
Ensemble-Index: A New Approach to Indexing Large
Databases

Eamonn Keogh
Dept of Info and Computer Science

University of California, Irvine
California 92697 USA

(949) 824-7210

eamonn@ics.uci.edu

Selina Chu
Dept of Info and Computer Science

University of California, Irvine
California 92697 USA

(949) 824-2968

selina@ics.uci.edu

Michael Pazzani
Dept of Info and Computer Science

University of California, Irvine
California 92697 USA

(949) 824-7405

pazzani@ics.uci.edu

ABSTRACT
The problem of similarity search (query-by-content) has attracted
much research interest. It is a difficult problem because of the
inherently high dimensionality of the data. The most promising
solutions involve perfomaing dimensionality reduction on the
data, then indexing the reduced data with a multidimensional
index structure. Many dimensionality reduction techniques have
been proposed, including Singular Value Decomposition (SVD),
the Discrete Fourier Transform (DFT), the Discrete Wavelet
Transform (DWT) and Piecewise Polynomial Approximation. In
this work, we introduce a novel framework for using ensembles of
two or more representations for more efficient indexing. The basic
idea is that instead of committing to a single representation for an
entire dataset, different representations are chosen for indexing
different parts of the database. The representations are chosen
based upon a local view of the database. For example, sections of
the data that can achieve a high fidelity representation with
wavelets are indexed as wavelets, but highly spectral sections of
the data are indexed using the Fourier transform. At query time, it
is necessary to search several small heterogeneous indices, rather
than one large homogeneous index. As we will theoretically and
empirically demonstrate this results in much faster query response
times.

Categories and Subject Descriptors
E.2 [Data Storage Representations]: H.3.1 Content Analysis and
Indexing.

General Terms
Algorithms, Measurement, Design, Experimentation.

Keywords
Time series, indexing and retrieval, dimensionality reduction,
similarity search, data mining.

Permission to make digital or hard copies of all or part of this work lbr
personal or classroom use is granted without tee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the Tirst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD 01 San Francisco CA USA
Copyright ACM 2001 1-58113-39 l-x/01/08...$5.00

1. INTRODUCTION
Recently there has been much interest in the problem of similarity
search (query-by-content) in multimedia databases (i.e. time
series, spatial data, images etc.). Similarity search is useful in its
own right as a tool for exploratory data analysis, and it is also an
important subroutine of many data mining applications such as
clustering [8], classification [17] and mining of association rules
[7]. The similarity between two objects can usually be calculated
very efficiently, so the similarity search process is heavily I/O
bound. The volume of data encountered exasperates the problem.
Multi-gigabyte datasets are increasing prevalent. As typical
example, consider the MACHCO project. This database contains
more than a terahyte of data and is updated at the rate of several
gigabytes a day [23].

The most promising similarity search methods are techniques that
perform dimensionality reduction on the data, then use a
multidimensional index structure to index the data in the
transformed space. The technique was introduced in [1] and
extended in [19, 6, 21, 10]. The original work by Agrawal et. al.
utilizes the Discrete Fourier Transform (DFT) to perform the
dimensionality reduction, but other techniques have been
suggested, including Singular Value Decomposition (SVD) [18,
15], the Discrete Wavelet Transform (DWT) [5, 24] and
Pieeewise Polynomial Approximations [15, 26].

In general, the efficiency of indexing depends only on the fidelity
of the approximation in the reduced dimensionality space. Clearly
no single dimensionality reduction technique can be optimal on
all datasets, therefore, most researchers advocate empirical
comparisons of several approaches before implementing a single
fixed technique [24, 25, 15].

While this approach seems reasonable, it does risk the following
problem. The chosen representation may tightly approximate most
of the data, but provide a very poor approximation of a small
section of the data. Any query for an item whose eventual best
match is one of the poorly approximated items is likely to result in
a long query time, because large amounts of the multidimensional
index structure will have to be inspected. As an example, consider
Figure 1. On a global level, this particular financial time series is
much better approximated by the DFT transform than the DWT
transform. However there are some small areas, for example
beginning at about 850, where the DWT transform is superior. So,
in general, we would be better off indexing this time series with
DFT, but for queries that will have an eventual best match

117

between 850 and 900, we would have been much better off had
we built the index with the DWT instead.

i Franc to USD) 1973-87 J " ~ y ~ ,~, J " '

0 100 200 300 400 500 600 700 800 900 1000

2 0 0 % : Region in which Fourier representation is superior to wavelet representation

foo % ! ~

A, , A .a 1.

