which cannot be directly incorpo-

rated into existing ensemble frameworks. We show that our r-pixels approach mentioned in

Sect. 8.2 is useful to reduce the size of the problem without affecting the ensemble quality.

In addition, the spatial properties of the pixels can be modified to be applied at the r-pixel

level, rather than the pixel level. We believe these problems are of independent research in-

terest and needs to be explored further. The implementation of the algorithm is available for

download from http://www.biostat.wisc.edu/~vsingh.
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