
This is a repository copy of Ensemble Determinization in Monte Carlo Tree Search for the
Imperfect Information Card Game Magic: The Gathering.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/75050/

Version: Submitted Version

Article:

Cowling, P.L. orcid.org/0000-0003-1310-6683, Ward, C.D. and Powley, E.J. (2012)
Ensemble Determinization in Monte Carlo Tree Search for the Imperfect Information Card
Game Magic: The Gathering. Computational Intelligence and AI in Games, IEEE
Transactions on. 6218176. ISSN 1943-068X

https://doi.org/10.1109/TCIAIG.2012.2204883

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 1

Ensemble Determinization in Monte Carlo Tree
Search for the Imperfect Information Card Game

Magic: The Gathering
Peter I. Cowling, Member, IEEE, Colin D. Ward, Member, IEEE, and Edward J. Powley, Member, IEEE

Abstract—In this paper, we examine the use of Monte Carlo
Tree Search (MCTS) for a variant of one of the most popular and
profitable games in the world: the card game Magic: The Gath-
ering (M:TG). The game tree for M:TG has a range of distinctive
features, which we discuss here, and has incomplete information
through the opponent’s hidden cards, and randomness through
card drawing from a shuffled deck. We investigate a wide range
of approaches that use determinization, where all hidden and
random information is assumed known to all players, alongside
Monte Carlo Tree Search. We consider a number of variations
to the rollout strategy using a range of levels of sophistication
and expert knowledge, and decaying reward to encourage play
urgency. We examine the effect of utilising various pruning
strategies in order to increase the information gained from each
determinization, alongside methods that increase the relevance of
random choices. Additionally we deconstruct the move generation
procedure into a binary yes/no decision tree and apply MCTS to
this finer grained decision process. We compare our modifications
to a basic MCTS approach for Magic: The Gathering using fixed
decks, and show that significant improvements in playing strength
can be obtained.

Index Terms—Monte Carlo Tree Search, Imperfect Informa-
tion, Determinization, Parallelization, Card Games, Magic: The
Gathering

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) has, in recent years,

provided a breakthrough in creating AI agents for games [1].

It has shown remarkable success in Go [2], [3], [4] and is

being applied successfully to a wide variety of game envi-

ronments [5], including Hex [6], Havannah [7], and General

Game Playing [8], [9]. One of the major strengths of MCTS

is that there is no requirement for a strong evaluation function

and it has therefore been especially useful for games where an

evaluation function is difficult to formulate, such as Go [10]

and Hex [6]. In 2000, Schaeffer [11] said “it will take

many decades of research and development before world-

championship-caliber Go programs exist” and yet we have

recently seen MCTS based Go players begin to challenge the

Manuscript received August 13, 2011; revised February 20, 2012; revised
April 13, 2012.

P.I. Cowling, C.D. Ward and E.J. Powley are currently with
the Artificial Intelligence Research Centre, School of Computing,
Informatics and Media, University of Bradford, UK. From
September 2012 Peter Cowling and Edward Powley will be at the
University of York. E-mail: {peter.cowling@york.ac.uk,
c.d.ward@student.bradford.ac.uk,
e.powley@bradford.ac.uk}.

This work is supported by the UK Engineering and Physical Sciences
Research Council (EPSRC).

DOI:

best human players in the world [2]. The lack of a requirement

for any specific domain knowledge has also helped MCTS to

become very successful in the area of General Game Playing

where there is little advance knowledge of the structure of

the problem and therefore a very restricted scope in which to

develop an evaluation function [9].

Removing the need to have a sophisticated evaluation

function suggests the possibility of developing search-based

AI game agents for much more complex games than was

previously possible, and suggests an avenue for a new AI

approach in video games. The video games industry is a huge

and growing market: in 2009 the video game industry had sales

of over $10 billion in the US alone [12] and while the graphics

and visual appeal of games has progressed enormously in

recent years, to the extent of mapping recognisable faces and

emotional content [13], the AI being used is still largely

the non-adaptive scripting approach that has always been

used [14].

While MCTS has made great strides in producing strong

players for perfect information games, the situation for im-

perfect information games is less advanced and often the

use of MCTS is restricted to perfect information versions or

parts of the game. For example in Settlers of Catan [15] the

authors reduced the game to a perfect information variant

and then applied MCTS to this perfect information system

beating hand coded AI from an open source version of the

game convincingly with only 10000 simulations per turn and

a small amount of domain knowledge. Perfect information

variants of Spades and Hearts card games have also been

used to study convergence properties of UCT in a multiplayer

environment [16].

Card games typically have a wealth of hidden information

and provide an interesting challenge for AI. Chance actions

covering all possible cards that may be drawn from a deck

of cards yield a game tree with a chance node at the root

which explodes combinatorially, quickly generating branching

factors which may dwarf that of Go. We must also deal with

the effect of hidden information e.g. the particular cards in

an opponent’s unseen hand. However, card and board games

offer an important class of difficult decision problems for AI

research, having features in common with perfect information

games and video games, and a complexity somewhere between

the two.

MCTS has been applied to several card games with some

success. MCTS based players for Poker have started to chal-

lenge the best humans in heads-up play [17]. Advances have

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 2

also been made in multi-player poker and Skat [18] which

show promise towards challenging the best human players.

Determinization, where all hidden and random information

is assumed known by all players, allows recent advances in

MCTS to be applied to games with incomplete information

and randomness. The determinization approach is not perfect:

as discussed by Frank and Basin [19], it does not handle situ-

ations where different (indistinguishable) game states suggest

different optimal moves, nor situations where the opponent’s

influence makes certain game states more likely to occur than

others. In spite of these problems, determinization has been

applied successfully to several games. An MCTS-based AI

agent which uses determinization has been developed that

plays Klondike Solitaire [20], arguably one of the most popular

computer games in the world. For the variant of the game

considered, the performance of MCTS in this case exceeds

human performance by a substantial margin. A determinized

Monte Carlo approach to Bridge [21], which uses Monte

Carlo simulations with a tree of depth one has also yielded

strong play. The combination of MCTS and determinization

is discussed in more detail in Section V.
In this paper we investigate MCTS approaches for the card

game Magic: The Gathering (M:TG) [22]. M:TG is a strategic

card game for 2 players, which shares characteristics with

many other card games: hidden information in the opponent’s

hand and the stochastic nature of drawing cards from a shuffled

deck. Where M:TG differs from other card games is that it

does not use a standard deck of cards but rather cards that have

been created specifically for the game. Many cards change the

rules of the game in subtle ways and the interaction between

the rules changes on the cards gives rise to very rich game

play.
M:TG is played by over 12 million people worldwide and

in 2005 the manufacturer Hasbro reported that it was their

biggest selling game, outstripping Monopoly, Trivial Pursuit

and Cluedo [23]. The game has a number of professional play-

ers: in 2011 the professional tour paid out almost $1 million

dollars in prize money to the best players in the world. While

specific sales figures are unavailable, it is estimated that more

than $100 million is spent annually on the game [24].
M:TG is not only played with physical cards. In 2009 a

version of the game appeared on Xbox Live Arcade that

allowed players to play against a computer opponent. The

details are proprietary but the game appears to use a depth-

limited decision tree with static evaluation of the game state

at leaf nodes [25]. The AI in the game has generally been

regarded as plausible for someone who is a beginner to the

game but is at a level that would not challenge an average

player [26].
M:TG possesses several characteristics that we believe make

it an interesting area for research into game AI:

1) M:TG does not use a standard deck of cards but instead

uses cards that are specifically designed for the game.

Players are free to construct their own deck using these

cards, a decision problem of enormous complexity. There

are currently over 9000 different cards that have been cre-

ated for M:TG and more are added every year. This makes

it particularly difficult to predict what cards an opponent

may have in their deck and the consequent interactions

between cards. It also makes M:TG arguably an exercise

in general game playing and a step towards understanding

generalizable approaches to intelligent game play.

2) Players are not limited to playing a single card on their

turn. All cards have costs and, as the game progresses, the

resources and hence options available to a player increase.

A player may play any number of cards from their hand

on their turn providing they can pay all the associated

costs. This means that at each turn, a player can play a

subset of cards in hand, giving a high branching factor.

3) The interaction between the players is highly significant,

and there is substantial scope for opponent modelling and

inference as to the cards the opponent holds in his hand

and his deck. Inference is a critical skill in games between

human players.

4) The sequence of play is not linear, and the opponent can

“interrupt” the player’s turn, for example to cancel the

effect of playing a particular card. Hence M:TG is less

rigid than most turn-based games as each player may have

decision points during the opponent’s turn.

The structure of this paper is as follows. In Section II we

discuss Monte Carlo Tree Search; in Section III we describe

the game of Magic: The Gathering and the simplified variant

of the game that we have used in our trials; in Section IV we

describe the rules-based players we have devised as opponents

for our MCTS players; Section V surveys work on the use

of parallel determinization approaches to handle uncertainty

and incomplete information; our enhancements to MCTS for

M:TG which use parallel determinization are presented in

Section VI; Section VII presents experimental results and

analysis; and Section VIII draws conclusions and provides

suggestions for future work.

II. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search extends ideas of bandit-based

planning [27] to search trees. In the k-armed bandit problem,

Auer et al [27] showed that it was possible to achieve best-

possible logarithmic regret by selecting the arm that max-

imised the Upper Confidence Bound (UCB):

x̄j +

√

2 lnn

nj

where x̄j is the average reward from arm j, nj is the number

of times arm j has been played so far, and n is the total number

of plays so far.

Around 2006-7, several teams of researchers were inves-

tigating the application of Monte Carlo approaches to trees:

Chaslot et al [28] developed the idea of Objective Monte Carlo

that automatically tuned the ratio between exploration and

exploitation based on the results of Monte Carlo simulations

at leaf nodes in a minimax tree. Coulom [29] described a

method of incrementally growing a tree based on the outcome

of simulations at leaf nodes and utilising the reward from the

simulated games to bias the tree growth down promising lines

of play. Kocsis and Szepesvári used the UCB formula recur-

sively as the tree was searched [30]. The resulting algorithm

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 3

is known as UCT (UCB applied to Trees), and Kocsis and

Szepesvári showed that with only very limited conditions, it

would produce optimal play given a very large number of

simulations. The range of algorithms which use Monte Carlo

simulations as an approach to heuristically building a search

tree have become commonly known as Monte Carlo Tree

Search (MCTS).