100 % Region in which wavelet representation is superior to Fourier representation

Figure 1. A) A financial time series. B) A graph showing the
percentage by which the DFT is superior/inferior to DWT
(calculated by {maX(RDFT, RDWT) - min(RDvT, Row-r)} / min(RnFT,
RDWT) , where R is the reconstruction error for each approach).
Note that while DFT is superior overall, there are small sections
where DWT is up to 60% better.

More generally, it is possible that on a given dataset, two
dimensionality reduction techniques have identical overall
performance, yet on a local level, the two approaches have very
different fidelity. As an example, consider Figure 2.

Telemetry (Fatigue sensor)

0 500 1000 1500 2000 2500 3000 3500

600 %
r ~ \ Region in which Fourier representation is superior to wavelet representation

,oo~, t~) / I /

200 %. Region in which wavelet representation is superior to Fourier representation

Figure 2. A) A scientific time series (Telemetry from a fatigue
sensor). B) A graph showing the percentage by which the DFT is
superior/inferior to DWT (calculated by {max(Rvvr, RDWT) -
min(RoFx, RDWT)} / min(RoFr, Rowr), where R. is the
reconstruction error for each approach). Note that while the
average performance is almost identical, the two approaches have
enormously differing abilities to represent the data on a local
level.

These observations motivate the novel indexing approach
introduced in this paper. We present a new framework called E-
index (Ensemble-index). The basic idea to exploit the fact that

different sections of the dataset favor different dimensionally
reduction techniques. Rather than committing to a single
dimensionally reduction technique, E-index creates several
indices, one for each representation. When the data is indexed, E-
index places each object in the index that can represent it with the
greatest fidelity. At query time, the query is transformed into all
the different representations in the ensemble, and the fidelity in
each representation is measured. This information is then used to
determine the order in which the indices are searched. E-index has
a surprising and very unintuitive property. One might expect that
its performance for any given query would be bound by the
performance of the best possible single-representation index. In
fact, as we will theoretically and empirically demonstrate, the
performance of E-index can be better than the best possible
single-representation index. In other words, an ensemble of K
representations can outperform the best of those K representations
used by itself, not only on average, but on each individual query.

Although the ideas presented in this paper apply to all types of
multimedia data, for concreteness and brevity we will confine our
discussion and experimental evaluation to time series data. Time
series are an ubiquitous form of data, accounting for a large
proportion of the data stored in financial, medical and scientific
databases.

The rest of the paper is organized as follows. In Section 2 we
provide background on indexing time series data for similarity
search. In Section 3 we formally introduce E-index. Section 4
contains experimental evaluation. In Section 5 we consider some
related work and finally in Section 6 we offer conclusions and
directions for future work.

2. B A C K G R O U N D
Given two time series Q = {ql...q,} and C = {Cl...Cn}, their
Euclidean distance is defined as:

D(Q,C)=_ ~ , _ c ,) 2 (1)

Figure 3 shows the intuition behind the Euclidean distance.

Figure 3. The intuition behind the Euclidean distance. The
Euclidean distance can be visualized as the square root of the sum
of the squared lengths of the gray lines.

There are essentially two ways the data might be organized [10]:

• Whole Matching. Here it assumed that all sequences to be
compared are the same length.

118

• Subsequence Matching. Here we have a query sequence Q,
and a longer sequence C of length m. The task is to find the
subsequence in C, beginning at % which best matches Q, and
report its offset within C.

Whole matching requires comparing the query sequence to each
candidate sequence by evaluating the distance function and
keeping track of the sequence with the lowest distance.
Subsequence matching requires that the query Q be placed at
every possible offset within the longer sequence C. Note it is
possible to convert subsequence matching to whole matching by
sliding a "window" of length n across C, and making copies of the
m-n windows. Figure 4 illustrates the idea. Although this causes
storage redundancy it simplifies the notation and algorithms so we
will adopt this policy for the rest of this paper.

The most important kind of query we would like to support are
nearest neighbor queries (i.e. return the closest sequence to the
query sequence). The brute force approach to answering these
queries, sequential scanning, requires comparing every time series
Ci to Q, is unrealistic for large datasets. Therefore a method for
indexing the time series is desirable.

Any indexing scheme that does not examine the entire dataset
could potentially suffer from two problems, false alarms and false
dismissals. False alarms occur when objects that appear to be
close in the index are actually distant. Because false alarms can be
removed in a post-processing stage (by confirming distance
estimates on the original data), they can be tolerated so long as
they are relatively infrequent. A false dismissal is when qualifying
objects are missed because they appear distant in index space. In
the next section we will discuss a widely used indexing technique
that can utilize any dimensionality reduction technique and which
guarantees no false dismissals.

