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Abstract. The mainintrinsic source of error in the ensem- 1 Introduction

ble Kalman filter (EnKF) is sampling error. External sources

of error, such as model error or deviations from Gaussianity,T he ensemble Kalman filter (EnKF) has become a very popu-
depend on the dynamical properties of the model. Samplindar potential substitute to variational data assimilation in high
errors can lead to instability of the filter which, as a conse-dimension, because it does not require the adjoint of the evo-
quence, often requires inflation and localization. The goal oflution model, because of a low storage requirement, because
this article is to derive an ensemble Kalman filter which is Of its natural probabilistic formulation, and because it easily
less sensitive to sampling errors. A prior probability density lends itself to parallel computing=¢ensen2009and refer-
function conditional on the forecast ensemble is derived usence therein).

ing Bayesian principles. Even though this prior is built upon ) ]

the assumption that the ensemble is Gaussian-distributed, 1 Errors in the ensemble Kalman filter schemes

is different from the Gaussian probability density function
defined by the empirical mean and the empirical error co-

variance matrix of the ensemble, which is implicitly used in . . : .
traditional EnKFs. This new prior generates a new class Ofncompletely tO_Ok m_to account the impact of the uncertainty
ensemble Kalman filters, called finite-size ensemble Kalmanmc the observations in the analysis, was correctedimgers

filter (ENKF-N). One deterministic variant, the finite-size en- ?t al.(1998. They introduced a stochastic EnkF, by perturb-

semble transform Kalman filter (ETKF-N), is derived. It is ing the obser\(atlons for each memberiof the gnsemble, n
tested on the Lorenz '63 and Lorenz '95 models. In this con-accordance with the assumed observational noise. Alterna-

text, ETKF-N is shown to be stable without inflation for en- t'\llef(t(l) the ﬁf‘:h?ﬂ'c jChe(TeS ‘Zre the gggermvl\r/\rlfttlckensem-
semble size greater than the model unstable subspace dimefiS Kalman filters introduced binderson(2001); Whitaker

sion, at the same numerical cost as the ensemble transforl%ng Ham|I_![(hZ?r?_3; T|ppett_t et aE'-(iOIS?)- K 0 oft &
Kalman filter (ETKF). One variant of ETKF-N seems to sys- ven wi IS correction, ENMI IS known 1o often sufrer

tematically outperform the ETKF with optimally tuned in- Irolmlu_nd?rzs?mpllfng |tssues} becagse It ﬁhbased onblt he ini-
flation. However it is shown that ETKF-N does not account "& ¢laim that tn€ fewtens of meémbers of the ensembie may

for all sampling errors, and necessitates localization like anf' uffice to represent the.flrst and secon'd-.order Stat'St.'CS of er-
EnKF, whenever the ensemble size is too small. In order°™ of a large geophysical systgm. This issue was diagnosed
to explore the need for inflation in this small ensemble size;f'ery ﬁfrlzyot())WOlutgka(rjnetLanfd_II\/Iltcftle(rL99&, \INhltakelr alnd d
regime, a local version of the new class of filters is defined amill (200. Indeed, the failure to properly sample leads

(LETKF-N) and tested on the Lorenz '95 toy model. What- to an underestimation of the error variances, and ultimately
X to a divergence of the filter.

ever the size of the ensemble, the filter is stable. Its perfor- Adding to th litude mi tch. und i
mance without inflation is slightly inferior to that of LETKF Ing o the error ampiitude mismalch, undersampiing
with optimally tuned inflation for small interval between up- generatg S spurious correlations, espemally. at long distance
dates, and superior to LETKF with optimally tuned inflation sHepa.rltlsm;)nlazggdressedHthyutekamer and Mitche{L.998;
for large time interval between updates. amifeta '(. D. L L

The sampling errors are intrinsic deficiencies of the EnKF
algorithms. In addition to these, one should also account for
model errors that are of external nature for an EnKF scheme.

Correspondence tavl. Bocquet Indeed, they are not due to a flaw in the data assimilation
BY (bocquet@cerea.enpc.fr) algorithm but to deficiencies in the evolution model.
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The EnKF schemes can be affected by errors of different na-
ture. A flaw of the original schemdegensen1994 which
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1.2 Strategies to reduce error 1.3 Towards objective identification of errors

Besides the early correction of the stochastic filter, tech-More straightforward approaches have recently been ex-
niques were devised to correct, or make up for the samplingplored through the identification of the sampling errdvsl-
issues. For both deterministic and stochastic filters, the erlat et al.(1998; Furrer and Bengtssq2007); Raynaud et al.
ror amplitude problem can be fixed by the use of an inflation(2009 put forward a quantitative argument that shows the
of the ensemble: the anomalies (deviations of the membershortcomings of sampling. Let us define an ensembl® of
from the ensemble mean) are scaled up by a factor that acstate vectors in RM, fork =1,..., N. The empirical mean
counts for the underestimation of the variancAsderson  of the ensemble is

and Anderson1999 Hamill et al, 2001). Alternatively, the N

inflation can be additive via stochastic perturbations of they — EZXk, (1)
ensemble members, as shownMitchell and Houtekamer N—=

(1999; Corazza et al(2002 where it was used to account
for the misrepresented model error.

As far as stochastic filters are concernéthutekamer
and Mitchell(1998 2001 proposed to use a multi-ensemble 1 N
configuration, where the ensemble is split into several subP = —_12(xk—f) (xp—3)". (2
ensembles. The Kalman gain of one sub-ensemble can be k=1

computed from the rest of the ensemble, avoiding the soThey assume that the ensemble members are drawn from
called inbreedingeffect. Remarkably, in a perfect model 3 muyltivariate Gaussian distribution of unknown covariance
context, the scheme was shown to avoid the intrinsic neegnatrix B, that generally differs from the empirically esti-
for inflation (Mitchell and Houtekame2009. mated covariance matriR. Then the variance of each entry

do not entirely solve the sampling problem and especially the

long-range spurious correlations. These can be addressed E‘([P— B]'z') _ 1 ([B]-»[B] o+ [B]-2-> @)
two ways under the name of localization. The first route con- v N\ vy
sists in increasing the rank of the forecast error covariancgyith ;, j = 1,..., M indexing the state space grid-cells; E is

missible correlation matrix{outekamer and Mitchgl2001, generically denotes entxy, j) of matrix C.

Hamill et al, 2001). The second route consists in making the |, particular one obtains the average of the error on the
analysis local by assimilating a subset of nearby observationgstimated variances &
(Ott et al, 2004 and references therein). Though vaguely
. ; 2

connected, the two approaches still require common groundg ([P — B]I_Zi) - _[B]l,2i , (4)
to be understoodSakov and Bertina2010. But alternative N
methods have emerged, either based on cross-valid&tien ( which has been used in an ensemble of assimilatiRay
derson20073, on multiscale analysiZhou et al, 2006, or ~ naud et al.2009. Considering covariances at long distance
on empirical consideration8{shop and Hodys<007). (i # j), [Bl;j is expected to vanish for most geophysical sys-

Many of these techniques introduce additional parameterstems. And yet the errors in estimatifi];;
such as the inflation factor, the number of sub-ensembles, or
the localization length. A few of these parameters can everE([p_ B],Z,) ~ i[B]-»[B] . (5)
be made local. They can be chosen from experience gathered Y N
on a particular system, or they can be estimated online.  are all but vanishing for a small ensemble. The impact of

The online estimation methods are adaptive techniquesihese errors on the analysis can be objectively estimated us-
which is a growing subject. Focussing on the inflation iSSUG,ing the results ofan Leeuwer{1999; Furrer and Bengtsson
they are based on a specific maximum likelihood estimator2007; Sacher and Bartell(2008.
of the inflation scaling, or of several scalars that parameter- This type of approach may offer objective solutions to ac-
ize the error covariance matricedifchell and Houtekamer  count for sampling errors. However incorporating them into
1999 Anderson 2007h Brankart et al. 2010 essentially  data assimilation scheme is not straightforward. For instance,
following the ideas ofDee (1999. Another adaptive ap- the objective identification of the covariance errors E3). (
proach (i et al., 2009 use the diagnostics &fesroziers etal. depends on the true covariances, which are unknown, and
(2003. some approximate closure is needed.

