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ABSTRACT 
The problem of similarity search (query-by-content) has attracted 
much research interest. It is a difficult problem because of the 
inherently high dimensionality of the data. The most promising 
solutions involve perfomaing dimensionality reduction on the 
data, then indexing the reduced data with a multidimensional 
index structure. Many dimensionality reduction techniques have 
been proposed, including Singular Value Decomposition (SVD), 
the Discrete Fourier Transform (DFT), the Discrete Wavelet 
Transform (DWT) and Piecewise Polynomial Approximation. In 
this work, we introduce a novel framework for using ensembles of 
two or more representations for more efficient indexing. The basic 
idea is that instead of committing to a single representation for an 
entire dataset, different representations are chosen for indexing 
different parts of the database. The representations are chosen 
based upon a local view of the database. For example, sections of 
the data that can achieve a high fidelity representation with 
wavelets are indexed as wavelets, but highly spectral sections of 
the data are indexed using the Fourier transform. At query time, it 
is necessary to search several small heterogeneous indices, rather 
than one large homogeneous index. As we will theoretically and 
empirically demonstrate this results in much faster query response 
times. 

Categories and Subject Descriptors 
E.2 [Data Storage Representations]: H.3.1 Content Analysis and 
Indexing. 

General Terms 
Algorithms, Measurement, Design, Experimentation. 

Keywords 
Time series, indexing and retrieval, dimensionality reduction, 
similarity search, data mining. 
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1. INTRODUCTION 
Recently there has been much interest in the problem of similarity 
search (query-by-content) in multimedia databases (i.e. time 
series, spatial data, images etc.). Similarity search is useful in its 
own right as a tool for exploratory data analysis, and it is also an 
important subroutine of many data mining applications such as 
clustering [8], classification [17] and mining of association rules 
[7]. The similarity between two objects can usually be calculated 
very efficiently, so the similarity search process is heavily I/O 
bound. The volume of data encountered exasperates the problem. 
Multi-gigabyte datasets are increasing prevalent. As typical 
example, consider the MACHCO project. This database contains 
more than a terahyte of data and is updated at the rate of several 
gigabytes a day [23]. 

The most promising similarity search methods are techniques that 
perform dimensionality reduction on the data, then use a 
multidimensional index structure to index the data in the 
transformed space. The technique was introduced in [1] and 
extended in [19, 6, 21, 10]. The original work by Agrawal et. al. 
utilizes the Discrete Fourier Transform (DFT) to perform the 
dimensionality reduction, but other techniques have been 
suggested, including Singular Value Decomposition (SVD) [18, 
15], the Discrete Wavelet Transform (DWT) [5, 24] and 
Pieeewise Polynomial Approximations [ 15, 26]. 

In general, the efficiency of indexing depends only on the fidelity 
of the approximation in the reduced dimensionality space. Clearly 
no single dimensionality reduction technique can be optimal on 
all datasets, therefore, most researchers advocate empirical 
comparisons of several approaches before implementing a single 
fixed technique [24, 25, 15]. 

While this approach seems reasonable, it does risk the following 
problem. The chosen representation may tightly approximate most 
of the data, but provide a very poor approximation of a small 
section of the data. Any query for an item whose eventual best 
match is one of the poorly approximated items is likely to result in 
a long query time, because large amounts of the multidimensional 
index structure will have to be inspected. As an example, consider 
Figure 1. On a global level, this particular financial time series is 
much better approximated by the DFT transform than the DWT 
transform. However there are some small areas, for example 
beginning at about 850, where the DWT transform is superior. So, 
in general, we would be better off indexing this time series with 
DFT, but for queries that will have an eventual best match 
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between 850 and 900, we would have been much better off had 
we built the index with the DWT instead. 
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Figure 1. A) A financial time series. B) A graph showing the 
percentage by which the DFT is superior/inferior to DWT 
(calculated by {maX(RDFT, RDWT) - min(RDvT, Row-r)} / min(RnFT, 
RDWT) , where R is the reconstruction error for each approach). 
Note that while DFT is superior overall, there are small sections 
where DWT is up to 60% better. 

More generally, it is possible that on a given dataset, two 
dimensionality reduction techniques have identical overall 
performance, yet on a local level, the two approaches have very 
different fidelity. As an example, consider Figure 2. 

