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Abstract 

Ensemble flood forecasting has gained significant momentum over the past decade due to the growth of 

ensemble numerical weather and climate prediction, expansion in high performance computing, 

growing interest in shifting from deterministic to risk-based decision-making that accounts for forecast 

uncertainty, and the efforts of communities such as the international Hydrologic Ensemble Prediction 

Experiment (HEPEX), which focuses on advancing relevant ensemble forecasting capabilities and 

fostering its adoption. With this shift, comes the need to understand the current state of ensemble flood 

forecasting, in order to provide insights into current capabilities and areas for improvement, thus 

identifying future research opportunities to allow for better allocation of research resources. In this 

paper, we provide an overview of current research activities in ensemble flood forecasting and discuss 

knowledge gaps and future research opportunities, based on a review of 70 papers focussing on various 

aspects of ensemble flood forecasting around the globe. Future research directions include 

opportunities to improve technical aspects of ensemble flood forecasting, such as data assimilation 

techniques and methods to account for more sources of uncertainty, and developing ensemble forecasts 

for more variables, for example flood inundation, by applying techniques such as machine learning. 

Further to this, we conclude that there is a need to not only improve technical aspects of flood 

forecasting, but also to bridge the gap between scientific research and hydro-meteorological model 

development, and real-world flood management using probabilistic ensemble forecasts, especially 

through effective communication.  
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Origins of reviewed ensemble flood forecasting studies 

 

 

INTRODUCTION 

Background information 

Flood modelling and forecasting is key to managing and preparing for extreme flood events. According 

to the international disaster database, flooding occurs more frequently than all other types of natural 

hazards across the globe, and accounts for 39% of all disasters arising from natural hazards since 2000, 

with >94 million people affected worldwide every year (Guha-Sapir et al., 2018). The World 

Meteorological Organisation (WMO) estimates that while economic losses caused by flooding have 

increased over the past fifty years, loss of life has significantly decreased due to improved monitoring 

and forecasting of hydro-meteorological hazards (WMO, 2015).	

There exists a wide range of techniques used for forecasting flood events, the majority of which use 

precipitation data as input, be this from upstream observations, or precipitation forecasts from 

numerical weather prediction (NWP) systems or rain field extrapolations. Precipitation and temperature 

forecasts are key in predicting river flow and flooding , particularly for lead times of more than 1-2 days 

(Cloke and Pappenberger, 2009). Many of the flood forecasting approaches, however, provide a 

deterministic forecast, i.e. a single forecast scenario of the future state, with little or no defensible 

estimate of the uncertainty in the forecast. Over the past 2 – 3 decades, meteorological NWP has moved 

from deterministic forecasting to probabilistic forecasting using ensemble prediction systems (EPS), and 

in the past decade, ensemble forecasting has also become increasingly available for hydro-

meteorological flood forecasting purposes across the globe (Emerton et al., 2016; Pappenberger et al., 

2016). Ensemble flood forecasts can provide an indication of the potential of upcoming extreme events, 

and the risk of damages associated with them. Despite a range of scientific and institutional challenges 

associated with moving to operational ensemble forecasting for flood management (Arnal et al., 2019), 

the benefits of ensemble forecasts over deterministic forecasts have been argued by a number of recent 



analyses (Rossa et al., 2011; Siddique et al. 2017; Verkada and Werner, 2011; Pappenberger et al., 

2015). 	

Ensemble Forecasting 

In hydrological forecasting, the four key sources of uncertainty are the input data, model structure, 

model parameters and evaluation data for model validation (Kauffeldt, A., 2014; Shaw et al., 2011; 

Wood and Lettenmaier, 2008; Pagano et al., 2013), and their superposition (Zappa et al., 2011). For 

forecasts beyond 2-3 days ahead, the largest uncertainty stems from the meteorological forecast input 

(He et al., 2009; Emerton et al., 2016) (except for special circumstances, such as seasonal forecast 

involving snow melting). Ensemble forecasts allow for representation of the forecast uncertainty by 

producing a range (or ensemble) of possible forecast outcomes, each of which is equally probable. This 

is done by applying small perturbations to the initial state of the numerical weather prediction (NWP)  

model. Due to the chaotic nature of the atmosphere (Lorenz 1963), these small perturbations lead to 

significantly varying outcomes with increasing lead time. In addition, many forecasting centres include 

stochastic physics in their EPS, applying perturbations to the parameterised physical processes, to 

additionally represent the uncertainty associated with these parameterisations (Buizza et al., 1999).	

In flood forecasting, probabilistic river flow predictions are typically produced by using an ensemble 

precipitation forecast to force a hydrological model (Cloke and Pappenberger, 2009; Pagano et al., 2013; 

Clark and Hay, 2004; Cloke et al., 2013). The ensemble nature of the forecast provides usable 

probabilistic information about flood events on much longer lead times than has previously been 

possible for deterministic forecasts (Emerton et al, 2016), and is useful in catchments where no other 

input data is available (Cloke and Pappenberger, 2009). Even so, many the latest operational ensemble 

flood forecasting systems do not additionally account for uncertainty in the hydrological model; as such, 

the spread of the forecasts is typically under-dispersive (Wang et al., 2009), not accounting for the full 

range of uncertainty throughout the modelling chain. This remains a grand challenge in ensemble flood 

forecasting and an active area of current research. 	

Cloke and Pappenberger (2009) investigated the scientific and technical drivers behind the shift from 

deterministic to ensemble flood forecasting, and highlighted seven challenges in this shift, from 

computing resources and limited sample sizes of extreme events to communicating uncertainty. As 

ensemble prediction systems have continued to increase in both number and quality, and decision-

making for flood events has begun to move from deterministic to probabilistic (Hall et al., 2008; Bruen 

et al., 2010), we discuss current research activities in the area of ensemble flood forecasting and their 

evolution over the past decade. We further highlight current knowledge gaps and opportunities for 

future research in order to improve ensemble flood forecasting and its use in water management. 	

Aims and organisation of paper 

This paper examines the development trajectory of ensemble flood forecasting and its current research 

status based on evidence in literature and discusses future research opportunities from a “flood” point 

of view. It will also serve as an introduction of ensemble techniques for flood forecasting, promoting the 

uptake of ensemble flood forecasting by flood practitioners.  

In total, 70 papers up to the year 2019 were identified using keyword search on web of science. The first 

paper appeared in year 2001. The keyword was specifically selected to include “flood” in the title to 



include studies related to flood management as opposed to only focusing on studies on hydro-

meteorological forecast, where ensemble forecasting has been a research focus for many years. The 

review process, including paper selection process and criteria used to review the papers is described in 

Appendix A. The list of the papers selected, and the information of the case study system and data used 

are included in Appendix B.  

 

REVIEW OUTCOMES 

BOX 1: Overview of selected papers 

The publication years of the selected papers are summarised in Figure B1 and the origins of these 

studies are summarised in Figure B2. There is an remarkable increase in publications in the research 

field over the past decade. The first publication fitting the search criteria appeared in 2001. In the 

following five years, there was only one publication in 2003. Since 2007 however, the number of papers 

published started to increase. Although varied across the years, the general increasing trend in the 

number of publications is evident. This observation agrees with the increasing awareness of flood risk 

and the needs to consider uncertainty in flood forecasting in recent years (Cloke and Pappenberger, 

2009; Rossa et al., 2011) and the fact that many countries started to provide global ensemble NWP 

products around that time (Pappenberger et al., 2016). Despite the overall increase in the number of 

studies over the years, most of these studies were conducted in countries located in the northern 

hemisphere or in the developed world. European countries account for nearly half of the papers 

reviewed, followed by Asia and North America; while there is no study from Africa. This is generally in 

line with the origins of NWP ensemble products, which are the ultimate input for ensemble flood 

forecasting models. 

 

   Figure B1 Number of publications in each year                Figure B2 Origins of selected studies 

 

Study focus 

The study focus of the papers was reviewed and the papers were categorised into those focusing on 

ensemble modelling, ensemble utilisation, and ensemble application, as shown in Figure 1. Over half of 

the studies focus on the application of ensemble input for flood modelling (using either climate or 

hydrological models), including the development of ensemble flood models, the comparison of different 



ensemble products and feasibility studies examining the suitability of specific EPS to be used at specific 

locations of interest. This is especially the case for papers published during the early half of the review 

period (i.e. prior to 2010), when there are only 2 papers on technical topics related to ensemble 

modelling (i.e. data assimilation) and 3 papers on the application of ensemble forecasts to solve real-

world problems (i.e. developing flood warning systems). During the second half of the review period, the 

overall number of papers in the field has increased significantly, especially on ensemble modelling and 

application. During this period, papers focusing on topics related to ensemble modelling have extended 

to cover ensemble generation and post-processing of ensemble forecasts; while the number of papers 

focusing on ensemble flood forecasting for the development of flood warning systems has increased 

from 3 to 10, and the application topics have been extended to cover reservoir operation and flood risk 

analysis.  

 

 

Figure 1 Study focus of papers selected 

 

Cases study and datasets 

The case study systems and datasets used in the papers reviewed were examined to understand the 

origins of the case studies (Figure 2), the types of flood simulated (Figure 3), and the spatial scale (Figure 

4), temporal resolution (Figure 5) and lead time (Figure 6) of these flood events.  