The Gaussian assumption made by these authors on the
distribution from which the ensemble is generated should
be regarded as an approximation in the context of ensemble
Kalman filtering since such an ensemble often results from

and the empirical background error covariance matrix of the
ensemble is

Nonlin. Processes Geophys., 18, 7356 2011 www.nonlin-processes-geophys.net/18/735/2011/



M. Bocquet: Ensemble Kalman filtering without inflation 737

the propagation by a possibly nonlinear dynamical model. The filters derived in this article should be applicable to
However this assumption allows to perform analytical com- (very) high-dimensional geophysical systems. This requires
putation using the properties of Gaussian distributions. Bethat only a small ensemble can be propagated between up-
sides if the analysis of the data assimilation system onlydates (typically no more than 100 members).

requires first- and second-order moments, higher-order mo-

ments are irrelevant for the update, although certainly not for ) i

the global performance of a filter. Following these authors,2 Accounting for sampling errors

we shall use this statistical assumption. We would like to reformulate the traditional analysis step of

the EnKF. The prior (or previous forecast) is the focus of
the reasoning. The prior that is usually used in the EnKF

In the context of ensemble Kalman filtering, the first objec- is given by the prior pdf of the state vecter a vector in
tive of this article is to build a prior, to be used in the analysis R", conditional on the empirical meahand on the empiri-
step. Working on the first- and second-order empirical mo-cal background error covariance matfixdefined in Egs.1)
ments of the ensemble, a traditional ensemble Kalman filte@nd @). Moreover this conditional pdf of the prigr(x|x, P)
performs an update as if the prior distribution was given by ais implicitly assumed to be Gaussian. Lacking further infor-
Gaussian defined by the empirical momenendP. Instead, ~ Mation, it is the more natural distribution knowing its first-
our prior of the true state is conditioned on the entire forecas@nd second-order moments.

ensemble, not only its first- and second-order empirical mo- )

ments. Knowing about the discrete nature of the ensemble, i¢-1  Getting more from the ensemble

should partly or completely account for the sampling flaws. Unfortunately, information is lost: this prior does not take

Our goal is, within the framework of ensemble Kalman . L .
Lo : L : .~ into account the fact that andP originate from sampling.
filtering, to perform a Bayesian analysis with this new prior.

In Sect.2, such a prior is derived. That is why we aim at computing the prior pdf efcondi-

The use of this prior in the analysis will result in the defini- tional on the ensembles(x |x1, ""xf\’)' Itis assumed that
. . . ; : . the members of the ensemble are independently drawn from
tion of a new class of algorithms for high-dimensional filter-

ing that are exploited in Sec8, the finite-size (i.e. finite- a multivariate Gaussian distribution of mean statand co-

sample) ensemble Kalman filters (denoted EnKF-N). We varance matridB. As argued_ln the_z introduction this assump-
tion leads to an approximation, since the ensemble members

shall study one of its variant, which is an extension of the €N~ e rather samples of a (more or less) non-Gaussian distribu-
semble transform Kalman filter (ETKF) efunt et al.(2007), . P : ! .
L . tion (Bocquet et al.201Q Lei et al, 2010. There is no point
that we call the finite-size ensemble transform Kalman filter. ; ; L :
(ETKF-N). in modelImg h!gher—order moments of the stat|§t|cs prior to
In Sect.4, the new filters are applied to the Lorenz '63 the analysis, since the analysis of the Kalman filter only uses

, . . the first- and second-order moments. The momegptand
and Lorenz '95 models. Their performance is compared to Co o
B of the true sampled distribution are unknown a priori and

ETKF. The new filters do not seem to require inflation. Un- . _
may differ fromx andP.

fortunately, like any ensemble Kalman filter, ETKF-N di- Summing over all potential, andB, whereB is a positive

verges for small ensemble sizes in the Lorenz '95 case. Itdefinite matrix. the prior odf reads
does require localization. This shows that the new filters do ' priorp

not entirely solve the sampling issue, and the reason for this p(x|x4,...,x

1.4 Obijectives and outline

N)

is discussed in Sech. Yet, a local variant of ETKF-N, the

finite-size local ensemble transform Kalman filter (LETKF- =/dxthp(Xle,..-,xN,xb,B)P(xb,lel,..-,xN)

N), can be built. It is tested on the Lorenz '95 toy model,

and compared to the local ensemble transform Kalman filter = /dxdep(x|xb,B)p(xb,B|x1,...,xN). (6)

(LETKF). The main goal of introducing LETKF-N is to ex-

amine whether the need for inflation is still avoided, in spite The symbol @ corresponds to the Lebesgue measure on all

of the imbalance that localization is known to generate. Inindependent entrieﬂf‘i/d[B]ij, but the integration is re-

Sect.6, the results are summarized. A few leads to go furtherstricted to the cone of positive definite matrices. From the

are also discussed. first to the second line, we used the fact that under the as-
In this article, model error is not considered. It is assumedsumption of Gaussianity of the prior pdf of the errors, the

throughout this study that the model is perfect. Therefore,conditioning ofp(x|x1,...,x,x5,B) on the ensemble is re-

in this study, inflation is meant to compensate for samplingdundant, since the pdfis completely characterizes hyand

errors (hence the adjectivetrinsic in the title). Theoreti- B. Bayes’ rule can be applied @(x,,B|x1,...,xx), S0 that

cally, (additive or multiplicative) inflation for model error is

a rather distinct subject from inflation for sampling errors,

even though it is difficult to untangle the two in practice.

www.nonlin-processes-geophys.net/18/735/2011/ Nonlin. Processes Geophys., 85073611
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(as far as we are concerned) that integral Ej.ig proper.
The prior of B has some important properties that are essen-

px|x1,...,xN) = ; X tial for this study. First, it is invariant by any reparameteriza-
P(*1,....%N) tion of state vectors. Consider the change of state variables
/dxdep(xlxb,B)p(xl, o XN |5, B) p(xp, B). 7 *= Fx’, whereF is a non-singular matrix in state space. It
translates tB = FB'F' for the error covariance matrices.