2.1 The GEMINI Approach to Indexing
A time series C = {cl...cn} with n datapoints can be considered as
a point in n-dimensional space. This immediately suggests that
time series could be indexed by multidimensional index structure
such as the R-tree and its many variants [11]. Since realistic
queries typically contain 20 to 1,000 datapoints (i.e. n varies from
20 to 1000) and most multidimensional index structures have poor
performance at dimensionalities greater than 8-12 [12], we need
to first perform dimensionality reduction in order to exploit
multidimensional index structures to index time series data. In
[10] the authors introduced GEneric Multimedia INdexing
method (GEMINI) which can exploit any dimensionality

.............. n datapoints ~,~

Ci

Figure 4: The subsequence matching problem can be converted into
the whole matching problem by sliding a "window" of length n
across the long sequence and making copies of the data falling
within the windows.

reduction method to allow indexing. The technique was originally
introduced for time series, but has been successfully extended to
other data types [18].

An important result in [10] is that the authors proved that in order
to guarantee no false dismissals, the distance measure in the index
space must satisfy the following condition:

Dindex space(A,B) < Dtrue(A,B) (2)

This theorem is known as the lower bounding lemma or the
contractive property. Given the lower bounding lernrna, and the
ready availability of off-the-shelf multidimensional index
structures, GEMINI requires just the following three steps.

• Establish a distance metric from a domain expert (in this case
Euclidean distance).

• Produce a dimensionality reduction technique that reduces
the dimensionality of the data from n to N, where N can be
efficiently handled by your favorite index structure.

• Produce a distance measure defined on the N dimensional
representation of the data, and prove that it obeys

Dindex space(A,B) < Dtrue(A,B).

Table 1 contains an outline of the GEMINI indexing algorithm.
All sequences in the dataset C are transformed by some
dimensionality reduction technique and then indexed by the
spatial access method of choice. The indexing tree represents the
transformed sequences as points in N dimensional space. Each
point contains a pointer to the corresponding original sequence on
disk.

Table 1. Outline of the GEMINI indexing building algorithm

Algorithm Buildlndex(C,n); # C is the dataseq n is the window
size

for all objects in database
Ci <-- Ci- Mean(Ci); //Optional: remove the mean of Ci
~,. <--- SomeTransformation(Ci);

~. is any dimensionalityreduced representation.

Insert ~. into the SAM with pointer to C on disk;

end;

Note that each sequence has its mean subtracted before indexing.
This has the effect of shifting the sequence in the y-axis such that
its mean is zero, removing information about its offset. This step
is included because for most applications the offset is irrelevant
when computing similarity.

The nearest neighbor algorithm outlined in Table 2. For
generality, instead of initializing b e s t - s o - f a r to infinity
inside the algorithm, we can initialize it outside the algorithm,
then pass it in. This generalization is just to make the outline of
our algorithm simpler (el. section 3).

119

Table 2. The GEMINI nearest neighbor algorithm

Algorithm NearestNeighbor(Q, best-so-far)
Let ~ be the query Q, projected into the same feature space as

the index.
while there are candidate objects closer to ~ than best-so-far

Find the candidate object ~ , nearest to Q"

Retrieve from disk the actual sequence pointed to by ~ .

Compute D(Q,Ci), the distance between actual sequence and

query.
if D(Q,Ci) < best-so-far

best-so-far 4-- D(Q,Ci)
index of NN 4-- i

end;
end;

The efficiency of the GEMINI query algorithm depends only on
the quality of the transformation used to build the index. The
tighter the bound on Dmdex space(A,B) < Dt~e(A,B) the better. Time
series are usually good candidates for dimensionality reduction
because they tend to contain highly correlated features.

This concludes the necessary background for this paper. For
brevity, we will not describe the main dimensionality reduction
techniques, SVD, DFT, DWT and PAA in detail. Instead we refer
the interested reader to the relevant papers or to [15] which
contains a survey of all the techniques.

3. INDEXING DATABASES WITH
ENSEMBLES OF REPRESENTATIONS
In [24], and independently in [26], the authors presented a careful
empirical comparison between DWT and DFT using the GEMINI
framework and concluded that their average performance was
nearly indistinguishable. Later, more general work, by the present
authors confirmed this observation I [15]. However during a
careful analysis of our results, we noted an interesting
phenomenon. While it is true that on certain datasets DWT and
DFT produce near identical indexing performance on average; On
any individual query they can have very different performance. In
other words, on any particular query, DWT can greatly
outperform DFT or vice versa, it is only their mean behavior that
is similar. For the rest of this work, we shall call the property of a
set of different representations to have different indexing
performance on individual queries VIP (Variability in Indexing
Power).

