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Classi�cation is one of the most challenging tasks of remotely sensed data processing, particularly for hyperspectral imaging
(HSI). Dimension reduction is widely applied as a preprocessing step for classi�cation; however the reduction of dimension
using conventional methods may not always guarantee high classi�cation rate. Principal component analysis (PCA) and its
nonlinear version kernel PCA (KPCA) are known as traditional dimension reduction algorithms. In a previous work, a variant
of KPCA, denoted as Adaptive KPCA (A-KPCA), is suggested to get robust unsupervised feature representation for HSI. �e
speci�ed technique employs several KPCAs simultaneously to obtain better feature points from each applied KPCAwhich includes
di	erent candidate kernels. Nevertheless, A-KPCA neglects the in
uence of subkernels employing an unweighted combination.
Furthermore, if there is at least one weak kernel in the set of kernels, the classi�cation performance may be reduced signi�cantly.
To address these problems, in this paper we propose an Ensemble Learning (EL) based multiple kernel PCA (M-KPCA) strategy.
M-KPCA constructs a weighted combination of kernels with high discriminative ability from a predetermined set of base kernels
and then extracts features in an unsupervised fashion. �e experiments on two di	erent AVIRIS hyperspectral data sets show that
the proposed algorithm can achieve a satisfactory feature extraction performance on real data.

1. Introduction

Hyperspectral imaging (HSI) provides simultaneously spa-
tial and high resolution spectral data and helps to clas-
sify/recognize the materials that are challenging to discrim-
inate with conventional imaging techniques [1]. However, it
su	ers from the curse of dimensionality. For instance, the
curse of dimensionality causes increase in cost of storage,
transmission, and processing of hyperspectral images. To
overcome such challenges, dimensionality reduction tech-
niques have been applied to hyperspectral data in the existing
literature [2]. In general, HSI has spectral redundancy in
many spectral channels. For this reason, dimension reduction
or compression is possible and even necessary, especially for
these bands.

Even though there are several dimension reduction ap-
proaches in the literature, including manifold learning [3, 4]
and tensors [5], principal component analysis (PCA) [6] is

the one among the popular techniques [7–9]. PCA is the
discrete form of the continuous Karhunen-Loève Transform
and it projects the data into a subspace so that the variance
retained is maximized and the least square reconstruction
error isminimized [10]. Use of PCA for dimensionality reduc-
tion inHSI is a computationally suitable approach and it helps
preserve the most of the variance of the raw data. Although
PCA has some theoretical inadequacies [11, 12] for use on
remote sensing data, particularly hyperspectral images [13],
the practical applications show that the results obtained using
PCA are still competitive for the purpose of classi�cation [14,
15]. �e ability of PCA is limited for high-dimensional data
since it relies on only second-order statistical information.
�e nonlinear version of the PCA, denoted as kernel PCA
(KPCA), has been proposed to overcome these limitations
[16].

Since the KPCA involves the higher-order statistics, it
provides more information from the original data [17] and
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so it is employed in many applications including remote
sensing data due to its satisfactory performance. In [18],
classi�cation performance of an arti�cial neural network
has been demonstrated to outperform the classical approach
using kernel principal components. Fauvel et al. [19] showed
that the KPCA is better than the classical PCA in terms of
classi�cation accuracies. A general overview of feature reduc-
tion techniques for classi�cation of hyperspectral images is
presented in [9]. �ey performed comparative experiments
between the unsupervised, e.g., PCA and KPCA, and super-
vised techniques, e.g., double nearest proportion (DNP)
[20] and kernel nonparametric weighted feature extraction
(KNWFE) [21]. Since the supervised learning techniques gen-
erally focus on improving class separability, these methods
are expected to produce better results in terms of classi�-
cation performance. �e comparative results with KNWFE
indicate that PCA and KPCA are still preferable to reduce
dimensionality of hyperspectral images.

Fundamentally, KPCA is a version of PCA whose per-
formance is greatly a	ected by the choice of the kernel and
parameters. Namely, the selection of the optimal kernel and
parameters is crucial for KPCA to achieve good performance.
However, the application results show that no single kernel
function can be best for all kinds of machine learning prob-
lems [22] and, therefore, learning of optimum kernels over a
kernel set is an active research area nowadays [23–27]. Li and
Yang presented an ensemble KPCA method with Bayesian
inference strategy in [28]. �ey exploited only Gaussian
radial basis function (RBF) with di	erent scale parameters as
subkernels. Zhang et al. [29] have developed a method for
unsupervised kernel learning in the KPCA, dubbed as A-
KPCA, and applied the new method for object recognition
problems.

