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Ensemble Kalman filtering
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SUMMARY

An ensemble Kalman filter (EnKF) has been implemented at the Canadian Meteorological Centre to provide
an ensemble of initial conditions for the medium-range ensemble prediction system. This demonstrates that the
EnKF can be used for operational atmospheric data assimilation.

We show how the EnKF relates to the Kalman filter. In particular, to make the ensemble approximation
feasible, we have to use a fairly small ensemble with many less members than either the number of model
coordinates, or the number of independent observations, or the (unknown) dimension of the dynamical system.
To nevertheless obtain good results, we must (i) counter the tendency of the ensemble spread to underestimate
the true error, and (ii) localize the ensemble covariances. The localization is severe and leads to imbalance in the
initial conditions.

The operational EnKF is used to investigate to what extent our system respects the underlying hypotheses
of both the Kalman filter and its ensemble approximation. In particular, we quantify the imbalance in the initial
conditions and the magnitude of the model-error component. The occurrence of imbalance constrains the ways in
which time interpolation can be performed and in which parametrized model error can be added. With this study
we hope to obtain and provide guidance for further improvements to the EnKF.
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1. INTRODUCTION

The Kalman filter (KF) (Kalman 1960; Kalman and Bucy 1961) provides ‘an el-
egant and comprehensive mathematical description of the data assimilation problem’
(Daley 1991, p. 384). As suggested by Ghil et al. (1981) and Cohn (1982), the Kalman
filter could in theory be used for the optimal estimation of atmospheric states. In prac-
tice, however, it suffers from two serious drawbacks (Ghil and Malanotte-Rizzoli 1991,
p. 162; Daley 1991, p. 384). The first is the estimation of the error covariances of the
forecast model, which is crucial but difficult (Dee 1995). The second is the compu-
tational expense. In spite of the continuing development of computational platforms,
the application of the KF to atmospheric data assimilation is still not possible. It has
become possible, however, to employ an ensemble approximation to the KF. The so-
called ensemble Kalman filter (EnKF) (Evensen 1994) is now under development or
in use for hydrologic data assimilation (Reichle et al. 2002), ocean data assimilation
(Keppenne and Rienecker 2002), retrospective atmospheric analysis (Whitaker et al.
2004), convective-scale atmospheric data assimilation (Snyder and Zhang 2003; Dowell
et al. 2004) and global atmospheric data assimilation (Houtekamer et al. 2005).

Our own experience with the EnKF is mostly limited to the field of large-scale
atmospheric data assimilation. One would hope that a good theory could be applied
equally to the different fields. In practice, however, the precise formulation of an algo-
rithm is often the result of a consideration of different important factors. The relative im-
portance of these factors may depend on the specific properties of the dynamical model
and the observational network. For instance, for large-scale atmospheric assimilation
the issue of balance is important, but reasonable results can still be obtained when no
specific action is taken (Derber et al. 1991; Parrish and Derber 1992; Houtekamer et al.
2005). For the application of the EnKF in other fields, the issue of balance may either
be not relevant or conversely extremely important. Similarly, in large-scale atmospheric

∗ Corresponding author: Division de la Recherche en Météorologie, 2121 Route Trans-Canadienne, Dorval, QC,
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data assimilation, a certain quality of results can be obtained while assuming that the
forecast model has no bias, however, we cannot assume that the second moment of
the model error is zero (Dee 1995). In this paper, attention will be restricted to the
application of the EnKF to large-scale atmospheric data assimilation. We are not in a
position to make statements about the other areas of application.

At the Meteorological Service of Canada (MSC), the development of an EnKF has
resulted in an operational implementation in the medium-range ensemble prediction
system (EPS) as of 12 January 2005. This demonstrates that the EnKF has passed a
certain baseline level of quality. In this study, the operational configuration is used to
investigate the realism of the assumptions and principles that are behind the KF and its
approximation with an ensemble. We hope that this study will help identify promising
areas for future research. In fact, based on the results of this study, some revisions to the
EnKF algorithm were implemented operationally on 13 December 2005 at the Canadian
Meteorological Centre (CMC). The main objective of these revisions was to improve the
balance of the background fields.

As we transformed our research code to be suitable in a complex operational
environment, it became more difficult for us to test radically different algorithms.
Since we continued to obtain reasonable results with our original EnKF formulation
consisting of a pair of ensembles (Houtekamer and Mitchell 1998), we have not tested
any of the more recently proposed alternative EnKF formulations, e.g. Tippett et al.
(2003), Szunyogh et al. (2005). Such comparisons are perhaps best performed in a
simpler experimental environment, as in the recent paper by Lawson and Hansen (2004).
However, we do believe that the current study will also be of interest to people using
other EnKF algorithms.

In the next section we describe the basic components of the EnKF. The EnKF that
became operational at the Meteorological Service of Canada is presented in section 3. In
section 4 we try to estimate the importance of different terms in that EnKF. As it appears
that time interpolation of the model trajectory to the observations could be beneficial, we
investigate in section 5 if the model integrations are sufficiently balanced. In section 6
we provide a discussion and new interpretation of the model-error term. We summarize
our analysis of the EnKF algorithm in section 7.

2. BASIC COMPONENTS OF THE ENSEMBLE KALMAN FILTER

In this section, we discuss the concepts related to the EnKF and the KF. The EnKF
provides an approximation to the KF that improves as the ensemble size increases. For
small ensemble sizes, however, the properties of the EnKF differ from those of the KF.
In particular, in the EnKF, the equation for the gain is modified to permit localization of
covariances.

(a) Kalman filter equations
In principle it is possible to estimate and correct for bias in the forecast model (Dee

and da Silva 1998). For atmospheric data assimilation, it is nevertheless traditional to
make the simplifying assumptions of having no bias in either the nonlinear forecast
model M, or the observations yo. Letting q denote the model error and r denote the
observational error, we thus assume:

Eq = 0, (1)
Er = 0. (2)
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Here the symbol E denotes the expectation operator. In the case of a linear prediction
model M and a linear interpolation operator H, the KF provides the optimal solution
to the analysis problem even for non-Gaussian model- and observation-error statistics
(Gelb 1974; Ghil et al. 1981; Cohn 1982; Cohn and Parrish 1991; Ghil and Malanotte-
Rizzoli 1991). The KF equations can be written as

xf(t) = Mxa(t − 1), (3)

Pf(t) = MPa(t − 1)MT + Q, (4)

K(t) = Pf(t)H(t)T(H(t)Pf(t)H(t)T + R(t))−1, (5)

xa(t) = xf(t) + K(t)(yo(t) − H(t)xf(t)), (6)

Pa(t) = (I − K(t)H(t))Pf(t). (7)

Here M, or more precisely M(t, t − 1), maps a model state at time t − 1 to time
t; xa(t − 1) is the best estimate of the true state at time t − 1; xf(t) is the best estimate
of the true state at time t , given only the data available until time t − 1; Q, or more
precisely Q(t, t − 1), is the covariance matrix of the cumulative model error q between
time t − 1 and time t; R is the covariance matrix of the observational error r; Pf is the
covariance matrix of the forecast error; Pa is the covariance matrix of the analysis error;
and K is known as the Kalman gain.