. . . The Jacobian of this change of variables Biis (see for
The probability densities that are conditional on and B instanceMuirhead 1982

can be written explicitly thanks to the Gaussian assumptions.
The first one in EQ.9) would be the prior of, if one knew ¢ — |F|+1dB’, (12)
the exact mean and error covariance matrix. The second one

is the likelihood of the members to be drawn from the Gaus-So that

sian distribution of the same mean and error covariance ma- JeT ML a1 e
trix (similarly to Dee 1995. The third pdf in the integral of PI(B)AB=IFBF[™ 2 [F[T7dB = py(B)dB. (13)

Eq. (7) is a prior on the background statistics @perprio)  Thjs justifies the powetM +1)/2. Besides we want the hy-
whose choice will be discussed later. Writing explicitly the perprior to lead to asymptotic Gaussianity: in the limit of a
two Gaussian pdfs in the integral of Eq) @nd re-organizing  |arge ensemble, this choice should lead to the usual Gaussian
the terms, one gets prior used in EnKF analysis. This will be checked in S&ct.

p(x|x1,...,xN)oc/dxdeeXp(—E(x,xb,B))p(x;,,B), (8) 2.3 Effective J, functional

where Choosing the priop(x,,B) = pi(x;) p3(B), the integration
1 1 onx, in Eq. @) is straightforward and leads to
Lx,xp,B) = S(x —xp) B Hx —xp) + S(N+Dn(B|

L p(xlxl,...,xN)oc/dBeXp(—j(x,B)), (14)
+=) (xp—x )TB_l(x —Xp), 9

2; k—Xb k—Xb ©) where

where|B| denotes the determinant Bf J(x,B) =} N x—-5"B lx—%
' 2N+1
2.2 Choosing priors for the background statistics NeM+1 1
+———MBI+5) (i —DB (- (15)

For the filters designed in this article, like for any (very) high- k=1

dimensional ensemble-based Kalman filters, information onl_

the background error statistics can only be transported by the his functional can be compactly written as

ensemble between analyzes. Passing along information on 5 1T AB-1 N+M+1I 5 16
the full statistics of the errors requires too much storage. That7(x’ )= 2 r( ) + niBl, (16)
is one reason why the EnKF was preferred over the imprac- h
tical extended Kalman filter. Still, we have to make a priori where
assumptions on (the statistics af) andB. _ e T _

The most popular one in multivariate statistics is Jeffreys’A a N+1(x ¥)x—x) +N-DP. (17)

prior. [t maximizes Fhe informgtion that .Wi” be g_aingd in any Like for most ensemble Kalman filters, especially ensemble
subsequent analysis made with that prior (making it as mucr{ransform Kalman filters, it is assumed in the following that

less informative as possible). It is known that Jeffrey’s prior — % belongs to the vector spatispanned by the anomalies
for the couple(x,,B) is not satisfying in practice, and one rort 9 . P pa 1 Dy the
x; —X. Because in the context of high-dimensional Kalman

should make the independence assumptieffieys 1961): filtering A is rank-deficient
p(xp,B) = py(xp,B) = py(xp) p3(B) (10)

and compute the Jeffreys’ priors foy andB separately. Jef-
freys’ choice corresponds to

rankA)<N—-1«K M, (18)

integral Eq. {4) turns out to be improper. The problem can

be circumvented. Indeed, tlematrices to integrate on are

pixp) =1, pyB)= B~ ", (11)  Mmerely test positive-definite matrices representing potential
error covariance matrices. We could choose to integrate on a

where M is the dimension of the state space. The fact thatrelevant subspace rather than on all positive definite matrices.

pi(xp,B) cannot be normalized is not truly an issue, like for We are merely interested in the matrices that acvamly,

any non-informative priors in Bayesian statistics, providedbecause the state vector liesin- ). Integration on the other

Nonlin. Processes Geophys., 18, 7356 2011 www.nonlin-processes-geophys.net/18/735/2011/
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matrices will produce an infinite volume factor with no de- would be affected in the following way. The probability den-
pendence o, that can be subtracted from the final effective sity p(x|x;,B) is conditional on the knowledge @& and
functional. On more rigorous grounds, one can extend matrixc,. For this density, we additionally assume a great confi-
A to a full rank positive definite matrid. = A+¢l, where  dence inx, like any standard EnKF, so that the first guess
I i is the identity matrix of state space, and- 0. Then the  x;, of the sampled prior is believed to be very closé&tand
integral in Eq. 14) becomes proper. After the integration, p(x|x,,B) >~ p(x|x,B). This assumption can be wrong for
one can lek goes to 0. A diverging term depending en  small ensemble size. Therefore:
only, and hence of no interest, can then be safely ignored.
To perform the integration o in Eqg. (14), one can Px|X1,... XN)

proceed to the change of variablBs= Ai/ZQAg/Z. From :/dBp(xp?, B)/dxbp(xb,B|x1,...,xN). (23)
Eq. (12), the Jacobian of this change of variable is

M4l The rest of the derivation is fundamentally unchanged. The
dB=Ac| 2 dQ. (19)  final background functional reads

Therefore, the dependencexirthroughA, can be extracted alt N _ T
from the integral: Ty ()= Eln’(x_x)(x_x) +NV-=DP}. (24)
px|x1,...,xN) However the disappearance of the/(N + 1) factor is not
1 cosmetic, and may have consequences that are investigated
oc|Ac| N2 / dsz|9|—<N+M+l>/2exp<—ETrsz—l) later.

o |A N2 o |A|TN/2, (20) o .
o ] ] 3 Finite-size ensemble transform Kalman filter
It is important to realize that the last determinantfofac-

tually applies to the restriction of the linear operator repre-Because?, and jba“ are not quadratic, it is clear that the
sented byA in the canonical basis of subspaéewhichiis of  analysis should be variational, in a similar flavor as the max-
dimension lower or equal t& — 1, and is, by this definition,  imum likelihood ensemble filterZupanskj 2005 Carrassi
not singular. etal, 2009. As such it can accommodate nonlinear observa-
From the expression op(x|x1,...,xy), we deduce the tion operators. Therefore, in this study, the analysis step will
background functional to be used in the subsequent analysise variational, similarly to 3D-Var. One should minimize the

of our variant of the EnKF: cost function
N
Tp(x) = —Inp(x|x1,...,xN):EIn|A|+CSt Ja(x) = To(x) + Tp(x), (25)
N N with
= N+1(x—f)(x—f)T+(N—1)P, (21) L

_ Jo¥) =2 (y—Hx) R (y—H(x)), (26)
up to some irrelevant constant. Let us remark that the mean
of the ensembla is the mean and mode ofix|x1,...,xy). wherey is the observation vector in observation sp@e

) R is the observation error covariance matrix, atds the

2.4 Alternate jb functional observation Operator_

o . he choi _ 1 It miaht b We shall call finite-size (or finite-sample) ensemble
he can argue against the choicepglx,) = 1. It might be Kalman filters (EnKF-N), the ensemble Kalman filters that

co_nsu_jered _too weakly |r_1format|ve. However as an hyper'could be generated using this type®f term in the analysis
prior, it provides information before the observation, but alsostelo of the filter. In the following, the focus will be on the

before exploiting the ensemble. So, whatever information ISansemble transform Kalman filter (ETKF) variant, following

passed on to the subsequent analysis, it is weak, unless tfﬁunt etal.(2007. The analysis is expressed as an element of

qurmatmn content of the ensemble is \_/veak and the Obser'subspacéJr V. The state vector is characterized by a set of
vation are not dense (small ensemble size, sparse/infreque

ﬂledundant) coordinatgs; -1,y in the ensemble space:

observation).