�e A-KPCA learns the kernels via an unsupervised
learning approach. �e 1D input vectors, e.g., feature vectors,
are transformed into 2D feature matrices by di	erent kernels.
Each columnof the featurematrix comes fromcorresponding
1D input vector. Nonlinear feature extraction (FE) is obtained
from one set of projective vectors corresponding to the
column direction of the feature matrices. �e set of projective
vectors corresponding the row direction of the 2D feature
matrices is utilized for searching optimal kernels combina-
tion simultaneously. Despite having superior performance
compared to KPCA, the A-KPCA has some critical limita-
tions. Speci�cally, A-KPCA works completely unsupervised,
and it is thus incapable of enhancing the class separability
and it has no kernel preselection process. �ese are the main
motivations of our work.

In this paper, a novel framework is introduced for hyper-
spectral FE and classi�cation based on multiple KPCA mod-
els with an Ensemble Learning (EL) strategy in a semisuper-
vised manner. EL is a process of combining multiple models,
called experts, to set up a strong model for a speci�c machine
learning problem [30]. Strong discriminative ability of indi-
vidual experts and high diversity among them are required to
produce satisfactory models [31, 32]. An acceptable classi�-
cation performance highly depends on the class separability
of features that is directly related to the discriminative ability.
Inspired by EL,we extend the A-KPCAmethod by employing

multiple kernels such that subkernels possessing higher dis-
crimination ability are highlighted. �e proposed approach,
multiple kernel PCA (M-KPCA), learns an ensemble of
multiple kernel principal components on an available labeled
data set, and the �nal features are extracted via a weighted
combination of all subkernels according to their separability
performance.�e early purpose of this paper is the utilization
of the KPCA and A-KPCA in hyperspectral images and to
determine impact of using nonlinear versions of PCA on
classi�cation performance. �e further contributions and
novelties in this paper can be summarized as follows: (1) a
novel multikernel PCA strategy is presented by exploiting
Ensemble Learning to evaluate and select the kernels; (2) M-
KPCA acquires the superior classi�cation results than PCA,
KPCA, and A-KPCA by highlighting the subkernels with a
class separability based weighting strategy; (3)M-KPCApro-
duces better or competitive classi�cation performance with
other popular unsupervised FEmethods like locality preserv-
ing projections (LPP) [33], random projections (RP) [34],
and t-distributed stochastic neighbor embedding (t-SNE)
[35]. A�er FE with all mentioned methods, the popular and
robust support vector machines (SVMs) classi�er is used
for supervised classi�cation. Since SVMs consider samples
close to the class boundary, called support vectors, they show
great performance even in high-dimensional data with small
training samples [36, 37].

�e paper is outlined as follows. Section 2 reviews the
related work. In Section 3, the proposed framework of M-
KPCA is presented. Next, a series of experiments are carried
out on real data sets for verifying our method’s e	ect in
Section 4. Finally, Section 5 concludes this paper.

2. Related Work

2.1. KPCA Background. �e raw data is projected into the
feature space by a nonlinear mapping function and the useful
information is concentrated into some principal components
corresponding to the larger eigenvalues [19]. De�ne a learn-

ing set as �� (� = 1, 2, . . . , �), �� ∈ R
�. Let � : R

� �→
R
� be a nonlinear mapping from the input space to a high-

dimensional feature space H. �e inner product in feature
space is calculated by the kernel function in the original input
space:

�(��,��) = � (��)⊤ � (��) (1)

where the superscript ⊤ represents the transpose opera-
tion. Denote Φ = (�(�1), �(�2), . . . , �(��)) and � =(1/�)∑��=1 �(��). Assuming � = 0, i.e., data are centered in
H, then the total scatter matrix can be de�ned as S	 = ΦΦ⊤.
To compute the projective vector � for optimal solution, the
KPCA employs the following norm:

� (�) = �∑
�=1

������⊤� (��)�����2 = �⊤S	�. (2)

Computation of optimal projective vector � provides
solution for the eigenvalue problem: �� = S	� in which � ≥ 0
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and eigenvectors � ∈ H. Hence, (2) can be rewritten as an
equivalent problem:

�� = K�, (3)

where K = Φ⊤Φ is the kernel matrix. Solutions of (3) are{�1, �2, . . . ,�
} corresponding to the largest � eigenvalues;
then �� = Φ�� is the solution vector of (2). �e KPCA based
FE does not include the nonlinear mapping � as any kernel
method, and it only needs a kernel function in the input
space. To obtain better performance with KPCA, the param-
eters of the kernel are optimized. However, this optimiza-
tion cannot produce adequate solutions for every applica-
tion or data sets because of the nature of the kernel itself [22].
To overcome this drawback, an adaptive kernel combination
technique is introduced in [29].