In the extended Kalman filter (EKF), e.g. Gauthier et al. 1993, the reference
trajectory is described using a nonlinear model M, and a nonlinear forward operator
H , is used to interpolate xf(t) to the observation space. Equations (3) and (6) are thus
replaced by:

xf(t) = M(xa(t − 1)), (8)

xa(t) = xf(t) + K(t){yo(t) − H(t)(xf(t))}. (9)

Equations (4), (5) and (7) are still evaluated with linear operators M and H. These now,
for the EKF, are tangent linear to the nonlinear M and H about the reference trajectory
defined by M.

The KF equations have a number of appealing properties. Two that are of particular
interest are:

(i) The evolution and growth of the errors during the forecast is accounted for
by Eq. (4) and the subsequent reduction of the error in the analysis due to the use of
the Kalman gain is accounted for by Eq. (7). Thus, as can be seen from Eqs. (3)–(7),
given xa and Pa at time t − 1, the KF equations lead to these same quantities at time t ,
which allows the algorithm to be cycled in time. Pure three-dimensional methods such
as Optimal Interpolation (Gandin 1965) or 3D variational methods (Parrish and Derber
1992) implement neither Eq. (4) nor Eq. (7). The four-dimensional variational method
(Lewis and Derber 1985) does not implement Eq. (7).

(ii) When the model error projects only on to slow modes, as was argued by Phillips
(1986), the KF produces balanced analyses automatically at each analysis time (Petersen
1973; Cohn and Parrish 1991).

To evaluate the covariance transport equation, Eq. (4), it is necessary to integrate
the tangent linear forecast model once for each of the O(1 000 000) coordinates of
the forecast model. This makes application of the KF equations for atmospheric data
assimilation prohibitively expensive. The KF has consequently been used mainly as a
pedagogical device (Cohn and Parrish 1991) or ‘prototype algorithm’ (Cohn 1997).
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The success of a hypothetical implementation of the KF would depend on the
realism of the hypothesis of no bias (Eqs. (1) and (2)) and on the quality of the
covariance matrices Q and R. The use of the maximum-likelihood method for the on-
line estimation of some parameters of a parametrized representation of the matrix Q was
proposed and demonstrated by Dee (1995). This approach was applied in an EnKF by
Mitchell and Houtekamer (2000). At the present time, however, it is not clear how to
best describe model error.

(b) Approximation with an ensemble
In the EnKF (Evensen 1994), a small random ensemble with O(100) members

is used to represent the best estimate of the state vector and information about its

covariance. The ensemble mean states, xf
i and xa

i , correspond to the KF estimates,
xf and xa. The covariances Pf and Pa can be estimated from the spread of the ensem-
bles xf

i and xa
i , respectively (Burgers et al. 1998). Performing the O(100) short-range

integrations that are required to approximate Eq. (4) is within reach of modern parallel
computers. As the ensemble that can feasibly be run becomes larger, the approximation
to the KF becomes better.

Dropping the time index when it is t , we write the equations for the EnKF as:

xf
i = M(xa

i (t − 1)) + qi, i = 1, . . . , N, (10)
qi ∼ N(0, Q), (11)

PfHT ≡ 1

N − 1

N∑

i=1

(xf
i − xf

i )(Hxf
i − Hxf

i )
T, (12)

HPfHT ≡ 1

N − 1

N∑

i=1

(Hxf
i − Hxf

i )(Hxf
i − Hxf

i )
T, (13)

K = PfHT(HPfHT + R)−1, (14)
yo
i = yo + ri, i = 1, . . . , N, (15)
ri ∼ N(0, R), (16)

xa
i = xf

i + K(yo
i − Hxf

i ), i = 1, . . . , N. (17)

As can be seen from these equations, given an ensemble of analyses at time t − 1, the
EnKF algorithm yields an ensemble of analyses at time t , i.e. the EnKF, like the KF, can
be cycled in time.

By means of Eq. (10), the EnKF uses the full nonlinear model M, to transport
the covariances. The replacement of a linear model M (in the extended Kalman filter
the tangent linear model of M) by the full nonlinear model would seem to be an
improvement. The full model will properly deal with saturation of errors. The EnKF also
offers more flexibility for dealing with model error. It can be sampled from a covariance
matrix, as in Eq. (11), or also simulated using, for instance, different model versions.
Unlike the KF, the EnKF (via Eqs. (12) and (13)) uses a random ensemble to estimate
the error covariances. In fact, since only PfHT and HPfHT are required explicitly, Pf

itself (a very large matrix) need never be calculated. With the observations perturbed in
Eq. (15) in accordance with their uncertainty, the EnKF provides, by means of Eq. (17),
a Monte Carlo-like estimate of the uncertainty in the analysis (Burgers et al. 1998).

To avoid changing the best estimates, xf
i and xa

i , we use a first-order-exact (i.e. with
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imposed zero mean) sample of perturbations qi and ri . Second-order-exact sampling of
random numbers has been discussed by Pham (2001).

There is also a family of non-stochastic filters (discussed in a unified framework
by Tippett et al. (2003)) which are not based on Eqs. (10)–(17). These filters do not
use perturbed observations, which, it is argued, can be a source of sampling error
when ensembles are small. Instead, they deterministically transform the ensemble of
background fields into an ensemble of analyses using Eq. (7). However, Eq. (7) is valid
only when the gain K is optimal, which depends, in turn, on Q and R being accurately
known. A more general, but more complicated, equation for Pa, that reduces to Eq. (7)
when the gain is optimal, is given by, e.g. Cohn (1982, Eq. (2.10b)), Daley (1991,
Eq. (13.3.19)) and Ghil and Malanotte-Rizzoli (1991, Eq. (4.13b)). The performance of
stochastic and deterministic filters has been compared in a hierarchy of perfect-model
scenarios by Lawson and Hansen (2004).