One alternative to the uniform distribution is to use a cli- N
matology forx,. Itis not tested in this study. Howeveritwas * =X+ Zwk(xk —X). (27)
recently demonstrated in the context of ensemble Kalman fil- k=1

tering that such an approach is helpful for sparsely observedf X, = x; —x are the anomalies, aril the matrix of these
systems Gottwald et al, 2011). Another alternative is to  anomaliesX = (X1,...,Xy), thenx —x = Xw. Hence, one
make specific choices far,. Equation 6) has

N

N+1waTxT+xxT. (28)

p(x|x1,...,xN)=/dxdep(x|xb,B)p(xb,Ble,...,xN), (22) A=

www.nonlin-processes-geophys.net/18/735/2011/ Nonlin. Processes Geophys., 85073611
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Recall thatA| represents the determinant of the linear oper-consequence, the two cost functiqﬁ;{w) and 7, (x) have

ator related toA but restricted to subspadé In the same the same minimum. Note that this implies that at the mini-

subspace, the linear operator relateck’ is invertible, of ~ mumuw? of 7,, one hagj(w®) =0.

inverse denote(jxxT)‘l_ One gets Hence, instead of Eq26) one can use the cost function
with a gauge-fixing term:

N
A = ‘N—H_waTXT+XXT

~ 1
Tu(w) = §<y—H(f+><w>)TR—1<y—H<f+Xw>)

N -1

_ T T TyT N 1

- ‘xx ‘ IV+—N+1(XX ) Xww X +E|n<1+ﬁ+wTw>. (35)
14— yTXT(xxT) X 29 i i i

o1+ N+1w w. (29) Cost function Eq.5) is not necessarily convex because the

_ ~ Infunction is concave. Let us assume a linear observation op-
There is a subtlety that we need to develop on, and whicherator, or linearized around the innovatiph- H (¥). Then a
generalizes the clear explanation giverHynt et al.(2007.  mjinimum always exists since for a linear observation opera-

. . L tor, J,(x) is convex inw, and
3.1 Gauge-invariance of the parameterization
As a family of vectors, the anomalies are not indepen-jb(w) - Eln (1+ N Tw w) ’ (36)
dent sincez,’f:lxk = 0. Therefore parameterizing, (x) = . . . . .
T (F+Xw) with w entails a so-calledauge invariancda is a mopot_onlcally increasing function whgn the normuof
redundancy inw): J; (¥ -+ Xw) is invariant under a shift of goes tp !nflnlty. Converse!y, the cost function may have sev-
all wy by a same constant. The number of degrees of freedon(?ral minima _(see Appendi). As_a consequence_the n_ature
of this invariance is given by the dimension of the kernel of O_f t_he minimizer, as well as the first guess of the |terat|ve op-
X, which is at least one according to the previous remark. timization, may have an impact on the result. The first guess
The expression given by E®9) is not invariant under ro- of the iterative minimization was chosen to tve= 0, which
tations ofw. We could make it invariant by using the freedom fa\{ors the prior agai'nst the observgtion if several minimg do
of the gauge invariance. We can fix this gauge by choosin Xist. E_ven thou_gh it may _sound wiser to favor observation,
to minimize the cost function over the that have a null or- he choicew =0is clearly simpler.
thogonal projection on the kernel ¥f 3.2 Posterior ensemble
-1
(l N=XT (XXT) X) w=0. (30)  Oncew” is obtained as the minimizer of EQ), the poste-
rior state estimate is given by

With this constraint,|A| is proportional to & A w w.

a__ — a
This is cumbersome to enforce though. Instead, to performx =X+ Xw. (37)
the same task, a gauge-fixing term We wish to compute a local approximation of the error co-
N 1 variances at the minimum. The Hessian/f can be com-
= w' (Iy=XT T ted in ensemble space:
Gw)=——w (lN XT(xxT) X)w, 31) putedi P
iai i i 14+ 1 +wTw)ly —2ww’
is inserted into the cost function E ~ ~ N N
H Hy=V3.T5(w) = ol : ) , (38)
N 14,7
Ja(6) = To(x)+ 5 IN(A], (32) (1+F+wTw)
- : The Hessian of the observation term is
yielding an augmented cost function N
Hy = V2 T,(X+Xw) = (HX)TR7IHX, (39)

~ N
= x+X —In(]A . 33
Ja(W) = Jo(x +Xw)+ 2 NAAI+G W) (33) whereH is the tangent linear aff. The analysis error covari-

For instance, in the case where réfik= N — 1, one has ance matrix®, in ensemble space is approximately obtained
from the inverse matrix of the total Hessian at the minimum

1 (&Y Po =t 40
G(w) = N1l (;wk) . (34) @= e ~ ~ ( ).
whereH, = Hy(w®) +H,(w®). Note thatH, must be posi-
Because In is a monotonically increasing function, one getdive definite by construction, even though (w®) is not nec-
Ja(w) > T, (X +Xw), for all w in RY, with equality if and  essarily so.
only if G(w)=0. Moreover, for any there is aw* in the Then, a posterior ensemble can be obtained from the
kernel of X (G(w*) =0) such that7,(x) = J,(w*). As a square root of(N — 1)P,. More precisely, the posterior
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ensemble anomalies, in ensemble space, are given by th&4 Algorithm

columnsW¢ of the transform matrix
The variant of the finite-size EnKF that has just been de-

W = ((N_l)'ﬁa)l/ZU, (41) scribed is the finite-size ensemble transform Kalman filter
(ETKF-N). The numerical implementation is similar to that

whereU is an arbitrary orthogonal matrix that preserves the of Harlim and Hunt(2007) (see Algorithm 2). The pseudo-
ensemble mearlJu =u whereu = (1,...,1)T. The degrees code for ETKE-N is:

of freedom introduced by allow to span the ensemble space

of any ensemble square root Kalman filtéakov and Oke 1. Obtain the forecast ensemble}i—y... v from the
2008. Accordingly, the posterior ensemble in state space is ~ Model propagation of the previous ensemble analysis.
givenfork=1,...,N by 2. Form the meafx, and the anomaly matriX, necessary

X% = x4 XWY. (42) for the evaluation of cost function EB%).

3. Minimize cost function Eq.35) iteratively starting with

Let us check that the posterior ensemble is centered on i
w =0, to obtainw“.

x“. To do so, one has to verify thatis in the kernel of
XW¢. If we can prove thak is an eigenvector oP,, then 4. Compute x® and the Hessiar{,, from Eq. B7),
XW@u o« Xu = 0. The eigenvectors d?, are those of the Eq. 39), and Eq. 89).