Telemetry (Fatigue sensor) 
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Figure 2. A) A scientific time series (Telemetry from a fatigue 
sensor). B) A graph showing the percentage by which the DFT is 
superior/inferior to DWT (calculated by {max(Rvvr, RDWT) - 
min(RoFx, RDWT)} / min(RoFr, Rowr), where R. is the 
reconstruction error for each approach). Note that while the 
average performance is almost identical, the two approaches have 
enormously differing abilities to represent the data on a local 
level. 

These observations motivate the novel indexing approach 
introduced in this paper. We present a new framework called E- 
index (Ensemble-index). The basic idea to exploit the fact that 

different sections of the dataset favor different dimensionally 
reduction techniques. Rather than committing to a single 
dimensionally reduction technique, E-index creates several 
indices, one for each representation. When the data is indexed, E- 
index places each object in the index that can represent it with the 
greatest fidelity. At query time, the query is transformed into all 
the different representations in the ensemble, and the fidelity in 
each representation is measured. This information is then used to 
determine the order in which the indices are searched. E-index has 
a surprising and very unintuitive property. One might expect that 
its performance for any given query would be bound by the 
performance of the best possible single-representation index. In 
fact, as we will theoretically and empirically demonstrate, the 
performance of E-index can be better than the best possible 
single-representation index. In other words, an ensemble of K 
representations can outperform the best of those K representations 
used by itself, not only on average, but on each individual query. 

Although the ideas presented in this paper apply to all types of 
multimedia data, for concreteness and brevity we will confine our 
discussion and experimental evaluation to time series data. Time 
series are an ubiquitous form of data, accounting for a large 
proportion of the data stored in financial, medical and scientific 
databases. 

The rest of the paper is organized as follows. In Section 2 we 
provide background on indexing time series data for similarity 
search. In Section 3 we formally introduce E-index. Section 4 
contains experimental evaluation. In Section 5 we consider some 
related work and finally in Section 6 we offer conclusions and 
directions for future work. 

2. B A C K G R O U N D  
Given two time series Q = {ql...q,} and C = {Cl...Cn}, their 
Euclidean distance is defined as: 

D(Q,C)=_ ~ , _ c , ) 2  (1) 

Figure 3 shows the intuition behind the Euclidean distance. 

Figure 3. The intuition behind the Euclidean distance. The 
Euclidean distance can be visualized as the square root of the sum 
of the squared lengths of the gray lines. 

There are essentially two ways the data might be organized [10]: 

• Whole Matching. Here it assumed that all sequences to be 
compared are the same length. 
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• Subsequence Matching. Here we have a query sequence Q, 
and a longer sequence C of length m. The task is to find the 
subsequence in C, beginning at % which best matches Q, and 
report its offset within C. 

Whole matching requires comparing the query sequence to each 
candidate sequence by evaluating the distance function and 
keeping track of the sequence with the lowest distance. 
Subsequence matching requires that the query Q be placed at 
every possible offset within the longer sequence C. Note it is 
possible to convert subsequence matching to whole matching by 
sliding a "window" of length n across C, and making copies of the 
m-n windows. Figure 4 illustrates the idea. Although this causes 
storage redundancy it simplifies the notation and algorithms so we 
will adopt this policy for the rest of this paper. 

The most important kind of query we would like to support are 
nearest neighbor queries (i.e. return the closest sequence to the 
query sequence). The brute force approach to answering these 
queries, sequential scanning, requires comparing every time series 
Ci to Q, is unrealistic for large datasets. Therefore a method for 
indexing the time series is desirable. 

Any indexing scheme that does not examine the entire dataset 
could potentially suffer from two problems, false alarms and false 
dismissals. False alarms occur when objects that appear to be 
close in the index are actually distant. Because false alarms can be 
removed in a post-processing stage (by confirming distance 
estimates on the original data), they can be tolerated so long as 
they are relatively infrequent. A false dismissal is when qualifying 
objects are missed because they appear distant in index space. In 
the next section we will discuss a widely used indexing technique 
that can utilize any dimensionality reduction technique and which 
guarantees no false dismissals. 

