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Abstract 

A Doppler radar data assimilation system is developed based on ensemble Kalman filter 

(EnKF) method and tested with simulated radar data from a supercell storm. As a first 

implementation, we assume the forward models are perfect and radar data are sampled at the 

analysis grid points. A general purpose nonhydrostatic compressible model is used with the 

inclusion of complex multi-class ice microphysics. New aspects compared to previous studies 

include the demonstration of the ability of EnKF method in retrieving multiple microphysical 

species associated with a multi-class ice microphysics scheme, and in accurately retrieving the 

wind and thermodynamic variables. Also new are the inclusion of reflectivity observations and 

the determination of the relative role of radial velocity and reflectivity data as well as their 

spatial coverage in recovering the full flow and cloud fields. In general, the system is able to 

reestablish the model storm extremely well after a number of assimilation cycles, and best results 

are obtained when both radial velocity and reflectivity data, including reflectivity information 

outside precipitation regions, are used. Significant positive impact of the reflectivity assimilation 

is found even though the observation operator involved is nonlinear. The results also show that a 

compressible model that contains acoustic modes hence the associated error growth performs at 

least as well as an anelastic model used in previous EnKF studies at the cloud scale. 

Flow-dependent and dynamically consistent background error covariances estimated 

from the forecast ensemble play a critical role in successful assimilation and retrieval. When the 

assimilation cycles start from random initial perturbations, better results are obtained when one 

withholds during the first few cycles the updating of the fields that are not directly related to 

radar reflectivity. In fact, during the first few cycles, updating of variables indirectly related to 

reflectivity hurts the analysis. This is so because the estimated background covariances are 

unreliable at this stage of data assimilation, which is related to the way the forecast ensemble is 

initialized. Forecasts of supercell storms starting from the best assimilated initial conditions are 

shown to remain very good for at least two hours. 
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1. Introduction 

Since its first introduction by Evensen (1994), the ensemble Kalman filter (EnKF) 

technique for data assimilation has received much attention. A rapidly increasing number of 

studies are appearing that examine its performance for various applications. In the field of 

meteorology, EnKF was first applied to large-scale data assimilation problems and observations 

are treated as random variables that are subject to perturbations (Evensen 1994; Burgers et al. 

1998; Houtekamer and Mitchell 1998; 2001; Evensen 2003). Deterministic methods were 

developed more recently to avoid sampling errors associated with the use of perturbed 

observations or to address the adaptive observational network design problem; these methods 

include the ensemble square-root filter (EnSRF, Whitaker and Hamill 2002; Tippett et al. 2003), 

ensemble adjustment filter (Anderson 2001) and ensemble transform Kalman filter (Bishop et al. 

2001), all of the three belong to the broader class of square-root filters (Tippett et al. 2003). 

In general, EnKF and related methods are designed to simplify or make possible the 

computation of flow-dependent error statistics. Rather than solving the equation for the time 

evolution of the probability density function of model state, EnKF methods apply the Monte 

Carlo method to estimate the forecast error statistics. A large ensemble of model states are 

integrated forward in time using the dynamic equations, the moments of the probability density 

function are then calculated from this ensemble for different times (Evensen 2003). 

In recent years, various techniques have been developed for analyzing and retrieving 

atmospheric state at the convective scale from Doppler radar data. These methods range from 

purely kinematic to sophisticated 4D variational method (4DVAR) that employs a 

nonhydrostatic prediction model and its adjoint (e.g., Gal-Chen 1978; Sun et al. 1991; Qiu and 

Xu 1992; Shapiro et al. 1995; Sun and Crook 1997; Gao et al. 1999; Wu et al. 2000; Weygandt et 
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al. 2002). Most of the work deals with retrieval and assimilation of radial velocity and/or 

reflectivity data from single Doppler radar because dual or multiple-Doppler coverage is not 

generally available. For the purpose of initializing NWP models, the 4DVAR method (e.g., Sun 

and Crook 1997; Gao et al. 1998) promises to provide an initial condition that is consistent with 

the prediction model and is able to effectively use multiple volume scans from radar. However, 

the high cost of developing and maintaining an adjoint code, especially one that can run 

efficiently on distributed-memory parallel computer systems and the need to include in the 

adjoint detailed physical processes which are more important at the convective scales, have 

limited 4DVAR assimilations of Doppler radar and other high-resolution data to relatively 

simple applications and model settings. 

Very recently, EnKF was applied to the assimilation of simulated Doppler radar data for 

a modeled convective storm (Snyder and Zhang 2003; Zhang et al. 2004) and of real radar data 

by Dowell et al. (2004). Very encouraging results are obtained in these studies in retrieving wind, 

temperature and moisture field for convective storms. The first two studies assimilated only 

radial velocity data, while in Dowell et al. (2004), the use of reflectivity data is limited to the 

update of rainwater mixing ratio only. Neither of these studies included ice microphysics 

processes, and the assimilation system was based on an anelastic cloud model. Warm-rain 

microphysics scheme is also used in all afore-quoted 4DVAR studies except for Wu et al (2000) 

in which a simplified ice microphysics scheme was used. Dual-polarization radar data were 

assimilated by Wu et al (2000) by first deriving hydrometeor mixing ratios from regular and 

differential reflectivities.  

Because of the need to run an ensemble of forecast and analysis of nontrivial sizes 

(usually a few tens to a few hundreds), the overall computational cost of ensemble-based 



 

 3

assimilation methods is also significant. Fortunately, a significant portion of the assimilation 

procedure, including the forecast components, is easily parallelizable. There is no need in general 

for the adjoint of the forward observation operators, therefore indirect observations with complex 

observation operators, at least those that involve primarily local influences, can be easily 

included. Furthermore, the analysis code is more or less independent of the prediction model, 

just the opposite of 4DVAR method. In addition, the system provides valuable uncertainty 

information on both analysis and forecast, and when combined with an existing ensemble 

prediction system, the incremental cost can be small. 

The EnKF method is, however, not as mature as 4DVAR. No ensemble Kalman filter 

assimilation system has been implemented so far for operational use; EnKF also shares some of 

the common problems with 4DVAR, including issues with model errors, linear assumption 

associated with the optimality of solution, and Gaussian error assumption. For observations, such 

as the integrated total water along the slant paths of GPS data, the data influence region tends to 

nonlocal. In such a case, the covariance localization will have to be done around the entire slant 

path instead of around local observation points. Additional issues may arise in such cases, with 

cost being one. For systems that involve error growth at very different temporal and spatial 

scales, more difficulties may arise. For these reasons, much research is still needed before 

reliable operational implementations of ensemble-based assimilation methods can be achieved. 

More recently, work has been done in comparing the relative performance of 4DVAR and EnKF 

methods when assimilating Doppler radar data (Crook et al. 2002; Dowell et al. 2002; Caya et al. 

2004). 

In this study, we report on the development of an EnKF system based on a general-

purpose compressible nonhydrostatic model, and on the application of the system to the 
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assimilation of simulated radial velocity and/or reflectivity data from a single Doppler radar. The 

forecast model employs a complex multi-class ice microphysics scheme. The performance of the 

EnKF scheme in 'recovering' the complete state of the model thunderstorms, including wind, 

temperature, pressure and all water and ice fields are examined. The relative impact of radial 

velocity and reflectivity data as well as their spatial coverage on the analysis are also 

investigated. The use of a compressible model, the inclusion of three-category ice microphysics 

in addition to the liquid water species, and the retrieval of multiple microphysics species with 

and without reflectivity data are aspects that are new compared to previous studies. 

Even though we also performed experiments using ensemble square-root filter, we report 

here only results using the perturbed observation method. The rest of the paper is outlined as 

follows. In section 2, we describe our EnKF assimilation system and the design of OSS 

(Observing System Simulation) experiments. In section 3 we present the experiment results. The 

impact of various analyses on the forecast is discussed in section 4. A concluding section is 

given at the end. 