MCTS algorithms are generally a 4 step process that is

repeated until some limit is reached, usually a limit on

elapsed time or number of simulations. In this paper we have

commonly used a total number of simulations as the limit in

our experiments.

The steps of the algorithm, illustrated in Figure 1, are:

1) Selection. The algorithm uses the UCB formula (or some

other approach) to select a child node of the position

currently being considered, repeating this process until a

leaf node is reached. Selection balances the exploitation

of known good nodes with the exploration of nodes whose

value is currently uncertain.

2) Expansion. One or more children is added to the leaf

node reached in the selection step.

3) Simulation (or Rollout). A simulation is carried out from

the new leaf node, using a random move generator or

other approach at each step, until a terminal game state

is reached.

4) Backpropagation. The reward received at the simulation

step is propagated back to all nodes in the tree that were

part of the selection process to update the values (e.g.

number of wins/visits) in those nodes.

The algorithm has two principal advantages over conven-

tional tree search methods such as minimax with alpha-beta

pruning:

1) It is “anytime” [31]. The algorithm can be stopped at

any point to yield a result which makes use of all rollout

information so far. There is no need to reach a particular

stage during search, before a result is obtainable, as

there would be for minimax search, even with iterative

deepening [32].

2) An evaluation function is not required for non-terminal

game states, as simulation always reaches a terminal

state. The reward for a given game state is obtained by

aggregating win/lose simulation results from that state.

MCTS may utilise randomly selected moves when conduct-

ing simulations and therefore has no need of any specific

domain knowledge, other than the moves available from each

game state and the values of terminal game positions. In

practice however the performance of the algorithm can usually

be improved by including some domain specific considerations

in the simulation and selection phases [3].

III. MAGIC: THE GATHERING

A. Game rules

In the game of Magic: The Gathering each player takes

on the role of a wizard contesting a duel with their opponent.

Each player’s hand of cards represents the spells and resources

that the wizard has available and the players play cards from

their hand in order to either generate resources or play spells

with which to beat their opponent.

Each player has a life total and the player whose life

total is reduced to zero first loses the game. The game

consists of multiple varieties of cards and multiple types of

resource, consequently the possible interactions between the

available cards can become extremely complex. Much of the

appeal of M:TG arises through understanding and tactically

exploiting the interactions between the player’s cards, and

between player’s and opponent’s cards.

The full game is very complex and difficult to model easily

so we have chosen to retain the basic structure and turn

order mechanics of the game but to focus on creature combat,

which is the most important form of interaction between Magic

cards for the majority of decks (and for essentially all decks

played by beginning human players). By restricting the test

environment to only land (resource) cards and creature (spell)

cards we simplify encoding of the rules (which represents a

significant software engineering problem in practice [33]). In

our test version of the game the players have a deck of cards

containing only creatures and land resource cards of a single

colour.

Each creature card has power and toughness values denot-

ing how good the creature is at dealing and taking damage,

respectively, and a resource (or mana) cost. In general, more

powerful creatures have a higher resource cost. Below we will

refer to a creature with power P , toughness T and cost C
as P/T (C), and omit C when it is not significant to our

discussion. Each turn a player may put at most one land

resource card into play from their hand, referred to below

as L.

Over the course of the game, each player will accumulate

land cards in play. On any given turn the player may expend

resources equal to the total amount of land they have in play in

order to meet the costs of creature cards from their hand. This

allows them to play creature cards from their hand to the in

play zone which are then available to attack and defend. These

spent resources refresh at the beginning of the player’s next

turn. In this way, as the player controls increasing amounts of

land, they can afford more expensive creatures.

Creatures may be available to defend against the opponent’s

attack although they are not required to do so. Creatures

that have attacked on a defending player’s previous turn are

considered tapped and therefore are not available for defence.

Once attacking creatures are declared, the defending player

allocates each untapped defending creature (a blocker) to at

most one attacker. Each attacking creature may have none,

one or more blockers assigned to it. Blocking creatures die,

and are consequently removed from play, to the graveyard, if

the attacking creature allocates damage to a blocker greater

than or equal to its toughness. The attacking creature dies

if the corresponding blockers’ total power provides damage

greater than or equal to the attacking creature’s toughness.

In the case of an attacking creature having multiple blockers

then the player controlling the attacking creature decides how

to split each attacker’s damage among its blockers. Creatures

that are not blocked cause damage to the opponent’s life total

and a player loses the game if their life total is zero or less.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 4

Selection Expansion Simulation Backpropagation

Fig. 1. The four steps of an MCTS algorithm.

See Figure 2.

B. Structure of a game turn

The players take turns. On any given turn, one player is

‘active’ and the other is ‘non-active’ and can merely respond

to the actions of the active player. The sequence of events

during a typical turn is:

1) The active player draws a card from their deck and adds

it to their hand. If they are unable to do so (because their

deck has no remaining cards) then they immediately lose

the game.

2) The active player selects a subset of his creatures in play

to be attackers.

3) The non-active player assigns each untapped creature he

has in play to block at most one attacker.

4) Combat is resolved and any creatures taking sufficient

damage are removed from play. Any unblocked attackers

do damage to the non- active players life total. If the non-

active player’s life total falls to zero, then that player loses

the game.

5) The active player may play cards from his hand. One

land card may be played each turn and the accumulated

land in play can be used to pay for cards to be played

from his hand provided the total cost of creatures played

is less than the total number of land cards in play.

6) The active and non-active players then switch roles and

a new turn begins.

IV. A RULE-BASED APPROACH TO MAGIC: THE

GATHERING

Two rule-based players were created of differing play

strength, as well as a purely random player, in order to provide

test opponents and rollout strategies for our MCTS players.

The first rule-based player had the best heuristics we were

able to devise in all areas of the game, and was created using

substantial human expertise. The second rule-based player had

a significantly reduced set of heuristics and included elements

of randomness in its decisions.

Fig. 2. Representation of the play area during a game of M:TG.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 5

From the structure of the game turn, we can see that there

are three main decisions that a player needs to make. The

active player must decide which (if any) creatures will attack,

and then which cards to play after the attack is resolved.

The non-active player must decide how to block the attacking

creatures.

Attacking and blocking decisions in M:TG are far from

trivial. Multiple creatures may be selected to attack and each of

those attacking creatures may be blocked by any subset of the

defenders creatures (subject to the constraint that a defending

creature can only block one attacking creature). There are also

considerations that creatures selected to attack are unavailable

for defensive duty on the next turn so the attacking player has

to avoid leaving himself open to a lethal counter attack. We

were fortunate to be able to call on the experience of a strong

M:TG player in order to aid us in formulating some attacking

and blocking heuristics.

A. ‘Expert’ rule-based player

Here we present the detailed description of the heuristics

utilised by the expert rule-based player. There are separate

heuristics for attacking, blocking and playing cards from the

hand.

The CHOOSEATTACKERS function (Algorithm 1) decides

which creatures from those available to the player will be

selected to attack the opponent this turn. The basic approach

taken is to consider each creature that could attack this turn

and determine whether there is a reason that it should ‘not’

attack. If no such reason is found then the creature is declared

as an attacker.

Lines 14–18 of CHOOSEATTACKERS (Algorithm 1) define

special cases. If there are no potential attackers, then there will

be no attackers (line 14). If there are no potential blockers,

or the number of blockers is too small to prevent lethal

damage (lines 15 and 16 respectively), then we attack with

all potential attackers. amax defines the maximum number of

attackers to leave sufficient blockers on the next turn to prevent

lethal damage. If amax is zero then we will have no attackers

(line 17), and if amax is less than zero we will lose next turn

anyway, so we attack with all possible creatures to maximise

the chance that the opponent might make a mistake in blocking

(line 18). In the main case we then go through possible

creatures by descending power (breaking ties by descending

cost) and choose to attack with a creature if there is no set of

blockers that can block and kill it without any blocker being

killed (line 24); no blocking combination that kills the attacker

and results in only a single blocker of lower mana cost than

the attacker being killed (line 25); and the attacker cannot be

held back to block and kill an opposing creature of higher

mana cost next turn (line 26).

The CHOOSEBLOCKERS function (Algorithm 2) is con-

structed by considering possible ways to block each attacking

creature in descending order of attractiveness to the defending

player. Ideally the attacking creature should be killed with

no loss to the defender but if this is not possible then lesser

outcomes are examined until ultimately, if the defending player

must block because otherwise he will lose and no better

outcome can be discovered, it will ‘chump’ block with its

weakest creature. This creature will certainly die but it will

prevent damage reaching the player.

Lines 14–16 of CHOOSEBLOCKERS (Algorithm 2) define

special cases. If there are no attackers or no creatures available

to block then no blockers need to be declared (lines 14 and 15).

bmin defines the minimum number of attacking creatures that

need to be blocked in order for the defending player to survive

the attack. If this is higher than the number of potential

blockers then game loss is certain and there is no point

looking for blocks (line 16). In the main case, we look at

each attacking creature in descending order of power (break

ties by descending mana cost) and evaluate the best blocking

option. These options are evaluated in a descending order of

favourability for the defending player so that once an option

is found whose conditions are met, we greedily assign that

set of blockers and move on to the next attacking creature.

Firstly we see if there is any set of blockers that would kill

the attacker without any of the blockers dying. If such a set

exists, we select the one that has the minimum total mana cost

(line 24). Then we see if there is a single creature that would

kill the attacker and has a lower mana cost than the attacker

(line 26), our blocking creature would die but we would lose a

less valuable creature than the attacking player. We then look

for a pair of blockers that together can kill the attacker while

only losing one of their number with a smaller mana cost than

the attacker (for example a 4/4(5) attacker blocked by a 2/2(2)

and a 2/3(3)) and the pair which leads to the lowest mana cost

blocker being killed is chosen (line 28).