2.1 The GEMINI Approach to Indexing 
A time series C = {cl...cn} with n datapoints can be considered as 
a point in n-dimensional space. This immediately suggests that 
time series could be indexed by multidimensional index structure 
such as the R-tree and its many variants [11]. Since realistic 
queries typically contain 20 to 1,000 datapoints (i.e. n varies from 
20 to 1000) and most multidimensional index structures have poor 
performance at dimensionalities greater than 8-12 [12], we need 
to first perform dimensionality reduction in order to exploit 
multidimensional index structures to index time series data. In 
[10] the authors introduced GEneric Multimedia INdexing 
method (GEMINI) which can exploit any dimensionality 

.............. n datapoints ............. ~,~ 

Ci 

Figure 4: The subsequence matching problem can be converted into 
the whole matching problem by sliding a "window" of length n 
across the long sequence and making copies of the data falling 
within the windows. 

reduction method to allow indexing. The technique was originally 
introduced for time series, but has been successfully extended to 
other data types [ 18]. 

An important result in [10] is that the authors proved that in order 
to guarantee no false dismissals, the distance measure in the index 
space must satisfy the following condition: 

Dindex space(A,B) < Dtrue(A,B) (2) 

This theorem is known as the lower bounding lemma or the 
contractive property. Given the lower bounding lernrna, and the 
ready availability of off-the-shelf multidimensional index 
structures, GEMINI requires just the following three steps. 

• Establish a distance metric from a domain expert (in this case 
Euclidean distance). 

• Produce a dimensionality reduction technique that reduces 
the dimensionality of the data from n to N, where N can be 
efficiently handled by your favorite index structure. 

• Produce a distance measure defined on the N dimensional 
representation of the data, and prove that it obeys 

Dindex space(A,B) < Dtrue(A,B). 

Table 1 contains an outline of the GEMINI indexing algorithm. 
All sequences in the dataset C are transformed by some 
dimensionality reduction technique and then indexed by the 
spatial access method of choice. The indexing tree represents the 
transformed sequences as points in N dimensional space. Each 
point contains a pointer to the corresponding original sequence on 
disk. 

Table 1. Outline of the GEMINI indexing building algorithm 

Algorithm Buildlndex(C,n); # C is the dataseq n is the window 
size 

for all objects in database 
Ci <-- Ci-  Mean(Ci); //Optional: remove the mean of Ci 
~,. <--- SomeTransformation(Ci); 

# ~. is any dimensionalityreduced representation. 

Insert ~. into the SAM with pointer to C on disk; 

end; 

Note that each sequence has its mean subtracted before indexing. 
This has the effect of shifting the sequence in the y-axis such that 
its mean is zero, removing information about its offset. This step 
is included because for most applications the offset is irrelevant 
when computing similarity. 

The nearest neighbor algorithm outlined in Table 2. For 
generality, instead of initializing b e s t - s o - f a r  to infinity 
inside the algorithm, we can initialize it outside the algorithm, 
then pass it in. This generalization is just to make the outline of 
our algorithm simpler (el. section 3). 
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Table 2. The GEMINI nearest neighbor algorithm 

Algorithm NearestNeighbor(Q, best-so-far) 
Let ~ be the query Q, projected into the same feature space as 

the index. 
while there are candidate objects closer to ~ than best-so-far 

Find the candidate object ~ , nearest to Q" 

Retrieve from disk the actual sequence pointed to by ~ .  

Compute D(Q,Ci), the distance between actual sequence and 

query. 
if D(Q,Ci) < best-so-far 

best-so-far 4-- D(Q,Ci) 
index of NN 4-- i 

end; 
end; 

The efficiency of the GEMINI query algorithm depends only on 
the quality of the transformation used to build the index. The 
tighter the bound on Dmdex space(A,B) < Dt~e(A,B) the better. Time 
series are usually good candidates for dimensionality reduction 
because they tend to contain highly correlated features. 

This concludes the necessary background for this paper. For 
brevity, we will not describe the main dimensionality reduction 
techniques, SVD, DFT, DWT and PAA in detail. Instead we refer 
the interested reader to the relevant papers or to [15] which 
contains a survey of all the techniques. 

3. INDEXING DATABASES WITH 
ENSEMBLES OF REPRESENTATIONS 
In [24], and independently in [26], the authors presented a careful 
empirical comparison between DWT and DFT using the GEMINI 
framework and concluded that their average performance was 
nearly indistinguishable. Later, more general work, by the present 
authors confirmed this observation I [15]. However during a 
careful analysis of our results, we noted an interesting 
phenomenon. While it is true that on certain datasets DWT and 
DFT produce near identical indexing performance on average; On 
any individual query they can have very different performance. In 
other words, on any particular query, DWT can greatly 
outperform DFT or vice versa, it is only their mean behavior that 
is similar. For the rest of this work, we shall call the property of a 
set of different representations to have different indexing 
performance on individual queries VIP (Variability in Indexing 
Power). 