2. Assimilation System and Experimental Design 

a. The prediction model and truth simulation 

In this study, we test our EnKF assimilation system using simulated data from a classic 

May 20, 1977 Del City, Oklahoma supercell storm case (Ray et al. 1981).  Such simulation 

experiments are commonly referred to as Observing System Simulation Experiments (OSSE, see, 

e.g., Lord et al. 1997). The forecast model used is the Advanced Regional Prediction System 

(Xue et al. 2000; 2001; 2003). In this study, the ARPS is used in a 3D cloud model mode and the 

prognostic variables include three velocity components u, v, w, potential temperature θ, pressure 



 

 5

p, and six categories of water substances, i.e., water vapor specific humidity qv,  and mixing 

ratios for cloud water qc, rainwater qr, cloud ice qi, snow qs and hail qh. In addition, turbulence 

kinetic energy is also predicted which is used to determine turbulent mixing coefficients based 

on a 1.5-order turbulence closure scheme. The microphysical processes are parameterized using 

the three-category ice scheme of Lin et al. (1983) and its implementation follows Tao and 

Simpson (1993). More details on the model can be found in (Xue et al. 2000; 2001). 

For all experiments, the physical domain is 64 64 16× × km
3
. The model grid comprises of 

35 35 35× × grid points (including points that facillitate the specification of boundary conditions), 

with grid intervals of 2 km in the horizontal directions and 0.5 km in the vertical. The truth 

simulation or nature run is initialized from a modified real sounding as used in Xue et al (2001). 

The CAPE of the sounding is about 3300 J kg
-1

.  A 4 K ellipsoidal thermal bubble centered 

at 48x = , 16y =  and 1.5z =  km, with radii of 10 km in x and y and 1.5 km in z direction is used 

to initiate the storm. Open conditions are used at the lateral boundaries. A wave radiation 

condition is also applied at the top boundary. Free-slip conditions are applied to the bottom 

boundary. The length of simulation is up to three hours. A constant wind of 3u =  m s
-1

 and 

14v = m s
-1

 is subtracted from the observed sounding to keep the primary storm cell near the 

center of model grid. Despite the differences in resolutions, the evolution of the simulated storms 

is very similar to those documented in Xue et al. (2001). 

During the truth simulation, the initial convective cell strengthens over the first 20 

minutes. The strength of the cell then decreases over the next 30 minutes or so, which is 

associated with the splitting of the cell into two at around 55 minutes (Fig. 1). The right moving 

(relative to the storm motion vector which is towards north-northeast) cell tends to dominate the 

system; the updraft reaches a peak value of 44 m s
-1

 at 90 minutes. The left moving cell starts to 
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split again at 95 minutes. The initial cloud started to form at about 10 minutes, and rainwater 

formed at about 15 minutes. Ice phase fields appeared at about 20 minutes. 

b. Simulation of radar observations 

As a first implementation, we assume that the simulated observations are available on the 

scalar grid points. Future work will assume the availability of data in radar coordinate. The 

simulated radial velocity, Vr, is calculated from 

cos sin cos cos sinrV u v wα β α β α= + + + a random error, (1) 

where α is the elevation angle and β  the azimuth angle of radar beams, and u, v and w are the 

model-simulated velocities interpolated to the scalar points of staggered model grid. The random 

error is drawn from a normal distribution with zero mean and standard deviation of 1 m s
-1

. Since 

Vr is sampled directly from velocity fields, the effect of hydrometeor sedimentation does not 

come into play. 

The simulated logarithmic reflectivity factor (referred to simply as reflectivity in most 

parts of this paper), in dBZ, is estimated from equations as follows: 

10 6 3
10log ( )

1

e
Z

Z
mm m

−= + a random error. (2) 

The equivalent reflectivity factor, 
e

Z , is made up of three components, 

e er es eh
Z Z Z Z= + + , (3) 

where 
er

Z , 
es

Z , 
eh

Z  are contributions from rain water, snow and hail. The random error is drawn 

from a normal distribution with zero mean and standard deviation of 5 dBZ.  Reflectivity 

relations corresponding to the 10 cm wavelength of WSR-88D radars are given below and used 

in our experiments. 

The rain component of the reflectivity is calculated, based on Smith et al (1975), from 
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where 1000rρ = kg m
-3

 is the density of rainwater, ρ  in kg m
-3

 the density of air. 

68.0 10rN = × m
-4

 is the intercept parameter in the assumed Marshall-Palmer exponential rain 

drop size distribution.  

If the temperature is less than 0 Cº, then the component of reflectivity is, for dry snow, 

 
18 2 0.25 1.75

1.75 2 0.75 1.75

10 720 ( )i s s

es

r s i

K q
Z

K N

ρ ρ
π ρ
×

= . (5)  

Here 100sρ = kg m
-3

 is the density of snow and 917iρ = kg m
-3

 the density of ice. 

63.0 10sN = × m
-4

 is the intercept parameter for snow. 2

iK = 0.176 is the dielectric factor for ice 

and 2

r
K =0.93 the same for water.  Wet snow, which occurs at temperature higher than 0 Cº, is 

treated in a similar way as rain water, and the equivalent reflectivity factor-mixing ratio relation 

is 

18 1.75

1.75 0.75 1.75

10 720( )s
es

s s

q
Z

N

ρ
π ρ

×
= . (6) 

For hail, the wet hail formulation of Smith et al (1975) is used, i.e., 

0.95
18

1.6625

1.75 0.75 1.75

10 720
( )

eh h

h h

Z q
N

ρ
π ρ

⎛ ⎞×
= ⎜ ⎟

⎝ ⎠
, (7) 

where 913hρ =  kg m
-3

 is the density of hail. Hail intercept parameter of 44.0 10hN = × m
-4

 is 

used, which is slightly larger than that used in Smith et al (1975), implying more hails of smaller 

sizes. The same value is used in the ARPS implementation of Lin et al (1983) microphysics 

scheme. SI units are used in all equations above. Relations similar to the above are used in, e.g., 

Ferrier (1994). The above equations define the observation operator denoted as H in the 
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following section. When creating simulated observations for our OSS experiments, we impose a 

lower limit of 1 mm
6
m

-3
 on the equivalent reflectivity factor to yield a lower limit of 0 dBZ for 

the logarithmic reflectivity factor. 

The ground-based radar is located at the southwest corner of the computational domain, 

i.e., at the origin of x-y coordinate (c.f., Fig. 1). For data sampling and assimilation, we assume 

that the observation operators, given by the above equations, are perfect. As with most 

atmospheric data assimilation systems, the prediction model is also assumed to be perfect, i.e., 

no model error is explicitly taken into account. It is worth noting here that observation operators 

for reflectivity factors are nonlinear and because of that the error distribution of reflectivity data 

is likely non-Gaussian. Discussions on the non-Gaussian nature of error distributions associated 

with nonlinear observation operators can be found in, e.g., Lorenc (2003). One of the goals of 

this study is to assess the effectiveness of such data given these characteristics that violate the 

basic assumptions used in deriving the optimal EnKF solution. 

c. The EnKF data assimilation procedure 

Our EnKF implementation is primarily based on the algorithm described by Evensen 

(1994), Burgers et al. (1998) and Houtekamer and Mitchell (1998) which uses the perturbed-

observation method. In this algorithm, the ensemble mean is supposed to be the best estimate of 

the true state and the spread of the ensemble around the mean is a good estimate of the error in 

the ensemble mean (Evensen 2003). The forecast and analysis error covariances, given by matrix 

P, are defined as 

( )( )f f f f f f T

e
x x x x≅ = − −P P , (8) 

( )( )a a a a a a T

e
x x x x≅ = − −P P ,  (9) 
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where the overbar denotes the ensemble mean and superscripts a and f denote analysis and 

forecast, respectively. Each ensemble member is updated by analysis equation 

1[ ] ( )a f f T f o f

i i i i
x x y Hx

Τ −= + + −P H HP H R , (10) 

where i represents the i
th

 ensemble member and f

ix  is the first guess obtained from the i
th

 

ensemble forecast. H is the observation operator, which converts the model states to the observed 

parameters. H in its standard notion is the linearized version of H in a matrix form but will not be 

explicitly evaluated anywhere in the analysis procedure. The linearization is required to arrive 

the optimal analysis-covariance minimizing solution (see, e.g., Kalnay 2002). Following 

Evensen (2003) and Houtekamer and Mitchell (1998), observations are treated as random 

variables having a distribution with a mean equal to the first guess observations o
y  and error 

covariances given by matrix R. Thus an ensemble of observations are obtained by 

o o

i iy y ε= + , (11) 

and the observation error covariance matrix is calculated from the random errors added to the 

observations, as given in Eq.(11): 

T

e
εε≈ =R R , (12) 

where ε  is observation error. The above calculation of R is only possible with OSSE 

experiments where observations contaminated by errors with known variance and distribution 

are constructed. For real observations, certain estimate of R has to be made. Also, our 

assumption about the non-correlation among the observational errors determines that R is 

diagonal. Finally, in our current application, o
y  includes radial velocity and reflectivity. 