HessianH,, at the minimum. SinceJ,(x + Xw) is gauge

invariant, it is easy to check that is in the kernel of the 5. Computew?® = (ﬁa/(N_l))_l/zu_

Hessian,. (Note that this remark also applies without ap-

proximation to nonlinear observation operators.) AsJ@r 6. Generate the new ensembigf = x* +-XWj.

whose gauge-invariance has been intentionally broken, the The complexity is the same as that of ETKF. The mini-
argument cannot apply. But it was seen earlier that at thgpization of the analysis cost function, which is already well
minimum g (w*) =0. In particular, one hag’w? =0. Asa  ongitioned by construction, might be longer in such non-
consequence, itis clear from EGH] tha%u s an eigenvector  gadratic, and even non-convex context. However, the mini-
of Hp, of eigenvalueV (1+1/N +(w*) w*)~*. Therefore  mization remains in ensemble space, and is almost negligible

the posterior ensemble is centeredan This property is  jn cost for high-dimensional applications with an ensemble
important for the consistency and ultimately the stability andjze in the range of 10-100.

performance of the filterWang et al. 2004 Livings et al,
2008 Sakov and Oke2008. 3.5 Interpretation

The new filters are based on several mild approximations
that are imposed by the non-Gaussianity of the prior. Firstly,The influence of the background term of the cost func-
one might not sample the right minimum when there are sevtion, J, = % In(1+1/N +ww), within the full cost func-
eral of them (see Appendik). Or the right estimator could tion Eq. @5), is compared to its counterpart in ETKF, =
be the average rather than a mode of the posterior pdf. Sed‘-’z‘—lew. Firstly, let us assume that the innovation is such
ondly, and unlike the Gaussian case, the inverse Hessian ihat, in the ETKF system, the analysis is driven away from
only a local approximation of the analysis error covariancethe ensemble mean:
matrix (Gejadze et a]2008. N
ww=>Y w>0(). (44)

3.3 Asymptotic Gaussianity =i

When the ensemble size goes to laje> oo, the Intermin I the ETKF-N system, the constraint enforced by the back-
the background part of cost function E§6J, must decrease ground term would be alleviated by the presence of the In
to smaller, yet always positive, values. So shattdww = function. Therefore, in the same situation (same innova-
leg/:lwg_ Therefore, in this limit, one has tion), ETKF-N would be more controlled by the observation

than ETKF. In particular, larger deviations from the ensem-
ble mean would be allowed. It is reminiscent of the way the

~ N 1 T
Jp = Eln <1+ N tw w> Huber norm operategiiber, 1973.

1 N-1 11 o Secondly, assume that the innovation drives the ETKF sys-
=3 + o v +0 (N N "e.e ) ’ (43)  tem towards an analysis close to the ensemble mean
and the ETKF ofHunt et al.(2007) is recovered (assuming . N 2
U is the identity matrix). ww= Zwk <1 (45)
k=1

From Eq. @3), it is clear that the ETKF-N system is in a
similar regime. However, because of thgVloffset in the In
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function, the prior term cannot vanish even when the ensem-
ble mean is taken as the optimal state. This is confirmed by S
the inverse of the Hessidty,, the contribution of the prior to 25 Q
P,, whichisN~1(1+1/N) atw? =0, instead ofN 1. This 'g 5
also corresponds to the residugRlterm in7, of Eq. @3). )
Algebraically, this offset comes in the formula by the inte-
gration onx,: this blurring tells the system not to trust the
ensemble mean entirely at finide.

We believe this is the same term-1L/N that was diag-

& ETKF-N At=0.50
E] ETKF-N At=0.25
g ETKF-N At=0.10
Alt. ETKF-N At=0.50
A
9)

It. ETKF-N At=0.25
Alt. ETKF-N At = 0.10
<{>—& ETKF optimal inflation At=0.50
[3—F1 ETKF optimal inflation At=0.25
(3—F6) ETKF optimal inflation At=0.10

T———

Average analysis rmse

nosed bySacher and Bartell(2008, who showed that, for a —a—=n £
Gaussian process, the dispersion of the ensemble around th A A - S
mean of the Gaussian should G+ 1/N)P, instead ofP, S~ ) P L

because the ensemble mean does not coincide with the med °5
of the Gaussian distribution. L 3

I

6 7 8 9
Ensemble size

3.6 Alternate ETKF-N

] ) . Fig. 1. Time-averaged analysis rmse for ETKF, ETKF-N and the al-
The alternative formulation of ETKF-N, that assunmess  ternate ETKF-N, for three experiments with different time intervals

the best estimator for the prior, leads to the background ternbetween updates, and for an ensemble size flom3 to N =9.

Tt = E|n<l+wTw) . (46)
2 At =0.25 andAr = 0.50. These choices are expected to

The only difference is in the missing & offset term, which ~ generate mild, medium and strong impact of non-linearity

is not surprising since it was identified as a measure of theand, as a possible consequence, non-Gaussianity of errors.

mistrust in the ensemble mean to represent the true forecadihese observations are independently perturbed with a nor-

mean. mal white noise of standard deviation 2 followiHgrlim and
Hunt(2007. In comparison, the natural variability (standard
deviation from the mean of a long model run) of the x, y, and

4 Tests and validation with simple models z variables is ®, 9.0, and 86 respectively.

in thi . h fil ib icall q All the simulations are run for a period of time correspond-
n this section, the new filters will be numerically tested, on @ing to 5x 1P cycles, for the three values af. We use a

three-variable chaotic dynamical toy model, as well as a onep im-in period of 18 cycles to minimize any impact on the
dimensional chaotic dynamical toy model. For the numericalfinal result. The ensemble size is varied frafe= 3 to N — 9

experimentst is chosen to be the identity. The filters are judged by the time-averaged value of the root
mean square error between the analysis and the true state of

4.1 Lorenz 63 toy-model the reference run.

4.1.1 Setu
P 4.1.2 Bestrmse

The Lorenz '63 modell{orenz 1963 is a model withM =3

variables, defined by the equations: For ETKF, a multiplicative inflation is applied by rescaling

of the ensemble deviations from the mean:

dx

o0 Xp— X +r(xp—X), (48)

d—y =pxX—y—xz so thatr =1 means no inflation. A wide range of inflation
gé factorsr is tested. The inflation factor leading to the smallest
— =xy—pz. 47) (best) rmse is selected. For finite-size filters, inflation is not
dr considered. Therefore for each finite-size filter score, only
The parameters are set to the original valgese, 8) = one run is necessary.

(10,28,8/3), which are known to lead to chaotic dynamics, The results are reported in Fit.

with a doubling time of 078 time units. In the following For mild non-linearity, the ETKF is slightly better than

simulations, a reference simulation stands for the truth. TheETKF-N. With a stronger impact of non-linearith¢ = 0.25
model is considered to be perfect: the model of the truth isand Ar = 0.50), ETKF-N significantly outperforms ETKF.
the same as the one used in data assimilation runs. We genéFhe alternate ETKF-N is diverging foAr = 0.10 and for
ate synthetic observations from the reference simulation fosmall ensemble siz&/ < 6. This emphasizes the fact that
the three variables eachr time interval, withAr = 0.10, the ensemble meanis not a fine estimation of,, the mean
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of the true error distribution. Fonr = 0.25 andAr = 0.50, 4.2.2 Ensemble size — inflation diagrams

where the errors are larger and the estimatior;ofnay be

relatively less important, the performance is almost as goodrollowing Sakov and Okg2008 and many others, we inves-

as ETKF-N, with slight deviations for the smallest ensem-tigate the rmse of the analysis with the reference state (the

bles. truth). The ensemble size is varied from 5 to 50. A mul-
To a large extent, these results are similar to thodeavt tiplicative inflation is applied by rescaling of the ensemble

lim and Hunt(2007. However, even though getting better deviations from the mean according to E48) The infla-

results than ETKF, their filter still necessitates to adjust onetion factorr is varied from 1to 1.095 by step of M05. As

parameter. a result, one obtains two-dimensional tables of rmse, which
are displayed graphically.