This observation motivates our indexing algorithm. Assume that 
R is a set of K dimensionality reduction techniques proposed for 
indexing time series. Suppose we could produce a dimensionality 
reduction technique that performs as well as the best 
representation in R on every query. Then, averaged over many 
queries, the mean performance of our new approach must be at 
least as good as the average behavior of the best representation in 

More accurately, it was confirmed that DWT and DFT have 
similar performance on random walk data, and data that can be 
modeled by random walks (i.e stock market data). However, on 
many natural datasets, either of the techniques can dominate the 
other by orders of magnitude. 

R. More importantly, if there is significant VIP in the set of 
dimensionality reduction techniques in R, then the average 
performance of our new approach will be significantly better than 
the best technique in R. 

Unfortunately, it is not possible to create a single dimensionality 
reduction technique that is as good as the best of a set of 
completing techniques on every query, however, we can do 
something almost equivalent. Instead of indexing the data with a 
single fixed representation, we can create an ensemble of indices. 
The intuition is that it is better to have many indices that 
specialize in representing certain kinds of data objects, than one 
general index that may represent some objects well but others 
poorly. When a query arrives, we convert it into each possible 
representation, and note the fidelity of each representation on that 
particular query. This information is then used to determine the 
order in which we search the indices. 

It may not be obvious to the reader why this results in faster query 
response. After all, the total number of objects in the ensemble of 
indices that must be either examined or pruned, is the same as the 
number of objects that must be examined or pruned in the single 
representation approach. We will provide a worked example later 
to help develop the readers intuition. Until then, we offer this 
simple explanation. The number of objects that may be pruned 
depends upon the quality of the eventual best-match. So it is 
always to our advantage to find the best-match sooner rather than 
later. If the single representation approach poorly represents some 
objects, they may appear to be closer to the query than the 
eventual best-match, and thus we will be forced to retrieve them 
(i.e these items are false hits). In contrast, in the ensemble index, 
we do not have to deal with items in the index space that are 
poorly represented (they are in one of the other indices), so we 
have fewer false hits. This allows us to find a good match more 
quickly. Of course, we still have to deal with those objects we 
have avoided, but we can deal with them later, in a representation 
in which they are more tightly approximated. In addition, when 
we deal with them, we will already have found a good match, thus 
it is more likely that we will be able to prune them. 

3.1 Algorithm descriptions 
The algorithm used to build the E-index is described in Table 3. 
The inputs are R, the set of allowable representations (with [R[ = 
K) and C, the dataset containing m objects. The output is a set of 
K indices which taken together, index all m objects. Note the 
indices are not necessary all the same size (although we would 
prefer this). The distribution of sizes is determined by the data 
itself. Note we have no storage redundancy [12]. 

The algorithm used to search the E-index is described in Table 4. 
The input is the set of K indices and the query itself, and the 
output is the nearest neighbor match. The algorithm begins by 
transforming the query into each representation in the ensemble 
and recording its reconstruction error. This information is used to 
determine the order in which the indices are search. The indices 
are searched using the classic NearestNeighbor algorithm 
shown in Table 2, however there is one minor difference in how 
each search is initialized. The first index to be searched has its 
best-so-far argument initialized to infinity as usual. However, 
each subsequent invocation of N e a r e s t N e i g h b o r  inherits the 
best-so-far value from the previous invocation. 
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Table 3. The Ensemble-index building algorithm. The inputs 
are the dataset C, a list of K allowable representations R. The 
output is a set of K indices. 

Algorithm BuildEnsemblelndex(C,R);//C = dataset 
/ / R  = set of representations 

for all objects in the database 
Ci ~-- C i -  Mean(Ci); //Optional: remove the mean of Ci 
for all possible representations Rk 

CI.~ ~'- SomeTrans formation(Ci); 
//~k is the object Ci in the K th 

//dimensionality reduced representation. 
REk <-- D( C,k ,Ci); / /Use Euclidean distance to 

//record the reconstruction error. 
end; 
index to use = argminRE i {REI,..,REK} 

//Record the best representation. 
Insert ~nJ=_, .......... into the indexk with a pointer to Ci on disk; 

end; 

Table 4. The E-index nearest neighbor algorithm 

Algorithm Ensemble_NearestNeighbor(Q,R) 
for all possible representations Rk 

C,k <-'- SomeTrans formation(Ci); 
// ~,., is the object Ci in the K th 
//dimensionality reduced representation. 