The use of a small ensemble, xf
i , i = 1, . . . , N , to estimate the covariances PfHT

and HPfHT results in a sampling error in the gain matrix K. The use of the same
ensemble in PfHT and HPfHT for the estimation of K and in (17) for the estimation
of the analysis error results in a dependent error estimate (i.e. use of the same sample to
calculate the gain and estimate the error associated with using that gain) and, hence, a
systematic underestimation of the uncertainty in the analysis, i.e. an underdispersive
ensemble of analyses. In a data assimilation context, this would result in too much
weight being given to the background with respect to the observations. This inbreeding
problem can be countered by using a pair of ensembles (Houtekamer and Mitchell 1998;
van Leeuwen 1999; Houtekamer and Mitchell 1999). Here the gain that is used for the
assimilation of observations into one ensemble is obtained from the other ensemble.

Alternatively, with an N -member ensemble, one might assimilate the observations
into each ensemble member using covariances calculated from all of the N − 1 remain-
ing ensemble members (Hamill and Snyder 2000). This approach maximizes use of the
available ensemble members but, if used with a direct algorithm, requires the computa-
tion of N different gain matrices.

The implementation of Eqs. (10)–(17) permits analysis increments only in the space
spanned by the N -member ensemble xf

i of background fields. If the distribution of the
ensemble is Gaussian, with negligible curvature, as is common when errors are small
and error dynamics are linear, then the EnKF (like the KF) will provide a balanced
ensemble of analyses. In the case of large errors, non-Gaussianity of the distribution
and significant curvature of the local balanced space can lead to analyses that are off the
attractor (Lawson and Hansen 2004). Nonlinear filtering methods have been applied in
the context of simple models (Anderson and Anderson 1999; Miller et al. 1999), but are
too computationally demanding for application in global atmospheric data assimilation.

The property of optimality, however, is lost in the approximation with an ensemble
even if errors are small. This is illustrated by Lorenc (2003), who provides an example
in which the ensemble of analyses has a bigger uncertainty than the ensemble of guess
fields. In that case, a more accurate ensemble of analyses would have been obtained by
giving no weight to the observations or by localizing their impact.

(c) Need for localization and the impact on balance
Having a small ensemble and a high-dimensional system, we cannot expect to

closely fit a large number of observations. Therefore, unless the ensemble is truly
large, with a size O(10 000), it is necessary to localize the impact of the observations
(Houtekamer and Mitchell 1998; Hamill et al. 2001; Lorenc 2003).
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The impact of observations can be smoothly reduced for increasingly distant grid
points using a Schur or Hadamard product (Gaspari and Cohn 1999; Houtekamer and
Mitchell 2001). In our algorithm, we modify Eq. (14) to permit both a horizontal and a
vertical localization as follows:

K = {ρV ◦ ρH ◦ (PfHT)}{ρV ◦ ρH ◦ (HPfHT) + R}−1. (18)

Here ρH and ρV are the correlation functions used for horizontal and vertical localiza-
tion, respectively, and ◦ denotes the Schur product.

Alternatively, one could divide the global problem into a number of local problems
that can be solved independently. This strategy, proposed by Ott et al. (2004), leads to a
more efficient parallelization.

Localization of any type can potentially cause imbalance in the initial conditions
(Cohn et al. 1998; Mitchell et al. 2002; Lorenc 2003), because the analyses will not be
in the balanced space defined by the guess fields.

3. CANADIAN IMPLEMENTATION

On 12 January 2005, the CMC implemented the EnKF to provide the initial
conditions for the medium-range EPS. The first operational medium-range forecasts
were generated from the EnKF analyses valid at 0000 UTC 13 January. Since January
1996, the EPS had been using parallel data assimilation cycles based on the Optimal
Interpolation method and a spectral forecast model to obtain the initial conditions
for an ensemble of medium-range forecasts. That EPS, the medium-range ensemble-
forecast component of which was not changed in January 2005, had been described by
Houtekamer et al. (1996) and more recently by Pellerin et al. (2003).

In the current paper, we investigate properties of the operational EnKF. In this
section, we briefly describe its configuration. For a more detailed discussion and
evaluation of a pre-operational version, the reader is referred to Houtekamer et al.
(2005).

(a) The model
One of the two forecast models used in the Canadian EPS (Pellerin et al. 2003) is a

low-resolution version of the Global Environmental Multiscale grid-point model (Côté
et al. 1998a,b). For the EnKF, we use this model with the same 300 × 150 horizontal
grid and with the same 28 η-levels and model top at 10 hPa. We found that the problem
of narrow vertical structures near the top of the model (Houtekamer et al. 2005, Fig. 2)
was alleviated by using cubic-Lagrangian, instead of cubic spline, vertical interpolations
to find the field values at the upstream locations in the semi-Lagrangian time-stepping
scheme used in the forecast model. For this, we follow the variational analysis group at
our Centre which uses this interpolation procedure in the tangent linear model. For now,
the regional and global deterministic forecasts at our Centre continue to be performed
using cubic spline vertical interpolations.

(b) The observations
The EnKF has been implemented with a 6 h cycle, with analyses valid at 0000,

0600, 1200 and 1800 UTC each day. In the EnKF data assimilation procedure, it is
assumed that all observations are valid exactly at one of these central analysis times.
We only assimilate observations that have passed the background check and variational
quality control procedures of our Centre’s operational variational deterministic analysis.
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In a pre-operational assimilation cycle with the EnKF, we had a problem near
135◦W, 63◦S in the South Pacific with the assimilation of radiance data from Advanced
Microwave Sounding Unit-A (AMSU-A) channel 3. This channel, which is used only
over the open ocean, is sensitive to surface conditions in addition to the atmospheric
temperature profile. The RTTOV-7 forward operator (Saunders et al. 2002), that we
use in the assimilation of radiance data, models the effect of ocean foam on AMSU-A
channel 3 observations assuming that ocean foam has an emissivity of 1 and that the
fractional foam coverage Ffoam is given by (S. English 2004, personal communication)

Ffoam = 0.195 × 10−4 W 2.55, (19)

where W is the intensity of the surface winds. Due to the use of this formula, RTTOV-7
is very sensitive to intense surface winds for AMSU-A channel 3. In the presence of
such winds in a region of significant uncertainty, and lacking direct measurements of
surface winds, the EnKF could act to amplify the wind speed, irrespective of the wind
direction. That is, because the analysis is formulated in terms of the two horizontal
wind components, the modelled sensitivity of this channel to surface wind speed may
actually lead to an increased ensemble spread for the wind components. Subsequent
channel 3 observations will consequently receive more weight. This unstable process
could lead to surface winds stronger than had been considered in the development of
Eq. (19). To control the problem, we subsequently limited the surface wind speed that
is provided to the RTTOV-7 operator to at most 10 m s−1 and, following a suggestion
by J.-N. Thépaut (2004, personal communication), we started assimilating the available
surface wind observations.

The AMSU-A radiances are primarily sensitive to the atmospheric temperature
profile. The operational EnKF also assimilates four AMSU-B radiance channels. These
are primarily sensitive to atmospheric humidity. Quality-controlled AMSU-B radiances
became available for assimilation by the EnKF in 2004 when they began being assimi-
lated by the CMC operational variational deterministic analysis.