This observation motivates our indexing algorithm. Assume that
R is a set of K dimensionality reduction techniques proposed for
indexing time series. Suppose we could produce a dimensionality
reduction technique that performs as well as the best
representation in R on every query. Then, averaged over many
queries, the mean performance of our new approach must be at
least as good as the average behavior of the best representation in

More accurately, it was confirmed that DWT and DFT have
similar performance on random walk data, and data that can be
modeled by random walks (i.e stock market data). However, on
many natural datasets, either of the techniques can dominate the
other by orders of magnitude.

R. More importantly, if there is significant VIP in the set of
dimensionality reduction techniques in R, then the average
performance of our new approach will be significantly better than
the best technique in R.

Unfortunately, it is not possible to create a single dimensionality
reduction technique that is as good as the best of a set of
completing techniques on every query, however, we can do
something almost equivalent. Instead of indexing the data with a
single fixed representation, we can create an ensemble of indices.
The intuition is that it is better to have many indices that
specialize in representing certain kinds of data objects, than one
general index that may represent some objects well but others
poorly. When a query arrives, we convert it into each possible
representation, and note the fidelity of each representation on that
particular query. This information is then used to determine the
order in which we search the indices.

It may not be obvious to the reader why this results in faster query
response. After all, the total number of objects in the ensemble of
indices that must be either examined or pruned, is the same as the
number of objects that must be examined or pruned in the single
representation approach. We will provide a worked example later
to help develop the readers intuition. Until then, we offer this
simple explanation. The number of objects that may be pruned
depends upon the quality of the eventual best-match. So it is
always to our advantage to find the best-match sooner rather than
later. If the single representation approach poorly represents some
objects, they may appear to be closer to the query than the
eventual best-match, and thus we will be forced to retrieve them
(i.e these items are false hits). In contrast, in the ensemble index,
we do not have to deal with items in the index space that are
poorly represented (they are in one of the other indices), so we
have fewer false hits. This allows us to find a good match more
quickly. Of course, we still have to deal with those objects we
have avoided, but we can deal with them later, in a representation
in which they are more tightly approximated. In addition, when
we deal with them, we will already have found a good match, thus
it is more likely that we will be able to prune them.

3.1 Algorithm descriptions
The algorithm used to build the E-index is described in Table 3.
The inputs are R, the set of allowable representations (with [R[=
K) and C, the dataset containing m objects. The output is a set of
K indices which taken together, index all m objects. Note the
indices are not necessary all the same size (although we would
prefer this). The distribution of sizes is determined by the data
itself. Note we have no storage redundancy [12].

The algorithm used to search the E-index is described in Table 4.
The input is the set of K indices and the query itself, and the
output is the nearest neighbor match. The algorithm begins by
transforming the query into each representation in the ensemble
and recording its reconstruction error. This information is used to
determine the order in which the indices are search. The indices
are searched using the classic NearestNeighbor algorithm
shown in Table 2, however there is one minor difference in how
each search is initialized. The first index to be searched has its
best-so-far argument initialized to infinity as usual. However,
each subsequent invocation of N e a r e s t N e i g h b o r inherits the
best-so-far value from the previous invocation.

120

Table 3. The Ensemble-index building algorithm. The inputs
are the dataset C, a list of K allowable representations R. The
output is a set of K indices.

Algorithm BuildEnsemblelndex(C,R);//C = dataset
/ / R = set of representations

for all objects in the database
Ci ~-- C i - Mean(Ci); //Optional: remove the mean of Ci
for all possible representations Rk

CI.~ ~'- SomeTrans formation(Ci);
//~k is the object Ci in the K th

//dimensionality reduced representation.
REk <-- D(C,k ,Ci); / /Use Euclidean distance to

//record the reconstruction error.
end;
index to use = argminRE i {REI,..,REK}

//Record the best representation.
Insert ~nJ=_, into the indexk with a pointer to Ci on disk;

end;

Table 4. The E-index nearest neighbor algorithm

Algorithm Ensemble_NearestNeighbor(Q,R)
for all possible representations Rk

C,k <-'- SomeTrans formation(Ci);
// ~,., is the object Ci in the K th
//dimensionality reduced representation.

REk <--- D(C,k ,Ci); / /Use Euclidean distance to
//record the reconstruction error.

end;
sort the indices in order of increasing reconstruction error.

best-so-far = infinity;
for all indices //(In sorted order).

best_match <--- NearestNeighbor(Q, best-so-far)
//ie. Table 2

best-so-far ~ D(Q, best_match)
//Use best-so-far from this search

end; / / to seed the next search.