REk <--- D(C,k ,Ci); / /Use Euclidean distance to 
//record the reconstruction error. 

end; 
sort the indices in order of increasing reconstruction error. 

best-so-far = infinity; 
for all indices //(In sorted order). 

best_match <--- NearestNeighbor(Q, best-so-far) 
//ie. Table 2 

best-so-far ~ D(Q, best_match) 
//Use best-so-far from this search 

end; / / to seed the next search. 

The speedup produced by the algorithm depends on the set of 
representations used and the data itself. Ideally we would prefer 
that the set of representations have high VIP with respect to the 
data. The set of representations available to the ensemble depends 
on the data type. For example, for indexing time series, the set of 
representations we could use include those listed in Table 5: 

Table 5. Dimensionality reduction techniques that can be used 
with E-Index to index time series. Key: {} the introducing 
paper, [] extensions and follow up work. 

• Discrete Fourier Transform { 1 }, [6, 10, 13, 18, 19, 21, 24]. 

• Discrete Wavelet Transform { 5 }, [ 13, 24]. 

• Piecewise Constant approximation { 15 }, [26]. 

• Piecewise Linear Approximation { 17 }, [22]. 

• Inner Product Approximation {9}. 

• Adaptive Piecewise Constant Approximation { 16}. 

There are some notable omissions. We could include the Discrete 
Cosine Transform (DCT), however, because both DCT and DFT 
are spectral techniques we would expect very little VIP between 
them, and therefore there is very little point in including both. 
Singular Value Decomposition has been successfully 
implemented for time series [ 15] and other types of  multimedia 
data [14] however it requires a global view of the data. It is 
possible that this list could be greatly expanded. The present 
authors have tested several novel representations in recent years. 
We were disappointed to find that while these representations 
work very well for certain types of data, they could not compete 
with existing approaches overall. This, of course, is exactly the 
property we desire for representations in the ensemble. 

3.2 A Worked Example 
The E-index has a very surprising and desirable property. Suppose 
we compare E-Index to standalone versions of indices using just 
one of the various representations in the ensemble. For example, 
we could compare E-Index with R = {DWT, DFT}, to both the 
classic DWT-Index and DFT-index. Given a query, E-Index can 
potentially return the best match faster than the best of the 
standalone approaches! Using the example above, it is possible 
that for a particular query, DWT-Index might require 100 disk 
accesses, DFT-Index might do better with only 90 disk accesses 
and E-Index might require only 50 disk accesses. Paradoxically, 
E-index can be better than the sum of its parts (more accurately, 
better than the best of it parts). This property is so unintuitive, we 
will provide a simple worked example to help the reader gain 
intuition for it. 

Imagine we need to index a database with 7 objects {A, B, C, D, 
E, F, G}. We will trace the behavior of three approaches, DFT- 
Index, DWT-Index and E-Index with R = {DWT, DFT}, for a 
particular query Q. The estimated distances in the DFT space and 
DWT space, together with the true distances are shown in Table 6. 
Remember that the estimated distances can be obtained cheaply, 
by examining the index, but the true distances can only be 
obtained by expensive disk accesses, which we are trying to 
minimize. 

Table 6. Column 1: The true distance between the query Q, 
and the seven candidate objects in the database. Columns 2 
and 3: The estimated distances in the reduced dimensionality 
space for DFT and DWT. This information is graphically 
depicted in Figure 5. 

A 

B 

C 

D 

E 

F 

G 

Dtr,,e (Q,O) DOFT(Q,O) Dowr(~,6 ) 
5 1 4 

7 2 6 

8 3 7 

9 4 8 

10 8 1 

11 9 2 

12 10 
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Figure 5. A graphical representation of the data in Table 6. The true distance between the query Q, and the seven candidate 
objects in the database is depicted in 2D space for both DWT (A) and DFT (B). Note that when the dimensionality is reduced 
from 2 dimensions to 1 dimension, the apparent distances in the reduced space are not accurate, but are lower bounding. 