As discussed in Houtekamer et al. (2005, section 2(d)), each AMSU channel is
assigned the (approximate) pressure where that channel peaks for the purposes of
the vertical localization. Due to the highly variable nature of humidity profiles, we
had anticipated difficulty assigning these pressures to the four AMSU-B channels. In
practice, since humidity is largely confined to the lower atmosphere, our use of the
natural logarithm of pressure as the vertical coordinate for the localization implies that
our vertical localizing function is broad in the lower atmosphere. Consequently, results
were less sensitive to the precise value assigned to the peak pressure for each channel
than had been expected. For the purposes of the vertical localization, the four AMSU-B
channels (channels 2–5) were assigned peak pressures of 800, 475, 525 and 600 hPa,
respectively. As in the operational variational deterministic analysis, channels 2 and 5
are not used over land and sea-ice. Further information about the pre-processing and
quality control of AMSU radiances can be found in Anselmo and Deblonde (2005).

(c) Model error
The ensemble of model-error realizations qi is added to the ensemble of predic-

tions, as indicated by Eqs. (10) and (11). In adding the model-error component to the
prediction error immediately after the predictions are generated, we follow the standard
Kalman filter formulation, Eq. (4).

Our current description of model error is not flow dependent. In fact, our
model-error parametrization, as discussed in Mitchell and Houtekamer (2000) and in
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Houtekamer et al. (2005), is based on the forecast-error description used by the 3D-Var
at our Centre (Gauthier et al. 1999). Due to this choice, our EnKF implementation is
similar in some ways to a hybrid scheme (Hamill and Snyder 2000) with the importance
of the homogeneous isotropic statistics depending on the size of our parametrized model
error.

To add model error, we start by generating a random 3D perturbation field for
stream function. Addition of this field should, by design, not degrade the balance of
the meteorological field. In a subsequent step, however, we add a random 3D field of
unbalanced temperature perturbations (Gauthier et al. 1999; Houtekamer et al. 2005).
Addition of this field does, as expected, have a negative impact on the balance of a state.

We introduced the unbalanced temperature component at an early stage of our
project because our forecast model did not perfectly respect the no-bias condition
of Eq. (1). Having an unbalanced temperature component in the formulation of the
background error enabled us to control a temperature bias near the top of the model.
Recent experiments have shown that the unbalanced temperature component continues
to have a beneficial impact.

Our current model-error description does not include a component for humidity.
Consequently, the ensemble spread for humidity in our EnKF is too small (Houtekamer
et al. 2005).

(d) The method
We use a double EnKF configuration consisting of a pair of 48-member ensembles.

To avoid having to store and invert very large matrices, batches of up to 300 observations
are assimilated sequentially, as described in Houtekamer and Mitchell (2001). After
a given batch of observations has been assimilated, the resulting pair of analysis
ensembles is used as the pair of background ensembles for the assimilation of the next
batch of observations, until all observations have been assimilated.

For the covariance localization functions, ρH and ρV, we use a piecewise rational
function (Gaspari and Cohn 1999, Eq. (4.10)). In the formulation of ρV, the natural
logarithm of pressure is used as the vertical coordinate. The localization is such that
covariances are forced to zero in two units of ln p. Similarly the horizontal impact of an
observation drops to zero at 2800 km.

As implemented in January 2005, the operational EnKF did not include any explicit
balancing operator but, as will be seen later, we have recently reconsidered this.

4. LENGTH OF INCREMENTS

In this section, we first measure the length of the forecast and analysis increments
using a dry total-energy norm as in Mitchell et al. (2002, Eq. (9)). Subsequently, we
quantify and order the different approximations that were made in our implementation
of the EnKF. These include (i) the impact of not initializing, (ii) the assumption of no
bias in the model or the observations, (iii) the use of a small ensemble and consequent
sampling error, and (iv) the approximation that all observations are valid at the central
time of the 6 h assimilation window.

(a) Basic components
Using the default operational parameters of the EnKF and fields valid at 0000 UTC

1 August 2004, we find for the analysis increment of the first ensemble member a
length of 2.65 m s−1 in terms of the total energy norm. The subsequent 6 h model
integration has a length of 4.62 m s−1. To the resulting predicted field we add an
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TABLE 1. IMPACT OF VARIOUS COMPONENTS IN AN ASSIMILATION
CYCLE

Analysis increment (A) 2.65
6 h prediction 4.62
Model-error perturbation 1.39
Total impact of 6 h prediction and model-error perturbation (F ) 4.81
Impact of digital filter on a 6 h forecast (I ) 0.35
Impact of physical parametrizations on a 6 h forecast 1.52

All values are computed using an energy norm (m s−1) and reflect changes
to the first ensemble member over the course of a single 6 h cycle.

independent perturbation field of length 1.39 m s−1 which reflects the model error. In
total, the distance between the analysis field valid at 0000 UTC 1 August 2004 and the
subsequent trial field valid 6 h later is 4.81 m s−1. For ease of reference, the lengths of
the various increments are listed in Table 1. We thus verify the first part of the criterion
of Hollingsworth et al. (1986) for a successful data assimilation cycle which states that
the forecast increment, here of length 4.81 m s−1, should be larger than the analysis
increment, here of length 2.65 m s−1.

It would appear that the length of the model error, here 1.39 m s−1, is fairly
significant compared to the length of the total forecast, here 4.81 m s−1. It has, however,
been argued by Houtekamer et al. (2005) that the ‘model’ error in the EnKF collectively
accounts for a multitude of error terms in the entire EnKF data assimilation system. It
is not clear at this point which component of the model error should be addressed with
the highest priority.

(b) Initialization
Since 4D data assimilation methods are intrinsically more consistent with the

atmospheric flow than 3D methods, they improve the possibility of producing balanced
analysis increments (Mitchell et al. 2002). Therefore, one may hope that there is no need
for an explicit balancing operator, which may itself not be entirely consistent with the
model dynamics. Consequently, in the January 2005 operational implementation of the
EnKF, we did not include such an operator.

To measure the impact of initialization, if it were applied, an additional integra-
tion has been performed from the 0000 UTC 1 August 2004 initial condition with a
digital filter finalization technique (Fillion et al. 1995). Here, the filter is applied to a
6 h integration consisting of eight unfiltered time steps (i.e. a nine-point time series
implementation), to obtain a filtered state valid at t = 3 h. The filter uses a 6 h cut-off
period. From the filtered state at t = 3 h, we subsequently run the model out to 6 h.