The forecast error covariances are calculated from  

1
( )( ( ) ( ))

1

N
f f f f f

i i

i

x x H x H x
N

Τ Τ≅ − −
− ∑P H , (13) 
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and 

1
( ( ) ( ))( ( ) ( ))

1

N
f f f f f

i i

i

H x H x H x H x
N

Τ Τ≅ − −
− ∑HP H .  (14) 

where N is the number of ensemble members.  The use of the nonlinear observation operator in 

the evaluation of covariances in Eqs. (13) and (14) is an advantage of EnKF compared to 

traditional extended Kalman filter for nonlinear problems  (Evensen 2003). 

As can be seen, the nonlinear observation operator H is directly used in Eqs. (13-14), H 

and its transpose are not evaluated directly (the transpose of H or the adjoint of the observation 

operator is needed by variational assimilation methods). The underlying assumption of standard 

extended Kalman filter theory (which is the basis of EnKF) is that the forecast model and the 

observation operator are linear. The nonlinearity in the forecast model and the observation 

operator (such as that of reflectivity data) can make the algorithm suboptimal. Strong 

nonlinearity would also render initially Gaussian error distributions non-Gaussian. In this study, 

the performance of the EnKF in such a situation will be examined. 

We start the initial ensemble forecast at the 20 minutes of model time when the storm cell 

developing out of an initial bubble reaches peak intensity. To initialize the ensemble members, 

random noises are added to the initially horizontally homogeneous background that is based on 

the environmental sounding. The random noises are sampled from Gaussian distributions with 

zero mean and standard deviation of 3 m s
-1

 for u, v, and w, and 3 K for potential temperature. 

The pressure, moisture, and microphysical variables are not perturbed. The technique of adding 

initial perturbation has been discussed by former studies of Snyder and Zhang (2003) and Dowell 

et al (2004). They found that adding initial perturbations to the entire computational domain 

would introduce spurious cells in individual members. Limiting the perturbation region around 

the observed storm area helps improve the assimilation result. However, for general applications 
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of EnKF, the ensemble forecast should cover all scales of motion. We chose to apply the  initial 

perturbations to the entire domain except for the grid points at the lateral boundary to keep the 

system more general. The open lateral boundary condition is sensitive to boundary errors and 

initial perturbations introduced at the boundary were found to trigger spurious storm 

development within some ensemble members. Assimilating reflectivity in clear area region is 

found to help suppress spurious cells in the interior domain, hence allowing a more general 

application of initial perturbations.  

The observations are assimilated every 5 minutes. The first analysis is performed at 25 

minutes and one hundred ensemble members are used. As mentioned earlier, observations are 

perturbed by adding Gaussian noises, with a standard deviation of 1 m s
-1

 for radial velocity and 

5 dBZ for reflectivity. The observation errors are assumed to be uncorrelated; therefore, 

observations can be and are analyzed sequentially one at a time, following Houtekamer and 

Mitchell  (2001). When using a small (relatively to the degrees of freedom of the analysis system) 

ensemble to estimate the background error covariances, the estimated values between distant grid 

points are not reliable. Therefore covariance localization is necessary (Houtekamer and Mitchell 

1998; Anderson 2001; Hamill et al. 2001; Houtekamer and Mitchell 2001).  

In our early study (Tong and Xue 2004), we limited the influence region of each 

observation to a rectangular region with half width of two grid intervals in both horizontal and 

vertical directions, equivalent to 4 and 1 km in the horizontal and vertical, respectively. Some 

useful information beyond that region of influence was not utilized (though the computation was 

faster). To spatially smooth the analysis increments as well as to localize covariances, 

Houtekamer and Mitchell (2001) proposed a method that applies Schur (elementwise) product of 

the background error covariance calculated from the ensemble and a correlation function with 
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local support. This method was also used by Dowell et al. (2004). In the same way, we multiply 

each element of the background error matrix Τ
PH  with a weight computed from correlation 

function given by Eq. (4.10) of Gaspari and Cohn (1999). The weight decreases gradually from 1 

at the observation point to zero at an effective cutoff radius and remains zero beyond. Through 

assimilation experiments with cutoff radii ranging from 4 to 10 km, we found that 8 km worked 

the best with 100 ensemble members.  This value is therefore used in all experiments presented 

in this paper. The use of a smooth filter function is found to produce significantly better analysis 

than the sharp cutoff function used earlier in Tong and Xue (2004). 

 The EnKF algorithm tends to underestimate the analysis uncertainty owning to the use of 

limited ensemble size. To solve this problem, we tested the double ensemble method 

(Houtekamer and Mitchell 1998), in which the statistics estimated from one ensemble is used to 

update the other. However, this approach overestimated the analysis uncertainty in our case and 

did not help improve our analysis. We also tested the covariance inflation approach of Anderson 

(2001), which did not work well at first. As found in Snyder and Zhang (2003), it enhances the 

spurious cell in ensemble members. A modification is then made by applying covariance 

inflation to the grid points that will be influenced directly during the analysis update by the 

observations found within the precipitation (where observed Z > 10 dBZ) regions. To do this, we 

check for each grid point to see if within 8 km radius (the same radius used by the covariance 

localization) there is at least one reflectivity data greater than 10 dBZ. If true, then covariance 

inflation is applied to this grid point. This is found to improve our analysis. The inflation factor 

we used is 1.07 or 7 percent when radial velocity or/and reflectivity data in the precipitation 

region are assimilated. When reflectivity data of complete coverage are used, the inflation factor 

is increased to 1.1 (10 percent). Zhang et al (2004) proposed another alternative to the traditional 
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covariance inflation that is to avoid enhancing spurious cells but  Caya et al (2004) found that the 

use of the method degrades the quality of analysis. 

3. The Assimilation Experiments 

Table 1 lists eight experiments to be discussed in this paper. The assimilation scheme is 

first tested by assimilating radial velocity or reflectivity data alone or by assimilating both. 

Further, data coverage tests are performed in which each data type is available either in the entire 

domain or only in regions where reflectivity exceeds 10 dBZ (referred to as precipitation region). 

Additional variations have to do with the ways analysis variables are updated during the 

assimilation cycles. The results are discussed in the following sections. 

a. Assimilations using radial velocity data only 

In experiment VrP (see Table 1), we assume that the radial velocity data are available in 

precipitation regions where reflectivity is greater than 10 dBZ. After only one analysis cycle (at t 

= 25 min), the basic patterns of middle-level horizontal winds around the storm appear 

reasonable (not shown). After three more analysis cycles, i.e., by 40 min., the basic structures of 

updraft and horizontal flow (Fig. 1e) as well as perturbation temperature (not shown) above the 

low-level cold pool are reasonably well retrieved. The low-level cold pool and the associated 

divergence are too weak at this time (Fig. 2e). Some hydrometeors can be retrieved at this time, 

but their amount and locations are not yet accurate. Two more assimilation cycles later, at 50 

min., the strength of the updraft and the magnitude of the temperature perturbation (except that 

in the low-level cold pool) become reasonably good. 