The DWT-Index is examined and the pointers to objects E, F, G, 
A, B, C, D are place in the priority queue, to be examined in that 
order. Object E is retrieved from disk, and found to have a true 
distance Dtr~c(Q,E) of 10, so the best-so-far variable is initialized 
to 10. No objects can be pruned at this stage, so disk accesses are 
made to objects F, then G, then A. When A is retrieved, its true 
distance Dt~e(Q,A) is found to be 5, the best-so-far variable is 
therefore updated to 5. At that point, all the items left in the queue 
have lower bounds on their distance to the query which is greater 
than the best-so-far, so they can all be pruned. In summary, the 
DWT approach must make 4 disk accesses (to objects E, F, G and 
A). 

The DFT-ludex is examined and the pointers to objects A, B, C, 
D, E, F, G are place in the priority queue, to be examined in that 
order. Object A is retrieved from disk. It happens to be the best 
match, but it is not possible to tell that yet. The true distance 

e D O B eQ OA e C oi~,~(ow'¢l 

i i 
t5 10 5 0 5 10 15 

Dt~c(Q,A) is 5, which means that objects E, F and G can all be 
pruned, because the lower bound on their distance to Q exceeds 5. 
One by one objects B, C and D are retrieved from disk and found 
to be no better than the current best-so-far. In summary, the DFT- 
Index must make 4 disk accesses (to objects A, B, C and D). 

The E-Index builds two indices, a DWT-lndex containing A, B, 
C, D and a DFT-lndex containing E, F, G. The object A is 
retrieved from the disk, the true distance Dt~c(Q,A) is found to be 
5. All the other items in the DWT-lndex can be pruned because 
their distance to Q exceeds 5. The DFT-Index is visited next, all 
items in this index have a minimum distance that exceeds the best- 
so-far, so all objects can be pruned. In summary, the ensemble 
approach must make just 1 disk access (to object A). 

This example is of course highly contrived, it is possible to 
produce an example in which E-Index does no better than its 

B) 

OG ~E OQ ° F Oi~(DFTI 
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Figure 6. A graphical representation of the data in Table 6. Unlike Figure 5, only the objects that are tightly represented in 
wavelet space are placed in wavelet space (A), and only objects that are tightly represented in Fourier space are placed in 
Fourier space (B). 
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rivals. However it does illustrate the fact that an ensemble can be 
better than the best of it constituent parts. In the next section we 
will confirm this with an empirical study. 

4. EXPERIMENTAL EVALUATION 
To perform realistic testing, we need queries that do not have 
exact matches in the database but have similar properties of shape, 
structure, spectral signature, variance, etc. To achieve this we 
used cross validation. We removed 10% of the dataset (a 
contiguous subsection), and build the indexes with the remaining 
90%. The queries are then randomly taken from the withheld 
subsection. For each result reported on a particular dataset, for a 
particular query length, we averaged the results of 1,000 
experiments. 

For simplicity and clarity we limit ensembles to size 2 (E-Index-2, 
R = {DWT, DFT}) and 3 (E-Index-3, R = {DWT, DFT, APCA}) 
and we compared them to standalone versions of DWT, DFT and 
APCA. 

W.e tested on two datasets with widely varying properties. Many 
other researchers have used these datasets [1, 15, 17, 24, 26]. 
Small, typical subsections of each dataset are shown in Figure 7. 

• Random Walk: The sequence is a random walk, xt = xt-1 + zt 
Where zt (t = 1,2,...) are independent identically distributed 
(uniformly) random variables in the range (-500,500). 

• Space Shuttle: This dataset consists of 27 time series that 
describe the orientation of the Space Shuttle during the first eight 
hours of mission STS-57 (100,000 datapoints). 

Random Walk 

Shuttle 

Shuttle 

Figure 7. Sample queries (bold lines) and a section 
containing the best match for both the datasets used in the 
experimental study. 

To compare the pruning power of the different techniques under 
consideration we measure P, the fraction of the database that must 
be examined before we can guarantee that we have found the 
nearest match to a 1-NN query. 

p _  Number of  objects that must be examined 
Number of  objects in database (3) 

Note the value of P for any indexing approach depends only on 
the efficiency of the indexing algorithm and the data itself. It is 
completely independent of any implementation choices, including 
spatial access method, page size, computer language or hardware. 
A similar idea for evaluating indexing schemes appears in [ ! 8]. 