As can be seen in Figure 2, prior to 2010 most of the case study systems are from the northern 

hemisphere, including 9 (or 53%) from Europe and 6 (35%) from Asia. There is one case study system 

(6%) each from Africa and Oceania during this period. Although still dominated by the northern 

hemisphere, the geographic distribution of the case study systems changed in the second half of the 

study period, with Asia leading with a total of 22 systems (41%) being investigated, followed by 17 case 



studies (31%) from Europe and 11 (20%) from North America. Further to this, there are also case studies 

from South America, and a global study.  

 

 

Figure 2 Locations of case studies investigated. The whole numbers represent the number of case study 

systems investigated in each region during each time period. The percentages in parenthesis represent 

the percentage of cases study systems in each region over the total number of case study systems 

considered during each time period. 

 

During the early stages of research on ensemble flood forecasting, most of the studies focused on floods 

in rural catchments, as shown in Figure 3, with rural flood events accounting for 94% of those 

investigated between 2001 and 2010. More recently, the scope of ensemble flood forecasting has 

extended to include other types of floods, such as flooding in urban areas (an increase from one case 



study between 2001 and 2010 to 11 between 2011 and 2019), flash floods (an increase from zero to 14) 

and compound floods (defined as a flood caused by a combination of events, such as tidal flooding and 

intense rainfall”) (an increase from zero to 2). The increase in the flash flood studies is likely to be 

related to a special issue on the topic published in 2016 (Braud et al., 2016) 

The change in the types of flood investigated also resulted in changes in the spatial scale of flooding  

investigated. As shown in Figure 4, although floods occurring on catchment or basin scale are the focus 

in both time periods, floods on a local scale have become more popular in the past decade. This is 

mainly due to increased research on urban floods, which affect a relatively small area. It should also be 

noted that one of the studies on catchment/basin-scale floods during the second half of the review 

period investigated river basins from around the world, (Figure 2). In addition, compound floods were 

not considered until more recently, beginning in 2017, due to increased awareness of compound events 

in recent years (Leonard et al., 2014; Zscheischler et al., 2018); this is also an emerging area for flood 

modelling.  

 

 

Figure 3 Types of floods investigated (Note: A flood event could be double counted, as an event could be 

a flash flood event occurred in an urban catchment. Therefore, the total number in the figure exceeds 

the total number of papers reviewed) 

 



 

Figure 4 Spatial scale of floods investigated 

 

Compared to the types and spatial scales of floods investigated, there are less significant changes in the 

temporal resolution of the flood events (i.e. the frequency of flood forecasts produced) investigated over 

the years. For both time periods before and after 2010, sub-daily flood data (e.g. hourly, 3-hourly or 6-

hourly) were used in most of the studies (compared to daily flood data). There is a slight shift from daily 

data to sub-daily flood data after 2010, which is probably again due to the shift in the types of floods 

investigated and improved data availability in recent years. Urban floods have a relatively shorter duration 

(i.e. the length of the flood event) and event onset time (i.e. the response time between the storm and 

the beginning of the flood event) and therefore lead time (some are classified as flash floods with a lead 

time less than 6 hours). As a result, urban floods are often investigated with sub-daily data. In addition, 

very short (i.e. lead time less than 24 hours) to medium range (i.e. lead time of 3-15 days) flood forecasts 

are the focus of ensemble flood forecasting for both pre- and post-2010 periods, as shown in Figure 6. 

Only 5 studies considered lead time longer than two weeks, with 4 of these studies were conducted after 

2010.  

 



 

Figure 5 Temporal resolution of floods investigated 

 

 

Figure 6 Forecast lead time considered 

 

Flood modelling  

Various flood models have been used in the studies to forecast different types of flood variables, as 

summarised in Figures 7 and 8. Hydrological models simulating rainfall-runoff relationships are the most 

commonly used flood models in the studies investigated, especially during the first half of the review 

period with hydrological models accounting for 76% of the studies reviewed. Consequently, river flow is 

the most common flood variable predicted (Figure 8). During the second half of the review period, 

although hydrological modelling is still a popular approach, a variety of other flood models were also 

considered, such as hydraulic models and data-driven models. This also related to the increase in the 

type of flood variables being considered, - with flood water levels, rainfall (as a surrogate of flood 

severity) and flood inundation area.  



 

Figure 7 (Surrogate) Flood models used 

 

Figure 8 (Surrogate) Flood variables predicted 

 



 

Figure 9 Flood driving processes considered 

 

Fluvial or pluvial flooding driven by rainfall are the most common flood processes considered during 

both review periods (Figure 9). In the second review period, research was extended to include other 

flood driving mechanisms, including ocean processes such as storm tide and storm surge, and 

meteorological conditions such as temperature, air pressure, humidity and wind, which are typically 

used in machine-learning models to forecast floods affected by these variables (e.g. snow melt driven 

floods), and catastrophic events such as dam failure. The ocean process is often included using a 

hydraulic model; whereas meteorological conditions are often incorporated through a numerical 

weather model or a data-driven modelling approach. It should be noted that in the papers reviewed, 

there is only one study that considered floods caused by dam failure, and floods due to groundwater 

events or glacial lake  are not considered.  

 

Ensemble modelling 

As discussed previously, ensemble forecasts can be generated using a variety of different methods. In 

the studies reviewed, four key methods were typically used, including multi-model-based ensembles, 

initial/boundary condition perturbations, parameterisation of models, and statistical approaches to 

account for error, as shown in Figure 10. Initial or boundary condition perturbation is the most 

commonly-used method for ensemble generation. This is due to the use of ensemble NWP products, 

many of which are generated using this method, in order to account for the chaotic nature of the 

atmosphere (Lorenz, 1963).  

Research focussing on evaluation of ensemble forecasts adopts a variety of methods, as shown in Figure 

11. Ad hoc methods based on visual inspection or the ensemble mean are the most commonly used 

methods, followed by threshold-based methods such as estimating the probability of detection 

compared to observed data. Whereas distribution-based methods accounting for all ensemble members 

were only used in 3 studies before 2010. Although this number has increased to 22 for the period after 



2010, ad hoc methods are still the dominant methods used in the second half of the review period. In a 

small number of studies (4 for pre-2010 and 11 for post-2010 periods) only ad hoc methods were used.  

In both review periods, the majority of studies were based on ensemble forecasts using ensemble sizes 

ranging from 10 ensemble members to 100, as shown in Figure 12. This is directly related to the 

ensemble NWP products used. There are, in total, 4 studies using forecasts with over 100 ensemble 

members. All of these studies focused on analysis of input uncertainty, with two studies also considering 

uncertainty from inputs generated using different climate models. In the second half of the review 

period, the number of ensemble members was not mentioned in 10 studies.  

 

Figure 10 Ensemble generation methods used 

 

 

Figure 11 Ensemble evaluation methods used 

 



 

Figure 12 Ensemble member numbers considered 

In summary, the review has highlighted that there are an increasing number of studies investigating 

ensemble flood forecasting. The majority studies have focussed on ensemble forecasting of flooding 

associated with fluvial processes at the catchment-scale for lead times of up to 15 days. There is 

considerable emphasis in the reviewed studies on forecasting river flows using hydrological models and 

ensemble members generated using perturbed forcing.  Emerging areas of research tend to focus on 

extending ensemble forecasting methods to predict a wider range of variables, different types of events 

and to longer lead times, and the use of ensemble forecasts. These emerging research areas are 

identifying numerous challenges and research opportunities. Technical challenges are related to 

extending ensemble forecasting methods include the additional data and computational requirements, 

and the need for innovative modelling, ensemble generation and forecast evaluation approaches. There 

are also outstanding challenges related to how ensemble forecasts can be used to inform real-world 

management of and responses to flooding. The following section expands on these challenges and 

identifies future research opportunities. 

CURRENT CHALLENGES AND FUTURE OPPORTUNITIES 

From the review outcomes discussed, we can see that although the overall number of studies on 

ensemble flood forecasting has increased significantly in the last decade, this increase is not uniform 

across the different categories reviewed. For example, it varies with the geographic focus of the study, 

types of floods forecast, and ensemble modelling and evaluation methods used. This is partially due to 

the quality and availability of observational data. It is also because ensemble forecasting is a relatively 

new concept in flood-related management applications, although it has been a research focus over the 

past 2-3 decades in hydro-meteorological modelling. In the following section, we summarise some of 

the areas for future focus and consideration in the ensemble flood forecasting research and practise 

communities, including: 

• Improving data quality and availability, 

• Catering for different types of flood events, 

• Extending flood forecast variables, 

• Extending and bridging the gap in flood forecast lead time, and  



• Extending ensemble generation and evaluation.  

We suggest potential research directions in order to move forward and to encourage the uptake of 

ensemble forecasting in real-world flood management and response.  

 

Improving data quality and availability 

All forecasts, whether ensemble or deterministic, are dependent on observational data of high quality 

for all parts of the flood forecasting chain. Data acquisition for forecasts has undergone rapid and 

fundamental changes in recent decades with the rise of remote sensing and new types of data, but has 

at the same time confronted a decline of traditional observations (Dutra et al., 2014). This poses new 

opportunities as well as new challenges for the forecasting systems with regards to having the best 

possible input for hydrometeorological forecasting. 