2.2. Adaptive KPCA (A-KPCA). As pointed out in Section 1,
the performance of KPCA is notably a	ected by the selection
of kernels and its parameters. �erefore, it needs some
extensions. Let ��(�) ∈ F�, � ∈ {1, 2, . . . , ℎ} be a set of
nonlinear mappings. As mentioned in Section 2.1, the inner
products in F� are described as the kernels. Using de�nition
of ��, �̂� : � �→ �̂�(�) = (0⊤ . . . 0⊤⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

1...�−1
, ��(�)⊤, 0⊤ . . . 0⊤⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�+1...ℎ
)⊤ ∈ F

can be written. In this equation, F is the Hilbert space as the
direct sum of F� and the inner product in F can be de�ned as

�̂� (�)⊤ �̂� (�) = 0 (� ̸= �) , (4)

�̂� (�)⊤ �̂� (�) = �� (�)⊤ �� (�) = �� (�,�) . (5)

To construct a 2D feature matrix, a sample of learning set
�� is transformed to high-dimensional feature space and then
�� = (�̂1(��), �̂2(��), . . . , �̂ℎ(��)) is obtained. Here, each
column of �� corresponds to a nonlinear mapping generated
by �̂�’s. �us, vector-based data is converted to matrix based
format. Assuming ��’s have zero means, i.e., � = 0, � =1/�∑��=1 �� can be written. Equation (6) includes generated
�1,�2, . . . ,�� feature vectors. AppropriateM andNmatrices
must be determined to optimize

� (M,N) = �∑
�=1

�����M⊤��N�����2� , (6)

where M = (�1,�2, . . . ,�	) are projective vectors cor-
responding to columns of �� while N = (	1, 	2, . . . , 	
)
corresponding to rows of ��. �e purpose of M is to extract
features, while the purpose of N is kernel selection. In other
words, the unsupervised kernel learning andnonlinear FE are
simultaneously realized according to projective vectorswhich
are included in M and N. ‖ ∙ ‖� is the Frobenius norm of
matrix, i.e., ‖A‖2� fl !"(AA⊤) = ∑�,�(A��)2, where !" denotes
the trace of a matrix. It can be de�ned as M = �L, where
� = (�1,�2, . . . ,��). Since the size of original� is very large,
i.e., (ℎ×�), �̃ = (∑ℎ� �̂�(�1), ∑ℎ� �̂�(�2), . . . , ∑ℎ� �̂�(��)) can be

written instead of �. Hence,M = �̃L, L ∈ R
�×	 is obtained.

�ese calculations allow us to rewrite (6) as (7):

� (L,N) = �∑
�=1

�����L⊤�̃⊤��N�����2� ,
= �∑
�=1

�����L⊤K�N�����2� .
(7)

where the constrains of (7) are L ∈ R
�×	, L⊤L = I and N ∈

R
ℎ×
, N⊤N = I. HereK� = �̃⊤� is�×ℎ sized kernel matrix

and it is constructed as follows:

K� (�, �) = �� (��,��) . (8)

To solve this optimization problem, inspired by Ye’s work
[38], an iterative procedure is presented by the following
theorem [29].

�eorem 1. Let L and N be the optimal solution to (7): then
(i) ! eigenvectors corresponding to the largest ! eigenvalues of
the matrix AL = ∑N

k=1 KkRR
⊤K⊤

k
form L for a given N; (ii) $

eigenvectors corresponding to the largest $ eigenvalues of the

matrix AN = ∑N

k=1 KkLL
⊤K⊤

k
create N for a given L.

A�er computing L and N, these matrices can be used to

extract the nonlinear features for a test instance � ∈ R
�.

Kernel matrix K	��	(�, �) = ��(��, �) is constructed and then
projected according to C = L⊤K	��	N, so the nonlinear
features are contained in C. �e A-KPCA method is given in
Algorithm 1.