The initialization increment is measured as the difference, evaluated at 0600 UTC
1 August 2004, between the 6 h forecast with and without the digital filter. Its value
of 0.35 m s−1 is well below the 2.65 m s−1 of the analysis increment. Thus our EnKF
respects the second part of the criterion of Hollingsworth et al. (1986) which states that
the analysis increment should be bigger than the initialization increment.

As noted above, a balancing operator may not be entirely consistent with the model
dynamics and consequently could have an impact even if it were applied to a state
obtained from a long and balanced integration of a forecast model. In the case of digital
filter finalization, which does not require any adiabatic assumption at any stage, the
impact on a dynamically balanced model state is small (Fillion et al. 1995, section 3.1).
The application of a digital filter will be further discussed in section 5 in the context
of a hypothetical EnKF which includes time interpolation of the model trajectory to the
observations.
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(c) Bias
From the outset, with Eqs. (1) and (2), we have assumed that the forecast model

and the observations have no bias. As discussed in Kailath (1968) and Daley (1992a), in
an optimal linear system, without bias, the innovation vectors are not serially correlated.
Here, because the observational network is non-stationary, we will not use innovation
vectors but analysis increments.

To detect bias, we produce a sequence of ensemble mean analysis increments,
xa(t) − xf(t), with successive increments calculated from analyses one day apart. The
sequence goes from 0000 UTC 1 August 2004 until 0000 UTC 30 August 2004 and thus
contains 30 values.

We assume that each increment consists of (i) a random component s, with fixed
zero-mean distribution N(0, σ 2) and no serial correlation, and (ii) a bias-induced
constant component C, which is identical for each increment:

xa(t) − xf(t) = C + s(t). (20)

As noted by Dee and da Silva (1998, Eq. (12)), the mean analysis increment C is a linear
function of the bias in the observations and in the model. Generally it will underestimate
the forecast bias, if the observations are unbiased.

With these assumptions, we expect for the first analysis increment, valid at
0000 UTC 1 August 2004, a squared length L2

1 of ‖C‖2 + σ 2. For the average over
n analysis increments, we obtain an expected squared length L2

n of ‖C‖2 + (1/n)σ 2.
The experimentally obtained lengths of the mean analysis increments are displayed in
Fig. 1. Equating the observed first length of 1.65 m s−1 to L1 and equating the observed
length of 0.54 for the mean over 30 increments to L30, we obtain ‖C‖ = 0.46 m s−1

and σ = 1.58 m s−1. With these values, we can subsequently compute the intermediate
values of Ln. From Fig. 1, we note that the modelled values agree rather well with the
observed values.

From this simple model and analysis, we find that the ensemble-mean analysis
increment, which has a total length of 1.65 m s−1, has a fixed bias component of
0.46 m s−1 (almost 30%). This is larger than the initialization increment of 0.35 m s−1

that was obtained for a single member. It is troubling to see that the assumption of no
bias is not better respected in our EnKF implementation.

As mentioned in Dee and da Silva (1998, p. 276) and in Thiébaux and Morone
(1990), systematic forecast errors may be transient in nature. (This transience may
be due to regime dependence (Tibaldi and Molteni 1990).) Consequently, the total
systematic-error component will be bigger than the fixed bias-component estimated
using Eq. (20). In fact, being aware of an underprediction of the diurnal cycle in our
model, we used successive increments one day apart so that the time averaging would
not filter this diurnal bias component.

As mentioned in Houtekamer et al. (2005), we performed some experiments with
a bias-correction algorithm. We found, however, that it was more difficult to obtain and
interpret experimental results in this more complex environment and decided to rely on
ongoing research on the forecast model for the future reduction of bias.

Lacking any specific procedure to estimate and correct the bias, we need to use
a somewhat larger model-error term to maintain realistic ensemble statistics. It is,
therefore, not surprising that this term, with an amplitude of 1.39 m s−1 for a single
member, is larger than the bias term.
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Figure 1. The solid line is the length of the mean analysis increments computed from a sequence of analyses
(all valid at 0000 UTC) over a 30-day period. The dashed line is the expected length for independent analysis
increments. The dotted line shows the estimated length of the bias-induced constant component. The dashed-
dotted line is the modelled length calculated from Eq. (20) with the parameters ‖C‖ and σ estimated from the

solid line (as described in the text). All lengths are in m s−1.

(d) Sampling error due to the finite ensemble size
The main approximation in the EnKF, with respect to the KF, is the use of an en-

semble of finite size to estimate covariance information. To measure the severity of this
approximation, one should ideally, for a range of ensemble sizes, perform sufficiently
long data assimilation cycles with well-adjusted parameters for the horizontal and verti-
cal localization. Such a project, however, is beyond what we can currently afford to run
on our computer.

Instead, we have used a much reduced experimental design. As in Houtekamer
et al. (2005), we generated sets of perturbed background fields, in this instance valid
at 0000 UTC 27 July 2004, using an isotropic covariance matrix Pf

3D. Here we used
sets having 2 × 12, 2 × 24, 2 × 48, 2 × 96 and 2 × 192 members. For each set of
N members, we performed a single analysis leading to an ensemble mean analysis
xa
N . For each analysis, we used the same, operational, values for the horizontal and

vertical localization. Thus, the focus in these experiments is on the sampling error due
to the finite ensemble size. The impact of the localization, made necessary by the finite
ensemble size, is not considered here.

For each xa
N , we would like to know the error, with respect to an unfortunately

unobtainable analysis xa∞. We speculate, however, that the error will decrease to zero
with the root of the ensemble size as is commonly the case with Monte Carlo methods.
Further assuming that the errors in the estimates xa

N and xa
M are independent, we obtain

for the distance between two different ensemble-mean analyses:

‖xa
N − xa

M‖ ∝
(

1

N
+ 1

M

)0.5

. (21)
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TABLE 2. ERROR DUE TO LIMITED ENSEMBLE SIZE

‖xa
N − xa

M‖ (m s−1)

M \ N 2 × 12 2 × 24 2 × 48 2 × 96 2 × 192

2 × 12 – 1.077 1.000 0.959 0.943
2 × 24 (1.096) – 0.776 0.717 0.691
2 × 48 (1.001) (0.775) – 0.532 0.500
2 × 96 (0.949) (0.707) (0.548) – 0.362
2 × 192 (0.922) (0.671) (0.500) (0.387) –
2 × ∞ (0.895) (0.633) (0.448) (0.317) (0.225)

The distance, computed using an energy norm, between ensemble-
mean analyses. Here the two ensemble mean analyses have been
obtained using N and M members. The values below the dashed
diagonal, enclosed in brackets, have been obtained using a fit to
the values above the diagonal.