There are three main sources for observational data used in hydrometeorological forecasting around the 

globe; 1) observations from ground-based gauges, 2) remote sensing and 3) modelled reanalysis 

(Michaelides, 2009). For some areas, ground-based radar can also be used for some variables, such as 

wind speed and precipitation. 

Conventional observational data 

Conventional observational data from in situ measurement stations are still the backbone to use in 

model construction, calibration and validation of hydrometeorological forecasts when they are available 

and of sufficient quality. However, the global decrease in the number of observational measuring 

stations in the last decade (Lins, 2008) is especially troublesome when it comes to non-stationarity in 

observations due to climate change, and the ability to calibrate and validate hydrological models. 

Another major challenge for observational data is the lack of metadata (i.e. information about the data), 

which hinders the assessments of uncertainty. Location, measuring method, type of instrumentation are 

all variables that contributes to the uncertainty. Further, variables such as river discharge are very often 

derived from another primary variable, which in effect adds to the uncertainty of the observation. 

A problem that is not related to the uncertainty in the actual observation, is the representativity of the 

data point. Hydrological modelling most often requires spatial fields of forcing data, and these fields are 

interpolated to continuous fields from point observations with the assumptions of being spatially 

coherent. This is a problem especially for precipitation, which is highly variable in space and time, also 

with regards to the field correlation in space and time. 

Conventional observation stations are declining in numbers (Lins, 2008). However, automation means 

that the data collected is available in real-time and with a lot more metadata compared to manually 

managed stations. An important aspect of observational data collection is to agree on standards for 

preserving metadata, such as European Commissions INSPIRE directive, which started in 2007 (INSPIRE, 

2019). Making sure that all the available information about the data is preserved is time-consuming. 

Protocols for data exchange, thereby homogenizing data formats, is critical to sharing data across 

geographical regions and technical platforms. While updating measuring stations is expensive, and could 

lead to a sparser network of observations, the higher quality of data obtained could mean that the data 



is more useful for forecasting. It is worth noting that the majority of these observation stations are 

located in the developed world; whereas the large parts of the developing world are rarely covered. 

How to improve observational data collection globally remains a critical challenge.  

Remote sensing and reanalysis data 

Remotely sensed data, mainly from satellites, has become more and more important as source of 

information in hydrology (McCabe, 2017). The main advantage is that it contains an abundance of 

information, but it needs to be calibrated, thinned and quality controlled before it can be used in 

applications. This often requires observational data of good quality for calibration and validation of the 

remotely sensed data, therefore this is not independent of ground-based observational point data. 

Drawbacks of satellite data are that they are sometimes blocked, the coarse spatial resolution, the 

blocking and the intermittent fly-over of polar-orbiting satellites. However, recent years have seen an 

increase in small, cheap satellites to complement the larger programmes, making more data available 

(McCabe, 2017). Ground-based weather radars have proven to give very good spatial coverage of 

precipitation and can, through calibration, be used for both near-real-time observations and nowcasting 

(Ross et al. 2011). 

Satellite and remotely sensed data are likely to increase in quality and detail in the future (Beck et al., 

2017b; McCabe et al., 2017). New missions, such as the SWOT (Surface Water and Ocean Topography) 

mission at NASA, will provide the community with new data sources that can be incorporated into all 

parts of the modelling chain (Biancamaria, 2016). However, the limitations of the data will still require 

observational data of very high quality in the future. 

Reanalysis products use models to ‘fill in the gaps’ where no observations are available, providing best 

estimates of the state of the atmosphere, and land surface, through model simulations that assimilate 

observations where available. The most useful global reanalysis data typically cover the satellite era 

(1979 and onwards), with ECMWF’s latest ERA5 reanalysis (C3S, 2017) representing the state-of-the-art. 

As the output is model-generated, it will suffer from model biases and drifts over time, and the water 

budget may not be closed (Kauffeld et al., 2015). A typical problem is the ‘drizzle effect’ for precipitation 

with too many wet days and underestimation of extreme events. These short comings can be adjusted 

for through post-processing (Maraun et al, 2010), however this also requires good quality observational 

data(C3S, 2017). 

Reanalysis data is also now being used as source of forcing data for hydrological applications. Increasing 

model resolution and improved model physics enables the data to be used for training of models, as 

well as providing initial conditions for forecasting.  

New data sources 

There are also new products that take advantage of all available data sources, such as the Multi-Source 

Weighted Ensemble Precipitation (MSWEP, Beck et al., 2017a). They take the best data from all sources 

of precipitation, to produce an optimum dataset with global coverage. However, for it to be useful for 

forecasts, it needs to be available in near-real time. 

Machine-learning and artificial intelligence methods are alternative ways to make better use of existing 

data, and are becoming more and more popular in hydrology (Shen et al., 2018). In its extreme form, 

machine learning methods are even substituting physical models with “black box” approaches which use 



all available data with little or no prior knowledge of the physical properties. It is unlikely that these 

model systems will replace traditional models, it is more probable that they will be used to complement 

existing physical models. 

Opportunities for the future lie in developing hybrid systems, mixing conventional observational data, 

delivering high quality, high frequency data, with remotely sensed data (Beck et al, 2017a). In a sense, 

this is what is being done in a reanalysis product, but the drawback of using these systems in operational 

forecasting has been the low resolution and model bias. However, using the uncertainty inherent in the 

observations and models can also open the door to ensemble methods in initial conditions of 

hydrometeorological forecasts. 

 

Catering for different flood events 

The majority of flood forecasting systems reviewed here predict river flows within defined river 

channels. Systems either display little hydrological regulation (Liechti et al., 2013) or neglect the effects 

of regulation times of flooding (Ushiyama et al., 2014; Yu et al., 2018). The studies generally focus on 

meso-scale catchments where the interactions between antecedent catchment conditions and forecast 

weather are both important and there are multiple different methods of producing forecasts with 

similar performance. At the centre of most of these systems is a model that transforms rainfall to river 

flow, but the characteristics of these models vary widely from physically based and conceptual 

hydrological models (Thiemig et al., 2015; Verbunt et al., 2007) to machine learning methods (Kimura et 

al., 2016; Tiwari and Chatterjee, 2010).  

Reducing errors in riverine flood forecasts has been an ongoing research challenge since the advent of 

hydrological forecasting (O'Connell and Clarke, 1981) and remains outstanding. Errors in flood forecasts 

are most commonly reduced by assimilating streamflow data to update state variables (Srikanthan et al., 

2008) or applying a statistical method to post-process predictions (Yu et al., 2015). Increasingly, studies 

are investigating the assimilation of remotely sensed observations, such as soil moisture, to update 

model state variables in flood forecasting models and reduce forecast errors (Li et al., 2016). The 

advantage of assimilating observations of variables other than streamflow is that they can provide 

additional information on the partitioning updates between the different state variables and potentially 

improve the skill of forecasts at long lead times. However, there are outstanding research challenges in 

how best to relate remotely sensed observations to the state variables of hydrological models and the 

most effective strategy for assimilation (Li et al., 2016).   

More recent studies report on forecasting of flash floods. Various definitions of flash flooding exist 

(Hapuarachchi et al., 2011), but common to all definitions is a short time lag between intense rainfall 

and a flood peak. Flash floods occur when river flow reacts very rapidly to intense rainfall. They typically 

occur over limited spatial extents, in areas of steep slopes, and shallow or saturated soils (Liechti et al., 

2013). Many of the flash flood forecasting studies reported extend riverine forecasting methods by 

introducing more accurate precipitation nowcasts (Marty et al., 2013) or some form of improved data 

assimilation (Chen et al., 2013). However, flash flooding also occurs in urban areas (Einfalt et al., 2009) 

and in rural landscapes away from riverine channels, but ensemble forecasting methods of these types 

of floods are not widely reported. This may be due to limitations on the availability of data or that 



methods for generating flash flood forecasts need to be refined to reflect the dominant processes 

involved. 

Accurately forecasting flash flooding is an intrinsically difficult problem requiring the prediction of high 

rainfall intensities in the precise location where it occurs. At very short lead times (0-3hrs), ensemble 

radar nowcasts can provide precipitation forecasts to support flash flood forecasting (Kim et al., 2009). 

Blending radar nowcasts with downscaled high-resolution NWP model outputs can potentially extend 

lead times, however beyond 6 hours precipitation forecasts from NWP models are the dominant source 

of any skill (Bowler et al., 2006). While the performance of rainfall forecasts from NWP models is 

improving, models rarely resolve the fine scale processes required to accurately predict the rainfall that 

causes flash flooding (Emerton et al., 2016). Improving the ability of NWP models to predict the location 

and intensity of rainfall remains a challenge in improving the quality of flash flood forecasts and is likely 

to require increases in the spatial resolution of NWP models as well as advances in observation, data 

assimilation and model physics. 

While flash flooding predominantly is a pluvial process, the land surface hydrology can modulate the 

transformation of precipitation to runoff and hence the extend of flooding. To represent the effects of 

land surface hydrology on flash floods, hydrological modelling needs to be undertaken at fine spatial 

resolutions to better represent the processes that lead to flash flooding (Antonetti et al., 2019). There 

are many outstanding research challenges with hyper-resolution hydrological modelling, particularly 

with respect to the characterisation of hydrological process, availability of high-resolution observations 

and growth in computational requirements as model resolution increases (Bierkens et al., 2015).  