The speedup produced by the algorithm depends on the set of
representations used and the data itself. Ideally we would prefer
that the set of representations have high VIP with respect to the
data. The set of representations available to the ensemble depends
on the data type. For example, for indexing time series, the set of
representations we could use include those listed in Table 5:

Table 5. Dimensionality reduction techniques that can be used
with E-Index to index time series. Key: {} the introducing
paper, [] extensions and follow up work.

• Discrete Fourier Transform { 1 }, [6, 10, 13, 18, 19, 21, 24].

• Discrete Wavelet Transform { 5 }, [13, 24].

• Piecewise Constant approximation { 15 }, [26].

• Piecewise Linear Approximation { 17 }, [22].

• Inner Product Approximation {9}.

• Adaptive Piecewise Constant Approximation { 16}.

There are some notable omissions. We could include the Discrete
Cosine Transform (DCT), however, because both DCT and DFT
are spectral techniques we would expect very little VIP between
them, and therefore there is very little point in including both.
Singular Value Decomposition has been successfully
implemented for time series [15] and other types of multimedia
data [14] however it requires a global view of the data. It is
possible that this list could be greatly expanded. The present
authors have tested several novel representations in recent years.
We were disappointed to find that while these representations
work very well for certain types of data, they could not compete
with existing approaches overall. This, of course, is exactly the
property we desire for representations in the ensemble.

3.2 A Worked Example
The E-index has a very surprising and desirable property. Suppose
we compare E-Index to standalone versions of indices using just
one of the various representations in the ensemble. For example,
we could compare E-Index with R = {DWT, DFT}, to both the
classic DWT-Index and DFT-index. Given a query, E-Index can
potentially return the best match faster than the best of the
standalone approaches! Using the example above, it is possible
that for a particular query, DWT-Index might require 100 disk
accesses, DFT-Index might do better with only 90 disk accesses
and E-Index might require only 50 disk accesses. Paradoxically,
E-index can be better than the sum of its parts (more accurately,
better than the best of it parts). This property is so unintuitive, we
will provide a simple worked example to help the reader gain
intuition for it.

Imagine we need to index a database with 7 objects {A, B, C, D,
E, F, G}. We will trace the behavior of three approaches, DFT-
Index, DWT-Index and E-Index with R = {DWT, DFT}, for a
particular query Q. The estimated distances in the DFT space and
DWT space, together with the true distances are shown in Table 6.
Remember that the estimated distances can be obtained cheaply,
by examining the index, but the true distances can only be
obtained by expensive disk accesses, which we are trying to
minimize.

Table 6. Column 1: The true distance between the query Q,
and the seven candidate objects in the database. Columns 2
and 3: The estimated distances in the reduced dimensionality
space for DFT and DWT. This information is graphically
depicted in Figure 5.

A

B

C

D

E

F

G

Dtr,,e (Q,O) DOFT(Q,O) Dowr(~,6)
5 1 4

7 2 6

8 3 7

9 4 8

10 8 1

11 9 2

12 10

121

A)

I$ I0 ~i 0 5 10 I$

B)

° ,

, Q

, o .

/ Q^. '.

.B

% '~ °c ,^?Q °B % %
I I ' i ' I : ' ' ' I I ' ' ' I I
15 10 $ 0 5 10 I$

Figure 5. A graphical representation of the data in Table 6. The true distance between the query Q, and the seven candidate
objects in the database is depicted in 2D space for both DWT (A) and DFT (B). Note that when the dimensionality is reduced
from 2 dimensions to 1 dimension, the apparent distances in the reduced space are not accurate, but are lower bounding.

The DWT-Index is examined and the pointers to objects E, F, G,
A, B, C, D are place in the priority queue, to be examined in that
order. Object E is retrieved from disk, and found to have a true
distance Dtr~c(Q,E) of 10, so the best-so-far variable is initialized
to 10. No objects can be pruned at this stage, so disk accesses are
made to objects F, then G, then A. When A is retrieved, its true
distance Dt~e(Q,A) is found to be 5, the best-so-far variable is
therefore updated to 5. At that point, all the items left in the queue
have lower bounds on their distance to the query which is greater
than the best-so-far, so they can all be pruned. In summary, the
DWT approach must make 4 disk accesses (to objects E, F, G and
A).