We computed the distance for all available pairs of M and N . The results are
presented in the upper-right triangle of Table 2. A least-squares procedure was used
to obtain the proportionality constant in Eq. (21). The fitted values are shown in
parentheses in the lower-left triangle of Table 2. The desired error estimate for each
N is obtained by setting M = 2 × ∞ in Eq. (21) and given in the bottom row of Table 2.
As can be seen in Table 2, the estimated error for an ensemble of the operational size of
N = 2 × 48 is 0.448 m s−1.

Our experience, with our experimental environment, is that going to an ensemble
size of N = 2 × 48 leads to a clear improvement in the quality of the EnKF. Beyond
this size, however, it becomes more difficult to observe improvement from using bigger
ensembles. Apparently, as the sampling error becomes ever smaller, other sources of
error, such as discussed in the other subsections of this section, start to dominate over
the sampling error.

(e) Time interpolation
In our current implementation, we assume that all observations that are taken during

a 6 h time window are valid at the central analysis time. To estimate the impact of this,
we measure the difference between the 3 h and the 6 h state of the filtered forecast.
The value of 2.48 m s−1 is comparable to the magnitude of the analysis increment
itself. Similarly we obtain a value of 2.40 m s−1 for the difference between the state
at 6 and 9 h. The approximation that the observations are valid at the central analysis
time may have been appropriate when radiosonde and other synoptic observations were
predominant, but given the ever-increasing amount of satellite and other asynoptic
data, is equivalent to assuming negligible model evolution in the 6 h window. Such
an approximation is clearly severe and is, in fact, inconsistent with the earlier condition,
from Hollingsworth et al. (1986), that the forecast increment must be bigger than the
analysis increment.

The recent positive experience with four-dimensional variational assimilation (4D-
Var) underlines the importance of performing time interpolation (Rabier et al. 1998,
2000). Hunt et al. (2004) demonstrate how an expansion of the state vector permits time
interpolation in an EnKF.

In the context of a 6 h data assimilation window, we can extend the state vector by
including the model states at 3 and 9 h. Using a linear interpolation in time, the most
severe errors will now occur at 4.5 and 7.5 h. Using the states of the filtered run, we
find an error of 0.44 m s−1 at both 4.5 and 7.5 h. While this error is little more than a
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sixth of the error when there is no time interpolation, it is still of the same order as the
initialization increment.

Further extending the state vector to include the model states at 4.5 and 7.5 h, we
now obtain maximum time interpolation errors at 3.75, 5.25, 6.75 and 8.25 h. At these
times, we find errors of 0.16, 0.17, 0.17 and 0.17 m s−1, respectively. This puts them
well below the initialization increment.

The cost of the data assimilation step in our EnKF implementation is domi-
nated by the computation of PHT, i.e. Eq. (12), and by the multiplication by this
term (Houtekamer and Mitchell 2001, Eq. (8)). The cost of these operations is
O(NmodelNobsN), where Nmodel is the number of model coordinates and Nobs is the
number of observations (Houtekamer and Mitchell 2001). The above results suggest the
use of five time levels (at 3.0, 4.5, 6.0, 7.5 and 9 h) which would increase Nmodel, and
thus also the computational cost of the algorithm, by a factor of 5. This algorithm yields
an ensemble of analysed five-time-level trajectories. The ensemble of central, i.e. 6 h,
analyses serves as initial conditions for the subsequent ensemble of short-range forecasts
required to continue the data assimilation cycle.

We wish to avoid the cost associated with the computation of analysed five-time-
level trajectories of which only one time level is used. This can be done by performing
the analysis in a joint state-observation space, following Tarantola (1987) and Anderson
(2001). Here, the forward interpolation H(xf(tobs)) would be precomputed using all
available time levels (P. Gauthier 2005, personal communication) and appended to the
smallest state vector required to continue the data assimilation cycle, i.e. x(t = 6 h).
This gives a joint state-observation vector, (x(t = 6 h), H(xf(tobs))). This algorithm
would have a cost O{(Nmodel + Nobs)NobsN} which, given that we have Nobs 
 Nmodel,
would be almost identical to the cost of our current algorithm that does not include
time interpolation. It should be noted that, as batches of observations are assimilated
sequentially by the EnKF, each H(xf(tobs)) will have to be updated with the rest
of the state vector until the batch containing the corresponding observation has been
assimilated.

Pre-computing H(xf(tobs)) leads to a more modular data assimilation algorithm.
Given that the computation of H(xf(tobs)) for the different members of the ensemble is
independent, and given that N is O(100), this part of the algorithm can be parallelized
by assigning the complete state vector for one or more ensemble members to each
processor. This allows H to be applied to complete global fields, unlike our current
algorithm where H is applied to guess-fields that have been partitioned into fairly small
tiles (Houtekamer and Mitchell 2001, section 4). Moreover, in the analysis algorithm
itself, the tile structure, introduced to permit multi-tasking, is also simplified: successive
points of the horizontal grid can now be assigned to successive processors as though
each of these points defined a separate ‘tile’.

5. RELATIONSHIP BETWEEN IMBALANCE AND TIME INTERPOLATION

As suggested in the previous section, time interpolation error is a major source
of error in our system. An attractive and simple approach would be to have a data
assimilation cycle with a length of only one short time step. However, this would
require well-balanced initial conditions and, as pointed out by Hunt et al. (2004), ‘in an
operational setting, frequent switching between assimilation and model evolution may
be costly and detrimental to the accuracy of the numerical time integration’. Balanced
initial conditions and a smooth model trajectory are also required if time interpolation of
that trajectory is to be beneficial. The balance requirement in this context is substantially
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more severe than in our previous study (Mitchell et al. 2002) where we only considered
observations at the central analysis time and consequently were only concerned about
the degree of imbalance in the 6 h forecast.

We begin this section by looking at the evolution of the imbalance in an unfiltered
model integration. Next, we consider two ways of obtaining a balanced integration:
(i) applying a balancing operator, and (ii) relaxing the localization operator that is the
cause of the imbalance.

(a) Evolution of the imbalance
Rapid oscillations in the surface pressure are often taken to be indicative of

imbalance (e.g. Williamson and Temperton 1981). To quantify this type of fast gravity-
wave imbalance in a given analysis, we estimate the second difference D2(ps) of the
surface pressure ps, from the time series obtained from a 24 h integration starting from
that analysis:

D2(ps(t)) = ps(t + �t) − 2ps(t) + ps(t − �t). (22)

Here we take �t = 45 min, i.e. one model time step. The global r.m.s. value ‖D2(ps)‖
is subsequently obtained using

‖D2(ps)‖2 = (D2(ps), D2(ps)) = 1

S

∫

S

D2(ps)D
2(ps) dS, (23)

where S is the surface area of the globe.
The above quantity is computed for the 24 h forecast of member 1 of the ensemble

of analyses valid at 0000 UTC 1 August 2004. The analyses were, again, obtained with
the EnKF configuration that was implemented in January 2005. In particular, the impact
of observations drops to zero at a horizontal distance of 2800 km and at two units of
ln p.