3. Multiple Kernel PCA (M-KPCA)

In Section 2, we have demonstrated that A-KPCA manipu-
lates more than one subkernels. A mapping rule transforms
input data samples into corresponding Reproducing Kernel
Hilbert Space. Each kernel thus acquires a particular type of
information from a given data set, thereby providing a partial
description of view data. �e value of this speci�c informa-
tion may vary according to di	erent machine learning tasks
such as classi�cation, clustering, dimensionality reduction,
etc. For instance, in a classi�cation problem, high discrim-
ination ability of kernels yields the better results. Hence,
we add this capability to A-KPCA with ideas of EL. Our
proposed technique learns new representation for a hyper-
spectral image exploiting all available training data. It is thus
independent of the classi�er.

As seen in formulation (8) and �eorem 1, there are not
any coe�cients to quantify the contribution of subkernels
in classi�cation. In other words, the A-KPCA utilizes the
unweighted summation. Nevertheless, the discriminative
ability of kernels in FE plays signi�cant role for the separabil-
ity of the classi�er. If we add a weighting coe�cient on right
side of (8), then it becomes

K� (�, �) = %��� (��,��) . (9)

�e discriminative ability of a kernel can be measured by
an ideal kernel in a given classi�cation task. Cristianini et al.
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Input: Given training set �� (� = 1, 2, . . . , �).
(a) Create the kernel matrix K� for each ��.
(b) Get initial N0 and � ←� 1.
(c) For given N�−1 , calculate the ! eigenvectors of A

L
corresponding to the largest ! eigenvalues.

(d) For given L�, calculate the $ eigenvectors of A
N
corresponding to the largest $ eigenvalues.

(e) � ←� � + 1, goto step (c) until convergence.
Output: L andN.

Algorithm 1: A-KPCA Algorithm.

[23] introduced ameasure of similarity between two arbitrary
kernels or between a kernel and an ideal kernel called kernel
alignment (KA). �e alignment between two regular kernels
is given as

' (K1,K2) = ⟨K1,K2⟩�√⟨K1,K1⟩� ⟨K2,K2⟩� (10)

where the Frobenius product ⟨., .⟩� of two Gram matrices A
and B is de�ned as ⟨A,B⟩� = !"(AB) [23, 39]. �is measure
can be viewed as the cosine of the angle betweenK1 andK2 , so
it 
uctuates between {−1, 1} for arbitrary matrices. However,
since we consider only positive semide�nite Gram matrices
in KA, the score is lower bounded by zero. �e alignment
can also be adopted to capture the degree of agreement
between a kernel and the target label matrix, also considered
as ideal kernel. A larger value of KA indicates the higher
discriminative ability and it is one of the main strengths for
a subclassi�er such that they improve the ensemble e	ect
in an EL strategy [40, 41]. An idealized kernel for a binary
classi�cation problem can be composed of the dot product of
target labels, i.e., ��⊤, and the alignment between a kernel
and the ideal kernel is written as

' (K,��⊤) = ⟨K,��⊤⟩�‖K‖� ������⊤����� . (11)

Our goal is to construct an A-KPCA based algorithm
which has improved separability of multiclass patterns. Here,
kernel class separability (KCS) measure based on scatter
matrix is employed to measure the class separability of
training samples in feature space. �e KSC is a general form
of KA and it can be written in the form [42]:

�� = !" (S��)!" (S��) (12)

where S
�
� and S

�
�, respectively, stand for between-class scatter

matrix and within-class scatter matrix in kernel space and the
traces of them are obtained as

!" (S��) = 
∑
�=1

6� [(��� −��)⊤ (��� −��)]
!" (S��) = 
∑

�=1

��∑
�=1

[(� (���) −��� )⊤ (� (���) −��� )]
(13)

where 6� (� = 1, . . . , �) denotes the number of training
samples in the �th class,� = ∑
�=1 6�, and ��� is the �th sample
in the related class.�� and� are the mean vector for �th class
and the mean vector for all training samples, respectively.� is the mapping function from the input space to the
feature space as described in the beginning of Section 2.1. A
larger value of �� signi�es superior class separability in the
training set. A maximization problem may thus be created
to obtain optimal kernels and their parameters or eliminate
weak kernels [43], but, in this paper, we directly exploit the
value of (12) as the measure of discriminability; hence

%� = ��� , (14)

where ��(�)⊤��(�) = ��(�,�).
A�er all, we extend the noniterative A-KPCA algorithm

using kernel class separability measure with a semisupervised
strategy. �e proposed noniterative M-KPCA technique is
given in Algorithm 2.