4.2 Lorenz '95 toy-model The results for ETKF are reported in FRa. They are sim-
ilar to the symmetric ensemble square root Kalman filter of

4.2.1 Setup Sakov and Okg2008. The filter starts converging when the

, . . : ensemble size is larger than the model unstable subspace di-
The filters are also applied to the one-dimensional Lorenz '95 9 P

; mension. Inflation is always necessary, even for a size of the
toy-model (__oren_z and Emmapuelgga. This model rep- ensemble greater than the Kaplan-Yorke dimension pointing
resents a mid-latitude zonal circle of the global atmosphere

: : . . to a systematic underestimation of sampling errors.
Sézzrst%?rg Ttl(]M _Ajo varablesxny-1....y- The model The results of ETKF-N are reported on Fizp. At first,

it is striking that the filter diverges for ensemble sizes below
dx,, N =15. This is disappointing, since the original goal of this
g = Gl Xm-2)Xm 1= Xm+ F, (49) study was to remedy to all sampling flaws in a deterministic
context. This is obviously not achieved, similarly to any kind

where F = 8, and the boundary is cyclic. Its dynamics is f EnKE without localizati H the f lism d
chaotic, and its attractor has a topological dimension of 13, a0 BN without focalization. However, he formaism ce-

doubling time of about @2 time units, and a Kaplan-Yorke veloped here allows to understand the reason of this failure,
dimension of about 21 ' ’ and how it could later be amended. This will be discussed in

. ' . Sect5.

The experiments follow the configuration 8akov and .
Oke(ZOOE; In the first experiment, thg time interval between BeyondN = 15 (which corresponds to a rank of 14 or less
analyzes isAr = 0.05, representative of time intervals of 6 from the_ anom_aly subspace_, close to t.he model unstable sub-
hours for a global meteorological model. With this choice, space dimension), the filter is unconditionally stable.
non-linearity mildly affects the dynamics between updates. 1 N€ results of the alternate ETKF-N are also reported on
All variables are observed everyt. Therefore, the observa- 19 2¢- Itis also unconditionally stable beyond= 15, but
tion operator is the identity matrix. All observations, which the rmses are better.
are obtained from a reference model run (the truth), are per-
turbed with a univariate normal white distribution of stan- 4.2.3 Bestrmse
dard deviation 1. The observation error prior is accordingly
a normal distribution of error covariance matrix the identity.

In comparison, the natural variability of the model (standardover all inflation factors. For ETKE-N, there is only one

deviation from the mean) is.g for any of theM =40 vari- rmse, since inflation is not considered. In F&jare plot-

ables. The performance of a filter is gssgssed by the roc%ted the best rmses for the three filters. The alternate ETKF-N
mean square error (rmse) of the analysis with the truth, aver-

aged over the whole exoeriment run seems to outperforms ETKF slightly. But its major asset is
9 . > €Xp . that the alternate ETKF-N obtains the best rmses without in-
As a burn-in period, 5 10° analysis cycles are used, flation

Wgr?rrne ;nstsl 0??1?slyrsr:2 cyéc;esoir; (;J:;ddf?élgﬁﬁgss;rﬁgitloas\,)\(’: Both ETKF-N and alternate ETKF-N perform better than
P y y y : -TKF over the rangeV = 5-16, especially in the critical

ever, on the one hand, the convergence was deemed suﬁ’i:'

cient for this demonstrative study. On the other hand, abouﬁgggr]\vs?cii;nl?ﬁ Tgﬁ dh;\)s Otf)?ﬁg fgre;cnkze%;or;g;heelr config-
5x 10* assimilation experiments have been performed, be- gl o .
The ETKF-N is not as good as the other two filters be-

cause the inflation (and later the localization) parameters are . .
( )P ondN = 16. It underperforms both filters by a maximum of

investigated for many sizes of the ensemble. Longer run ~ . . .
(10° analysis cycles) have also been performed, but no (long: 09%, forN =20. We believe this is explained by the robust-

term) instability was noted. Moreover these tests showed that©>S of the filter. Indeed, as discussed in SBCETKF-N

assumes that the mean state can be different from the mean
h f th I h I . A,
the rmses of the f@cyc e cases had reasonably converged state of the true distribution, whereas the alternate ETKF-N

assumes they match. Both finite-size filters are symmetric.
If the model flow remains approximately linear, which is the

In the case of ETKF, the best root mean square error is ob-
tained by taking, for each ensemble size, the minimal rmse
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Fig. 2. Root mean square errors of ETK&), ETKF-N (b), and alternate ETKF-Kt), for a wide range of ensemble size (5-50) and inflation
parameters = 1,1.005,...,1.095 and in panglb) a larger range of inflation/deflation=0.945, ..., 1.095.

case for smallAz, the forecasted ensemble will remain cen- the Lorenz '63 model and from the previous remark, that the
tered on the trajectory of the mean, so that the mean of th@erformance of ETKF-N as compared to ETKF is susceptible
ensemble will remain a good estimate of the true distributionto vary with Az. Let us take the example of an ensemble
mean. Therefore, the alternate ETKF-N, as well as symmetsize of N =20. The setup is unchanged except for the time
ric ensemble square root filters, have an advantage in lineanterval which is set taA\r = 0.05,0.10, ..., 0.30.

conditions over the more conservative, too cautious ETKF- As shown in Fig.4, Ar <0.15 is a turning point beyond
N. If this is correct, then the performance of ETKF-N (which which ETKF-N obtains better rmse than ETKF without in-
is symmetric) should be better, or at worst equal to the perflation. The alternate ETKF-N offers the best of ETKF (with
formance of a non-symmetric ensemble square root Kalmamptimal inflation) and ETKF-N, over the full range of.

filter for small Ar. Indeed this can be checked by compari-

son of Fig.3 of the present article and Fig. 4 8akov and _

Oke (2008. Moreover, according to this argument, the per- © Local extension of ETKF-N

formance of ETKF-N should improve for larger ensemble
size and largent, in comparison with ETKF (with optimal
inflation).

5.1 Can the use of localization be avoided?

We saw numerical evidence that ETKF-N does not solve the
As mentioned earlier, the time interval between updatedull sampling problem. A similar conclusion can be reached
has been set tdr =0.05. We know from the experiment on from a more mathematical standpoint. The functional form
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Fig. 3. Best rmse over a wide range of inflation factors for ETKF, Fig. 4. fBest rmse for: ETK; overa V(‘;'de rangfer?f |r:flat|on factors,
and rmse without inflation for ETKF-N and for the alternate ETKF- rmge 0 ETKF'N without In auo_n an_ rmse of the alternate ETKF-
N. N without inflation, for several time intervals between updates, and

for an ensemble siz& = 20.

of ETKF-N Eqg. 89) is formulated in ensemble space, via a the coordinatesv in the vector space of anomalies. As-

set of ens_e_mble co_ordlnat_es that do_not depend on t_he re slummg the same setup used for the Lorenz '95 model, the
space position. This functional form is due to the choice of

. o : . I f h EnKF-N h
the Jeffrey’s prior. It implies that the dimension of the anal- average analysis rmse of such &n 'S in the rangé 0

sis space has a very reduced rank. Localization, which |sf0rN 5 down to 035 for N = 40. It has been checked to be
y b y similar to any EnKF or ETKF with a minimal (meaningful)

sr:)erﬁgtctgngi:eda:eeggznrfgﬁsjng:grg;ée \Tvzngﬁ%ycgstlgv‘f calization length, except that, for this new filter, inflation is
P Mot necessary even for small. We conclude that localiza-

plate two ways to tackle this difficult problem. tion can potentially be expressed in the formalism. Pursuing

The_ f'ert onte_ would C(%?]S'St mt_tra:jm? Jeffr(?yﬂs] pg?rrggr,\? this idea is well beyond the scope of this article, because it
more informative one. The particular form of the seems mathematically challenging.

background term which depends only on the ensemble co- As an alternative, simpler, and widespread solution, a lo-

orﬁlnﬁtﬁsdvxﬁs due_:ot thbe specn‘||c CEO'Ce of Jefirey's ?rt'r?r'cal version of the filter will be developed and tested in the
which had the merit to be simple. However, errors o eremaining of this section.