At 60 min., the retrieved microphysical fields also become rather close to the truth as 

seen from the vertical cross-sections (Fig. 3 (a2)-(f2)), so do most other fields (Fig. 1f and Fig. 
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2f). The largest differences at this time are found at the low levels (Fig. 2f) where precipitation 

and cooling in the otherwise unperturbed low-level inflow region exist, and near the western 

boundary. Evaporative cooling due to spurious precipitation in some ensemble members was the 

cause. Much of the error is corrected by subsequent analyses and by 100 min. (Fig. 2h), the 

precipitation in the inflow region is generally gone except for a small area ahead of the rear-flank 

gust front. The low-level flow and reflectivity patterns as well as the shape of the cold pool now 

agree quite well with the truth (Fig. 2h and d); although small differences are still found with the 

exact location of the boundary of rain-cooled regions (as indicated by the zero degree θ' contours) 

and in the areal coverage of leading precipitation region on the east-northeast side. The 

agreement at the 6 km level is even better (Fig. 1h and d). These results indicate that even with 

radial velocity data in precipitation region only, the EnKF system is able to rebuild the model 

storm remarkably well after a sufficient number of assimilation cycles. Analysis of such quality 

can only be expected of methods that make use of multiple radar volume scans effectively and in 

a way that is compatible with the hopefully correct model physics. 

We use the root-mean-square (rms) error of ensemble mean analysis to judge 

quantitatively the quality of the analysis. The rms errors are averaged over those grid points 

where the reflectivity is greater than 10 dBZ. The rms errors of velocities, temperature, cloud and 

hydrometeor variables in experiment VrP are seen to decrease rapidly during the first four 

assimilation cycles (over 20 minutes) and the analysis tends to converge at about 70 minutes (Fig. 

4, gray curves). When the analysis converges, the rms analysis error for horizontal wind 

components is generally less than 1 m s
-1

 and about 0.5 m s
-1

 for vertical velocity. For 

perturbation potential temperature θ', the analysis error decreases to less than 0.5 K at 60 minutes. 

Such velocity errors are similar to or less than the observational errors added to the radial 
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velocity. It means that after eight to ten assimilation cycles, the EnKF system is producing a very 

good estimate of the state of simulated storm. 

In experiment VrF, in which Vr data cover the entire domain, the analysis converges more 

quickly and the analysis errors are smaller (black dotted lines in Fig. 4). The retrieved winds, 

potential temperature, pressure and water vapor content are significantly better than those of VrP 

case. The retrieved microphysical fields are also improved, but not as much as when full 

coverage reflectivity data are used (results to be presented later). For radial velocity data to be 

available outside the precipitation region, the radar has to be operating in high sensitivity mode, 

which is generally not the case with the WSR-88D network when precipitation is present. 

However, when such data are available, our experiment shows clear positive impact of the data. 

In our earlier study (Tong and Xue 2004), we found that when pressure field is analyzed 

(updated by the analysis procedure), the pressure error increases instead of decreases after each 

analysis cycle.  A careful examination of the results reveals that the main problem was associated 

with a domain-wide pressure drift in the forecast that often occurs in simulations using a small 

computational domain and an open boundary condition. The background error covariance 

between pressure and observations in the presence of pressure drift was apparently not correct, 

causing negative analysis impact on pressure field. In all experiments presented here, the 

pressure detrending option of ARPS model is turned on, which forces the domain-mean 

perturbation Exner function to zero after each forecast time step. The model solution, at least in 

the dry case, should be independent of the perturbation Exner function to an arbitrary constant. 

After applying pressure detrending, pressure drift is much controlled and the update of 

pressure by analysis does reduce its error in general, though not as much as for other fields 

(compare, e.g., gray curves in Fig. 4e and Fig. 4c). At 40 min. in the current experiment (VrP), 
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the basic pattern of perturbation pressure can be reasonably reconstructed (not shown). 

Noticeable noises associated with acoustic oscillations remain at low levels at this time which are 

reduced by additional assimilation cycles. However, it can be seen from Fig. 4e (gray curve), the 

forecast error of the pressure perturbation starts to increase again at 65 min., and the error is not 

effectively reduced by further analysis. It is found that in this case some positive pressure drift 

still occurs in the ensemble-mean forecast and analysis below 4 km. The positive pressure 

perturbation associated with the cold pool is about 20 Pa higher than in the truth. The low 

pressure below the updraft is not as low as it should be. Such pressure biases appear to be 

preventing the EnKF scheme to work effectively in reducing the pressure errors, which is only 

indirectly related to Vr. It will be shown later that when reflectivity data are assimilated, the 

pressure drift problem is alleviated and the analysis of pressure is improved. 

b. Impact of assimilating reflectivity data 

Reflectivity is a measurement that is provided by all types of weather radar. In this 

section, we examine if reflectivity data alone is sufficient for the model to reproduce the true 

storm; we also study its value when used in combination with radial velocity data. We note that 

the observation operator for reflectivity is nonlinear and there exist more uncertainties with 

reflectivity operator (because of uncertainties with cloud microphysics, effects of attenuation, 

among others) than with radial velocity. In our model, the rainwater, snow and hail mixing ratios, 

qr, qs, and qh, are directly related to observed reflectivity through Eqs. (3)-(7). Therefore, the 

experiments further test the performance of the EnKF scheme for nonlinear observations.  

In experiment ZP (see Table 1), reflectivity (Z) data greater than 10 dBZ are assimilated 

but not radial velocity. Generally, the analysis obtained by assimilating reflectivity data only is 

not as good as the analysis assimilating redial velocity data alone. As can be seen in Fig. 4 (black 
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curves), the analysis acts to reduce the rms errors in qr, qh, qs, qc, qi, w and 'θ from the third cycle 

with the reduction of error in qh being much larger. Significant reduction in errors of horizontal 

wind components and in qv did not start until after four to five cycles. In fact, during the first two 

cycles, the update of most variables increases rather than decreases the error (see, e.g., the black 

curves in Fig. 4d for 'θ  and Fig. 4h for qv). Significant reduction in errors of horizontal wind 

components and in qv did not start until after four to five cycles.  

The delay in the reduction of or even increase in the rms errors in variables not directly 

related to Z is related to our initial perturbation method. When the ensemble members are 

initialized, cloud and hydrometeor fields are not perturbed. This is reasonable because the 

location of precipitation region is unknown before observational data are introduced. Adding 

hydrometeor perturbations everywhere in the model is undesirable because non-zero values in 

certain variables like cloud ice should only exist under certain conditions. If the initial 

background contains some information about the cloud, then random perturbations can be added 

to the related fields in a similar way we do the other fields.  Without direct initial perturbations to 

them, it takes the model a couple of assimilation cycles to develop cloud and hydrometeors and 

to establish coherent covariance structures for a reliable estimation of error covariances. For 

these reasons, updating indirectly related variables in the first few cycles increases their errors. 

Enough ensemble spread is established starting from the third assimilation cycle; from then on, 

the analysis is able to correct forecast errors in fields including w, θ', qc, qr, qi, qs and qh (Fig. 4). 

Reliable covariances between reflectivity and p, qv and horizontal wind components are slower 

to establish and the analysis correction starts a couple of cycles later. 

Because of the lack of reliable covariances, the retrieved model fields in ZP are not good 

at 40 min. (Fig. 1i). By 45 min., the storm updraft and temperature perturbation pattern become 
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reasonable. The locations of the hydrometeors are now close to the truth. However, horizontal 

wind patterns are still not very good at this time. From 60 minutes on, the basic structure and the 

evolution of the storm including the split storm cells become rather accurate. The errors in all 

fields are further reduced in the subsequent assimilation cycles (Fig. 4), but remain higher than 

the VrP case by the end of the assimilation period (100 min.). 

Retrieving the model state from the observed variables in the EnKF system relies heavily 

on a good estimate of the flow-dependent multivariate background error covariances. Fig. 5 

shows, for experiment ZP, the forecast background error correlations between reflectivity at 

point x = 32 km, z = 6 km and model variables at each grid point in an x-z vertical cross section 

through the maximum updraft (y = 29 km) at 80 min. (the correlation patterns for other 

experiments at this time are similar). As can be seen, for the water and ice fields, significant 

correlations are mostly confined to the regions where their non-zero values are found. For w and 

'θ , the correlation patterns also match those of w and 'θ  themselves in general, and significant 

correlations extend through much of the troposphere depth, which is consistent with the nature of 

deep convection. The maximum correlations for w and 'θ  exceed 0.8, indicating that they are 

highly correlated with reflectivity. Generally, positive correlations are associated with updraft 

and high buoyancy; negative correlations are found in the recirculation regions. The correlation 

for 'θ  spreads above the tropopause in a wavy pattern to both upstream and downstream, which 

should be related to the gravity wave propagation in the stable stratification there.  