4. Experiments

In this section, we investigate the performance of the pro-
posed M-KPCA algorithm compared with a number of con-
ventional and state-of-the-art techniques on two Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspec-
tral data sets. Our experiments are conducted on a machine
with an Intel Core i5-2410MCPU at 2.30GHz and 8GB DDR-
III RAM.

4.1. Data Sets and Experimental Setup. �e �rst set is an air-
borne remote sensing data captured by the AVIRIS sensor
over northwest Indiana on June 12, 1992. Indian Pines data
has 16 labeled classes and 145 lines/scene and 145 pixels/line.
Originally, the scene has 220 spectral bands (10 nm spectral
bandwidth from 0.4 to 2.5 <m); a�er discarding the water
absorption and noise bands, based on [44, 45], only 159 bands
were used in the experiments.

Airborne hyperspectral data is acquired byAVIRIS sensor
at 18 m spatial resolution over Kennedy Space Center (KSC)
during March 1996 and has been employed as a second data
source.Noisy bands andwater absorption bands are removed.
�e remaining of the HSI data has 176 bands for 13 wetland
and upland classes. Figure 1 shows the RGB image of Indian
Pines and false color image of the KSC. Table 1 lists the
summary of the data sets in our experiments. All samples in
each data are adjusted in the range [0, 1], as suggested in [46].
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Input: Given training set �� (� = 1, 2, . . . , �) with labels �� ∈ {1, 2, . . . , �}.
(a) Obtain %�’s for corresponding pre-selected kernels using Eqs. (12) and (13).
(b) Create the kernel matrix K� for each �� as in Eq. (9).

(c) Calculate the eigenvectors {V�} and eigenvalues {��} of AL
= ∑��=1 K�K⊤� . Sort the eigenvectors according to

the decreasing order of �� and select �rst ! eigenvectors (V1, . . . , V	).
(d) Calculate the eigenvectors {"�} and eigenvalues {>�} of AN

= ∑��=1 K⊤�K�. Sort the eigenvectors according to
the decreasing order of >� and select �rst $ eigenvectors ("1, . . . , "
).

(e) �e �nal subspaces are L = (V1, . . . , V	) andN = ("1, . . . , "
).
Output: L andN.

Algorithm 2: M-KPCA Algorithm.

(a) (b)

Figure 1: AVIRIS data sets: (a) RGB image of Indian Pines obtained from default bands {R:24, G:14, B:8} and (b) false color composite
image of KSC obtained from bands {R:40, G:29, B:20}.

Table 1: Information for Indian Pines and KSC data sets.

No
Indian Pines Samples KSC Samples

Class name Train Test Class name Train Test

1 Alfalfa 14 40 Scrub 190 571

2 Corn-no till 359 1075 Willow swamp 61 182

3 Corn–min till 209 625 Cabbage hamm 64 192

4 Corn 59 175 Cabbage palm 63 189

5 Grass-pasture 124 373 Slash pine 40 121

6 Grass-trees 187 560 Oak 57 172

7 Grass-past. moved 6 20 Hardwood swamp 264 791

8 Hay-windrowed 122 367 Graminoid marsh 108 323

9 Oats 5 15 Spartina marsh 130 390

10 Soybean-no till 242 726 Cattail marsh 101 303

11 Soybean-min till 617 1851 Salt marsh 105 314

12 Soybean-clean till 154 460 Mud 
ats 126 377

13 Wheat 53 159 Water 232 695

14 Woods 324 970 —

15 Bldg-Grass-Tree 95 285 —

16 Stone-steel towers 24 71 —

Total 2594 7772 1541 3670
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Table 2: Employed kernel functions.

Kernels Formula

RBF ����(�,�) = exp(−����� − �����22C2 )
Laplacian ���
 (�,�) = exp(−����� − �����C )
Cauchy ����(�,�) = 1(1 + ����� − �����2 /C2)
Histogram Intersection (HIST) ����� (�,�) = �∑

�=1
min (��,��)

�e PCA and KPCAs are implemented using the SIM-
FEAT toolbox [47]. In each experiment, a single kernel is
selected for the KPCA. In addition to Gaussian radial basis
function (RBF) kernel which is formulated as �(�,�) =
exp(−‖� − �‖2/2C2), we have employed three more kernels
(see Table 2). Before solving the eigenvalue problem, the
parameter C ∈ R

+ in the RBF, Laplacian and Cauchy kernels
should be selected or optimized. Unless otherwise stated the
kernel parameter is set to

C = √ ∑� ������� − ������2� , (15)

where � is the centroid of the total � training data [48].
�e kernel parameter C is nonoptimized and same for each
exploited kernel given in Table 2. However, the aim of com-
bination of nonoptimized kernels is to yield a better FE tech-
nique for classi�cation.