Forecasting of compound flood events receives little attention in the reviewed studies. Compound 

floods are those that are caused by two or more events that influence flooding (Leonard et al., 2014). 

They may be multiple instances of the same event type, for example consecutive extreme rainfall events 

over a single catchment or current extreme rainfall in multiple catchments upstream of a river 

confluence; or the interaction of two different types of flood inducing phenomena, such as coastal 

flooding arising from the interaction of a riverine flood and high sea levels caused by high tides or storm 

surge (Leonard et al., 2014; Zscheischler et al., 2018). 

Compound floods resulting from meteorological forcing are typically handled by the existing approaches 

to ensemble flood forecasting. Many studies illustrate forecast of multi-peak floods arising from multiple 

precipitation extremes (Hopson and Webster, 2010; Komma et al., 2008; Marty et al., 2013), while 

Verbunt et al. (2007) evaluate ensemble flood forecasts arising from the combination of intense 

precipitation and anomalously high temperatures accelerating snow melt.  

Few studies have focussed on compound floods resulting from different forcing, with only one reviewed 

study forecasting flooding from the combination of intense rainfall and sea level surge during tropical 

storms (Saleh et al., 2017). Ensemble forecasting of compound flood events is key research challenge. 

Methods of ensemble forecasting that involve pre or post-processing will require new innovation to 

handle the joint probability of extreme events for different phenomena. The development of coupled 

models also will address the challenge of forecasting compound flood events. One such example is the 

coupled atmosphere, land surface and hydrodynamic models currently being developed for the Great 

Lakes of North America (Gronewold and Fortin, 2012). The ability of these coupled models to forecast 

compound flooding has yet to be reported in the literature, however there have been numerous 



research and technical challenges in the process of coupling and parameterising models (Gaborit et al., 

2017; Gronewold et al., 2018; Pietroniro et al., 2007; Vionnet et al., 2019). 

Extending flood forecast variables 

The majority of flood forecasting systems reviewed here predict river flow as their main output variable, 

yet there are an increasing number of studies describing models predicting other flood variables, such as 

inundation and water levels. Typically, producing forecasts of inundation and water levels requires the 

use of a hydraulic model in addition to a rainfall-runoff model. This adds another layer of uncertainty to 

the forecasting chain, due to localised variations in river channels and floodplain geometry that must be 

parameterised using observed data, which can be limited (Boelee et al. 2017). A key challenge and 

limitation in terms of providing robust forecasts of flood inundation that appropriately represent the 

forecast uncertainty, is the computer power required to run multiple simulations of both a hydrological 

and hydraulic model (Pappenberger et al. 2005), alongside the accuracy of the rainfall forecasts used as 

input to the models.  

Teng et al. (2017) state that “despite active research in the field, rapid and accurate flood modelling at 

high spatial-temporal resolutions remains a significant challenge in hydrologic and hydraulic studies”. 

While significant progress has been made, with current state-of-the-art 2D and 3D hydrodynamic 

models able to accurately simulate flood inundation, alongside velocity and water level, these require 

extensive computing resources and are typically only run for small catchments, particularly at high 

resolutions. Simplified, often 1D, versions are less computationally expensive, but have limitations in the 

simulation of flood waves and the representation of topography (Teng et al., 2017).  

There exists a huge range of flood inundation models, from those using empirical methods to physically-

based hydrodynamic models, and various studies (Neels and Pender, 2013; Teng et al., 2017) have 

indicated that the differences in the predictions from these various approaches only serves to highlight 

the significant uncertainty we still face in flood prediction, and the importance of employing ensemble 

prediction techniques. 

While a key challenge in ensemble forecasts of flood inundation lies in the computer power required, 

which imposes limits on producing ensemble inundation forecasts in real-time, recent research (e.g. Chu 

et al., 2019) has begun to evaluate the use of emulation models, including those developed using 

machine learning techniques, for flood inundation forecasting. The application of such techniques to 

flood inundation forecasting is a recent and developing area of research. While challenges still remain 

(Chu et al.,2019), there is potential for such models to be used in real-time forecasting by significantly 

reducing computation time.  

An important recent advance and ongoing area of research is the use of remote sensing techniques to 

improve the accuracy of flood models (Li et al., 2016; Li et al., 2018). Remote sensing data can be used 

to calibrate and validate flood inundation models (Dasgupta et al., 2019), and in future will likely be 

integrated into the modelling chain. One key way to incorporate and benefit from new, real-time 

datasets is through data assimilation, which is commonly used in meteorological ensemble forecasting, 

but currently less frequently used within hydrological (or hydraulic) modelling (Emerton et al., 2016).  

Recent advances in hydrodynamic modelling alongside computing (e.g. parallel computing, open source 

code) have led to vast improvements in flood inundation modelling. With ongoing research and model 



development it will become more common for variables beyond river flow, such as inundation and 

water level, which are directly related to flood impacts, to be included in ensemble flood forecasts 

(Cooten et al., 2011; Georgas et al., 2016; Gomez et al., 2019). This is particularly promising in the near 

future with forecasting services worldwide moving more and more towards the provision of impact-

based forecasts (WMO, 2018). Ensemble forecasts of flood inundation would allow for a better 

representation of uncertainty when considering exposure, vulnerability and risk associated with a 

forecasted event.  

 

Extending and bridging the gap in ensemble flood forecast lead time  

The papers reviewed in this study have mostly focused on short- to medium-range ensemble forecasts 

of flood events. However, earlier indications of potential flood events, many weeks or even months in 

advance, could provide crucial information for flood preparedness and disaster risk reduction. A key 

area of ongoing and future research in hydrological ensemble prediction is that of extending the lead 

time of flood forecasts to sub-seasonal scales (Bennett et al., 2014). Many operational forecasting 

centres produce seasonal forecasts of meteorological variables, which are often averaged into 

“seasonal-mean” estimates of climate, such as whether the coming season will be warmer or cooler 

than usual (Weisheimer and Palmer, 2014). The equivalent long-range forecasts for hydrological 

variables can also provide crucial information for flood preparedness and mitigation (Yuan et al., 2015a). 

Indeed, the use of seasonal probabilistic and ensemble hydro-meteorological forecasting systems for 

water management has a long history. The first seasonal-scale ensemble streamflow forecasts were 

introduced in the mid-1970s (Wood et al, 2016; Day, 1985), and were used to support seasonal 

volumetric inflows and daily sequences for managing reservoirs. These forecasts are currently 

implemented operationally at regional to national scales in numerous countries. Improving seasonal 

forecasts remains an active and ongoing area of research, from local (Mendoza et al, 2017) to regional 

(Bell et al., 2017; Bennett et al., 2016; Crochemore et al., 2016; Meißner et al., 2017; Mo et al., 2014; 

Prudhomme et al., 2017; Wood et al., 2002, 2005; Yuan et al., 2013) and global (Candogan Yossef et al., 

2017; Yuan et al., 2015b) scales.   

In recent years, several operational continental-scale seasonal hydro-meteorological forecasting systems 

have been launched, using meteorological forecasts as input to hydrological models to produce seasonal 

forecasts of hydrological variables. Some examples of operational seasonal forecasts of hydrological 

variables include: the Copernicus Emergency Management Service (CEMS) European Flood Awareness 

System (EFAS; Arnal et al., 2018; Cloke et al., 2013) and Global Flood Awareness System (GloFAS, 

Emerton et al., 2018), the European Service for Water Indicators in Climate Change Adaptation (SWICCA; 

Copernicus, 2018), the Australian Government Bureau of Meteorology Seasonal Streamflow Forecasts 

(Bennett et al., 2017; BoM, 2018) and the USA’s Advanced Hydrological Prediction Service (AHPS; 

McEnery et al, 2005) and Hydrologic Ensemble Forecast Service (HEFS; Demargne et al., 2014; Emerton 

et al., 2016).  

Despite the chaotic nature of the atmosphere (Lorenz, 1963), which introduces a limit of weather event 

predictability, seasonal climate predictions are possible as they rely on components that vary on longer 

timescales, known as “second type predictability” (Lorenz, 1993). In the seasonal hydrological 

forecasting context, predictability comes from the inertia or climatological evolution of initial conditions 

and a lesser amount of predictability arising from large-scale modes of climate variability (Emerton et 



al., 2018; Wood and Lettenmaier, 2008). Various patterns of climate variability, and their associated 

teleconnections, influence river flow and flooding across the globe, such as the El Niño Southern 

Oscillation (ENSO; Chiew and McMahon, 2002; Emerton et al., 2017; Guimarães Nobre et al., 2017; 

Ward et al., 2014a, 2014b, 2016), North Atlantic Oscillation (NAO), Southern Oscillation (SOI), Indian 

Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO) (Yuan et al., 2015b). As such, they are able to 

contribute to the seasonal predictability of hydrological variables. Coupled atmosphere-ocean-land or 

earth system models (ESMs) “are key in representing these large-scale modes of climate variability in 

order to produce seasonal hydro-meteorological forecasts” (Emerton et al., 2018), along with empirical 

forecast models relating climate system states to surface climate, and in recent years, hybrid approach 

combining dynamical and empirical approaches (e.g. Weisheimer and Palmer, 2014).   