Even for pressure, coherent structures of significant correlation exist. Maximum negative 

correlation is found at the mid levels where perturbation pressure has a minimum; maximum 

positive correlation exists near the cloud top. This correlation pattern can be explained by the 

rotating supercell storm dynamics. Stronger updraft rotation produces lower mid-level pressure 
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which promotes stronger updraft therefore produces more reflectivity. Stronger updraft, 

accompanied by larger reflectivity, will produce larger positive pressure perturbations at the 

cloud top due to both hydrostatic and Bernoulli effects. These suggest that the error correlations 

estimated from the forecast ensemble are dynamically consistent. It is these valuable correlations 

that act to spread the information from the observation points to the finite domain surrounding 

them and that retrieve the unobserved variables from the observed ones. The results also justify 

our choice of the influence region in covariance localization. Most significant correlations within 

4 km from the center of the influence region are kept and smaller weights are given to the 

correlations extending up to 8 km. 

c. Assimilation of both radial velocity and reflectivity 

In the next set of experiments (VrZPa-c, VrPZF, see Table 1), we combine the radial 

velocity and reflectivity data into the assimilation process. Experiment VrZPa is a combination 

of VrP and ZP, in which both the radial velocity and reflectivity in precipitation regions (Z > 10 

dBZ) are assimilated, using the same procedure as in VrP and ZP. Compared to VrP (Fig. 6), 

when additional reflectivity data are introduced, the analyses of qr, qs and qh are generally 

improved, especially for qr and qh, as indicated by lower errors after each analysis. The forecast 

error growth in this experiment is faster, however, even for those three variables directly related 

to Z. 

The analysis errors of qv and p' remain higher than those in VrP until 60 and 80 min., 

respectively, but become noticeably smaller afterwards. For most part of the assimilation period, 

the wind components are not as accurate as those retrieved by assimilating only Vr, but can reach 

the same accuracy in the last a few cycles. For θ', qc and qi, the analysis errors from VrZPa are 

larger in the first 2-3 cycles, smaller in the next few then remain similar to those in VrP case.  
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The lack of significant positive impact by the inclusion of reflectivity data, especially 

during the first few assimilation cycles, is due to the reasons discussed earlier for ZP. In the first 

two to four cycles, background error covariances between reflectivity and the model variables 

that are not directly related to Z are not reliable. Updating these variables based on reflectivity 

data and the unreliable covariances hurts the analysis, as indicated by the increase of errors in w, 

θ', qc and qv by, e.g., the second analysis cycle (the error increase is actually rather bad for qc and 

qv, see Fig. 6). The increased analysis errors lead to less accurate forecast and faster error growth. 

Despite all this, the analyses towards the end of the assimilation period is similar or better for 

most fields in VrZPa than in VrP, indicating significant positive impact of Z when good error 

estimation becomes available. Interestingly, the degradation of the analysis in the early cycles by 

the assimilation of rainwater content is also noted by Caya et al (2004), which includes warm 

rain microphysics. 

We note that in Dowell et al. (2004) which employs warm rain microphysics, it is found 

that updating qr only when assimilating reflectivity observations help maintain a realistic 

structure of the precipitation core and improve velocity verification score. We performed a 

corresponding experiment, VrZPb (black curves in Fig. 7), in which only qr, qs, and qh are 

updated when assimilating reflectivity. As was found in VrZPa, the analyses of qr, qs and qh are 

improved over those of VrP. The analysis of qv is also better. For most of the other variables, the 

improvement over VrP is generally small, if any (Fig. 7). There are also a few cycles in which 

the retrieved w and qi are not as good as those of VrP.  Since it was shown earlier that reflectivity 

does have significant correlations with indirectly related variables (Fig. 5), we do not believe it 

appropriate to completely exclude those variables from the analysis update when assimilating 

reflectivity data. A better solution needs to be found. 
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From previous experiments, it can be seen that the negative impact of using reflectivity to 

update variables rather than qr, qs, and qh is mainly caused by the incorrect background 

covariances in the first two to three cycles. After that, the reflectivity becomes beneficial in 

retrieving those model fields. To see if we can further improve the analysis, in experiment VrZPc 

(Table 1), we apply the update due to reflectivity only to qr, qs, and qh before the fourth cycle. 

Starting from the fourth cycle, all models variables are updated. It is shown in Fig. 8 that doing 

so improves the analysis overall. The retrieved qv, potential temperature and pressure are 

improved over VrP more than those in experiment VrZPb. Significant improvement could also 

be found in qc and qs. For velocity components, the improvements are also slightly larger, 

especially in the later cycles.  

The retrieved updraft and horizontal wind field in the middle level are shown in Fig. 1 in 

panels m though p. The detailed structures of the updraft of the split cells starting from 60 min 

(panels n through p) are retrieved better than those in either VrP (plots f through h) or ZP (plots j 

through l). At 80 and 100 min., the pattern and strength of the left mover, a less organized 

therefore more difficult one analyze, are clearly better retrieved by experiment VrZPc. Fig. 2 

shows the retrieved low-level cold pool, gust front and precipitation pattern by different 

experiments, in terms of the low-level θ', wind vectors and model computed reflectivity. The 

benefit of using reflectivity data can be better seen from this figure. Without reflectivity data 

(VrP), the retrieved precipitation is much less, especially during the early cycles. Spurious 

echoes are found in the clear air region in both cases but much less so in VrZPc (Fig. 2). They 

are related to spurious cells in individual ensemble members. The assimilation of reflectivity data 

reduced the spurious echoes. 

In the previous experiments, only reflectivity larger than 10 dBZ is assimilated. In reality, 
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reflectivity outside the precipitation regions also contains valid information. At least it indicates 

the absence of precipitating particles there. One can therefore assume that the reflectivity data 

cover the entire region within the radar range, which in our current case means the entire 

computational domain. In our next OSS experiment, named VrPZF (Table 1), reflectivity 

information is available everywhere while radial velocity data remain available in precipitation 

(Z > 10 dBZ) regions only. As in VrZPc, u, v, w, 'θ , qv, qc, and qi are updated starting from the 

fourth cycle when assimilating reflectivity while qr, qs and qh are updated from beginning. 

The complete coverage of reflectivity data can remove spurious cells that would 

otherwise develop in the data void regions. The rms analysis errors in VrPZF (Fig. 9, thin black 

curves) are decreased more over those in VrP or VrZPc (Fig. 8). The retrieved horizontal wind 

fields, the strength of the updraft (Fig. 1), the low-level perturbation potential temperature (Fig. 2) 

and the microphysical fields (Fig. 3) are more accurate than those retrieved by any of the 

previous experiments. The reflectivity computed from the analysis (Fig. 1m-p) very closely 

resembles that in the truth simulation with no spurious echoes found in the clear air region. 

Towards the later period of assimilation, the strength of the low-level cold pool can be retrieved 

very well by all of the three experiments (Fig. 2). However, only when complete reflectivity data 

coverage is used, as in the case of VrPZF, can the extent of the low-level rain-cooled air, as 

indicated by the 0 K contour of perturbation potential temperature, be accurately determined. 

This is actually very important for the subsequent forecast as spurious cooling in the inflow 

region is found in some cases to reduce the CAPE in the inflow and adversely affects the 

evolution of ensuing forecast. VrPZF produces the best forecast (more later) among all 

assimilation experiments, for this and other reasons. 

Finally, we briefly discuss the ensemble spread which is defined as the square root of the 
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ensemble variance and plotted in Fig. 9 for experiment VrPZF.  Since EnKF estimates the 

forecast error using the ensemble spread, in ideal situation, the ratio of the spread of the 

ensemble to the error of the ensemble mean forecast is equal to /( 1)
e e

N N +  (Murphy 1988). 