So far we have only considered blocks that are advantageous

to the defending player, we then look at the neutral case where

we block with a creature that will not die to the attacker but

will not kill the attacker (line 30). Finally we check whether

we need to look at disadvantageous blocks. If i > k − bmin

then we must block this attacker or the player will die. First

we find the lowest mana cost group that kills the attacker

(line 32), or if no such group exists, we assign the lowest cost

blocker still available to ‘chump’ block (line 33) so avoiding

lethal damage to the player.

The rules for selecting cards to play are much simpler than

the attacking and blocking rules. In CHOOSEMAIN (Algo-

rithm 3). We use a greedy approach that plays land if possible

(line 11) and plays out the most expensive affordable creature

in the players hand greedily (line 19) until the player cannot

afford any more creatures

B. ‘Reduced’ rule-based player

The reduced rules player utilises much simpler heuristics

for its decisions and includes randomness in the decision

making process. This approach is significantly weaker than the

player given above but gives the possibility of choosing any

attacking/blocking move, and any non-dominated move in the

main phase. Our intuition suggests that this may be effective

in constructing the MCTS tree and in conducting rollouts.

• CHOOSEATTACKERS: For each creature that is able to

attack, the player decides with probability p whether or

not to attack with that creature. For our tests p = 0.5,

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 6

Algorithm 1 Attacker choice for the expert rule-based player (Section IV-A).

1: function CHOOSEATTACKERS(PA, PB , lA, lB ,mA)

2: parameters

3: PA = (potential attackers) =
(

pn/tn
(αn), pn−1/tn−1

(αn−1), . . . , p1/t1
(α1)

)

where pn ≥ pn−1 ≥ · · · ≥ p1 and pi = pi−1 =⇒ αi ≥ αi−1 (i = 2, 3, . . . , n)

4: PB = (potential blockers) =
(

qm/sm
(βm), qm−1/sm−1

(βm−1), . . . , q1/s1
(β1)

)

where qm ≥ qm−1 ≥ · · · ≥ q1
5: lA, lB = life total for attacking and blocking player, respectively

6: mA = maximum number of creatures attacking player has enough land to play from his hand this turn

7: d = |PA| − |PB |
8: amax = |PA|+ma −min {i : qi + qi−1 + · · ·+ q1 ≥ lA}
9:

10: decision variables

11: A = {chosen attackers} ⊆ PA

12:

13: // Special cases

14: if PA = ∅ then return A = ∅
15: else if PB = ∅ then return A = PA

16: else if d > 0 and pd + pd−1 + · · ·+ p1 ≥ lB then return A = PA

17: else if amax = 0 then return A = ∅
18: else if amax < 0 then return A = PA

19: end if

20:

21: // Main case

22: i← n; A← ∅
23: do

24: if there is no M ⊆ PB with sj > pi (for all qj/sj
(βj) ∈M) and

∑

k∈M qk ≥ ti
25: and there is no pair

(

M ′ ⊆ PB , qb/sb
(βb) ∈ (PB \M

′)
)

with βb < αi and sj > pi (for all qj/sj
(βj) ∈M ′) and qb +

∑

k∈M ′ qk ≥ ti
26: and there is no qb/sb

(βb) ∈ PB with pi > sb and αi < βb

27: then

28: A← A ∪
{

pi/ti
(αi)

}

29: end if

30: i← i− 1
31: while |A| < amax and i > 0
32: return A
33: end function

so that the player chooses uniformly at random from

possible subsets of attackers.

• CHOOSEBLOCKERS: For each available creature that can

block the player decides uniformly at random among

all the available attacking creatures plus the decision

not to block anything and assigns the blocking creature

accordingly.

• CHOOSEMAIN: This player uses the same approach to

CHOOSEMAIN as the ‘expert’ rules player, but with the

modification that it uses an ordering of creatures in hand

chosen uniformly at random from all orderings. Hence

any non-dominated play can be generated. Here non-

dominated means that after the main phase cards are

played, there remain no more playable cards in the active

player’s hand.

We ran a direct comparison between our two rules based

players in order to gauge their relative strength. We ran

an experiment of 1000 randomly generated test games 10

times (playing 10000 games in total) in order to generate

confidence interval information. The expert rules player proved

to be much stronger, winning 63.7% of games with a 95%
confidence interval of ±0.94%.

C. Performance against human opponents

We also tested the ability of the Expert Rules player against

a number of human opponents. A total of 114 games were

played against 7 human players. Six of the human players rated

themselves as strong - winning at local events and competi-

tive within the regional/national scene, one player considered

himself as a little less strong, rating himself competitive at

local events. All the human players played between 10 and 25

games against the expert rules player.

Overall the expert rules player won 48 of the 114 games

played for a win rate of 42.1%. The expert rules player

performed slightly better when playing first in a game and

won 27 out of 58 games for a win rate of 46.6%. The expert

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 7

Algorithm 2 Blocker choice for the expert rule-based player (Section IV-A).

1: function CHOOSEBLOCKERS(A,PB , lB)

2: parameters

3: A = (chosen attackers) =
(

pk/tk
(αk), pk−1/tk−1

(αk−1), . . . , p1/t1
(α1)

)

where pk ≥ pk−1 ≥ · · · ≥ p1 and pi = pi−1 =⇒ αi ≥ αi−1 (i = 2, 3, . . . , k)

4: PB = (potential blockers) =
(

qm/sm
(βm), qm−1/sm−1

(βm−1), . . . , q1/s1
(β1)

)

where qm ≥ qm−1 ≥ · · · ≥ q1
5: lB = life total for blocking player

6: bmin = minimum number of blockers =

{

min {i : pi + pi−1 + · · ·+ p1 ≥ lB} if pk + pk−1 + · · ·+ p1 ≥ lB

0 otherwise
7:

8: decision variables

9: B(i) =
{

blockers chosen for attacker pi/ti
(αi)

}

⊆ PB

10: B = (all blocks) =
(

B(1), B(2), . . . , B(k)

)

11: B = {all blocking creatures} =
⋃

i B(i) (note B(i) ∩B(j) = ∅ for i 6= j)

12:

13: // Special cases

14: if A = ∅ then return B = ()
15: else if PB = ∅ then return B = (∅, ∅, . . . , ∅)
16: else if bmin > |PB | then return B = (∅, ∅, . . . , ∅)
17: end if

18:

19: // Main case

20: i← k
21: do

22: P = PB \B

23: Q =







Q ⊆ P : sj > pi for all q/s(β) ∈ Q and
∑

q/s(β)∈Q

q ≥ ti







24: if Q 6= ∅ then choose B(i) ∈ argmin
Q∈Q

∑

q/s(β)∈Q

β; goto line 34

25: Q′ =
{

q/s(β) ∈ P : q ≥ ti and β < αi

}

26: if Q′ 6= ∅ then choose B(i) ∈ argmin
q/s(β)∈Q′

β; goto line 34

27: Q′′ = {
(

qx/sx
(βx), qy/sy

(βy)
)

∈ P 2

: x 6= y, βx ≤ βy, qx + qy ≥ ti, sx + sy > pi and βj ≤ αi if sj ≤ pi for j ∈ {x, y}}
28: if Q′′ 6= ∅ then choose B(i) ∈ argmin

(q/s(β),q′/s′(β
′))∈Q′′

β; goto line 34

29: Q′′′ =
{

q/s(β) ∈ P : s > pi
}

30: if Q′′′ 6= ∅ then choose B(i) ∈ argmin
q/s(β)∈Q′′′

β; goto line 34

31: Q′′′′ =
{

Q ⊆ P :
∑

q/s(β)∈Q q ≥ ti

}

32: if i > k − bmin and Q′′′′ 6= ∅ then choose B(i) ∈ argmin
Q∈Q′′′′

∑

q/s(β)∈Q

β

33: else if i > k − bmin then choose B(i) ∈ argmin
q/s(β)∈P

β

34: PB ← PB \B(i)

35: i← i− 1
36: while PB 6= ∅ and i > 0
37: return B =

(

B(1), B(2), . . . , B(k)

)

38: end function

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 8

Algorithm 3 Card choice for the expert rule-based player

(Section IV-A).

1: function CHOOSEMAIN(LA, CA,m)

2: parameters

3: LA = {land cards in active player’s hand}
= {L,L, . . . , L}

4: CA = (creature cards in active player’s hand)
=

(

pn/tn
(αn), pn−1/tn−1

(αn−1), . . . , p1/t1
(α1)

)

where αn ≥ αn−1 ≥ · · · ≥ α1

5: m = total mana available to active player

6:

7: decision variables

8: PA = {cards to play this turn} ⊆ LA ∪ CA

9:

10: // Play land

11: if LA 6= ∅ then

12: PA ← PA ∪ {L}
13: m← m+ 1
14: end if

15:

16: // Play creatures

17: i← n
18: do

19: if αi ≤ m then

20: PA ← PA ∪
{

pi/ti
(αi)

}

21: m← m− αi

22: end if

23: i← i− 1
24: while m > 0 and i > 0
25: return PA

26: end function

rules player performed more poorly when acting second,

only winning 21 out of 56 games for a win rate of 37.5%.

Comments by the human players suggested that they thought

the expert rules player made good decisions generally, but was

a little too cautious in its play so that they were able to win

some games they believed they should have lost because the

expert rules player did not act as aggressively as it might have

done in some situations where it had an advantage.

V. MCTS TREES WITH DETERMINIZATION

MCTS has been applied to a range of games and puz-

zles and often provides good performance in cases where

tree depth/width and difficulty of determining an evaluation

function for nonterminal states make depth-limited minimax

search ineffective. Modifications are often used to improve

basic MCTS, for example by ignoring move ordering and

using Rapid Action Value Estimate (RAVE) values [34] to seed

values at previously unexplored nodes which share similarities

with already-explored nodes, improved rollout strategies [35]

or by using heuristic approaches to limit the number of

children for each node [36].