Another way to extend forecast lead time is to use seamless forecasting, which was first introduced by 

Palmer and Webster (1993), and aims to provide added predictability and lead time through integration 

of short- and medium-range forecasts with monthly- and seasonal-range forecasts. Seamless forecasting 

is based on the idea that “short-lived phenomena under certain conditions may persist and increase 

predictability at longer timescales” (Wetterhall and Di Guiseppe, 2018). Currently, in both 

meteorological and hydrological forecasting, systems producing medium-range and seasonal forecasts 

are typically distinct, and provide separate forecast products. In meteorological forecasting, ECMWF 

produces an extended-range forecast, which extends the medium-range forecasts out to monthly 

timescales (Vitart et al., 2008) using a seamless forecasting approach, and the UK Met Office Unified 

Model is designed to work across multiple timescales (Brown et al., 2012). So far, there is only limited 

application of this approach in operational hydrological and flood forecasting. Its application could be 

expanded to benefit operations by providing earlier indications of anomalous conditions. A recent study 

by Wetterhall and Di Giueseppe (2018) used an experimental configuration of EFAS, merging ECMWF’s 

extended-range and seasonal forecasts before using them as input to a hydrological model, and showed 

that this seamless approach was able to provide more skilful forecasts -- up to 7 weeks ahead -- than 

forecasts using only the seasonal meteorological forecasts as input. The practice of merging short range 

NWP with longer range meteorological forecasts has long been an operational approach used in the US 

NWS, although until the advent of HEFS, the short-range forecast component was deterministic.   

In future, we are likely to see more extended-range and seamless forecasts of hydrological variables, 

particularly as earth-system models continue to be developed and improved, allowing decision-makers 

to benefit from the combination of earlier indications of anomalous events, and shorter-range forecasts 

of specific flood events. 

 

Extending ensemble generation and evaluation 

Current practice in ensemble flood forecasting is mostly based on generating ensemble forecasts from 

different meteorological inputs, different initial conditions, multiple hydrological models, or multiple 

parameter sets, or a combination of above (Cloke and Pappenberger, 2009; Duan et al., 2019; Roundy et 

al., 2019). The most common approach to ensemble flood forecasting is to generate flood forecasts by 

perturbed initial conditions for either NWP models, the output of which are used as forcing inputs to 

drive a hydrological model(s), or for the hydrological models themselves (Moradkhani et al., 2019). For 

the former approach, raw ensemble precipitation forecasts must be post-processed via some type of 



statistical techniques to remove the systematic and spread biases inherent in those forecasts (Li et al., 

2017).  

There are different types of post-processors, i.e., the statistical models relating raw forecasts to 

corresponding observations. There are numerous methods for characterising the raw 

forecast/observation dependence relationships. A popular method is to use various regression 

techniques, including multi-variate linear regression (not suited for precipitation forecasts, Glann and 

Lowry, 1992), nonlinear regression (Wilks and Hamill, 2007; Scheurer, 2014; Baran and Nemoda, 2016), 

logistic regression (Wilks, 2009), and quantile regression (Weerts et al., 2010). Another commonly used 

method is to construct joint probability models of raw forecasts and observations (Krzysztofowicz and 

Maranzano, 2006; Schaake et al., 2007; Wang et al., 2009). Other types of post-processors include 

analogs (van den Dool, 1994; Hamill and Whitaker, 2006; Todini, 2013), ensemble dressing (Pagano et 

al., 2013), multi-model averaging methods (Krishnamurti et al., 1999; Berrocal et al., 2008), among 

others. Reforecast data (i.e. the hindcasts of meteorological variables generated using a current 

meteorological model) covering a sufficiently long period of time (i.e. 20-30 years) are essential to 

constructing robust post-processors (Hamill et al., 2004). As ensemble precipitation forecast skill varies 

with lead times, separate post-processors for events of different lead-times need to be developed. For 

example, the statistical model relating the first day forecasts and observations would be different from 

the one relating the fifth day forecasts and observations as their statistical dependence structure would 

change. Once post-processors for different events covering the entire forecast horizon are constructed, 

it is then necessary to find ways to create ensemble space-time precipitation series needed to drive a 

hydrological model. The Schaake shuffle method has been a widely used method for creating space-time 

series of meteorological variables from post-processors of different events (Clark et al., 2004). 

For the latter approach, where the ensemble flood forecasts area generated by directly running a 

hydrological model(s) using perturbed initial conditions (Moradkhani et al., 2019), numerous methods 

can be used. The simplest way is to assume a certain distribution of the initial conditions and employ a 

Monte Carlo approach to sample the distribution to initiate the forecasts. More sophisticated way is to 

use ensemble data assimilation methods such as Ensemble Kalman Filter (Chen, et al., 2011) or some 

variational data assimilation methods (Lee et al., 2011) to merge model state variables and appropriate 

observations. It has been argued that the skill derived from model initial conditions can exceed that 

from the meteorological forecasts, especially at seasonal time scale (Maurer and Lettenmaier, 2003; 

Wood and Lettenmaier, 2008; Shukla and Lettenmaier, 2011; Shukla et al., 2013). 

As all models are based on abstraction of real-world processes and are not expected to perform well 

under all conditions, ensemble forecasts based on multi-model methods have gained traction over the 

recent years (Ziehmann, 2000; Georgakakos et al., 2004; Ajami et al., 2006; Duan et al., 2006) and have 

also been used in many of the studies reviewed. Multi-model ensemble methods can be as simple as the 

poorman’s ensemble, which treats all model predictions as equally good (Ebert, 2001), to more 

sophisticated methods such as super-ensemble approach (Krishnamurti et al., 1999) and the Bayesian 

Model Averaging method (Raftery, 2005), which weigh model predictions based on how well the 

predictions match the observations. Multi-model predictions have shown to have more skills than single 

model predictions in many studies (Ajami et al., 2006; Ajami, 2007; Duan et al., 2007; Madadgar and 

Moradkhani, 2014) and could be a promising approach to consider uncertainty in ensemble flood 

forecasting for flood management. 



Hydrological models generally contain a large number of parameters that vary with local conditions and 

are not directly observable. They must be inferred based on the fitness of model predictions with 

observations. Due to various uncertainties such as model initial conditions, model structure and the data 

used to calibrate the model, there is no unique set of parameters that are always the best for a 

particular application (Beven and Binley, 1992; Kuczera, 1983). Therefore, generating ensemble flood 

forecasts based on multi-parameter sets has been promoted by many researchers (Bates and Campbell, 

2002; Ajami et al., 2007) and have also be employed in a number of the studies reviewed.  

There are also attempts to consider different sources of uncertainties in an integrated manner. For 

example, Kavetski et al. (2006) and Ajami et al. (2007) proposed different methods to consider errors 

from inputs, model parameters and or model structure in a Bayesian framework. However, methods to 

consider all uncertainties in an integrated manner in operational hydrological forecasting are still not 

available yet and the development of such methods is a challenge for future research. 

Ensemble flood forecasting represents a paradigm shift in hydrological forecasting, as the forecast is 

provided in a probabilistic form, instead of the single trace time series in traditional forecasting. 

Traditional verification measures of forecast skills such as root-mean square error (RMSE), mean 

absolute error (MAE), Nash-Sutcliffe Efficiency (NSE), or correlation coefficient are no longer adequate 

to verify probabilistic forecasts when used in isolation, even though they have been used to verify the 

ensemble means in many of the studies reviewed. Other measures suited for probabilistic forecasts 

should be used. Good ensemble forecasts embody three traits: (1) the probability distribution is sharp, 

(2) forecasts do equally well for events of different magnitudes, and (3) forecast probability is consistent 

with observational frequency. There are a number of measures that have been developed for 

verification of ensemble forecast performance (Anctil and Ramos, 2019), including Brier scores (BS), 

continuous ranked probability score (CRPS), ranked histograms (RH), reliability diagrams (RD), and 

relative operating characteristics (ROC). A summary of the verification measures can be found in Brown 

et al. (2010). For comparison purpose, some of those verification metrics have been scaled to certain 

bench marks to yield skill scores. The benchmarks used are usually based on climatology or skill score of 

the raw forecasts. 

In addition, in the majority of the studies reviewed, between 10 and 100 ensemble members were used. 

This is consistent with most of the NWP products, the outputs of which are ultimate inputs for flood 

models. In a few studies, less than 10 ensemble members were used. Although depending on the 

specific cases, such a small number of ensemble members would be difficult to represent any type of 

uncertainty that needs to be quantified for a flood system. In 10 studies in the second review period, the 

number of ensemble members used was not mentioned, and as such, it is difficult for readers to 

understand the level of uncertainty considered and potentially undermines the credibility of the findings 

presented. Even with over 100 members (that are used in 4 studies), it would be difficult to represent 

extreme events with an occurrence probability of 1% or less. This issue could be exacerbated when the 

extreme flood events are caused by multiple (sometimes dependent) processes, such as such as coastal 

floods caused by extreme rainfall and storm surge, due to the increased risk (and rareness) of these 

flood events (Wu et. al, 2018). However, increasing ensemble members will increase computational 

effort significantly. Therefore, strategies for adequately representing uncertainty in compound floods 

using ensembles forecasts within a feasible computational budget remain a future research challenge.  