As we can see from Fig. 9, the ensemble spread gradually approaches the ensemble mean 

forecast error for most variables, a favorable sign. During the early cycles, the ensemble spread is 

much smaller than the rms error and therefore provides a poor representation of forecast error, a 

behavior also observed by Snyder and Zhang (2003). The ratio increases rapidly during the first 

6 to 8 cycles for most variables (mainly because of the rapid decrease in forecast errors) then 

becomes more stable. In the last four or so cycles, this ratio starts to decrease again, especially 

for u, v, w, θ' and p'. Such a decrease is typically observed as EnKF goes through successive 

assimilation cycles (e.g., Houtekamer and Mitchell 1998) owing to a systematic underestimation 

of the analysis variance. In our case, this decrease in the later cycles is mainly due to the faster 

error growth in the forecast rather than to change in the ensemble spread; in fact, the ensemble 

spread remains essentially constant in the later cycles. The faster forecast error growth is, we 

believe, due to the more transient nature of the flow after the storm went through more than two 

splits.  Snyder and Zhang (2003) noted, however, a continued increase in the spread-to-error 

ratio, and attibuted the increase to the presence of spurious cells in individual memebers. A 

similar behavior is also observed in our experiment, VrP, in which spurious cells are not 

effectively supressed as they are in VrPZF. We further note that in the last few cycles of VrPZF, 

despite the increased forecast errors (Fig. 9), the analysis errors do not increase or increase very 

little, indicating that the filter is well behaved. 

d. Retrieval of microphysical fields 

The microphysics retrieval is an important aspect of convective-scale data assimilation. 
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Relatively few previous data assimilation studies have focused on this problem. Most of these 

studies used only a simple microphysical parameterization and the ice phase is usually excluded. 

The more recent attempt of Wu et al (2000) uses a 4DVAR system to assimilate dual-

polarization radar data into a cloud model. Generally, a good bulk ice microphysics 

parameterization includes ice categories for cloud ice (individual crystals), snow (aggregates), 

and graupel and/or hail. As pointed out by Wu et al (2000), such a model will have a complex 

adjoint model involving many nonlinearities, and the 4DVAR system based on such adjoint 

tends to have poor convergence properties. For these reasons, Wu et al (2000) made 

simplifications by using a scheme without the snow category and by merging cloud water and 

cloud ice categories. Such simplifications reduce the degrees of freedom (or the number of 

control or analysis variables), and also reduce the number of, usually highly nonlinear, 

microphysical processes.  In addition, in Wu et al (2000), the reflectivity and differential 

reflectivity data are converted first to rain and hail mixing ratios before assimilation, rather than 

being assimilated directly. The differential reflectivity data are necessary for such a conversion.  

In our study, the original detailed ice microphysics parameterization of Lin et al (1983) is 

used and only standard reflectivity is assumed available. As a result, our problem is more 

difficult because more water and ice species have to be determined and no dual polarization 

information is available. Yet, the EnKF scheme does not seem to have any serious difficulty. Fig. 

3 shows the distribution of the perturbation water vapor and five categories of water substances 

for the truth run and for selected assimilation experiments. It can be seen that the EnKF data 

assimilation system is able to establish detailed microphysical structures that have very high 

fidelity. The quality of actual analysis does depend on the usage and availability of data, as 

indicated quantitatively by the error plots discussed earlier. 
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To better understand the way the EnKF scheme works and the role of updating 

microphysical fields, we performed another experiment, named VrPnoIce, in which ice variables 

qi, qs, and qh are not updated by the analysis and only radial velocity in precipitation regions are 

assimilated. The differences in error between VrPnoIce and VrP start to show from the third 

cycle and increase with successive cycles (Fig. 10). It can be seen that without the analysis 

update to these three variables, the rms error of qs analysis is greater than even that of the 

ensemble-mean forecast of experiment VrP. The qs field at 60 min (Fig. 3(e3)) exhibits larger 

spatial coverage in VrPnoIce and is less accurate than that of VrP (Fig. 3(e2)). The smaller 

difference in the earlier period reflects relatively weak link (through background error covariance) 

between Vr and these three variables. The link apparently becomes stronger and more effective in 

correcting errors in these fields at the later stage (as in the case of VrP). On the other hand, 

despite the lack of direct correction in VrPnoIce to qi, qs, and qh, the errors in these fields are still 

reduced with time in general. Such reductions are achieved through model dynamics; when other 

model fields are improved, fields that are not directly updated have to adjust and become 

consistent with these fields. This points to the power of model-based dynamic data assimilation 

methods. 

Further comparison of VrP and ZP helps us understand the interactions between the 

analyses of different variables. We see from Fig. 4, that the errors in the wind, temperature and 

pressure fields remain much higher in ZP case than in VrP for almost the entire assimilation 

period, with the differences being largest during the earlier cycles. During this early period, the 

assimilation of reflectivity data in ZP is very effectively in reducing errors in qh, qs as well as in 

qr while the generally poor analysis of the other fields is causing rapid increases in the forecast 

error. We note here that the fact that qr, qs and qh are directly related to Z does not guarantee a 
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good retrieval of them because without the help of error covariances offered by the EnKF 

scheme, the problem is underdetermined. When reflectivity data are combined with radial 

velocity data, very accurate microphysical fields can be retrieved (Fig. 2 and Fig. 3). With Vr 

data only (the case of VrP), the maximum value of qh in Fig. 3(f 2) is 5.73 g kg
-1

 at 60 min while 

the true value is 6.63 g kg
-1

. If the ice hydrometeors are not updated when assimilating Vr  

(experiment VrPnoIce), the maximum is larger than 1 g kg
-1

 smaller than the truth.  The addition 

of full-coverage reflectivity data (Fig. 3(f5)) yields a maximum value of 6.37 g kg
-1

 that is closer 

to the truth.  

4. Forecasts from ensemble-mean analyses 

Since the goal of data assimilation is to provide a good initial condition for numerical 

weather prediction, in this section, we look at the quality of forecasts produced from the analyses. 

Fig. 11 shows the truth and two forecasts over a 130 minute period that are initialized from the 

ensemble-mean analyses from experiments VrP and VrPZF at 80 min. Within the first 20 

minutes (from 80 to 100 min), the forecast of VrPZF maintains most details of the storm very 

well, including the strength, structure and location of the updraft and the further splitting of the 

left mover. Within the first hour of forecast, the position of the right mover is forecast very 

accurately by experiment VrPZF. After that, the center of the right moving cell is displaced 

about 4 to 8 km eastward during its southeastward propagation. The forecast beginning from VrP 

roughly captures the evolution of the storm but not as accurately as in VrPZF. The right mover 

propagates southeastwards even faster than in VrPZF and reaches the southern boundary earlier; 

at 210 min., the structure of forecast storm is rather different from that of true one. 

Figure 12 shows the rms errors (averaged over the entire domain) of forecasts beginning 

from the ensemble-mean analyses of different times from experiments VrP and VrPZF. 
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Generally, more accurate estimate of the initial condition yields better forecast. It can be seen 

that for all these forecasts, within the first 80 minutes, both the forecast error and the forecast 

error growth rate of VrPZF (black thick curves) is smaller than those of VrP (gray thin curves). 

For the forecasts starting from 80 min., a large difference is seen in rainwater at around 120 min 

between the forecast errors of these two experiments (Fig. 12c). Within the first 40 minutes of 

forecast, the qr forecast error in VrP grows much faster than in VrPZF. The low-level rainwater 

was over-forecast by experiment VrP. For example, at 105 min, the maximum value of the 

forecast rainwater at 250 m AGL is 8.54 g kg
-1

 for experiment VrP, while that of the truth is only 

5.91 g kg
-1

 (not shown). The low-level rainwater was also over-forecast by experiment VrPZF, 

but not as much. The forecast distribution of the rainwater in VrPZF is always closer to the truth 

than in VrP. The comparison of the forecast errors of these two experiments further verifies the 

benefit of assimilating reflectivity data in both precipitation and clear air regions. For forecasts 

starting from the ensemble-mean analysis of VrF (not shown here), the errors are smaller than 

those of VrP, but generally bigger than those of VrPZF within the 80 minutes of forecast. 