The DFT-ludex is examined and the pointers to objects A, B, C,
D, E, F, G are place in the priority queue, to be examined in that
order. Object A is retrieved from disk. It happens to be the best
match, but it is not possible to tell that yet. The true distance

e D O B eQ OA e C oi~,~(ow'¢l

i i
t5 10 5 0 5 10 15

Dt~c(Q,A) is 5, which means that objects E, F and G can all be
pruned, because the lower bound on their distance to Q exceeds 5.
One by one objects B, C and D are retrieved from disk and found
to be no better than the current best-so-far. In summary, the DFT-
Index must make 4 disk accesses (to objects A, B, C and D).

The E-Index builds two indices, a DWT-lndex containing A, B,
C, D and a DFT-lndex containing E, F, G. The object A is
retrieved from the disk, the true distance Dt~c(Q,A) is found to be
5. All the other items in the DWT-lndex can be pruned because
their distance to Q exceeds 5. The DFT-Index is visited next, all
items in this index have a minimum distance that exceeds the best-
so-far, so all objects can be pruned. In summary, the ensemble
approach must make just 1 disk access (to object A).

This example is of course highly contrived, it is possible to
produce an example in which E-Index does no better than its

B)

OG ~E OQ ° F Oi~(DFTI

. , . i , . . , i . . . , 1 ~ . , , i ,
15 '10 5 0 5 10 15

Figure 6. A graphical representation of the data in Table 6. Unlike Figure 5, only the objects that are tightly represented in
wavelet space are placed in wavelet space (A), and only objects that are tightly represented in Fourier space are placed in
Fourier space (B).

122

rivals. However it does illustrate the fact that an ensemble can be
better than the best of it constituent parts. In the next section we
will confirm this with an empirical study.

4. EXPERIMENTAL EVALUATION
To perform realistic testing, we need queries that do not have
exact matches in the database but have similar properties of shape,
structure, spectral signature, variance, etc. To achieve this we
used cross validation. We removed 10% of the dataset (a
contiguous subsection), and build the indexes with the remaining
90%. The queries are then randomly taken from the withheld
subsection. For each result reported on a particular dataset, for a
particular query length, we averaged the results of 1,000
experiments.

For simplicity and clarity we limit ensembles to size 2 (E-Index-2,
R = {DWT, DFT}) and 3 (E-Index-3, R = {DWT, DFT, APCA})
and we compared them to standalone versions of DWT, DFT and
APCA.

W.e tested on two datasets with widely varying properties. Many
other researchers have used these datasets [1, 15, 17, 24, 26].
Small, typical subsections of each dataset are shown in Figure 7.

• Random Walk: The sequence is a random walk, xt = xt-1 + zt
Where zt (t = 1,2,...) are independent identically distributed
(uniformly) random variables in the range (-500,500).

• Space Shuttle: This dataset consists of 27 time series that
describe the orientation of the Space Shuttle during the first eight
hours of mission STS-57 (100,000 datapoints).

Random Walk

Shuttle

Shuttle

Figure 7. Sample queries (bold lines) and a section
containing the best match for both the datasets used in the
experimental study.

To compare the pruning power of the different techniques under
consideration we measure P, the fraction of the database that must
be examined before we can guarantee that we have found the
nearest match to a 1-NN query.

p _ Number of objects that must be examined
Number of objects in database (3)

Note the value of P for any indexing approach depends only on
the efficiency of the indexing algorithm and the data itself. It is
completely independent of any implementation choices, including
spatial access method, page size, computer language or hardware.
A similar idea for evaluating indexing schemes appears in [! 8].

Table 7. The fraction P, of dataset that must be retrieved from
disk using the five indexing approaches, for various dataset /
query length combinations (averaged over 1,000 queries). The
dimensionally of the index was 16 in every case.

Data/Query DWT DFT APCA E-Index- E-Index-
Length 2 3

Random 0.31 0.24 0.32 0.19 0.19
Walk 512
Random 0.47 0.43 0.51 0.38 0.37

Walk 1024
Space Shuttle 0,023 0.021 0.016 0.011 0.006

512
Space Shuttle 0.041 0.039 0.022 0.027 0.010

1024

The results for the random walk dataset are not spectacular, but
the ensembles do outperform the three competing approaches. In
fact, we anticipated this result because there is very little VIP in
this domain between the 3 representations under consideration
(See Appendix A). We hoped for better results with the Space
Shuttle data because there is high VIP between the 3
representations for this data. Our optimism was justified, the
Ensemble approach significantly outperforms the single
representation approaches. We further note that the empirical
results validate the prediction that the more representations added
to ensemble the greater the increase in performance.