Recent advances in probabilistic planning have presented

the idea of determinization as a way to solve probabilistic

problems [37]. Essentially, each stochastic state transition is

determinized (i.e. fixed in advance), and then generates a plan

based on the resulting deterministic problem. If the planner

arrives at an unexpected state while testing its plan then it re-

plans using the unexpected state as a starting point and a new

set of determinised stochastic state transitions. This approach

was extended and generalised by the technique of hindsight

optimisation [38] which selects among a set of determinised

problems by solving determinizations of the future states of

a probabilistic problem, resulting after an AI agent’s decision

state.

MCTS is also making progress in dealing with large Par-

tially Observable Markov Decision Problems (POMDPs). Sil-

ver and Veness [39] applied MCTS to POMDPs and developed

a new algorithm, Partially Observable Monte-Carlo Planning

(POMCP), which allowed them to deal with problems several

orders of magnitude larger than was previously possible. They

noted that by using MCTS they had a tool which was better

able to deal with two issues that affect classic full width

planning algorithms such as value iteration [40]. The curse

of dimensionality [41] arises because in a problem with n
states, value iteration reasons about an n-dimensional belief

state. MCTS samples the state transitions instead of having

to consider them all and so is able to deal with larger state

spaces. The curse of history [41], that the number of histories

is exponential in the depth, is also dealt with by sampling the

histories, and heuristically choosing promising actions using

the UCB formula, allowing for a much larger depth to be

considered.

Using determinization as a way of dealing with uncertainty

is not new. One of the approaches used in the Bridge program

GIB [21] for playing out the trick taking portion of the game

was to select a fixed deal, consistent with bidding and play so

far, and find the play resulting in the best expected outcome in

the resulting perfect information system. GIB utilised partition

search [42] to greatly speed up a minimax/alpha-beta search

of each determinized deal, allowing 50 simulations per play

on 1990s computer hardware, and ultimately yielding play

approaching the standard of human experts. It is interesting

to note for GIB that using a relatively small number of

determinizations is effective if they are carefully chosen.

Frank and Basin [19] provided a critique of the deter-

minization approach, showing that it is prone to two specific

problems that limit the effectiveness of the search. Strategy

fusion is the problem that different actions are indicated when

using determinization from states of the imperfect information

game (actually information sets) which are indistinguishable

to the player. Non-locality occurs since the values of nodes

in an imperfect information tree are affected by decisions

higher up the tree, where opponents are able to steer the game

towards certain states and away from other (indistinguishable)

states; this does not happen for perfect information games,

nor for determinizations. In their work on Klondike Solitaire,

Bjarnason et al [20] highlighted this issue, providing an

example whereby the search would equally favour two moves,

where one required foreknowledge of hidden information and

another did not. Russell and Norvig called this kind of over

optimism “averaging over clairvoyance” [43], and note that

determinization is incapable of considering issues of informa-

tion gathering and information hiding. Despite this, Perfect

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 9

Information Monte Carlo search (PIMC) has generated strong

players in a number of game domains including Bridge [21]

and Skat [18].

A recent study [44] has investigated why PIMC search

gives strong results despite its theoretical limitations. By

examining the particular qualities of imperfect information

games and creating artificial test environments that highlighted

these qualities, Long et al [44] were able to show that

the potential effectiveness of a PIMC approach was highly

dependent on the presence or absence of certain features in

the game. They identified three features, leaf correlation, bias,

and disambiguation. Leaf correlation measures the probability

that all sibling terminal nodes in a tree having the same payoff

value; bias measures the probability that the game will favour

one of the players and disambiguation refers to how quickly

hidden information is revealed in the course of the game.

The study found that PIMC performs poorly in games where

the leaf correlation is low, although it is arguable that most

sample-based approaches will fail in this case. PIMC also

performed poorly when disambiguation was either very high

or very low. The effect of bias was small in the examples

considered and largely dependent on the leaf correlation value.

This correlates well with the observed performance in actual

games with PIMC performing well in trick taking games such

as Bridge [21] and Skat [18] where information is revealed

progressively as each trick is played so that the disambiguation

factor has a moderate value. The low likelihood of the outcome

of the game hinging on the last trick also means that leaf

correlation is fairly high.

In contrast, poker has a disambiguation factor of 0 as the

hidden information (the player’s hole cards) is not revealed

until the end of the hand. This indicates that PIMC would

not perform well at the game. Indeed, recent research in

poker has been moving in a different direction using the

technique of counterfactual regret minimisation (CFR) [45].

This is a method of computing a strategy profile from the

game tree of an extensive form game. It has been shown that

for an extensive form game it can be used to determine Nash

equilibrium strategies. CFR, and its Monte Carlo sampling

based variant MCCFR [46], is much more efficient than

previous methods of solving extensive game trees such as

linear programming [47] and has increased the size of game

tree that can be analysed by two orders of magnitude [45],

[46]. By collecting poker hands into a manageable number of

“buckets” MCCFR can be used to produce strong players for

heads up Texas Hold’Em poker [48].

M:TG is a good candidate for investigation by PIMC

methods. Leaf correlation in the game is high as it is rare

that games are won or lost on the basis of one move at the

end of the game, it is more usual for one player to develop the

upper hand and apply sufficient continuous pressure on their

opponent to win the game. The progressive nature of having

an initial hand, unseen by the opponent, and drawing cards

from an unknown deck and playing them out into a visible

play area also leads to disambiguation factor that grows slowly

throughout the course of the game.

Determinization and MCTS have also been considered

for probabilistic planning problems with only one “player”.

Bjarnason et al [20] examined the use of UCT in combination

with hindsight optimisation. They compared using UCT as a

method for building determinised problem sets for a Hindsight

Optimisation planner and showed that it provided state of the

art performance in probabilistic planning domains.

Generating multiple MCTS trees simultaneously in parallel

for the same position has also been examined, usually for per-

formance and speed reasons [49], [50]. The idea of searching

several independent trees for the same position and combining

the results is known as ensemble UCT [51], or root paralleliza-

tion in an implementation with concurrency [49], [50], and has

been shown in some situations to outperform single-tree UCT

given the same total number of simulations [50].

VI. MCTS ALGORITHM DESIGN FOR M:TG

In this paper we combine the methods of ensemble UCT and

determinization. We build multiple MCTS trees from the same

root node and for each tree we determinize chance actions

(card draws). Each tree then investigates a possible future

from the state space of all possible futures (and the tree of

information sets). The determinization of card draws is made

as we build the MCTS tree, as late as possible. The first time

we reach a state s where we would be required to create

chance nodes for a card draw we sample one card draw at

random as a specific action a which takes us to the new state

s′, thereafter whenever we visit state s in the MCTS tree we

immediately transition to s′ without any further sampling; this

“lazy determinization” approach is also taken by the HOP-

UCT algorithm of Bjarnason et al [20]. As the MCTS tree

grows we effectively fix in place an ordering for the cards in

each player’s deck.

If our tree considers all possible outcomes for each chance

node in M:TG, we may consider this as a single chance node

at the top of the tree with enormous branching factor, or we

may branch for each potential card drawn at each chance

node. There are 60 cards in a typical M:TG deck, and one

deck for each player, providing an upper bound of (60!)2 on

the number of deals. Since repeat copies of individual cards

are allowed (and expected) there will often only be about 15

different cards, and in many games only around 20 cards will

be drawn from each deck, but this still yields a combinatorial

explosion of possible deals. There are typically 5-6 moves

available at a decision node, so this gives a branching factor

of approximately 75-90 at 1 ply, around 7000-8000 at 2 ply

and approaching a million at 3 ply. The number of simulations

that would be required to generate a MCTS tree capable

of collecting meaningful statistics about state values, for all

possible states, quickly becomes intractable with increasing

depth.

A. Relevance of individual MCTS trees

When creating a determinized ordering of cards, as well as

being consistent with the game play so far, it seems sensible

to try to avoid bias which would make the game an easy win

for one of the players. M:TG is particularly prone to this, and

indeed this is one of the reasons we believe M:TG provides

an interesting case study for MCTS research.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 10

We formulate the idea of an ‘interesting’ card ordering: one

in which the decisions of the player have an impact on the way

the game progressed. We define an ordering as ‘interesting’

if the play ‘no move’ (effectively passing the turn) gives a

different result to playing the move suggested by the expert

rule-based player, over a number of game rollouts.

It is not necessarily straight forward to find an ‘interesting’

ordering for a given game state and, indeed, there may not be

any ordering of cards that would qualify for our definition of

‘interesting’ if the game state is already heavily biased towards

one of the players.

We test whether a card ordering is interesting by generating

a random order of cards and carrying out two rollouts from

the current game state using that ordering: one with the player

making no move and one with the player making the move

the expert rules player would have chosen. If the outcome of

the game is different between these two rollouts then the card

ordering is classified as ‘interesting’. We test a small number

of random rollouts for each candidate card ordering, and if any

one of them yields an ‘interesting’ result then we accept that

card order as interesting. These tests do, of course, consume

CPU time and there is a limit to how much time can be sen-

sibly spent searching for an interesting ordering. Ultimately,

if we consistently fail to find an interesting ordering then we

must accept that there might not be one to find, at least not

within a reasonable time scale. If an interesting ordering is not

found then we use an arbitrarily chosen randomly generated

ordering.

An interesting card ordering could be applied to the game

at several levels. Preliminary experiments considered using

a fraction of the overall simulation budget to (i) find an

interesting ordering for the simulations from each leaf node

during MCTS; and (ii) find an interesting ordering for the

whole deck at the root node only. These were found to give

similar, modest improvements in playing strength, but we take

option (ii) forward since option (i) significantly slows down

the search time, by a factor of up to 2, whereas no slowdown

is evident for (ii).

Further preliminary experiments were conducted to investi-

gate the budget of overall simulations used to find interesting

deck orderings. For the whole tree at the root node the

maximum number of simulations used to find an interesting

ordering was varied from 0% to 5%, with good results

generally found around the 5% level. This is a maximum and

an interesting ordering was usually found in a small fraction

of this number of simulations.

A further preliminary investigation looked at whether it was

better to use the fixed interesting ordering during simulation

rollouts or to revert to the standard random rollouts. These two

options were comparable, and random rollouts were chosen in

later experiments.

B. Structure of the MCTS tree

We investigate two families of methods for increasing the

effectiveness of search in each determinized MCTS tree.