We note that for the forecasts starting from 100 min, the errors of VrPZF grow faster 

after 175 min and eventually become larger than those of VrP.  This is found to be mainly 

associated with the slower southeastward propagation of the forecast storm in VrPZF than the 

true storm. Usually, phase error increases with the length of forecast. In this case, the center of 

the updraft forecast by experiment VrPZF is located 2 to 8 km, or 1 to 4 grid intervals, north of 

the true storm during the last 50 minutes. The center of the updraft in VrP is closer to the true 

storm during the later forecast period. However, within the last 20 minutes phase error also 

occurs within VrP. The forecast storm moves faster than the true storm and the center of the 

updraft becomes displaced by 2 to 4 km to the south of the true storm. Still, the storm structure in 
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VrPZF is better than that in VrP at this stage. 

The success of the forecast depends not only on the accuracy of the analysis of storm, but 

also on the analysis of the storm environment. In our initial tests, in which the boundary zone is 

perturbed at the initial time of ensemble forecast, we obtained similarly good analyses. However, 

the forecasts from some of these analyses deteriorated quickly with time. In a forecast starting 

from analysis at 100 min, the right mover quickly decays and moves northeastward. We found in 

that case the low-level air was drier and the CAPE was reduced in the storm inflow region. 

Spurious cells triggered near the boundary in individual ensemble members contributed to this. 

Not perturbing the boundary at the initial time and the use of zero reflectivity information 

outside the precipitation regions helped alleviate the problem.  For general applications, other 

means and data should be employed to ensure a good analysis of the storm environment, which 

for prediction purpose appears to be at least as important as the analysis of the storms themselves. 

5. Summary and discussion 

In this study we applied the ensemble Kalman filter technique to the assimilation of 

simulated radar radial velocity and reflectivity data, using a compressible model with a complex 

multi-class ice microphysics scheme. The inclusion of a complex multi-class ice microphysics 

has not been done before in either EnKF or 4DVAR assimilation of radar data. Doing so 

introduces additional model state (ice microphysics) variables that impose additional challenges 

to the retrieval problem. Previously published EnKF research did not carefully examine the 

impact of assimilating reflectivity data either, nor has attention been paid to the analysis quality 

of microphysical variables. Our work also represents the first time that a compressible model is 

used in the context of EnKF assimilation at the cloud scale. 

The EnKF method is shown to have great potentials for the assimilation of such data and 
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for thunderstorm prediction. Although the observation operator for the reflectivity data is 

nonlinear, which may lead to non-Gaussian error distribution and violate the basic assumptions 

of the Kalman filter algorithm, direct assimilation of reflectivity data is shown to provide 

positive impact overall on the analysis and subsequent forecast. 

Flow-dependent forecast error covariances estimated from the ensemble states play a 

critical role in the assimilation process. Through them not only can the wind and thermodynamic 

fields be retrieved accurately, all five categories of cloud and hydrometeor variables can also be 

retrieved successfully. Compared to 4DVAR, the EnKF is a much easier yet effective method to 

obtain microphysical fields that are compatible with the model dynamics, thermodynamics and 

microphysics. Compared to early efforts that insert radar observations directly into numerical 

models without the use of covariance information (e.g., Liou et al. 1991), the EnKF method 

enjoys a much greater success. The importance of spatial covariance information is further 

supported by that fact that worse analysis is obtained when the effective radius of covariance 

localization is too small (results not shown).  

Reliable and dynamically consistent multivariate covariances between the observed 

quantities and the state variables not directly related to them can be obtained after a few 

assimilation cycles, even when the ensemble is started from initial guesses made of an 

environmental sounding plus random perturbations. Spatial covariance structures are shown to be 

dynamically consistent. After the initial two to three cycles, useful observational information can 

be spread in space and to indirectly related variables. Delaying the update of indirectly related 

variables until after first few cycles when assimilating reflectivity data produces the best analysis. 

Using reflectivity information in clear air regions is very beneficial in suppressing spurious 

storms (assuming that the radar network provides a complete spatial coverage). The forecast 
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initiated from the ensemble-mean analysis using Vr and full coverage reflectivity data is shown 

to be the best within about 80 minutes of all three forecasts presented. We should point out here 

if the EnKF assimilation system is run in a continuously-cycled mode, as an operational system 

should be, or if the ensemble is initalized in a more physical way, such as using the breeding 

method (Toth and Kalnay 1997), then the delay in updating indirectly related variables may not 

be necessary. 

The EnKF data assimilation results reported here used 100 ensemble members. We found 

that 40 ensemble members are enough to produce good analysis result, except that the filter 

convergence rate is a little slower. With 40 members, the radius of the data influence region 

needs to be smaller. A radius of 6 km is found to produce the best result in this case. 

Snyder and Zhang (2003) noted that the results of their EnKF experiments were subject 

to some random variability associated with the specific realizations of the initial ensemble and 

observation errors. In this study, we have repeated some of the experiments with different 

realizations and we did not notice any signifnicant deviation from the results reported here in 

terms of the error characteristics. The larger ensemble size used here may account for some of 

the reduced variability. 

For larger applications, the analysis algorithm needs to be parallelized for distributed-

memory parallel platforms. For our current application, we used shared-memory parallelization 

via OpenMP for the computation of the background error covariance PHΤ , which is the most 

expensive part of the algorithm. Four processors of IBM Regatta (model p-690) give a speedup 

of 3.5 for the analysis. The ensemble forecasts were distributed among a number of processors. 

Finally, we note that caution should be used when interpreting OSSE results. Both 

forecast model and forward observation operators are assumed perfect in the current work. The 
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effects of model error need to be studied in the future. Much work is still needed in moving us in 

the direction of real case and real data. We also mention that similar set of assimilations using 

square-root EnKF, which does not perturb the observations (as used in e.g., Snyder and Zhang 

2003), has also been conducted with generally similar conclusions. 
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 Table 1. List of Data Assimilation Experiments 

 

 

Experiment 

Observation: Radial 

velocity (Vr) and/or 

Reflectivity (Z) 

 

Update qi, qs, 

qh 

Update u, v, w, qv, qc, 

qi when assimilating 

reflectivity 

VrP Vr (Z > 10 dBZ) yes  

VrF Vr yes  

ZP Z (Z > 10 dBZ) yes yes 

VrZPa Vr & Z (Z > 10 

dBZ) 

yes yes 

VrZPb Vr & Z (Z > 10 

dBZ) 

yes no 

VrZPc Vr & Z (Z > 10 

dBZ) 

yes yes, start from 4th 

cycle 

VrPZF Vr (Z > 10dBZ) & Z yes yes, start from 4th 

cycle 

VrPnoIce Vr (Z > 10 dBZ) no  
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List of Figures 

Fig. 1. Vertical velocity (contours and shading at intervals of 4 m s
-1

) and horizontal perturbation 

wind (vectors, plotted every other grid point; m s
-1

), at level z = 6 km: (a)-(d) truth 

simulation; analyses from VrP (e)-(h), ZP (i)-(l); VrZPc (m)-(p); VrPZF (q)-(t), at t = 40, 

60, 80 and 100 min during the assimilation period. 

Fig. 2. Horizontal perturbation wind (vectors; m s
-1

), perturbation potential temperature (thick 

black lines for 0 K and thin dashed contours at 0.5 K intervals) and computed reflectivity 

(thick solid contours and shading at intervals of 5 dBZ, starting from 15 dBZ) at z = 250 m: 

truth (a)-(d), EnKF analyses from VrP (e)-(h), VrZPc (i)-(l) and VrPZF (m)-(p). 

Fig. 3. The retrieved (a) qv perturbation (solid (dash) contours represent positive (negative) 

values) (b) qc, (c) qr, (d) qi, (e) qs and (f) qh. (contours and shading at intervals of 0.5 g kg
-1

 

for qv perturbation, qc, qi and qs, and of 1.0 g  kg
-1

 for qr and qh.) in the x-z plane at y = 29 

km that pass through the maximum updraft at t = 60 min: (a1)-(f1) truth simulation, (a2)-

(f2) VrP, (a3)-(f3) VrPnoIce, (a4)-(f4) ZP and (a5)-(f5) VrPZF. 

Fig. 4. The rms errors of ensemble-mean forecast and analysis, averaged over points at which the 

reflectivity is greater than 10dBZ for: a) u (ms
-1

), b) v, c) w and d) perturbation potential 

temperature 'θ , e) perturbation pressure 'p , f) qc, g) qr, h) qv (the curves with larger values), 

qi (the curves with lower values), i) qs and j) qh, for experiment VrP (gray), experiment ZP 

(black) and experiment VrF (black dotted lines). Units are shown in the plots. The drop of 

the error curves at specific times corresponds to the reduction of error by analysis. 