It can be seen from Fig. 2 that the oscillations in surface pressure are strongly
damped by the model. The initial estimate of ‖D2(ps(45 min)) ‖ = 2.61 hPa is more
than an order of magnitude bigger than the final estimate of ‖D2(ps(23 h 15 min))‖ =
0.16 hPa. This significant initial imbalance would probably cause problems if the EnKF
were to run with a short data assimilation cycle.

In our current configuration, we have a 6 h window for the observations with the
window extending from 3 to 9 h after the preceding analysis. We note that the estimated
1.05 hPa for the second difference at 3 h is twice as large as the value of 0.50 hPa
obtained at 6 h. Consequently, considering that the first observations are valid at about
3 h, an explicit initialization could be beneficial for an EnKF (Lorenc 2003) that employs
time interpolation.

To investigate this further, an additional filtered integration with a length of 24 h
has been performed from the same initial condition. That is, from the filtered state at
t = 3 h, we subsequently run the model out to 24 h. Evaluating Eqs. (22) and (23), we
can obtain a time series consisting of four unfiltered points (valid at t = 0, 0.75, 1.5, and
2.25 h), and 29 subsequent points that are expected to be on a balanced trajectory. Due
to the use of different time levels in Eq. (22), the first estimate of D2(ps) that might be
expected to indicate that balance has been achieved should occur at step 5 (t = 3.75 h).
It can be seen from Fig. 2 that this is indeed the case, and in fact, that the digital filter is
highly effective in removing the oscillations in the surface pressure field.
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Figure 2. The evolution of the norm of the second difference of surface pressure, Eqs. (22) and (23), over the
course of a one-day integration with a 45 min time step. The solid line is for an initial condition that has been
integrated in time without the imposition of any balance procedure. The dashed line corresponds to an integration
from the same initial condition, but with the application of a digital filter finalization technique, as described in

the text.

TABLE 3. INITIAL IMBALANCE

‖D2(ps(45 min))‖ (hPa)

rh (km) rz = 2 rz = 4 rz = 6 rz = 8 rz = 100

2 800 2.618 2.913 3.100 3.236 3.622
5 600 2.600 2.725 2.783 2.815 2.925
8 400 2.744 2.520 2.381 2.345 2.423

11 200 2.883 2.420 2.316 2.133 2.145
280 000 1.996 1.558 1.223 1.153 0.454

The second difference of surface pressure estimated at
t = 45 min for different values of the localization parameters rh
and rz. Horizontal correlations are forced to zero at a distance
of rh km and vertical correlations at rz units of ln p.

(b) Obtaining balance by relaxing the localization
As mentioned in section 2(c), the localization operator in the EnKF will cause

imbalance. One would expect that using a bigger ensemble and a less severe localization
would lead to improved balance and a more accurate analysis. Here, to investigate only
the impact of a less severe localization on the amount of imbalance, we generated the
analyses valid at 0000 UTC 1 August 2004, using less severe horizontal and vertical
localizations as specified in Table 3. The reference value of ‖D2(ps(45 min))‖ =
2.618 hPa, corresponds to the first value for the unfiltered run in Fig. 2. It can be seen
that to slightly improve on this value, we need both to more than double the value of the
horizontal localization parameter rh and to simultaneously relax the vertical localization.
Even if we remove the vertical localization and relax rh to 11 200 km, the imbalance
in the surface pressure only decreases by about 20%. It should be noted here that a
significantly larger ensemble would be necessary to obtain a high-quality analysis with
these values of rh and rz. Eventually, with values of rh and rz that correspond to virtually
no localization, we obtain analyses that are almost as balanced as the guess fields, the
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value of 0.454 being not significantly different from the value of 0.502 for time step 8
of the solid curve in Fig. 2.

To get a rough estimate of how many members we would need in the absence of
covariance localization, we here provide a simple estimate based on the hypothesis that
the current ensemble size of 96 members provides just enough degrees of freedom
to fit the data in the area covered by the localizing function. With a zero impact of
observations at 2800 km in the horizontal and 2 units of ln p in the vertical, we assume
that an observation is effectively seen in a disc with horizontal diameter 2800 km and
a vertical extent of 2 units in ln p. With a model top at 10 hPa, we must cover a
total distance of 4.6 units in ln p. In the horizontal, we obtain 83 semi-independent
areas (by dividing the total surface area of the sphere by the area covered by a single
disc). From these three numbers, we conclude that the localizations lead to an effective
dimensionality of over 10 000. We therefore estimate that we would need over 10 000
ensemble members to obtain an accurate and balanced analysis with an EnKF that
does not include covariance localization. Such a configuration is beyond what we can
currently handle on the computer.

With our current implementation of covariance localization and the parameters we
can afford to use with it, we are consequently unable to obtain reasonably balanced
analyses. To alleviate this problem, and to permit time interpolation in a subsequent
implementation, the digital filter finalization was implemented in the operational EnKF
configuration in December 2005.

It can be concluded from the above results that, as more and more batches of
observations are assimilated, the sequential EnKF will generate increasingly unbalanced
background fields. This might lead to an increasingly suboptimal assimilation of the
observations. New inherently more balanced ways of localizing covariances (J. Kepert
2005, poster presentation at the Prague Symposium) are currently being developed and
tested. These may have a beneficial impact on EnKF results.

6. RE-INTERPRETATION OF MODEL ERROR

In Houtekamer et al. (2005), it was noted that our model-error term represents a
multitude of terms including (i) errors in the forward interpolation operator, (ii) errors
in the specification of the statistics of the observations, and (iii) errors due to the
parametrization of unresolved dynamical and physical processes. The first two of these
are not related to the forecast model at all; in fact, it is the parametrization errors that
are generally considered to be dominant. It is for that reason that, in our EnKF, we have
followed standard Kalman filter theory, adding the model error to the prediction error
to obtain the forecast error, where our terminology for these various errors is as defined
by Daley (1992b, section 2). It could be argued, however, that it would be more realistic
to add model error at every time step as it occurs. This would allow the model error to
subsequently evolve with the model dynamics. It would also be more consistent with the
system simulation approach, using multiple model versions, employed in our medium-
range EPS. In practice, neither the covariance that could account for the accumulation
of model error over the course of a short-range forecast nor the covariance associated
with the model error incurred over a single time step is well known.