�e valuable parts of the obtained cumulative eigenvalues
a�er eigen-decomposition for each method are shown in
Figure 2. According to the cumulative eigenvalues of PCA,
two principal components reach 99% of total variance for
Indian Pines case. Nevertheless, in KSC case, three principal
components are needed to reach 99%of information. Accord-
ing to these results, the new dimensions of Indian Pines and
KSC for classi�cation experiment are, respectively, de�ned
as 2 and 3. However, hyperspectral information cannot be
represented utilizing only the second-order statistics as it is
pointed out in Section 1. From Figure 2, it can be derived
that more kernel principal components (KPCs) are needed to
realize the same amount of variance as for PCA. Note that
the total number of components with PCA is equal to the
number of bands, i.e., 159 for Indian Pines, while it is equal
for KPCA to the size of the number of training samples, i.e.,
2594, which is signi�cantly higher. For the Indian Pines data
set, the �rst 11, 51, 31, and 33 KPCs are needed to accomplish
99% of the cumulative variance with RBF, Laplacian, Cauchy,
and histogram intersection (HIST) kernels, respectively. We
observe that 8 KPCs are needed with the RBF, 56 with the
Laplacian, 18 with the Cauchy, and 55 with the HIST kernel
to achieve same amount of information considering to KSC
results. In the case of A-KPCA and M-KPCA, p is set to 1 for
kernel selection. For the Indian Pines data set, 35 adaptive
KPCs and 20 multiple KPCs contain 99% of information and
only 14 adaptive KPCs and 12 multiple KPCs for the KSC.

In order to demonstrate the �rst principal components
(PCs) more e�ciently, a subimage of size 100 × 100 in the
KSC hyperspectral cube is selected.�e �rst PCs for all of the
methods are depicted in Figure 3.

A�er FE, SVM classi�er has been employed for classi�-
cation. For nonlinear SVMs, we have used the RBF kernel
which is formulated in Table 2.�e classi�cation experiments
and the optimization of parameters, C and C, of SVMs are
achieved using LIBSVM [49] with 5-fold cross validation
technique. Since SVMs are designed to solve binary problems,
various approaches have been proposed for multiclass situa-
tions such as remote sensing applications. �e most popular
approaches for multiclass classi�cation are one-against-all
(1AA) and one-against-one (1A1). In this paper, we have
applied the 1AA strategy for each class. Each test sample is
�nally labeled as the class whose output score is maximum.

Finally, we compare the proposed M-KPCA algorithm
against �ve state-of-the-art dimension reduction algorithms,
i.e., linear discriminant analysis (LDA) [50], LPP, probabilis-
tic PCA (pPCA) [51], RP, and t-SNE. LDA, LPP, pPCA, and
t-SNE are implemented using the MATLAB toolbox [52]
for dimensionality reduction, and RP algorithm is designed
based on Wang’s work [53].

4.2. Comparison with KPCA and A-KPCA. �e original data
sets, termed as raw, are also classi�ed for comparisons. Tables
3 and 4 compare the performance of all models numerically
(class accuracies and overall accuracy (OA) in percentages)
and statistically (kappa test) for the Indian Pines and the KSC
data sets, respectively.

Inspection of Table 3 reveals A-KPCA outperforms PCA
and all the four KPCAs. Further analysis shows that the
KPCA performs signi�cantly better than the conventional
PCA. Regarding the OAs, it is clear that the M-KPCA based
classi�cation producesmore accurate results when compared
to the A-KPCA based classi�cation. RBF kernel gives the best
results for KPCA among the other kernel functions as seen in
Table 3.

�e results for the KSC data set are reported in Table 4.
Regarding the PCA and KPCA results, FE does not improve
the accuracies signi�cantly. �e comparison between KPCA
and PCA shows that KPCA performs better than the PCA
in terms of classi�cation accuracies. Moreover, classi�cation
of the A-KPCA features is more precise that the one yielded
employing the all KPCs. As with the previous experiment,
the best results are obtained with the M-KPCA. Figures 4
and 5 represent the available labeled scenes and classi�cation
maps of all models for the Indian Pines and KSC data sets,
respectively.