5. RELATED WORK
To the best of our knowledge, this paper is the first to suggest
indexing data with ensembles of representations in order to
improve the query response time. Others have suggested
combining several representations in multimedia databases but
their motivation was to provide more accurate matches in domains
where the best match is more subjective [20]. The idea of using
multiple representations to improve accuracy is also well
understood in the text retrieval community [2]. Although they are
using multiple representations to improve effectiveness and we
are using multiple representations to improve efficiency, the
underlying reason for the improvement in both cases is the same.
Representations with globally similar performance may differ
greatly on a local level. We exploit this fact by first querying the
data in the representation to which it is best suited. Others exploit
this fact by querying the data in all representations, and
combining the results.

There has been much research in exact similarly search (i.e. search
with the guarantee of no false dismissals) in time series [1, 5, 6, 9,
10, 15, 16, 19 21, 24, 26], and there is an even greater body of
research in approximate search (i.e. search that may allow false
dismissals) [22, 17]. For brevity we will not discuss this work
here, instead we refer the reader to [15] or [16] which contains
detailed discussions and extensive bibliographies.

123

6. CONCLUSIONS AND DIRECTIONS
FOR FUTURE WORK
In this paper we introduce a new framework for indexing
multimedia databases with ensembles of representations.

Directions for future work include:

• A more detailed theoretical analysis of our approach.

• A more extensive empirical study, including other types
of multimedia data and using more representations in
the ensemble.

We also believe that we may be able to further improve
performance with a better implementation of the
Ensemble_NearestNeighbor algorithm. We are currently
relying on a heuristic to order the search of the representations in
the ensemble. If possible, it would be better to search them in
parallel, allowing all indices to share a single priority queue.
There are, however, several difficult implementation issues that
must be addressed before this is practical.

7. ACKNOWLEDGMENTS
The authors would like to thank Sharad Mehrotra and Michael
Ortega-Binderberger for their helpful comments and suggestions.

8. REFERENCES
[1] Agrawal, R., Faloutsos, C., & Swami, A. (1993). Efficient

similarity search in sequence databases. Proceedings of the
4 th Conference on Foundations of Data Organization and
Algorithms.

[2] Belkin, N., Cool, C., Croft, B & Callan, J. (1993). The effect
of multiple query representations on information retrieval
system performance. In Proceedings of the 16 th ACM SIGIR
Conference on Research and Development in Information
Retrieval, pp 339--346.

[3] Chakrabarti, K & Mehrotra, S (2000). Local dimensionality
reduction: A new approach to indexing high dimensional
spaces. Proceedings of the 26 th Conference on Very Large
Databases.

[4] Chakrabarti, K., Ortega-Binderberger, M., Porkaew, K &
Mehrotra, S. (2000) Similar shape retrieval in MARS.
Proceeding of IEEE International Conference on Multimedia
and Expo.

[5] Chan, K. & Fu, W. (1999). Efficient time series matching by
wavelets. Proceedings of the 15 th IEEE International
Conference on Data Engineering.

[6] Chu, K & Wong, M. (1999). Fast time-series searching with
scaling and shifting. Proceedings of the 18 th ACM
Symposium on Principles of Database Systems, Philadelphia.

[7] Das, G., Lin, K. Mannila, H., Renganathan, G., & Smyth, P.
(1998). Rule discovery from time series. Proceedings of the
3 rd International Conference of Knowledge Discovery and
Data Mining. pp 16-22.

[8] Debregeas, A. & Hebrail, G. (1998). Interactive
interpretation of Kohonen maps applied to curves.
Proceedings of the 4 th International Conference of
Knowledge Discovery and Data Mining. pp 179-183.

[9] Egecioglu, O., & Ferhatosmanoglu, H. (2000).
Dimensionality reduction and similarity distance
computation by inner product approximations. Proceedings
of the 9 th ACM International Conference on Information and
Knowledge Management (CIKM), pp. 219-226.

[10]Faloutsos, C., Ranganathan, M., & Manolopoulos, Y.
(1994). Fast subsequence matching in time-series databases.
In Proceedings of the SIGMOD.

[11]Guttman, A. (1984). R-trees: A dynamic index structure for
spatial searching. Proceedings ACM SIGMOD Conference.
pp 47-57.

[12]Hellerstein, J. M., Papadimitriou, C. H., & Koutsoupias, E.
(1997). Towards an analysis of indexing schemes. 16 th ACM
Symposium on Principles of Database Systems.

[13] Kahveci, T. & Singh, A (2001). Variable length queries for
time series data. Proceedings 17 th International Conference
on Data Engineering. Heidelberg, Germany.