1) Dominated move pruning: In building any search tree,

limiting the nodes that are added to the tree in order to reduce

Fig. 3. Potential moves from a position where the player holds cards A, B
and C, with mana costs 4, 3 and 2 respectively, and has 5 mana available.

the scope of the search has often been seen to provide increases

in playing strength [52], [36], [35]. In this respect, MCTS is

no different from any other tree searching method. How moves

are pruned is generally domain dependent. We examined two

levels of pruning for our restricted version of M:TG, based on

incorporating limited heuristic knowledge. The first level of

pruning was based around the fact that it is necessary to play

land cards before any other cards can be played and that there

is little strategic benefit to not playing land when you are able

to do so. Non-land pruning prunes any move that does not

contain a land card when the player has land in their hand,

ensuring that only moves that add more land into the game

are considered.

The second, higher, level of pruning makes use of the fact

that moves in M:TG are frequently comprised of multiple

cards and that the player chooses a subset of the cards in their

hand when they decide on a move. This level of pruning, which

we called dominated move pruning, removes any move that is

a proper subset of another legal move, so that a maximal set

of cards is played.

In summary, the following move pruning strategies were

investigated:

1) No move pruning. At this level we consider all possible

moves available to each player.

2) Non-land pruning. At this level we prune any move that

does not contain a land card if the same move with a land

card is available.

3) Dominated move pruning. At this level we prune any

move that plays a subset of the cards of another available

move.

2) Binary decisions: M:TG is unusual among card games

in that the moves available on a given turn in the game

are a subset of all possible combinations of cards in the

player’s hand rather than being a single action or a single

card. Moreover, the played card group remains active in play

rather than being a passive group such as in a melding game

such as continental rummy [53].

Consider that a player has 3 non-land cards in hand and 5

land in play. We always suppose here that if land is held, it will

be played. Suppose that the cards are A, B and C, with mana

costs of 4, 3 and 2 respectively. The player has 5 available

moves, as shown in Figure 3.

Here we investigate the case where each node has at most 2

children, representing the decision to play a card or not. This

is illustrated in Figure 4. With a fixed number of simulations

per tree this will substantially increase the depth of the tree,

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 11

Fig. 4. Binary decision tree of moves corresponding to Figure 3.

compared to a non-binary tree which looks the same distance

into the future. However, it should allow statistics for good

partial decisions (i.e. on whether or not to play a card) to

accumulate independently of other cards played. Hence we

are able to investigate MCTS decision making on a tree which

allows compound moves to be decomposed so that parts of a

move can be reinforced separately. This idea, of decomposing

a single decision into a sequence of smaller ones as successive

levels in the MCTS tree, is similar to the move grouping

approach of Childs et al [54].
We imagine this will also be useful in other applications

where MCTS is used to choose a subset, for example we might

use this in M:TG to select attackers and/or blockers. In this

paper we investigate only the impact upon the decision of

which cards to play.
When using this approach it is desirable that “important”

decisions are higher in the binary tree, although it is often

difficult to determine a priori a sensible importance ordering.

Extensive preliminary experiments showed promise for this

approach, but did not show any significant difference between

using ascending/descending/random orderings based on mana

cost. We use descending mana cost in the experiments in

section VII-D, based on the intuition that it will often be

stronger to play large creatures first.

C. Simulation strategies

While MCTS can use approaches to simulation which

select randomly among all possible moves, work on MCTS

approaches to computer Go suggested that using heuristics to

guide the simulations provided stronger play [31], but also

that a stronger playing strength used for rollouts does not

necessarily yield higher playing strength when used in an

MCTS framework [34], probably due in large part to the bias

that this may introduce.
In our simulation rollouts, we investigate rollouts based on

both of our rule-based players. The expert player provides

a highly structured and completely deterministic rollout and

the reduced player provides a stochastic approach with some

heuristic guidance. We also (briefly) investigated an approach

which chose uniformly at random among possible moves

during rollouts.

D. Discounted reward

A player based on MCTS or another forward-looking tree

search approach will often make weak moves when in a strong

winning (or losing) position. The requirement for the search

to be kept under pressure has been observed repeatedly [55].

In order to create a sense of urgency within the player we use

an idea from many game tree search implementations (e.g.

Kocsis and Szepesvári [30]) and discount the reward value

that is propagated back up the tree from the terminal state

of a simulation. If the base reward is γ and it takes t turns

(counting turns for both players) to reach a terminal state from

the current root state then the actual reward propagated back

through the tree is γλt for some discount parameter λ with

0 < λ ≤ 1. Here we choose λ = 0.99 which yields discount

factors between 0.7 and 0.5 for a typical Magic game of 40

to 60 turns.

We also compare the effects of assigning a loss a reward

of 0 or −1 (a win having a reward of +1 in both cases). The

value of −1, in combination with discounted rewards, aims to

incentivise the player to put off losses for as long as possible.

This can be beneficial, as extending the length of the game

increases the chance of obtaining a lucky card draw.

VII. EXPERIMENTS

Our empirical investigation compares MCTS players for

M:TG using the approaches explained in Section VI (using

parameters from Table I). In Section VII-A we present a simple

experiment to show that a naı̈ve implementation of UCT does

not yield strong play. In Section VII-B we explore the effect of

varying the number of determinizations for a fixed simulation

budget, and show that with 10,000 simulations, around 40

determinizations, each with 250 simulations, provides good

play (a similar result was found for the card game Dou

Di Zhu in [56]). In Section VII-C we compare the relative

performance of the approaches in Table I. In Section VII-D

we evaluate the effectiveness of combinations of approaches.

The baseline conditions reported in Table I are as a result of

extensive preliminary experiments (some of which are reported

in Section VII-B).

The cards that comprise the deck used by the players

are fixed in advance and both players utilise the same deck

composition. We created a selection of M:TG style creature

and land cards for the decks. The decks contain 40 cards with

17 land cards and 23 creature cards. These proportions are the

same as ones generally used by competitive M:TG players

in tournaments as they represent the perceived wisdom of

providing the best probability to draw a useful mix of land and

spells throughout the game. The 23 creatures in the deck were

spread among a range of combinations of power, toughness

and cost from 1/1(1) to 6/6(7).

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 12

Short
name

Description Trees
Simulations

per tree
UCT

constant
Win/loss
reward

Reward
discount

Move
pruning

Simulation
strategy

Tree
structure

AP
All Possible Deals /
Uniform Random Rollouts

40 250 1.5 1 / 0 1 None Uniform Random All Possible Deals

BA Baseline 40 250 1.5 1 / 0 0.99 Land Reduced Rules Unlimited Degree

IL
Interesting Simulations
(Leaf. 1% of sim budget)

40 250 1.5 1 / 0 0.99 Land
Reduced Rules /

Interesting (Leaf)
Unlimited Degree

IR
Interesting Simulations
(Root. 5% of sim budget)

40 250 1.5 1 / 0 0.99 Land
Reduced Rules /

Interesting (Root)
Unlimited Degree

NL Negative Reward for Loss 40 250 1.5 1 / -1 0.99 Land Reduced Rules Unlimited Degree

MP Dominated Move Pruning 40 250 1.5 1 / 0 0.99 Dominated Reduced Rules Unlimited Degree

BT
Binary Tree
(Descending Mana Cost)

40 250 1.5 1 / 0 0.99 Land Reduced Rules Binary

TABLE I
SUMMARY OF EXPERIMENTAL PARAMETERS FOR SECTION VII

To provide consistency between experiments, and reduce the

variance of our results, in the experiments in Sections VII-A

and VII-B, we randomly generated and tested fixed deck

orderings until we had 50 orderings that were not particularly

biased toward either of the players. In Section VII-C we use

100 unbiased fixed orderings for each pair of players. This

type of approach is used in a variety of games to reduce

the variance between trials, and notably used in Bridge and

Whist tournaments [57] between high-level human players.

The experiments were carried out twice with the players

alternating between player 1 and player 2 positions, to further

reduce bias due to any advantage in going first/second.

Our experiments were carried out on a range of server

machines. Broadly speaking we wanted to maintain decision

times of around 1 CPU-second or less, since that would be

acceptable in play versus a human player. We use number of

simulations as the stopping criterion in all cases. CPU times

are reported for a server with an Intel Xeon X5460 processor,

and 4GB RAM, running Windows Server 2003. Code was

written in C# for the Microsoft .NET framework.

A. MCTS for all possible deals

As remarked earlier, the branching factor at a chance node

involving a single card draw may be 15 or higher, and since

there is a chance node for each decision node in M:TG, this

doubles the depth of the tree compared to determinization

approaches which fix these chance nodes in advance. While

we would not expect MCTS to perform well for a tree which

grows so rapidly with depth, it provides an important baseline

for our experiments. The approach is illustrated in Figure 5.

Note that in this case as well as other experiments (unless

stated otherwise), card draws were only specified at the last

possible moment (i.e. at the point of drawing a card).

There are multiple methods that can be used in order to

select a chance node when descending the tree. Here we select

chance outcomes (card draws) uniformly at random. However,

Fig. 5. An MCTS tree with chance nodes.

since in practice there are repeated cards in the deck, actually

we only have one chance outcome per card type, and weight

this according to the number of cards or that type in the deck.

Another possibility, not considered here, is that one of the

players in the game chooses the card to be drawn, with the

active player selecting the ‘best’ chance action and the non-

active player selecting the ‘worst’ chance action. In all of these

cases the number of nodes in the tree increases very rapidly

with each chance node, which is likely to lead to poor playing

strength for MCTS.

The All Possible Deals player was played against the expert

rules and the reduced rules player, using simulation rollouts

that select uniformly at random from among the available legal

moves. Over 10 replications of 100 games we see that the All

Possible Deals player is significantly weaker than the expert

or reduced rules players, winning only 23% of games against

the expert player and 38% of games against the reduced

rules player. This result provides a baseline to which we can

compare our other experimental results in order to determine if

our adjustments to the MCTS algorithm are having a beneficial

effect.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 13

Expert Rules Reduced Rules
Simulations Simulations

No. of
trees

vs
Reduced

Rules

vs
Expert
Rules

vs
Reduced

Rules

vs
Expert
Rules

1 27 26 31 32
2 31 29 44 38
4 45 34 48 36
5 46 35 38 40

10 45 33 44 40
20 41 36 46 44
40 48 31 56 47
50 42 34 52 46

100 55 33 56 43
250 50 29 45 47
500 38 21 48 46

1000 15 12 41 26

TABLE II
WIN RATE (%) OF MCTS PLAYER WITH MULTIPLE DETERMINISED TREES

AND 10000 SIMULATIONS IN TOTAL

Fig. 6. Comparison of the effect of using multiple determinised trees.