Lorenz '95 data assimilation system, or of more realistic geo-
physical systems, often have short-range correlations. If, usg 5 | ETKE-N
ing an hyperprior different from Jeffreys’, one could inte-
grate on a restricted set of error covariance matrices of corThe extension of ETKF-N to a local ensemble transform
relation matching the climatological correlations of the dataKalman filter is the same as the passage from ETKF to
assimilation system, we conjecture that localization could bel ETKF as described bydunt et al.(2007, and byHarlim
consistently achieved within the proposed formalism. and Hunt(2007 for non-quadratic cost functions. For high-
Let us take an example where it is assumed that the corredimensional and computationally challenging systems, this
lations of the data assimilation system are very short-rangerequires to follow their algorithm. However, for the Lorenz
At the extreme, we integrate Edl4) on the set of all posi- '95 toy-model the passage from ETKF-N to LETKF-N is
tive definite diagonal matrice, that is a set ol positive  trivial. Indeed, fixing a localization lengthfor each point

scalars, with the non-informative univariate prior: of control space, one performs a local analysis using all ob-
servations within a radius dfunits. Hence, for the Lorenz
_rp1-1 . .
pa([Blii) =[Bl;". (50)  '95 model, ranges from/ = 0, using the single local ob-

servation if any, td =20, meaning that all observations are
assimilated, i.e. no localization. We shall call this filter the
finite-size (finite-sample) local ensemble transform Kalman

N N 2 N" k=2 i
jb(x)=E;In|:N+1(xi—x,-) —I—;l(xi ) } (51)  filter (LETKF-N).

Following the derivation of Sec®, one obtains

As opposed to the background terms introduced earlier, this
Jp» cannot be written in ensemble space, i.e. not in terms of
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5.3 Application to the Lorenz '95 toy-model 6 Summary and future directions

5.3.1 Ensemble size — inflation diagrams Current strategies for stabilizing the ensemble Kalman fil-
ter are empirical tuning of inflation, use of multi-ensemble
The results of the experiments with LETKF, LETKF-N, and ¢onfiguration, explicit identification of the sampling/model
with the alternate LETKF-N are reported in Fi. errors, or adaptive optimization of inflation. In this article,
For LETKF, inflation is still necessary to stabilize the filter \ye have followed a somehow different route. A new back-
for not-so-small ensemble sized  11). LETKF-N does  ground prior pdf that takes into account the discrete nature
not require inflation (at least fav > 5, the caseV <4 was  of the ensemble was derived using Bayesian principles. It
not investigated). Again, it means that LETKF-N estimates 5ccounts for the uncertainty attached to the first- and second-
well, or over-estimates, sampling errors. But it is uncondi- order empirical moments of the ensemble seen as a sample
tionally stable with the best performance obtained withoutof 5 true error distribution. The definition of the prior pdf
inflation. The alternate LETKF-N may still be the best fil- |eads to a new class of filters (EnKF-N). Even though the re-
ter for an ensemble size beyond the model unstable subspaggiting prior is non-Gaussian, it is entirely based on Gaussian
dimension, but it disappoints by requiring inflation for small hypotheses for the errors. In principle, through this prior, the
and moderate ensemble size. This indicates that trusting thﬁnalysis should take into account sampling errors.
mearix as the first guess is a source of error for small ensem- Specifically, an ensemble transform variant (ETKF-N)
ble size. was derived in the spirit of the ETKF ¢funt et al.(2007).
Itis tested on the Lorenz '63 and the Lorenz '95 toy models.
In the absence of model error, the filter appear to be stable
without inflation for ensemble size greater than the model
unstable subspace dimension of the attractor. Moreover, for
large enough time interval between updates, its performance
is superior to that of ETKF. A variant of ETKF-N is expected
to outperform ETKF-N for small time interval between up-
dates: without inflation, it seems to systematically perform as
| well as, or better than ETKF. Unfortunately, as shown in the
case of the Lorenz '95 model, these finite-size filters diverge
for smaller ensemble size, like any ensemble Kalman filter.
Localization is mandatory. That is why a local variant of the

5.3.2 Bestrmse

In Fig. 6 are plotted the best rmses for the three filters, with
localization.

LETKF-N is always slightly suboptimal (with a maximal
discrepancy of 10 % foN =5). However, it is the only un-
conditionally stable filter of the three: it does not require in-
flation.

The alternate LETKF-N is as good as LETKF-N for smal
ensembles but it does require inflation, which is why it is
not so interesting in this regime. The alternate LETKF-N is

as good as LETKF in théarge ensemble size regime, but _ . :
without inflation. filter (LETKF-N) which parallels LETKF, is developed.

As we increase the time interval between updates, the From experiments on the Lorenz '95 toy model, LETKF-

performance of the filters degrades but their relative perfor—’\_l sch_eme SIG%mS stable v(\;ithout i_nflatio?. Dependin_ghon tr_'e
mance evolves. Let us take the example of an ensemble siZine interval between updates, its performance with opti-
of N =10, following Harlim and Hunt(2007. The setup

mally tuned localization can be slightly inferior or superior
is unchanged except for the time interval between update 0 LETKF with optimally tuned localization and optimally
which is set toAr = 0.05,0.10,...,0.50. The results are re-

tuned inflation.
ported in Fig.7. The methodology presented here is mainfyr@of of con-
For At <0.20, LETKF with optimal inflation and localiza-

cept We believe that more work is needed to explore the
tion outperforms LETKF-N with optimal localization and no strengths and limitations of the methodology, and that there

inflation. ForAt > 0.20, LETKF-N dominates. Like in the 'S room for |mprovemeqt of the schemes'. .

Lorenz '63 case, this is reminiscent of the result$Haflim For instance, we conjectured that the incapacity of ETKF-
and Huni(2007). This indicates that the relative performance N_t0 fully account for sampling errors (as opposed to
of filters as shown for instance by Figshould not be taken LETKF-N with optimally tuned localization), was mainly
as a rule, since there are regimes where LETKF-N (withoutdUe t0 the use of an hyperprior which generates correlations
inflation) performs better than LETKF. different from that of the data assimilation system built on

The good performances of EnKF-Ns relative to the EnkFsth€ particular model. To avoid using weakly informative
in the strong nonlinear regime, is not an indication that (NYPerpriors on, andB, one solution is to pass informa-
EnKF-N can handle non-Gaussianity in this regime. How- ion between analyzes beyond the knowledge of the ensem-
ever the sampling errors may be created and exacerbated t%e. In the context of oil reservoir monitorinylyrseth and

mr

the non-linearity of the model flow, and hence of the non- OMre (2010 have built a sophisticated and elegant ensem-

Gaussianity of the underlying pdf of errors. This may give ble Kalman filter that could be seen as a stochastic extension
an advantage to the finite-size ensemble filters in this regime®f ETKF-N that achieves such a goal. They see covariance
matrices as random matrices with an inverse Wishart distri-

bution of precision matrix¥ in R¥>*M (Muirhead 1982).
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Fig. 5. Root mean square errors of LETKE), LETKF-N (b), and alternate LETKF-Nc), for a wide range of ensemble size (5-50) and
inflation factors- = 1,1.005,...,1.095 and in panglb) a larger range of inflation/deflation=0.945 ...,1.095.