[14]Kanth, K.V., Agrawal, D., & Singh, A. (1998).
Dimensionality reduction for similarity searching in dynamic
databases. Proceedings ACM SIGMOD Conf., pp. 166-176.

[15] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2001)
Dimensionality reduction for fast similarity search in large
time series databases. Knowledge and Information Systems.
Volume 3, Number 3, August.

[16] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2001)
Locally adaptive dimensionality reduction for similarity
search in large time series databases. SIGMOD pp 151-162

[17]Keogh, E., & Pazzani, M. (1998). An enhanced
representation of time series which allows fast and accurate
classification, clustering and relevance feedback.
Proceedings of the 4 th International Conference of
Knowledge Discovery and Data Mining. pp 239-241, AAAI
Press.

[18]Korn, F., Jagadish, H & Faloutsos. C. (1997). Efficiently
supporting ad hoc queries in large datasets of time
sequences. Proceedings of SIGMOD, Tucson, AZ, pp 289-
300.

[19]Loh, W., Kim, S & Whang, K. (2000). Index interpolation:
an approach to subsequence matching supporting
normalization transform in time-series databases.
Proceedings 9 th International Conference on Information and
Knowledge Management.

[20]Minka, T & Picard, R (1996) Interactive learning using a
"society of models". In Proceedings IEEE Conference.on
Computer Vision and Pattern. Recognition.

[21] Refiei, D. (1999). On similarity-based queries for time series
data. Proc of the 15 th IEEE International Conference on Data
Engineering. Sydney, Australia.

[22]Wang, C. & Wang, S. (2000). Supporting content-based
searches on time Series via approximation. International
Conference on Scientific and Statistical Database
Management.

[23] Welch. D. & Quinn. P (1999).
http://wwwmacho.mcmaster.ca/Project/Overview/status.html

124

[24] Wu, Y., Agrawal, D. & Abbadi, A.(2000). A Comparison of
DFT and DWT based Similarity Search in Time-Series
Databases. Proceedings of the 9 th International Conference
on Information and Knowledge Management.

[25] Wu, D., Agrawal, D., El Abbadi, A. Singh, A. & Smith, T. R.
(1996). Efficient retrieval for browsing large image
databases. Proc of the 5 th International Conference on
Knowledge Information. pp 11-18, Rockville, MD.

[26]Yi, B,K., & Faloutsos, C.(2000). Fast time sequence
indexing for arbitrary Lp norms. Proceedings of the 26 th
International Conference on Very Large Databases, Cairo,
Egypt.

APPENDIX A

In this paper we informally defined VIP (Variability in Indexing
Power) as the property of a set of different representations to
have different performance on individual queries. Since the
relative performance between two representations depends both
on the indexed data and the query itself, we have postponed the
challenge of formalizing a tighter definition or metric for future
work. However we noted that we should expect VIP to be very
highly correlated with the relative abilities of the different
representations to compress the data. To test the validity of this
assumption, we visualized the compressibility of two datasets in
similar fashion to Figures 1 and 2.

The results, shown in Figure AI, seem to confirm the hypotheses.
The three representations show very little local variability in their
ability to compress the Random Walk dataset, and this result is
echoed the relatively small speedup achieved by E-index. In
contrast the three representations show great local variability in
their ability to compress the Space Shuttle dataset, and in this
dataset we saw the greatest speedup achieved by E-index. In
future work we hope to exploit this relationship to formalize the
notion of VIP.

o

I i

DFT

HAAR
.4OO P r I I I I ~ I

APCA

~"l'w-"~'~"Vn ~ - ~ ' ~ ' HA;~R
-,,o r _ _ L - _ _ _ ~ I I I I

a o o | , , - -

: : ! DFT 200 j

~ , ~ . - - .,~.--. L .. , , , ~ i l h . . . A p e A

r i ~ x

J t f (Exoo t)
~ i _ i _ , i I i I r i i

o toQ 2oo ~ o ~ ~ o ~oo Too Boo i ¢ o 1ooo

~ o

} Z ~ 1~ DFT
o - : , , , "H;~AIR, _1~

'® APCA

~f" "r~'"~T,,'r,-r', "~ ' ' ' "

DFT

a o 0 t t _ ~ - _ _ _ i _ . ~ t ~ _ _ ~ _ _ t i _ L _ i _ J

Figure A1. A series of graphs showing the percentage by which the various representations used in the experimental section
are superior/inferior to each other (calculated by {max(RA, RB) - min(RA, RB)} / min(RA, RB) , where R is the
reconstruction error for each approach). Note that there is little difference in the Random Walk domain, but large variance in
the Space Shuttle domain.

125