In the last experiment, we increase the number of KPCAs
in both A-KPCA and M-KPCA utilizing di	erent scale
parameters in the same kernel. Tables 3 and 4 show that the
best single kernel for each data set is di	erent. �erefore,
we, respectively, adopt the seven RBF and Cauchy kernel
functions for Indian Pines andKSC such as their scale param-
eters in the range [C0/8, 8C0]. �e central parameter (C0) is
determined by (15). �e SVM is again employed for classi�-
cation a�er FE. �e selection of eigenvalues for each method
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Figure 2: Percentages of cumulative variances of the initial data retained in the components of the new representation for the two data sets:
(le� to right) �rst row: PCA and KPCA���; second row: KPCA��
 and KPCA���; third row: KPCA���� and A-KPCA; bottom: M-KPCA.
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(a) Original (b) 1st PC (c) 1st KPC��� (d) 1st KPC��


(e) 1st KPC��� (f) 1st KPC���� (g) 1st A-KPC (h) 1st M-KPC

Figure 3: (a) False color image of KSC subscene andmost informative principal components (PCs) for the subimage of KSC data: (b) 1st PC;
(c) 1st KPC���; (d) 1st KPC��
; (e) 1st KPC���; (f) 1st KPC����; (g) 1st A-KPC; (h) 1st M-KPC.

Table 3: Overall accuracy, OA (%), and Kappa statistic, H, of the Indian Pines data set with di	erent models. �e best scores for each class
are highlighted in bold face font, and the second best is underlined.

Feature Raw PCA KPCARBF KPCALap KPCACau KPCAHIST A-KPCA M-KPCA

# of features 159 2 11 51 31 33 35 20

SVM C 430.5 279.17 534.67 663.98 663.98 663.98 603.46 346.67

params C 2.18 15.22 13.37 13.28 13.27 13.28 16.59 4.74

1 87.04 33.34 88.89 74.07 77.78 90.74 90.74 94.44

2 88.77 40.59 86.82 75.80 82.08 83.19 89.82 89.96

3 86.09 06.95 86.81 65.47 82.61 78.30 88.49 88.60

4 92.31 35.90 91.03 68.38 81.62 82.48 91.45 96.58

5 98.19 58.95 97.79 88.73 95.77 90.74 97.59 98.59

6 98.93 91.43 98.39 97.59 97.99 96.52 99.06 99.33

7 92.31 30.77 92.31 88.46 92.31 84.62 92.31 96.15

8 99.39 95.50 98.98 97.75 98.98 97.34 99.39 99.59

9 90.00 00.00 95.00 90.00 85.00 90.00 95.00 95.00

10 89.67 66.32 91.12 80.58 90.50 88.74 91.22 91.84

11 91.90 73.30 93.27 86.95 91.13 89.55 93.11 94.25

12 94.30 21.01 95.11 80.78 90.88 88.27 95.44 95.60

13 99.06 73.58 99.06 98.11 98.58 97.64 99.06 99.53

14 97.30 86.79 98.07 96.91 97.99 96.52 97.84 97.60

15 80.00 15.53 77.11 53.42 70.26 58.95 82.63 88.95

16 92.63 90.53 94.74 94.74 91.58 90.53 90.53 94.74

OA 92.47 59.78 92.69 83.92 90.16 88.30 93.44 94.28H 0.9130 0.5399 0.9210 0.8215 0.8967 0.8749 0.9317 0.9348
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Table 4: Overall accuracy, OA (%), and Kappa statistic, H, of the KSC data set with di	erent models. �e best scores for each class are
highlighted in bold face font, and the second best is underlined.