The hyperprior forx;, andB are chosen in such a way (con- performance since EnKF-N does not make implicit assump-
jugate distribution) that the posterior error covariance matrixtions on the linearity of the model as opposed to traditional
still follows an inverse-Wishart distribution. However, such EnKFs. In this limiting case, the hyperpripKx;,B) should

a B matrix should be drawn from this distribution for each optimally be a Dirac delta function pdf peaked at the empir-
member, and the corresponding innovation statistics comical moments of the ensemble, which would make EnKF-N
puted and inverted, which could become very costly. Eventhe traditional EnKF. But what happens to EnKF-N with Jef-
though one assumes all members use the same drBwibf freys’ hyperprior in this regime is less clear.

is necessary to store the precision matixwhich cannot be Another lead for improvement points to the derivation of
afforded in the high-dimensional context of geophysics. Still, the new prior used in the (L)ETKF-N filters, which, by def-
to pass supplementary information (beyond the ensembleinition, ignores the observations to be assimilated. From
one might contemplate adapting the algorithmMyrseth  a Bayesian perspective, this is suboptimal: in our scheme,
and Omre(2010 so as to maintain a reduced-order, short any B matrix’s likelihood is tested against the ensemble, but
memory, precision matrix, with a rank of a few ensemble not against both the ensemble and the observations, which is
sizes. what a full Bayesian scheme would prescribe. Indeed &qg. (

should be generalized to:
The behavior of EnKF-N in limiting regimes is worth ex-

ploring. For instance, in the limiting case where the dy-
namical model is linear, EnKF-N may not exhibit optimal
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N. Best rmse without inflation over all possible localization lengths for several time intervals between updates, and for an ensemble size
for LETKF-N. N =10.

trusts from the previous results that EnKF-N reduces signif-
icantly the need for inflation meant to compensate for sam-
pling errors, then the use of inflation in EnKF-N would es-

x|y, x1,...,x .
pxly.x1 N) sentially be a measure of model errors. It could also be a

= /dxdep(x|y,xl, XN Xp, B)p(xp,Bly,x1,...,xN) measure of the deviation from Gaussianity, or of the misspec-
ification of the hyperprior as discussed earlier. These ideas
=/dxdep(x|y x,B) p(xp,Bl¥1, ... XN) have been successfully tested on the context of the Lorenz
o R '95 using the setup of this article. However, reporting these
_ p(x|xp,B) results is beyond the scope of this article.
- pmx)/dx”dBp(y|xb,B)p(x”’B|x1""’xN)' (52) As a final remark, we would like to mention that the prior

pdf p(x|x1,...,xN) xexp(—Jp(x)), where7, is defined by

Because of the presencemfy|x;,B) in the last integraland Eqg. (21), could more generally be useful in environmental
its dependence im, andB, it seems difficult to analytically  statistical studies, when one needs to derive a pdf from sam-
solve the problem in order to generalize ETKF-N. ples of the system state, or of some error about it, which is

Stability without inflation is a property shared by ETKF- assumed Gaussian-distributed. Note that the ensemble size
N, or LETKF-N, with the multi-ensemble configuration of needs to be large enough otherwise localization is still nec-
Mitchell and Houtekame2009. However the two ap- essary.
proaches draw their rationale from two different standpoints:
Bayesian statistics and cross-validation respectively, WhoseA dix A
connections are not clearly understood in Statistics. Addi- bpendix
tionally, we note that the multi-ensemble approach makes

. X . . One minimum or more
use of the observation while the finite-size ensemble trans-

form filters do not. In other words, the multi-ensemble ap- ore the observation operator is supposed to be linear or
proach reduces the errors in the analysis while the finite-siz, o4rized. Define the innovatioh= y — H¥. Equation 85)
ensemble transform filters do so prior to the analysis. The.4q pe written
methodology developed in this article naturally led to deter- 1
ministic filters, whose comparison with stochastic filters can-ja(w) = Z(§—HX w)T R*1(8 —HXw)
not be simple. Therefore it would be interesting to develop 2
a stochastic filter counterpart to the deterministic EnKF-N +ﬁ|n <1+ 1+wTw> _ (A1)
presented here. 2 N
The focus of this study was primarily on sampling errors. |f there is a minimum, it must satisfy
In a realistic context, one should additionally take into ac-
count model errors, and the errors that come from the de‘|:(HX)TR1HX + }w —HX)TR1. (A2)

viation from Gaussianity due to model non-linearity. If one 1+ % +wTw
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In order to diagonalize the left-hand side matrix, we can useBrankart, J.-M., Cosme, E., Testut, C.-E., Brasseur, P., and Ver-

the singular value decomposition ron, J.: Efficient adaptive error parameterization for square root
Too1 T or ensemble Kalman filters: application to the control of ocean
(HX) ' R™"=UDV ", (A3) mesoscale signals, Mon. Weather Rev., 138, 932-950, 2010.

Burgers, G., van Leeuwen, P. J., and Evensen, G.: Analysis scheme

whereU is an orthogonal matrix iRV >V, V is in R?*N and : '
in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719—-

satisfiesVTV =1y, andD is a diagonal matrix ifRY*V .

P T 1724, 1998.
Definew = U w, then Carrassi, A., Vannitsem, S., Zupanski, D., and Zupanski, M.: The
maximum likelihood ensemble filter performances in chaotic
[DZ + l—ATA} w =Du, (A4) systems, Tellus A, 61, 587-600, 2009.
I+ ytww Corazza, M., Kalnay, E., and Patil, D.: Use of the breeding tech-

nigue to estimate the shape of the analysis errors of the day, J.

_yTRp-1/2 . i i is di-
wherev=V'R 8. Then the left-hand side matrix is di Geophys. Res., 10, 233-243, 2002.

agonal. . . . o Dee, D. P.: On-line Estimation of Error Covariance Parameters for
In the case of a single observation (serial assimilatibn), Atmospheric Data Assimilation, Mon. Weather Rev., 123, 1128—
has only one non-zero entry (calla), andDv is a vector 1145, 1995.

with at most one non-zero entry (calld). Then solving for  pesroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of
all the other components, it is clear that the componenis of  observation, background and analysis-error statistics in observa-
not related tax are zero. Then the remaining scalar equation tion space, Q. J. Roy. Meteor. Soc., 131, 3385-3396, 2005.

for the non-trivial component of w is Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error
2 N statistics, J. Geophys. Res., 99, 10143-10162, 1994.
@ +m y=5. (AS) Evensen, G.: Data Assimilation: The Ensemble Kalman Filter,

Springer-Verlag, 2nd Edn., 2009.

This third-order algebraic equation jn has either one real Furrer, R. and Bengtsson, T.: Estimation of high-dimensional prior
solution or three real solutions. Therefore, the cost function and posterior covariance matrices in Kalman filter variants, J.
J. has a global minimum, and possibly another local Multivariate Anal., 98, 227-255, 2007.

minimum. Note that with several observations assimilated inGejadze, 1. Y., Le Dimet, F.-X., and Shutyaev, V.: On analysis error
para”el there may be more local minima. covariances in variational data assimilation, SIAM J. Sci. Com-

put., 30, 1847-1874, 2008.
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