Fig. 5. Forecast error correlations estimated from an ensemble at t = 80 min for experiment ZP in 

the x-z plane at y=29 km, which passes through the maximum updraft. The error correlation 

[thick solid (dash) contours represent positive (negative) correlations at intervals of 0.2] 
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between forecast reflectivity Z at x=32 km and z=6 km (indicated by a black dot) and (a) u, 

(b) w, (c) 'θ , (d) 'p , (e) qc , (f) qr, (g) qi, and (h) qh. The shading and thin solid (thin 

dashed) contours in (a) - (d) indicate positive (negative) values of model fields from the 

truth simulation with increment of 4 ms
-1

 for u and w; 2 K for 'θ  and 40Pa for 'p . The 

shading and thin contours in (e)-(h) indicate the values of mixing ratio of water and ice 

fields from the truth simulation with increment of 0.5 g kg
-1

 for qc, and qi and 1 g kg
-1

 for qr 

and qh. 

Fig. 6. As in Fig. 4, but for experiment VrZPa (black) and experiment VrP (gray). 

Fig. 7. As in Fig. 4, but for experiment VrZPb (black) and experiment VrP (gray). 

Fig. 8. As in Fig. 4, but for experiment VrZPc (black) and experiment VrP (gray). 

Fig. 9. As in Fig. 4, but for experiment VrPZF (thin black curves) and experiment VrP (thin gray 

curves). The additional thick black curves are for the analysis and forecast ensemble spread 

of VrPZF, and the spread is calculated only at the points where reflectivity is greater than 

10 dBZ, as the errors are. 

Fig. 10. RMS error of (a) qi, (b) qs, (c) qh for VrP (gray) and VrPnoIce (black). 

Fig. 11. Vertical velocity (contours and shading at intervals of 4 ms
-1

) and horizontal wind 

perturbation (vectors; ms
-1

) at 6 km level
 
for (a)-(e) truth simulation and the forecast 

beginning from the ensemble-mean analysis at t = 80 min: (f)-(j) forecast from ensemble-

mean analysis of VrPZF, and (k)-(o) forecast from ensemble-mean analysis of VrP. Note 

the difference in the plotting domains before and after 150 min. 

Fig. 12. The rms errors of forecasts averaged over the entire domain for: (a) w (m s
-1

), (b) 'θ (K) 

and (c) qr (g kg
-1

). The forecasts begin from ensemble-mean analysis at t = 60 min (dot), t = 
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80 min (dash) and t = 100 min (solid) of experiment VrP (gray thin curves), VrPZF (black 

thick curves). 



 

 42

0 8 16 24 32 40 48 0 8 16 24 32 40 480 8 16 24 32 40 480 8 16 24 32 40 48

16

24

32

40

48

56

64

16

24

32

40

48

56

64

16

24

32

40

48

56

64

10.01
0

.0
T=40min T=60min T=80min T=100min

X (km) X (km) X (km) X (km)

Y
 (

k
m

)
Y

 (
k
m

)
Y

 (
k
m

)
T
ru

th
V

rP
Z

P

16

24

32

40

48

56

64

16

24

32

40

48

56

64

Y
 (

k
m

)
Y

 (
k
m

)
V

rZ
P

c
V

rP
Z

F

a) b) c) d)

e) f) g) h)

i) j) k) l)

m) n) o) p)

q) r) s) t)

 

Fig. 1. Vertical velocity (contours and shading at intervals of 4 m s
-1

) and horizontal perturbation 

wind (vectors, plotted every other grid point; m s
-1

), at level z = 6 km: (a)-(d) truth simulation; 

analyses from VrP (e)-(h), ZP (i)-(l); VrZPc (m)-(p); VrPZF (q)-(t), at t = 40, 60, 80 and 100 min 

during the assimilation period. 
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Fig. 2. Horizontal perturbation wind (vectors; m s
-1

), perturbation potential 

temperature (thick black lines for 0 K and thin dashed contours at 0.5 K intervals) 

and computed reflectivity (thick solid contours and shading at intervals of 5 dBZ, 

starting from 15 dBZ) at z = 250 m: truth (a)-(d), EnKF analyses from VrP (e)-(h), 

VrZPc (i)-(l) and VrPZF (m)-(p).  
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Fig. 3. The retrieved (a) qv perturbation (solid (dash) contours represent positive 

(negative) values) (b) qc, (c) qr, (d) qi, (e) qs and (f) qh. (contours and shading at 

intervals of 0.5 g kg
-1

 for qv perturbation, qc, qi and qs, and of 1.0 g  kg
-1

 for qr and 

qh.) in the x-z plane at y = 29 km that pass through the maximum updraft at t = 60 

min: (a1)-(f1) truth simulation, (a2)-(f2) VrP, (a3)-(f3) VrPnoIce, (a4)-(f4) ZP 

and (a5)-(f5) VrPZF. 
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Fig. 4. The rms errors of ensemble-mean forecast and analysis, averaged over points at which the 

reflectivity is greater than 10dBZ for: a) u (ms
-1

), b) v, c) w and d) perturbation potential 

temperature 'θ , e) perturbation pressure 'p , f) qc, g) qr, h) qv (the curves with larger values), qi 

(the curves with lower values), i) qs and j) qh, for experiment VrP (gray), experiment ZP (black) 

and experiment VrF (black dotted lines). Units are shown in the plots. The drop of the error 

curves at specific times corresponds to the reduction of error by analysis. 
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Fig. 5. Forecast error correlations estimated from an ensemble at t = 80 min for experiment ZP in the x-z plane at y=29 km, which 

passes through the maximum updraft. The error correlation [thick solid (dash) contours represent positive (negative) correlations at 

intervals of 0.2] between forecast reflectivity Z at x=32 km and z=6 km (indicated by a black dot) and (a) u, (b) w, (c) 'θ , (d) 'p , (e) 

qc , (f) qr, (g) qi, and (h) qh. The shading and thin solid (thin dashed) contours in (a) - (d) indicate positive (negative) values of model 

fields from the truth simulation with increment of 4 ms
-1

 for u and w; 2 K for 'θ  and 40Pa for 'p . The shading and thin contours in 

(e)-(h) indicate the values of mixing ratio of water and ice fields from the truth simulation with increment of 0.5 g kg
-1

 for qc, and qi 

and 1 g kg
-1

 for qr and qh. 
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Fig. 6. As in Fig. 4, but for experiment VrZPa (black) and experiment VrP (gray). 
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Fig. 7. As in Fig. 4, but for experiment VrZPb (black) and experiment VrP (gray). 
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Fig. 8. As in Fig. 4, but for experiment VrZPc (black) and experiment VrP (gray). 
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Fig. 9. As in Fig. 4, but for experiment VrPZF (thin black curves) and experiment VrP (thin gray 

curves). The additional thick black curves are for the analysis and forecast ensemble spread of 

VrPZF, and the spread is calculated only at the points where reflectivity is greater than 10 dBZ, 

as the errors are. 
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Fig. 10. RMS error of (a) qi, (b) qs, (c) qh for VrP (gray) and VrPnoIce (black). 
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Fig. 11. Vertical velocity (contours and shading at intervals of 4 ms
-1

) and 

horizontal wind perturbation (vectors; ms
-1

) at 6 km level
 
for (a)-(e) truth 

simulation and the forecast beginning from the ensemble-mean analysis at t = 80 

min: (f)-(j) forecast from ensemble-mean analysis of VrPZF, and (k)-(o) forecast 

from ensemble-mean analysis of VrP. Note the difference in the plotting domains 

before and after 150 min. 
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Fig. 12. The rms errors of forecasts averaged over the entire domain for: (a) w (m 

s
-1

), (b) 'θ (K) and (c) qr (g kg
-1

). The forecasts begin from ensemble-mean 

analysis at t = 60 min (dot), t = 80 min (dash) and t = 100 min (solid) of 

experiment VrP (gray thin curves), VrPZF (black thick curves).  

 