B. Varying the number of determinizations

When using determinization, for a fixed budget on the

total number of simulations, we trade off the number of

determinization trees versus the number of simulations per

tree. If the number of determinizations is too low, we may

get a poor result since the small sample of determinizations

is not representative of the combinatorially large set of deck

orderings. If the number of simulations per tree is too small,

then MCTS has not had enough time to exploit promising play

lines in the tree for each determinization. We run the tests for a

fixed number of total simulations on each tree and then simply

add the results from all the trees together and select the move

that has the most number of visits over all trees.

In Table II and Figure 6 we vary the number n of de-

terminizations, with each determinization tree having around

10000/n simulations. Other experimental conditions are as for

the baseline player in Table I.

The first thing we note in Table II is that using an ensemble

of determinizations yields much stronger play than the naı̈ve

MCTS implementation in Section VII-A. We see also that

using reduced rules simulations gives better results that using

expert rules simulations, even though the reduced rules player

is much weaker than the expert rules player. It seems the

reduced rules player provides enough focus to make simulation

results meaningful for trees of this size (compared with the

results of Section VII-A) while not rigidly defining game

outcomes (as for the expert player). Similar results are reported

for Go in [34]. In Sections VII-C and VII-D we will consider

only these more effective reduced rules simulations.

In each case we see that the best number of determinizations

occurs between 20 and 100, and the best number of simula-

tions per determinization between 500 and 100, with a total

budget of 10,000 simulations. This, and results from [56] mo-

tivate us to choose 40 determinizations with 250 simulations

per determinization tree in Sections VII-C and VII-D.

The CPU time used for a single move decision increases

slightly as to number of trees increases, from 0.62s for a

single tree to 1.12s for 50 trees. Inefficiencies in our code (and

particularly the way in which trees are combined) increase

the CPU time per move up to 14.01s per move for 1000 trees,

although this could be significantly reduced below 1s per move

through more careful design.

Similar experiments were conducted with a budget of

100,000 simulations and the number of determinizations n
taking values from the set {1, 2, 4, 5, 10, 20, 50, 100, 500,

1000, 2000, 5000, 10000}, with about 100000/n simulations

per determinization. The best number of simulations per

determinization again lay in the range from 100 to 1000,

suggesting that an increased simulation budget is best used in

running additional determinizations rather than searching each

determinization more deeply. The effects on playing strength

of more simulations are analysed in table VI.

C. Comparison of MCTS enhancements

We have outlined a number of different enhancements to

MCTS, all with the potential for improving the performance

of the search when utilised in a game such as Magic: The

Gathering. A round robin tournament was conducted with rep-

resentative players from each approach (as shown in Table I),

to provide a measure of comparative strength of the various

enhancements.

In the tournament each player played each other player over

100 games with 50 games being played as each of player 1 and

player 2. The same, fixed 50 deck orderings is used for each

match, to minimise variance and provide a fair comparison.

The results are shown in Table III, with average win rates for

each player in Figure 7. Each player used a fixed budget of

10000 simulations; Table IV shows average CPU times per

decision, from which we can generally see that BA, IR, NL

and MP approaches take approximately the same amount of

CPU time. The AP approach is slower, due to the overhead

of generating a much wider tree than other approaches. The

IL approach, which consumes extra time at every leaf node

in the tree searching for an “interesting” determinization, is

understandably by far the slowest method. The low branching

factor of the BT approach leads to a much lower average time

per move.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 14

TABLE III
WIN RATE (%) OF MCTS PLAYERS IN ROUND ROBIN TOURNAMENT. TABLE SHOWS WIN RATE FOR ROW PLAYER

Fig. 7. Average Win Rate (%) of Players in Round Robin Tournament. Error
bars show 95% confidence intervals.

Player
Average time per move

(seconds)
AP 5.65
BA 0.75
IL 9.81
IR 1.00
NL 1.07
MP 1.00
BT 0.23

TABLE IV
AVERAGE CPU TIME PER MOVE FOR THE MCTS PLAYERS IN

SECTION VII-C.

The benefits of ensemble determinization are clear with all

other players greatly outperforming the All Possible deals (AP)

player which attempts to construct the whole tree without the

focussing effect of determinization. All of our enhancements to

the basic ensemble determinization approach (IL, IR, NL, MP

and BT) improve on the baseline (BA) approach, with the dif-

ference significant at the 95% level for all except for Negative

reward for Loss (NL). Methods which maintain “pressure” on

the Monte Carlo Tree Search, either by finding “interesting”

determinizations (IL,IR) or by rewarding delaying tactics when

behind (NL) are seen to enhance performance over the baseline

player. The use of domain knowledge to prune the tree (MP)

is also seen to be effective when compared to the baseline.

The IL, IR, MP and BT approaches have similar playing

strength, with BT and IR slightly in front, although not

significantly so. These four approaches are quite different

in the way that they enhance the baseline algorithm, and

the fact that they enhance different aspects of the ensemble

determinization approach is further evidenced by their non-

transitive performance against each other. For example, the

BT approach beats the otherwise unbeaten IR approach, and

IR beats MP, but MP is stronger than BT.

The Interesting simulations (Root) (IR) result is slightly bet-

ter than the Interesting simulations (Leaf) (IL) result, although

IR consumes significantly less CPU time than IL for a given

number of simulations (1.00s per decision for IR versus 9.81s

for IL; see Table IV). Hence we have evidence in support of

the effectiveness of finding interesting determinizations, but

it does not appear that we need the detail or computational

expense of attempting to find an interesting simulation at every

leaf of the tree. This observation leads us to use the IR variant

in the combination experiments in the next section.

The use of binary trees (BT) is consistently strong against

all players, losing only to the dominated move pruning (MP)

player. This is particularly notable since the approach is more

than three times as fast as any other approach. Figures 8 and 9

illustrate the difference in tree structure for the binary tree

enhancement. We believe that the idea of using binary trees, in

combination with domain knowledge will likely lead to further

enhancements, and begin the exploration of this in the next

section. However, due to the difficulty in finding appropriate

domain knowledge, this is a large piece of work in itself, and

we anticipate future work in this area.

D. Combinations of MCTS enhancements

We have shown in the previous section that our enhance-

ments to the basic MCTS algorithm individually produce a

stronger player than the baseline MCTS approach to using

ensemble determinization. In this section we investigate the

effectiveness of combinations of some of the best performing

enhancements. We took four enhancements that had performed

strongly in individual experiments and tested all possible

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 15

Fig. 9. A non-binary MCTS tree.

Fig. 8. A binary MCTS tree.

combinations of them. The enhancements tested were (in each

case the expected stronger level is listed first):

• Binary Trees (BT/−): used (ordered by descending mana

cost) / not used

• Move Pruning (MP/−): dominated move pruning / non-

land pruning

• Negative Reward for Loss (NL/−) : −1 reward for loss

/ 0 reward for loss

• Interesting Simulations (Root) (IR/−): used (at most 5%

of simulation budget used to find an interesting ordering)

/ not used

In the results of this section we denote each player as

a 4-tuple, to denote the level of each enhancement. For

example the player (BT,MP,−,−) utilises Binary Trees and

Dominated Move Pruning, but not the Negative Reward for

Loss or Interesting Simulations (Root). These experiments are

very CPU intensive, and 100 replications were conducted using

a large CPU cluster.

Player
Win % vs

Expert Rules Player
Average time per move

(seconds)
(BT, MP, NL, IR) 49.5 0.21
(BT, MP, NL, −) 50.5 0.17
(BT, MP, −, IR) 50.4 0.27
(BT, MP, −, −) 50.5 0.20
(BT, −, NL, IR) 47.0 0.31
(BT, −, NL, −) 47.7 0.23
(BT, −, −, IR) 47.6 0.28
(BT, −, −, −) 47.6 0.19
(−, MP, NL, IR) 47.4 1.01
(−, MP, NL, −) 44.5 1.05
(−, MP, −, IR) 47.7 1.00
(−, MP, −, −) 46.1 1.05
(−, −, NL, IR) 48.3 1.00
(−, −, NL, −) 43.6 0.92
(−, −, −, IR) 47.7 1.01
(−, −, −, −) 43.9 0.79

TABLE V
COMBINATION EXPERIMENTS — AVERAGE WIN RATE (%) OVER 100

TRIALS

We present average performance versus the expert player

in Table V. In addition to the results given in the table, we

observed that reduced rules rollouts significantly outperform

expert rules rollouts (by around 10% in most cases), and that

all the players which use at least one enhancement significantly

outperform the reduced rules player.

The results were analysed using Multiway Analysis of

Variance (ANOVA) [58] using the R statistical package [59].

Multiway ANOVA showed that enhancements (BT, MP and

IR) yielded performance improvements which were signif-

icant at the 99% level (i.e. that (BT, ∗, ∗, ∗) significantly

outperforms (−, ∗, ∗, ∗) etc.). NL represented a significant

improvement only at the 90% level. The following pairs of

enhancements were also significant at the 99% level: BT:MP,

BT:IR, and MP:IR. Only one triple of enhancements yielded

significantly better performance at the 99% level: BT:MP:IR.