Table 7. The fraction P, of dataset that must be retrieved from 
disk using the five indexing approaches, for various dataset / 
query length combinations (averaged over 1,000 queries). The 
dimensionally of the index was 16 in every case. 

Data/Query DWT DFT APCA E-Index- E-Index- 
Length 2 3 

Random 0.31 0.24 0.32 0.19 0.19 
Walk 512 
Random 0.47 0.43 0.51 0.38 0.37 

Walk 1024 
Space Shuttle 0,023 0.021 0.016 0.011 0.006 

512 
Space Shuttle 0.041 0.039 0.022 0.027 0.010 

1024 

The results for the random walk dataset are not spectacular, but 
the ensembles do outperform the three competing approaches. In 
fact, we anticipated this result because there is very little VIP in 
this domain between the 3 representations under consideration 
(See Appendix A). We hoped for better results with the Space 
Shuttle data because there is high VIP between the 3 
representations for this data. Our optimism was justified, the 
Ensemble approach significantly outperforms the single 
representation approaches. We further note that the empirical 
results validate the prediction that the more representations added 
to ensemble the greater the increase in performance. 

5. RELATED WORK 
To the best of our knowledge, this paper is the first to suggest 
indexing data with ensembles of  representations in order to 
improve the query response time. Others have suggested 
combining several representations in multimedia databases but 
their motivation was to provide more accurate matches in domains 
where the best match is more subjective [20]. The idea of using 
multiple representations to improve accuracy is also well 
understood in the text retrieval community [2]. Although they are 
using multiple representations to improve effectiveness and we 
are using multiple representations to improve efficiency, the 
underlying reason for the improvement in both cases is the same. 
Representations with globally similar performance may differ 
greatly on a local level. We exploit this fact by first querying the 
data in the representation to which it is best suited. Others exploit 
this fact by querying the data in all representations, and 
combining the results. 

There has been much research in exact similarly search (i.e. search 
with the guarantee of no false dismissals) in time series [1, 5, 6, 9, 
10, 15, 16, 19 21, 24, 26], and there is an even greater body of 
research in approximate search (i.e. search that may allow false 
dismissals) [22, 17]. For brevity we will not discuss this work 
here, instead we refer the reader to [15] or [16] which contains 
detailed discussions and extensive bibliographies. 
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6. CONCLUSIONS AND DIRECTIONS 
FOR FUTURE WORK 
In this paper we introduce a new framework for indexing 
multimedia databases with ensembles of representations. 

Directions for future work include: 

• A more detailed theoretical analysis of our approach. 

• A more extensive empirical study, including other types 
of multimedia data and using more representations in 
the ensemble. 

We also believe that we may be able to further improve 
performance with a better implementation of the 
Ensemble_NearestNeighbor algorithm. We are currently 
relying on a heuristic to order the search of the representations in 
the ensemble. If possible, it would be better to search them in 
parallel, allowing all indices to share a single priority queue. 
There are, however, several difficult implementation issues that 
must be addressed before this is practical. 
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APPENDIX A 

In this paper we informally defined VIP (Variability in Indexing 
Power) as the property of  a set of different representations to 
have different performance on individual queries. Since the 
relative performance between two representations depends both 
on the indexed data and the query itself, we have postponed the 
challenge of formalizing a tighter definition or metric for future 
work. However we noted that we should expect VIP to be very 
highly correlated with the relative abilities of the different 
representations to compress the data. To test the validity of this 
assumption, we visualized the compressibility of two datasets in 
similar fashion to Figures 1 and 2. 

The results, shown in Figure AI, seem to confirm the hypotheses. 
The three representations show very little local variability in their 
ability to compress the Random Walk dataset, and this result is 
echoed the relatively small speedup achieved by E-index. In 
contrast the three representations show great local variability in 
their ability to compress the Space Shuttle dataset, and in this 
dataset we saw the greatest speedup achieved by E-index. In 
future work we hope to exploit this relationship to formalize the 
notion of VIP. 
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Figure A1. A series of graphs showing the percentage by which the various representations used in the experimental section 
are superior/inferior to each other (calculated by {max(RA, RB) - min(RA, RB)} / min(RA, RB) , where R is the 
reconstruction error for each approach). Note that there is little difference in the Random Walk domain, but large variance in 
the Space Shuttle domain. 
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