As discussed in Houtekamer et al. (2005, section 4(a)), our parametrized model
error has been adjusted so that the innovation amplitude predicted by the EnKF agrees
fairly well with the observed innovation amplitude. We have already noted that our
parametrized model error has a magnitude of 1.39 m s−1. To put this number in per-
spective, we ran our dynamical model with the physical parametrizations switched off.
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This led to a difference of 1.52 m s−1 in the state vector at 6 h. Given that this is the total
contribution of the physical parametrizations, these parametrizations would have to be
severely in error to produce an error of 1.39 out of a total of 1.52. Having confidence in
the model’s physical parametrizations, we take this as support for the view that a sizable
portion of the model error originates in the analysis step.

Only under rather restrictive conditions (Cohn and Parrish 1991) will the total
model-error covariance, Q(t, t − 1), be proportional to the model-error covariance that
occurs at each time step. Even in this case, however, it does not follow that individual
model-error fields would be non-propagating; that can only happen if the forecast model
is simply the identity operation. In that special case, it would be possible to obtain the
same result either by adding model-error fields at different time levels or by adding a
single model-error field at the end of the forecast. In a realistic situation, however, a
model-error field, once added to the state vector, will evolve in some non-trivial way
with the dynamics and physics of the numerical model. This implies that, in an EnKF
that uses time interpolation, model error cannot be added only to the final time-level as
in Eq. (10).

An alternative which has the practical advantage that it permits time interpolation
is to displace the regular addition of random fields, i.e. replace Eqs. (10) and (11) with

xf
i = M{xa

i (t − 1) + di}, i = 1, . . . , N, (24)
di ∼ N(0, D), (25)

where di represents the data assimilation error. The corresponding covariance matrix D
plays a role similar to that of the original matrix Q. The displaced regular addition of
random fields di will regularly inflate the ensemble covariances so that they will remain
sufficiently large. In their EnKF, Hunt et al. (2004) modify the analysis-error covariance,
rather than the forecast-error covariance, to account for model-error (see their section 4).
In the context of our EnKF, this could correspond to the belief that the lack of realism of,
say, the observation-error statistics for which we assumed a N(0, R) distribution, leads
to a degradation of the quality of the analysis that needs somehow to be corrected for
in the Kalman filter equations. Alternatively, one could take the viewpoint that since the
model error represents a multitude of terms, not all of which relate to the forecast model,
it should more appropriately be referred to as system error and the exact stage of the
EnKF procedure where it should be added is therefore somewhat arbitrary. Moreover,
adding it after the analysis, instead of after the forecast, allows the ‘system error’ to
evolve, and even amplify, due to the model dynamics. Since we obtained better results
with Eqs. (24) and (25), these equations replaced Eqs. (10) and (11) in the operational
EnKF configuration in December 2005.

7. CONCLUSIONS

In this paper, we have reviewed concepts related to the Kalman filter and its
approximation with an ensemble. The KF, which is derived in the context of linear
dynamics, provides the optimal minimum variance solution to the data assimilation
problem. If the model error projects only on to slow modes then, since imbalance is
damped by the forecast model (see, e.g. Fig. 2), the KF solution will be increasingly
balanced as the data assimilation cycle continues. In the case of small errors, the basic
EnKF, given by Eqs. (10)–(17), converges to the KF solution as the ensemble size
increases. For large errors, the local curvature of the balanced space, which is not
considered by the EnKF, may lead to unbalanced errors. For a finite ensemble size,
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the EnKF solution is not optimal. The use of a small ensemble (O(100) members)
necessitates the introduction of measures, not required in the KF itself, to increase
the dimensionality of the ensemble. An EnKF in which the effect of observations is
localized is unbalanced even in the limit of small errors.

The focus in this paper is on large-scale global atmospheric data assimilation. The
EnKF, which was implemented operationally at the Meteorological Service of Canada
in January 2005, is briefly described and used to examine some aspects of EnKF
performance. We measured the magnitude of the forecast component F , the analysis
component A, and, if initialization is performed, of the initialization component I . The
relative sizes of these components were found to be ordered in accordance with the
Hollingsworth et al. (1986) criteria for a properly functioning data assimilation system,
i.e. F > A > I .

A 30-day sequence of ensemble-mean analysis increments has been examined and
the results (Fig. 1) indicate the presence of a fixed bias-induced component slightly
larger than the initialization component I . This is troubling as the EnKF has been
designed assuming that the forecast model and the observations have no bias (Eqs. (1)
and (2)).

A set of experiments was performed to evaluate the sampling error due to the finite
ensemble size. The results (Table 2) are consistent with the expected N−0.5 decrease in
error, where N is the ensemble size. With our current ensemble size (2 × 48 members),
the error is apparently of the same order as that of other error terms.

As seen in Fig. 2, the forecast model strongly damps the oscillations associated
with imbalance. Consequently, if it is assumed that the observations are valid at 6 h (the
central time of the analysis window), there is perhaps no need for an explicit balance
operation. On the other hand, given the dominant size of the forecast component F , and
the ever growing quantity of asynoptic observations, we found that time interpolation of
the model trajectory to the observations should not be neglected.

Figure 2 indicates that time interpolation of the model trajectory to the observations
can only be implemented with a more balanced short-range forecast. The results of
Table 3 indicate that moderate relaxation of the localization unexpectedly yields little or
no reduction in imbalance. Implementation of a digital filter finalization would provide
sufficient balance. In addition, to permit time interpolation, we displaced the addition
of model error so that, instead of adding the model error to the ensemble of predictions,
we now add it to the ensemble of analyses, as discussed in section 6.

In view of its large amplitude, the parametrized model-error term could be split
into a parametrized data assimilation error and a simulated model-physics error. One
could, for instance, use stochastic physics (Buizza et al. 1999; Shutts 2005) or an
ensemble of differently configured forecast models (Houtekamer et al. 1996) to simulate
the occurrence of model error with an ensemble of integrations. To the extent that
these approaches account for some of the flow-dependent intermittent sources of model
error, the homogeneous isotropic term, which accounts for unexplained error, could be
reduced, as suggested in Mitchell and Houtekamer (2000).

The proposed EnKF algorithm, with time interpolation of the model trajectories
to the observations, with the introduction of parametrized errors at the initial time and
with a digital filter finalization, resembles current 4D-Var implementations. For instance,
the CMC implemented 4D-Var operationally on 15 March 2005 for the high-resolution
deterministic forecast system (Laroche et al. 2005). In that algorithm, the adjoint
technique is used to accomplish time interpolation, background-error covariances are
specified at the initial time, and a digital filter finalization is applied to the reference
trajectory. Neither algorithm can be expected to perform well in the presence of
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significant bias in the model or the observations, of large amplitude model error of
unknown origin or of poorly known observational error statistics. We believe that
a reduction, or better handling, of these problems will be highly beneficial to the
performance of both 4D data assimilation algorithms.
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