ANOVA analysis and the results in Table V show that

our proposed enhancements do indeed improve performance

of ensemble determined MCTS, in combination as well as

individually. The (BT,MP, ∗, ∗) players provide the strongest

performance, yielding playing strength slightly better than the

expert player. Achievement of a higher than 50% win rate is a

substantive achievement when we consider the strength of the

expert rules player against expert human opponents, and the

fact that the (BT,MP, ∗, ∗) players achieve this performance

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 16

Player
Win % vs

Expert Rules Player
Average time per move

(seconds)
(BT, MP, IR) 51.2 3.21
(BT, MP, −) 51.5 3.21
(BT, −, IR) 51.6 3.63
(BT, −, −) 52.0 3.36
(−, MP, IR) 44.3 8.38
(−, MP, −) 44.7 7.91
(−, −, IR) 47.2 6.83
(−, −, −) 37.3 6.45

TABLE VI
100K ROLLOUTS COMBINATION EXPERIMENTS — AVERAGE WIN RATE

(%) OVER 40 TRIALS

without using the knowledge encoded in these expert rules.

The BT enhancement significantly decreases the CPU time

per decision, probably as a result of the MCTS selection phase

having far fewer branches to choose between at each level in

the tree. MP yields a slight improvement in CPU time when

coupled with BT. The other enhancements slightly increase

the CPU time per decision, but not significantly so.

The results of our analysis underline the utility of all the

proposed methods, the dominance of the BT:MP combination,

and the complexity of the interaction between methods in

yielding increased playing strength.

We carried out additional experiments in order to investigate

whether increasing the number of rollouts to 100,000 would

provide any significant increase in the performance of the most

promising combinations. In this case we did not consider the

Negative reward for Loss (NL) enhancement (using a reward

for loss of zero) due to the CPU-intensive nature of these

experiments and the fact that the previous results suggest that

it was the least effective of the four enhancements. The results

of this are shown in Table VI. Note that these experiments are

very time-consuming, requiring roughly five to ten times as

much CPU time per trial as those in table V.

We see here modest improvements in overall performance,

when using the BT enhancement with or without other

enhancements. Counterintuitively, without this enhancement

performance is no better and indeed slightly worse than when

using a smaller simulation budget. We have observed this

phenomenon for other games of partial information [56], [60]

which probably arises due to the large branching factor as we

descend the tree even when determinization is used, so that

the additional simulation budget is used in chasing somewhat

arbitrary decision possibilities. That BT mitigates this problem

suggests that this is a particularly interesting area for further

study, capable of focussing search into interesting areas of the

tree. BT likely improves matters here since the reduction of

the degree of the tree results in a more focussed search in each

determinization.

VIII. CONCLUSION

In this paper we have introduced the popular card game

Magic: The Gathering. We believe M:TG is an interesting do-

main for Computational Intelligence and AI, and particularly

Monte Carlo Tree Search, for a variety of reasons. The game is

highly popular and commercially successful, and has (human)

players at professional levels. It is an imperfect information

game, with unique cards that provide a rich level of tactical

play and provide a very high branching factor for any search

based approach. Expert heuristics are difficult to formulate

because of the variety and complexity of the game situations

that arise and the fact that the effectiveness of many actions

are highly dependent on the current game state. All of these

factors suggest that M:TG would be an extremely difficult

challenge for conventional evaluation based search methods.

We also feel that the structure of the game is suited to

analysis by MCTS. The progressive revealing of information

as players draw new cards from their decks and play them

out combined with the relative unlikelihood of similar game

states leading to radically different game outcomes are both

features that suggest that MCTS should be able to generate

strong play.

The central theme of this paper is the use of multiple

determinized trees as a means of dealing with imperfect

information in a MCTS search and we have shown that this

approach provides significant benefits in playing strength,

becoming competitive with a sophisticated expert rules player

with a simulation budget of less than one CPU second on

standard hardware, despite having no access to expert knowl-

edge. In addition to that we have presented a wide variety of

enhancements to the determinized trees and analysed the effect

on playing strength that each enhancement offers. All of these

enhancements show further improvement. We investigated a

modification of the structure of the decision tree to a binary

tree, well suited to M:TG where decisions amount to the

choice of a subset of cards from a small set, rather than an

individual card. As well as providing significant improvements

in playing strength, the binary tree representation substantially

reduced CPU time per move. Dominated move pruning used

limited domain knowledge, of a type applicable to a wide

variety of games involving subset choice, to significantly

reduce the branching factor within the tree. Another promising

approach maintained pressure on the Monte Carlo Tree Search

algorithm by choosing “interesting” determinizations which

were balanced between the two players. An enhancement

which used decaying reward to encourage delaying moves

when behind had some positive effect, but was not as effective

as the preceding three enhancements.

The rollout strategy had a profound effect in our experi-

ments. Applying a fully deterministic rollout strategy, as we

did when using our expert rules player to handle the rollouts,

provided a clearly inferior performance to utilising the reduced

rules player which uses very limited domain knowledge, but

incorporates some randomness within its decisions. This was

true in all of our experiments and despite the fact that the

expert rules player is an intrinsically stronger player than the

reduced rules player. However, using a naı̈ve rollout strategy

which chose uniformly at random from all possible moves

proved to be very weak.

MCTS, suitably enhanced by the range of approaches we

have suggested in this paper, was able to compete with, and

outperform, a strong expert rule-based player (which is in turn

competitive with strong human players). Hence the paper adds

to the volume of work which suggests MCTS as a powerful

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 17

algorithm for game AI, for a game of a somewhat different

nature to those previously studied.

In future work we will look at increasing the complexity

of the game environment by including a wider variety of

M:TG cards and card types. This will increase the scope

of the tactical decisions available to the player and will

make it significantly harder to encode strong knowledge-based

players. We also intend to look more closely at binary trees in

conjunction with domain knowledge, which we believe may

yield significant further improvements in playing strength.

Card and board games such as Magic: The Gathering

provide excellent test beds for new artificial intelligence and

computational intelligence techniques, having intermediate

complexity between perfect information games such as Chess

and Go, and video games. As such we believe they represent

an important stepping stone towards better AI in commercial

video games.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful com-

ments.

REFERENCES

[1] H. J. van den Herik, “The Drosophila Revisited,” Int. Comp. Games

Assoc. J., vol. 33, no. 2, pp. 65–66., 2010.
[2] C.-S. Lee, M.-H. Wang, G. M. J.-B. Chaslot, J.-B. Hoock, A. Rimmel,

O. Teytaud, S.-R. Tsai, S.-C. Hsu, and T.-P. Hong, “The Computational
Intelligence of MoGo Revealed in Taiwan’s Computer Go Tournaments,”
IEEE Trans. Comp. Intell. AI Games, vol. 1, no. 1, pp. 73–89, 2009.

[3] A. Rimmel, O. Teytaud, C.-S. Lee, S.-J. Yen, M.-H. Wang, and S.-R.
Tsai, “Current Frontiers in Computer Go,” IEEE Trans. Comp. Intell.

AI Games, vol. 2, no. 4, pp. 229–238, 2010.
[4] C.-S. Lee, M. Müller, and O. Teytaud, “Guest Editorial: Special Issue on

Monte Carlo Techniques and Computer Go,” IEEE Trans. Comp. Intell.

AI Games, vol. 2, no. 4, pp. 225–228, Dec. 2010.
[5] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,

P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. Comp.

Intell. AI Games, vol. 4, no. 1, pp. 1–43, 2012.
[6] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo Tree

Search in Hex,” IEEE Trans. Comp. Intell. AI Games, vol. 2, no. 4,
pp. 251–258, 2010.

[7] F. Teytaud and O. Teytaud, “Creating an Upper-Confidence-Tree pro-
gram for Havannah,” in Proc. Adv. Comput. Games, LNCS 6048,
Pamplona, Spain, 2010, pp. 65–74.

[8] J. Méhat and T. Cazenave, “Combining UCT and Nested Monte Carlo
Search for Single-Player General Game Playing,” IEEE Trans. Comp.

Intell. AI Games, vol. 2, no. 4, pp. 271–277, 2010.
[9] Y. Björnsson and H. Finnsson, “CadiaPlayer: A Simulation-Based Gen-

eral Game Player,” IEEE Trans. Comp. Intell. AI Games, vol. 1, no. 1,
pp. 4–15, 2009.

[10] M. Enzenberger, M. Müller, B. Arneson, and R. B. Segal, “Fuego - An
Open-Source Framework for Board Games and Go Engine Based on
Monte Carlo Tree Search,” IEEE Trans. Comp. Intell. AI Games, vol. 2,
no. 4, pp. 259–270, 2010.

[11] J. Schaeffer, “The games computers (and people) play,” Adv. Comput.,
vol. 52, pp. 189–266, 2000.

[12] S. E. Siwek, “Video games in the 21st century: the 2010
report,” 2010. [Online]. Available: http://www.theesa.com/facts/pdfs/
VideoGames21stCentury 2010.pdf

[13] N. Ersotelos and F. Dong, “Building highly realistic facial modeling and
animation: a survey,” Visual Comput., vol. 24, no. 1, pp. 13–30, 2008.

[14] P. Tozour, “The perils of AI scripting,” in AI Game Programming

Wisdom, S. Rabin, Ed. Charles River Media, 2002, pp. 541–547.
[15] I. Szita, G. M. J.-B. Chaslot, and P. Spronck, “Monte-Carlo Tree Search

in Settlers of Catan,” in Proc. Adv. Comput. Games, Pamplona, Spain,
2010, pp. 21–32.

[16] N. R. Sturtevant, “An Analysis of UCT in Multi-Player Games,” in Proc.

Comput. and Games, LNCS 5131, Beijing, China, 2008, pp. 37–49.
[17] G. van den Broeck, K. Driessens, and J. Ramon, “Monte-Carlo Tree

Search in Poker using Expected Reward Distributions,” Adv. Mach.

Learn., LNCS 5828, no. 1, pp. 367–381, 2009.
[18] M. Buro, J. R. Long, T. Furtak, and N. R. Sturtevant, “Improving State

Evaluation, Inference, and Search in Trick-Based Card Games,” in Proc.

21st Int. Joint Conf. Artif. Intell., Pasadena, California, 2009, pp. 1407–
1413.

[19] I. Frank and D. Basin, “Search in games with incomplete information:
a case study using Bridge card play,” Artif. Intell., vol. 100, no. 1-2, pp.
87–123, 1998.

[20] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower Bounding Klondike
Solitaire with Monte-Carlo Planning,” in Proc. 19th Int. Conf. Automat.