 



Moving towards the adoption of ensemble flood forecasts for water management  

The past 15 years have marked significant accomplishments in the development and operational 

adoption of strategies for ensemble flood forecasting. When HEPEX (A global community in hydrological 

ensemble prediction) was initiated in 2004, ensemble flood forecasting was virtually unheard of in 

official practice, yet initial research was underway toward understanding the ramifications of using 

ensemble datasets and methods in hydrologic prediction (Franz et al, 2005; Schaake et al, 2006). Since 

then, a coherent view of the critical scientific challenges in ensemble flood forecasting has emerged, and 

hundreds of studies (many of which are reviewed in this article), have been published to shed light on 

theoretical and practical aspects of challenges such as hydrologic ensemble data assimilation, ensemble 

forecast post-processing, meteorological ensemble forecast downscaling, and ensemble forecast 

verification. In addition, a HEPEX-led Handbook of Hydrometeorological Ensemble Forecasting (Duan et 

al., 2019) was written to discuss not only the relevant challenges and existing strategies, but also the 

details of numerous real-world case studies. Complementary advances have also been made in 

hydrologic model development and parameter estimation, which represent further critical challenges 

(Clark et al, 2017). This progress has enabled a number of countries to implement operational ensemble 

flood forecasting systems (Addor et al., 2011; Pappenberger et al., 2016, and references therein; 

Emerton et al, 2016, and references therein), even if these still generally run in parallel to their legacy 

deterministic flood forecasting systems. There are by now many clear operational examples of ensemble 

forecasts that are used to support decision-making, with many examples to choose from, such as the 

New York City Department of Environmental Protection’s Operations Support Tool, a state-of-the-art 

decision support system for the city’s water supply system (NASEM, 2018), in the Sonoma County Water 

Authority Lake Mendocino system operations (Delaney et al, 2019), for navigation scheduling operations 

in Germany (Hemri and Klein, 2017; Meißner and Klein, 2015; Meißner et al, 2017), and in many private 

sector operations, particularly those related to hydropower.  

The development and adoption of ensemble flood forecasts in risk mitigation for humanitarian 

objectives have also expanded, with recent examples including the application of global-domain 

ensemble flood forecasts from systems such as GLOFAS. Though partnerships with the International Red 

Cross, for instance, the operational GLOFAS ensemble forecasts support strategic decisions in the 

staging of emergency resources ahead of and during flooding events in Africa and South America 

(ECMWF, 2020; GloFAS , 2020; RCCC, 2019). 

The new ensemble forecasting systems are diverse but not ubiquitous, and this current landscape 

indicates that despite substantial theoretical progress, operational ensemble flood forecasting has yet to 

become the standard.  Note that the history of operational ensemble NWP, which has moved along at 

least a decade or more relative to ensemble numerical hydrological prediction (NHP), suggests that both 

deterministic and ensemble NHP are likely to co-exist for the foreseeable future, with some centres or 

stakeholders favouring products generated via more complex systems that are computationally 

infeasible in ensemble contexts.  To the extent that the two enterprises compete for resources, and may 

involve different development and operations groups, this parallel path may be counterproductive even 

while it may best serve a broad range of stakeholders.   

The challenges currently facing the expansion of ensemble flood forecasting into operations, and further 

into the decision workflows of water and emergency management and related sectoral uses can be 

broadly grouped into several major categories:  (1) scientific hurdles, (2) the operational readiness of the 



forecasting community, (3) communication and outreach to users, and (4) the operational capacity of 

the decision-making sector. Several additional, critical difficulties affect both traditional deterministic 

forecasting as well as ensemble forecasting, including the sufficiency of observational networks, the 

need for effective approaches to parameter estimation, and the lack of reliable hydrologic data 

assimilation (DA) methods, all of which are exacerbated in regional or larger scale applications.   

In general, such unmet scientific challenges are manifest in poor forecast quality, which impedes their 

acceptance and stakeholder perceptions of usability. Perhaps the most critical scientific need for 

ensemble forecasting is a reliable DA implementation, which particularly affects ensemble systems 

because they tend to be automated (versus interactive, as with many deterministic systems). Many 

systems, and especially regional to global ones, lack DA at present and consequently their outputs can 

be unusable. Despite ample research into DA in controlled or small sample (e.g., single basin, short 

record) studies, real-world demonstrations of DA in operational real-time systems are generally lacking.  

Other hurdles exist, but may not slow adoption to the same extent. For instance, because forecast 

spread (uncertainty) is a component of the forecast, techniques to ensure forecast reliability 

(essentially, accurate spread or a depiction of uncertainty) are critical. Forecast post-processing 

techniques are moderately successful in adjusting “total forecast uncertainty” (e.g. Bellier et al, 2018), 

but research is needed into whether improved ensemble initialisation or ensemble modelling 

techniques in hydrology (as in NWP) may also be an effective strategy. Likewise, improved pre-

processing of ensemble NWP would also benefit forecasts, and particularly forecasts of extremes, but 

this need has not stopped ensemble forecasts from being generated with ensemble NWP, and by myriad 

methods, to date.   

While operational flood forecasting is a long-standing practice, flood forecast production centres often 

lack a detailed understanding of what is involved in producing a skilful, automated, reliable ensemble 

forecast, including the aforementioned DA methods, as well as NWP ensemble pre-processing, 

streamflow ensemble post-processing, verification practices, the value of hindcasting, and even intuitive 

product formation. Operational centres in hydrology often lack a strong connection to the research 

community, and may be unaware of beneficial advances. The existing operational data and computing 

systems may be unready to expand to accommodate an ensemble workflow, especially if it must 

compete for resources and attention with a well-accepted deterministic workflow. Forecast staff also 

require training and support, and such resources take time to prepare, to resource, and to standardize 

throughout an organization. For instance, the deployment of HEFS in the US took years, which included 

not only data and forecast systems but also such human resources capacity building. Recently, 

innovative methods have also been developed to highlight the complex decision-making involved in 

flood management. One example is the IMPREX serious game, called “Pathways to running a flood 

forecasting centre: an adventure game”, developed by Arnal et al. (2017; www.imprex.arctik.tech) as 

part of the Horizon 2020 IMPREX project. The project aims to draw attention to the role forecasts can 

play in managing extreme weather, with the example of protecting a city from floods using ensemble 

forecasts and problem-solving skills. This is just one of a range of serious games that have been 

developed around ensemble hydrological forecasting (Arnal et al., 2017; HEPEX, 2020).  

At the last HEPEX international Workshop (Melbourne, Australia, February 2016), a poll of participants 

revealed that the highest ranked priorities for HEPEX involved communication related topics.  

Participants from forecast user groups questioned the costs versus benefits of shifting to using an 

ensemble forecast, as well as the practical mechanics of how such forecasts might be used for decision-



making.  This value proposition is being supported by researchers (Zappa et al. 2013) and demonstrated 

episodically, by groups that have become early adopters (such as Germany’s BfG forecasting agency, 

which assessed the marginal economic benefits of ensemble forecasts for navigation), but not 

communicated uniformly throughout the potential stakeholder community.  Stakeholders with strong 

incentives to use forecast information (such as hydropower companies, which can translate improved or 

expanded information into economic gains) are relatively advanced in understanding such questions, 

but such stakeholders may not openly share their practices with the community.   

A related challenge is that the operational capacity to ingest and incorporate ensemble forecasts into 

decision support systems (DSS) for water management may be lacking.  DSS such as water management 

models may be designed to simulate a single inflow scenario, and require manual input from reservoir 

managers to determine release schedules, meaning that a significant upgrade and change to a more 

automated paradigm would be needed to shift to using ensemble forecasts.  Optimal rules for making 

risk-based decisions may also be unknown, and require time and experience for development.  Any 

aspects of operations that require expert input or judgement, or interaction with multiple parties, can 

be a hurdle to reliance on ensemble-based information. While sophisticated optimal control system 

approaches have long existed (e.g. the use of stochastic dynamic programming in reservoir operations) 

in some parts of the water management sector (and particularly in private or hydropower-related 

entities), these are by far not the standard, particularly for publicly owned systems.   

 

SUMMARY AND CONCLUSIONS 

We provide an overview of research activities in ensemble flood forecasting based on a detailed review 

of 70 papers focusing on various aspects of ensemble flood forecasting from around the world. We have 

identified five challenges for current research and outlined potential key future research opportunities. 

A summary of the review outcomes and how they related to the challenges and further lead to 

opportunities is provided here. 

Although ensemble flood forecasting has been a research focus for 2-3 decades, the majority of the 

research activities focus on hydro-meteorological forecasting. This is evident from the review outcome 

that rainfall and flow are predicted (via climate and hydrological modelling) in over 80% of the cases 

investigated and only a few studies considered flood inundation levels or extent, which are directly 

related to flood impact. This is also reflected in the review outcome that most of the flood events 

considered occurred on a catchment or basin scale, with less than 20% of studies considering floods on 

local scales, which mostly relate to urban or flash floods. The strong focus of the studies on catchment 

hydrological processes is directly related to data availability. Conventional observational data are 

commonly collected for rural catchments and very few urban catchments are gauged. However, this 

situation may change as new data sources, such as remote sensing and reanalysis data, become more 

accessible and the quality of these data further improve. In addition, computing resources requirement 

is another limiting factor for the consideration of flood inundation variables. Most commonly used flood 

inundation models are 2D hydrodynamic models, which are computationally expensive, making it 

difficult to consider uncertainty using ensemble forecasting techniques. Furthermore, the disconnect 

between the hydro-metrological and hydraulic modelling research communities further exacerbates the 

situation.  