Plan. Sched., Thessaloniki, Greece, 2009, pp. 26–33.
[21] M. L. Ginsberg, “GIB: Imperfect Information in a Computationally

Challenging Game,” J. Artif. Intell. Res., vol. 14, pp. 303–358, 2001.
[22] Wizards of the Coast, “Magic: The Gathering.” [Online]. Available:

http://www.magicthegathering.com
[23] H. Rifkind, “Magic: game that made Monopoly disappear,” Jul.

2005. [Online]. Available: http://www.timesonline.co.uk/tol/life and
style/article545389.ece?token=null&offset=0&page=1

[24] G. Giles, “House of Cards,” 1995. [Online]. Available: http:
//www.metroactive.com/papers/sonoma/11.09.95/magic.html

[25] P. Buckland, “Duels of the Planeswalkers: All about AI,” 2009.
[Online]. Available: http://www.wizards.com/Magic/Magazine/Article.
aspx?x=mtg/daily/feature/44

[26] Z. Mowshowitz, “Review and analysis: Duels of the Planeswalkers,”
2009. [Online]. Available: http://www.top8magic.com/2009/06/
review-and-analysis-duels-of-the-planeswalkers-by-zvi-mowshowitz/

[27] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[28] G. M. J.-B. Chaslot, J.-T. Saito, B. Bouzy, J. W. H. M. Uiterwijk, and
H. J. van den Herik, “Monte-Carlo Strategies for Computer Go,” in Proc.

BeNeLux Conf. Artif. Intell., Namur, Belgium, 2006, pp. 83–91.
[29] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo

Tree Search,” in Proc. 5th Int. Conf. Comput. and Games, Turin, Italy,
2006, pp. 72–83.

[30] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Plan-
ning,” in Euro. Conf. Mach. Learn., J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Berlin, Germany: Springer, 2006, pp. 282–293.

[31] Y. Wang and S. Gelly, “Modifications of UCT and sequence-like
simulations for Monte-Carlo Go,” in Proc. IEEE Symp. Comput. Intell.

Games, Honolulu, Hawaii, 2007, pp. 175–182.
[32] R. E. Korf, “Depth-first iterative-deepening: an optimal admissible tree

search,” Artif. Intell., vol. 27, no. 1, pp. 97–109, 1985.
[33] J. Ferraiolo, “The MODO fiasco: corporate hubris and Magic

Online,” 2004. [Online]. Available: http://www.starcitygames.com/php/
news/article/6985.html

[34] S. Gelly and D. Silver, “Combining Online and Offline Knowledge in
UCT,” in Proc. 24th Annu. Int. Conf. Mach. Learn. Corvalis, Oregon:
ACM, 2007, pp. 273–280.

[35] G. M. J.-B. Chaslot, C. Fiter, J.-B. Hoock, A. Rimmel, and O. Tey-
taud, “Adding Expert Knowledge and Exploration in Monte-Carlo
Tree Search,” in Proc. Adv. Comput. Games, LNCS 6048, vol. 6048,
Pamplona, Spain, 2010, pp. 1–13.

[36] G. M. J.-B. Chaslot, M. H. M. Winands, H. J. van den Herik, J. W. H. M.
Uiterwijk, and B. Bouzy, “Progressive Strategies for Monte-Carlo Tree
Search,” New Math. Nat. Comput., vol. 4, no. 3, pp. 343–357, 2008.

[37] S. Yoon, A. Fern, and R. L. Givan, “FF-Replan: A Baseline for
Probabilistic Planning,” in Proc. 17th Int. Conf. Automat. Plan. Sched.,
Providence, New York, 2007, pp. 352–359.

[38] S. Yoon, A. Fern, R. L. Givan, and S. Kambhampati, “Probabilistic
Planning via Determinization in Hindsight,” in Proc. Assoc. Adv. Artif.

Intell., Chicago, Illinois, 2008, pp. 1010–1017.
[39] D. Silver and J. Veness, “Monte-Carlo Planning in Large POMDPs,” in

Proc. Neur. Inform. Process. Sys., Vancouver, Canada, 2010, pp. 1–9.
[40] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and

acting in partially observable stochastic domains,” Artif. Intell., vol. 101,
no. 1-2, pp. 99–134, 1998.

[41] J. Pineau, G. Gordon, and S. Thrun, “Anytime point-based approxima-
tions for large POMDPs,” J. Artif. Intell. Res., vol. 27, pp. 335–380,
2006.

[42] M. L. Ginsberg, “Partition search,” in Proc. 13th Nat. Conf. Artif. Intell.

& 8th Innov. Applicat. Artif. Intell. Conf., 1996, pp. 228–233.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. X, NO. X, MONTH 2012 18

[43] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, New Jersey: Prentice Hall, 2009.

[44] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the Success of Perfect Information Monte Carlo Sampling in Game Tree
Search,” in Proc. Assoc. Adv. Artif. Intell., Atlanta, Georgia, 2010, pp.
134–140.

[45] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
Minimization in Games with Incomplete Information,” in Proc. Adv.

Neur. Inform. Process. Sys., Vancouver, Canada, 2008, pp. 1729–1736.
[46] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling, “Monte Carlo

Sampling for Regret Minimization in Extensive Games,” in Proc. Adv.

Neur. Inform. Process. Sys., Vancouver, Canada, 2009, pp. 1078–1086.
[47] D. Koller and N. Megiddo, “The complexity of two-person zero-sum

games in extensive form,” Games Econ. Behav., vol. 4, pp. 528–552,
1992.

[48] M. Bowling, N. A. Risk, N. Bard, D. Billings, N. Burch, J. Davidson,
J. Hawkin, R. Holte, M. Johanson, M. Kan, B. Paradis, J. Schaeffer,
D. Schnizlein, D. Szafron, K. Waugh, and M. Zinkevich, “A Demon-
stration of the Polaris Poker System,” in Proc. Int. Conf. Auton. Agents

Multi. Sys., 2009, pp. 1391–1392.
[49] T. Cazenave and N. Jouandeau, “On the Parallelization of UCT,” in

Proc. Comput. Games Workshop, Amsterdam, Netherlands, 2007, pp.
93–101.

[50] G. M. J.-B. Chaslot, M. H. M. Winands, and H. J. van den Herik,
“Parallel Monte-Carlo Tree Search,” in Proc. Comput. and Games, LNCS

5131, Beijing, China, 2008, pp. 60–71.
[51] A. Fern and P. Lewis, “Ensemble Monte-Carlo Planning: An Empir-

ical Study,” in Proc. 21st Int. Conf. Automat. Plan. Sched., Freiburg,
Germany, 2011, pp. 58–65.

[52] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artif. Intell., vol. 6, no. 4, pp. 293–326, 1975.

[53] Pagat, “Rummy.” [Online]. Available: http://www.pagat.com/rummy/
rummy.html

[54] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and Move
Groups in Monte Carlo Tree Search,” in Proc. IEEE Symp. Comput.

Intell. Games, Perth, Australia, 2008, pp. 389–395.
[55] I. Althöfer, “On the Laziness of Monte-Carlo Game Tree Search in Non-

tight Situations,” Friedrich-Schiller Univ., Jena, Tech. Rep., 2008.
[56] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Determinization in

Monte-Carlo Tree Search for the card game Dou Di Zhu,” in Proc.

Artif. Intell. Simul. Behav., York, United Kingdom, 2011.
[57] World Bridge Federation, “General conditions of contest,”

2011. [Online]. Available: http://www.worldbridge.org/departments/
rules/GeneralConditionsOfContest2011.pdf

[58] M. H. Kutner, J. Neter, C. J. Nachtsheim, and W. Wasserman, Applied

Linear Statistical Models, 5th ed. McGraw-Hill, 2004.
[59] R Development Core Team, R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing, 2008.
[60] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information Set Monte

Carlo Tree Search,” IEEE Trans. Comp. Intell. AI Games, vol. 4, no. 2,
2012.

Peter Cowling is Professor of Computer Sci-
ence and Associate Dean (Research and Knowledge
Transfer) at the University of Bradford (UK), where
he leads the Artificial Intelligence Research Centre.
From September 2012 he will take up an Anniver-
sary Chair at the University of York (UK) joint be-
tween the Department of Computer Science and the
York Management School. He holds MA and DPhil
degrees from Corpus Christi College, University of
Oxford (UK). His work centres on computerised
decision-making in games, scheduling and resource-

constrained optimisation, where real-world situations can be modelled as
constrained search problems in large directed graphs. He has a particular
interest in general-purpose approaches such as hyperheuristics (where he is a
pioneer) and Monte Carlo Tree Search (especially the application to games
with stochastic outcomes and incomplete information). He has worked with a
wide range of industrial partners, developing commercially successful systems
for steel scheduling, mobile workforce planning and staff timetabling. He is a
director of 2 research spin-out companies. He has published over 80 scientific
papers in high-quality journals and conferences, won a range of academic
prizes and “best paper” awards, and given invited talks at a wide range of
Universities and conference meetings. He is a founding Associate Editor of
the IEEE Transactions on Computational Intelligence and AI for Games.

Colin Ward is currently working towards a PhD
at the University of Bradford (UK). He holds a
BSc in Computing and Information Systems from
the University of Bradford. With his background in
computer science and as a competitive game player
(he has been ranked among the top 150 Magic: The
Gathering players in the UK) his research interests
are focussed on artificial intelligence and machine
learning approaches to playing games. His thesis
examines game domains with incomplete informa-
tion and search methods that can be applied to those

domains.

Edward Powley received an MMath degree in
Mathematics and Computer Science from the Uni-
versity of York, UK, in 2006, and was awarded
the P B Kennedy Prize and the BAE Systems ATC
Prize. He received a PhD in Computer Science from
the University of York in 2010. He is currently
a Research Fellow at the University of Bradford,
where he is a member of the Artificial Intelligence
Research Centre in the School of Computing, Infor-
matics and Media. He will move to the University
of York in September 2012. His current work in-

volves investigating MCTS for games with hidden information and stochastic
outcomes. His other research interests include cellular automata, and game
theory for security.