In the papers reviewed, only more recent studies reported on flash floods, which have a very short lead 

time (i.e. less than 6 hours). This is not only due to limitations on data availability, but also the high 

requirement on the precision of the prediction of both rainfall intensity and location. Improving the 

forecast accuracy of flood location requires high resolution NWP models and hydrological models (if a 

pluvial process is involved), both of which are outstanding challenges. In addition, very few papers 

considered compound floods, which are caused by multiple (often dependent) driving mechanisms, such 

as coastal floods caused by extreme rainfall and sea levels. Compound extreme flooding is an emerging 

topic for flood management due to the growing awareness (and publicity) of such events from increased 

intensity of extreme weather events giving arise to them, such as Tropical Cyclone Yasi in Australia in 

2011 and Hurricane Sandy in the US in 2012, both caused extensive flooding and devastating 

consequences in coastal areas. The reason behind the lack of consideration of uncertainty using 

ensemble techniques in compound flood forecasting is also multi-fold. First, it is more difficult to 

generate/collect data of multiple dependent flood drivers during the same time period. There are only 

limited locations where such observational data may exist. This situation cannot be improved easily with 

new emerging data sources, such as satellite observations, due to the extreme rareness of compound 

floods. Different compound flood drivers, such as rainfall and sea levels, are commonly studied by 

different research communities, which creates another barrier for data exchange. In addition, integrated 

climate-ocean-land modelling (especially on a local scale) is still a challenging task.  

Finally, most of the papers reviewed focus on answering research questions, either related to modelling 

techniques (e.g. ensemble model studies) or how to use ensemble modelling techniques to simulate 

past flood events or assess flood risk in specific locations (e.g. ensemble utilisation studies). The 

application of ensemble flood forecasting to solve a real-world problem was only considered in less than 

30% of the studies, most of which are from the more recent review period. The increasing trend in 

application related studies is a promising sign that more flood practitioners are taking up ensemble 

forecast as a useful technique. However, the current scope of applications is quite limited, with a focus 

on flood warning, risk analysis and reservoir operation. The papers reviewed did not include studies on 

the use of ensemble forecasting in other emerging application areas, such as evacuation planning in 

emergency management and risk mitigation for humanitarian actions.  

Challenges lie ahead to make ensemble flood forecasting a common tool used for flood management or 

water management in general. First, forecast flood variables need to be extended to include flood 

inundation depth and extent which are directly related to flood impact and commonly used in the water 

industry for flood risk/hazard evaluation, as discussed above. Second, forecast lead time needs to be 

extended to cater for various types of water management tasks. For example, environmental flood 

allocation in the Murray Darlings Basin in Australia often requires information up to 3 months ahead, 

necessitating the extension of flood forecasts lead time to sub-seasonal and seasonal scales (i.e. very 

long range). Long-range forecasts will also improve flood preparedness and mitigation. In addition, 

effective communication of ensemble forecasting to both scientific and non-scientific communities who 

are not familiar with the concept is key to encourage the uptake of ensemble flood forecasting in water 

management, through improved exchange of data, techniques and ideas.  

We conclude that in order to encourage the uptake of ensemble flood forecasting in flood management 

or water management in general, there is a need to not only improve technical aspects of flood 

forecasting, but also to bridge the gap between different scientific research communities, as well as 



between the scientific community and flood forecasters and managers. We hope this paper has 

contributed towards achieving this goal.  
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APPENDIX A REVIEW PROCESS 

To identify relevant papers to review, a keyword search of the ISI Web of Science was conducted in 

February 2020 with the keyword “ensemble flood forecast*” in the field of “title” for the period of 1900-

2019 for papers in English. After removing reprints, review papers, book chapters and conference 

papers that are only available in abstracts, the search resulted in a total of 70 papers, including 66 

journal papers from 28 journals and 4 conference papers from 3 conference proceedings. A summary of 

the 70 papers, including the case study system(s) and the flood events or time periods studied is 

provided in Appendix B.  

In this study, 70 journal and conference papers were reviewed in order to understand the current status 

of ensemble flood forecasting, identify aspects needing improvement and guide future research 

directions. To understand the development of ensemble flood forecasting over time, a comparison 

between papers published during the early and later times of the review period was conducted. The 

early period is defined between 2001 when the first selected paper was published and 2010; and the 

later period is from 2011 to 2019. The dividing point of 2010 was selected considering the time when 

most of the EPS products became available and the general uptake time of EPS in research, which is 

approximately 2 to 3 years.  

The authors acknowledge that it is not always possible to include all details of a study in the final paper 

published due to length limit requirement of many journals. However, the authors believe that there is 

essential information that needs to be included in every study for the readers to make an objective 

assessment of the studies carried out, understand the limitations and interpret the outcomes so future 

studies can be built on the knowledge developed in previous studies. Bearing this in mind, four areas of 

the selected papers were reviewed, including the focus or major contribution of the studies, the case 

studies and datasets analysed, flood modelling conducted, and finally ensemble modelling and 

evaluation techniques used. The review criteria used and review outcomes for each of the four areas are 

summarised in the four sections below. 

A.1: Review criteria for study focus 

The focus of the studies was investigated to understand the emphasis of current studies and the gaps 

for future research. The studies reviewed are categorised into 1) ensemble modelling focused studies, 

where the major contribution of the study is to develop or investigate ensemble modelling techniques; 

2) ensemble utilisation focused studies, where the major contribution is to apply existing ensemble 

forecast products to simulate or understand specific flood events; and 3) application focused studies, 

where the major contribution is to translate ensemble forecasts into real-world applications.  

Although there are many technical aspects ensemble modelling focused studies could investigate, the 

reviewed papers mainly focused on three aspects of ensemble modelling, including data assimilation, 

ensemble generation and post-processing. Ensemble utilisation focused studies can be categorised into 

three categories, including the development of methods for ensemble flood forecasting, the comparison 

or evaluation of different ensemble forecasting products, and feasibility studies examining if certain 

ensemble products (e.g. NWP) can be used for flood forecasts in specific areas. The application focused 

studies mainly considered application of ensemble flood forecasts in flood warning, reservoir operation 

(for flood control or navigation) and flood risk analysis. 



 

A.2: Review criteria for case studies and datasets 

The case studies investigated in the papers were analysed based on the geographic locations of the case 

study systems, the type(s) of flood considered, the spatial scale and temporal resolution of the case 

studies, including forecast lead time considered. The geographic locations are based on the contents the 

case study systems are located, and global studies are also identified. The types of flood considered 

include floods from rural or urban catchments, flash floods that have a typical onset time of less than six 

hours (e.g. within a rainfall event) (Hapuarachchi et al., 2011) and compound floods that are caused by 

multiple flood driving processes (Zscheischler et al., 2018). The spatial scale of the floods can be divided 

into local floods, which impact a relatively small local area (e.g. < 100 km2), basin or catchment scale 

(e.g. between 100 km2 and 2,000 km2) and regional scale (e.g. > 2,000 km2) that affect a relatively large 

area that could be across multiple countries or catchments. The temporal resolution investigated 

includes the frequency of the flood data predicted (e.g. sub-daily or daily). In addition, the lead time of 

flood forecasted is also examined, which is divided into very short range (i.e. less than 24 hours), short 

range (i.e. one to two days), medium range (i.e. three to 15 days), long range (i.e. 15 to 30 days) and 

very long range (i.e. longer than 30 days). Since it is possible for more than one system to be 

investigated in one paper, the review was conducted based on the number of times each case study falls 

into each defined category.  

 

A.3: Review criteria for flood modelling 

The flood modelling aspect of the papers was investigated to understand the types of flood models 

used, flood variables predicted and flood driving processes considered. The types of models used in the 

papers reviewed include numerical weather prediction models (predicting weather variables, such as 

rainfall), hydrological models (simulating rainfall-runoff processes), hydraulic models (1D, 2D, 3D or 

conceptual models simulating flood levels or inundation) and data driven models, ranging from simple 

regression models to machine-learning techniques (simulating various flood variables). Flood variables 

predicted are directly related to flood models used and include rainfall intensity (as surrogate of 

intensity of floods), stream flow, flood inundation levels and area. Flood driving processes considered 

include precipitation (i.e. through a pluvial process), riverine floods (i.e. through a fluvial process), ocean 

processes such as high astronomical tide or storm surge,  other meteorological conditions such as 

temperature, pressure, wind and humidity, as well as catastrophic events, such as dam failure or glacial 

lake outburst floods. It should be noted that more than one type of flood model, flood variable or 

driving processes may be considered in a study and therefore the total number in each category in the 

summary could exceed the total number of papers reviewed, as mentioned above. 

 

A.4: Review criteria for ensemble modelling  

The ensemble modelling aspect of the papers was investigated based on how the ensembles were 

generated, how the ensemble forecasts were evaluated, and the number of ensemble members used. 

The methods used to generate ensembles are divided into four categories, including Multi-model-based 

ensemble, initial/boundary condition perturbation, parameterisation of models, and statistical approach 



to account for errors (e.g. Bayesian approach or residual error) in an integrated manner. Ensemble 

forecasting evaluation methods includes 1) methods considering the whole distribution of ensemble 

forecast, such as Brier Score (BS), Continuous Ranked Probability Score (CRPS), CRPS, Reliability diagram, 

Relative Operating Characteristic (ROC) curve, Fractions Skill Score (FSS),and Rank histogram, among 

others; 2) traditional threshold values based methods, such as contingency table showing hits and 

misses, Critical Success Index (CSI), Gilbert Skill Score (GSS) and probability of threshold 

exceedance/detection, among others; 3) traditional error statistics, such as Root Mean Square Error 

(RMSE) and Taylor diagram; and 4) ad hoc methods, which are mainly based on visual inspection (e.g. 

the spaghetti plot, postage stamp maps or quantile maps) or evaluation of ensemble means only. In 

addition, the number of ensemble members used in each of the studies was also investigated to 

understand the extent of uncertainties considered and the applicability of ensemble forecasts in 

representing different flood producing conditions, especially extreme or component flood events. 

.  



APPENDIX B LIST OF SELECTED PAPERS, AND THE CASE STUDY INFORMATION 

Author, year Case study system Events/periods analysed 

Goodarzi et al. 
(2019a) Kan basin, Tehran, Iran 

14 individual flood events. 

Ziliani et al. (2019) 
An experimental model of a river located 
in the Occidental Alps (Italy) 

A dam failure flood event. 

Liu et al. (2019) The Yarlung Zangbo River basin, China.  Years 1998 to 2015 

Lee et al. (2019) Ten headwater basins in Texas, US 

Flood events over a 10-year 
period with a peak flow 
exceeding 100m3/s. 

Tian et al. (2019) 
Two mountainous catchments in Jin-Jing-Ji 
Region of Northern China 

Four storm events. 

Han and Coulibaly 
(2019) Humber River watershed, Canada 

January 2011 to December 
2015 

Goodarzi et al. 
(2019b) Kan Basin, Iran 

14 historical storms. 

Antonetti et al. 
(2019) The Emme catchment, Switzerland. 

Four flood events. 

Gomez et al. (2019) 
The tidal Delaware River near Philadelphia, 
Pennsylvania, US 

Years 2008 to 2013 

Nayak et al. (2018) Folsom Reservoir in California, US 100 year synthetic data 
generated based on 12 year 
observations 

Yu et al. (2018) The Futatsuno and Nanairo dam 
catchments in the Shingu river basin, 
Japan 

The typhoon Talas, 2011 

Amengual et al. 
(2017) 

Serpis River basin, Spain The 12 October 2007 flash 
flood event 

Barthelemy et al. 
(2017) 

Adour river, southwest France Eight flood events 2009 - 
2014 

Doycheva et al. 
(2017) 

Mulde river basin, Germany June 2013 flood event 

Kovalchuk et al. 
(2017) 

Baltic Sea, St. Petersburg, Russia Hypothetical flood events 

Liu et al. (2017) Lianjiang Basin, southeast China. Years 1987 to 2012 

Saleh et al. (2017) Confluence of Passaic and Hackensack 
rivers and Newark Bay, New York, USA 

Hurricane Irene (2011) and 
Hurricane Sandy (2012) 

Schulte (2017) 13 stations in the New York harbour, US Hurricane Sandy (2012) 

Dahl and Xue 
(2016) 

Oklahoma City, US The 14 June 2010 flood event 

Fan et al. (2016) Tocantins River, Brazil 2011/2012 rainy season 

Golding et al. 
(2016) 

Edinburgh, Scotland July 2011 and 7 events July - 
August 2012 

Kasiviswanathan et 
al. (2016) 

Bow River, Alberta, Canada 5 June –7 August 2005, 9 May 
–25 August 2007, and 24 
May–7 August 2010 

Kimura et al. (2016) Tanshui River watershed, northern Taiwan Seven typhoon events 

Ravazzani et al. 
(2016) 

Milano urban area, Italy 17–18 September 2010 and 
7–8 July 2014 



Siqueira et al. 
(2016) 

Taquari-Antas basin, southern Brazil. Two flood events on 6 June 
2014 and 21 July 2011 

Barthelemy et al. 
(2016) 

Adour and Marne catchments, France One 2011 flood event 

Bellier et al. (2016) 5 basins in the French Upper Rhone river 
region 

18-26 year periods 

Ye et al. (2016) Upstream catchment of Yishu River, China 12 flood events 2001 - 2004, 
2007 - 2008 and 2010 

Yu et al. (2016) The Shingu river basin, Japan The 2013 Typhoon Talas 
event 

Yu et al. (2016) 33 catchments in Shingu river basin, Japan Typhoon Talas (2011) 

Yu et al. (2016) Shingu river basin, Japan Typhoon Talas (2011) 

Yussouf et al. 
(2016) 

Oklahoma City, USA The 31 May 2013 flash flood 
event 

Liu et al. (2015) Three Gorges Reservoir, China Flood season 2003 - 2010 

Thiemig et al. 
(2015) 

36 catchments in Africa 39 medium to large flood 
events in 2003  

Yang et al. (2015) Urban areas in Pingtung County, Taiwan Six typhoon events 2010 - 
2014 

Fleming et al. 
(2015) 

Englishman River, British Columbia, 
Canada 

2013-2014 storm season 

Shi et al. (2015) Juma River basin and upper Baishui River 
basin, China 

Storm on 21 July 2012 for first 
basin and storm on 17 July 
2010 for second basin 

Yu et al. (2015) Futatsuno and Nanairo dam catchments in 
Shingu river basin, Japan 

Typhoon Talas (2011) 

Ushiyama et al. 
(2014) 

Kabul River Basin, Pakistan 27 - 29 July 2010 

Wu et al. (2014) Wangjiaba sub-region in Huaihe River 
Basin, China 

5-8 July 2007 and 13-17 
August 2008 

Alfieri et al. (2013) Large world river basins January 2009 - December 
2010 and 2010 Pakistan flood 

Cane et al. (2013) Western Piemonte, Italy May 2008 flood 

Chen et al. (2013) Cobb Creek watershed, US and Chuzhou 
watershed, China 

12 events between 1 June 
2006 and 30 September 2009 
for Cobb Creek watershed. 16 
events 1981 - 2002 for 
Chuzhou watershed 

Das and Kaur (2013) Mahanadi basin, Indian Flood seasons 2009 - 2010 

Hsiao et al. (2013) Lanyang basin, Taiwan Typhoon Nanmadol (2011) 
and (deterministic forecast 
of) 21 typhoons in 2011 

Lee et al. (2013) 314 urban areas, Taiwan Typhoon Megi and Typhoon 
Nanmadol (2011) 

Leoncini et al. 
(2013) 

Boscastle, UK Boscastle flash flood event on 
16 August 2004 

Liechti et al. (2013) Calancasca Catchment, Verzasca 
Catchment and Ticino catchment, 
southern Switzerland 

Between June 2007 and 
December 2010 

Marty et al. (2013) Cevennes-Vivarais Catchments, Southern 
France 

4-10 September 2005, 19-25 
November 2007, 20-23 



October 2008, 31 October - 4 
November 2008 

McSharry et al. 
(2013) 

Britain, UK 257 rainfall events 1866–1968 

Bao and Zhao 
(2012) 

Huaihe River, China July 2007 

Nester et al. (2012) 43 catchments in Austria and Germany Four years of data 

Vincendon et al. 
(2011) 

Gardons river, C`eze river and Ard`eche 
river, France 

Two flash flood events: 21–22 
October 2008 and 1–2 
November 2008 

He et al. (2010) Huai catchment, China Three flood events July-
September 2008 

Hopson and 
Webster (2010) 

Ganges Rivers, Bangladesh Severe floods 2003 - 2007 

Shamir et al. (2010) Nakdong River, South Korea Jan 2006 - Aug 2008 

Thiemig et al. 
(2010) 

Juba–Shabelle river basin, Africa 1 January 1961 - 31 
December 1981 

Tiwari and 
Chatterjee (2010) 

Mahanadi River basin, India 2001- 2005 

Dietrich et al. 
(2009) 

Upper Mulde river basin, Germany and 
Czech Republic 

Seven events 2002 - 2008 

Dietrich et al. 
(2009) 

Mulde river basin, Germany May 2007 - April 2008 and 
August 2002 extreme flood 

Kim et al. (2009) Yodo-River basin, Japan Two events from August 1992 
and June 1993 

Kuchment and 
Gelfan (2009) 

Vyatka Rive, Russia 41 spring floods (1940–1980) 

Dietrich et al. 
(2008) 

Mulde river basin, Germany August 2002 extreme event 

Komma et al. 
(2008) 

Kamp catchment, Austria Six largest flood events on 
record: August 2002 (two), 
July 2005, August 2005 (two), 
March 2006 

Komma et al. 
(2007) 

Kamp catchment, Austria Five flood events on 8 and 13 
August. 2002, 11 July 2005, 
16 and 22 August 2005 

Srikanthan et al. 
(2008) 

Georges River in Sydney, Australia The May 2003 flood event 

Ramos et al. (2007) Danube river basin, France Flood events in 2005 

Verbunt et al. 
(2007) 

Alpine tributaries of Rhine River basin, 
central Europe 

Spring 1999 and November 
2002 floods 

Montani et al. 
(2003) 

Soverato, southern Italy September 2000 flood 

Mackey and 
Krishnamurti (2001) 

Southeast China Typhoon Winnie (1997) 

 