Feature Raw PCA KPCARBF KPCALap KPCACau KPCAHIST A-KPCA M-KPCA

# of features 176 3 8 56 18 55 14 12

SVM C 534.66 279.17 430.54 663.98 181.02 346.69 117.38 165.69

params C 3.77 9.87 34.95 5.58 10.69 5.58 5.61 5.01

1 97.50 92.64 97.50 95.66 96.58 96.32 98.03 98.29

2 94.24 84.77 93.83 90.12 91.77 91.36 94.24 95.47

3 93.75 89.84 93.36 91.80 93.75 93.75 93.36 97.26

4 78.17 49.21 80.16 71.43 78.17 75.40 81.35 93.25

5 77.64 56.52 60.87 55.28 61.49 57.76 78.88 88.82

6 75.11 50.66 58.08 55.02 75.11 58.95 82.53 86.90

7 93.34 73.33 89.52 91.43 90.48 91.43 94.29 95.24

8 96.29 78.65 94.20 90.26 95.13 91.18 96.75 96.28

9 99.04 97.50 98.65 96.73 98.65 97.50 99.23 99.61

10 100 91.58 99.75 97.77 99.26 97.77 100 99.26

11 99.05 97.85 99.05 98.09 99.05 98.81 99.05 99.28

12 99.06 81.11 96.82 95.23 97.42 95.63 99.01 99.20

13 100 99.89 100 99.89 99.89 99.89 99.89 100

OA 95.51 86.53 93.78 91.65 94.34 92.59 96.14 97.52H 0.9522 0.8493 0.9347 0.9106 0.9407 0.9213 0.9601 0.9724

Table 5: Overall accuracy, OA (%), and Kappa statistic, H, of SVMs with di	erent features. �e best scores for each data set are highlighted
in bold face font, and the second best is underlined.

Data Kernel Metric
KPCA

A-KPCA M-KPCAC0/8 C0/4 C0/2 C0 2C0 4C0 8C0
Indian Pines RBF

OA 83.54 88.69 90.52 92.69 57.80 52.41 19.47 94.09 96.03H 0.8006 0.8703 0.8918 0.9202 0.5036 0.4405 0.1267 0.9327 0.9459

KSC Cauchy
OA 91.83 93.78 93.24 94.34 80.27 72.54 69.76 95.93 96.36H 0.9089 0.9307 0.9247 0.9409 0.7794 0.6918 0.6605 0.9547 0.9574

is de�ned in 99% con�dence interval. Table 5 summarizes
the classi�cation accuracies of this experiment. �e results
show that the M-KPCA-based features are better than the
individual KPCAs and A-KPCA features on all data sets, no
matter which kernel parameter is applied.

4.3. M-KPCA versus Other Dimension Reduction Algorithms.
In this section, we compare our method (M-KPCA) with the
�ve FE methods, i.e., LDA, LPP, pPCA, RP, and t-SNE. M-
KPCA is constructedwith the subkernels indicated in Table 2,
and kernel parameters are determined from (15). Di	erent
values of the dimensionality number of the new subspaces are
tested for the SVM classi�er across the two data sets. A set of
values {1, 2, 5, 10, 20, 50} are independently generated for the
subspace dimension. �e classi�cation accuracy is reported
for each model, and we plot the results in Figure 6.

Inspection of Figure 6 reveals that proposed method
regularly outperforms the competing FE methods for mul-
ticlass classi�cation in higher dimensions. For instance, if the
number of extracted features is set to 50, M-KPCA improves
over the best competing method RP by 5.19% in terms of OA
on Indian Pines and by 3.78% on KSC. It can be also found
from Figure 6 that t-SNE method is highly stable against any

dimensional changes. On comparison of methods, we also
observe that the performance of LDA and pPCA is limited for
both data sets. Considering the lower dimensions (i.e., when
the number of newdimension is assigned a value smaller than
10), the best features are produced by the t-SNE which is also
the most time-consuming method. �e rest of the methods
are sorted asRP, LDA, LPP, pPCA, andM-KPCA in ascending
order according to the average computation times.

5. Conclusion

In this paper, a novel semisupervised KPCA framework
named multiple KPCA (M-KPCA) is proposed for e	ec-
tive feature extraction of hyperspectral images. It applies
ensemble strategy to favor good candidate kernels during
nonlinear projections. A noniterative algorithm is developed
to simultaneously feature extraction and kernel combination
based on a kernel class separability criteria. In terms of
the number of kernels, KPCA uses only one base kernel
with prede�ned parameter(s) (if existing). In terms of the
kernel quality, A-KPCA has no measurement procedure to
evaluate the e�ciency of kernels. M-KPCA overcomes these
drawbacks of both KPCA and A-KPCA.
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(a) Labeled scene (b) Raw (c) PCA

(d) KPCA��� (e) KPCA��
 (f) KPCA���

(g) KPCA���� (h) A-KPCA (i) M-KPCA

Figure 4: Classi�cation results obtained with the Indian Pines: (a) labeled scene and classi�cation maps using the (b) raw data; (c) PCA; (d)
KPCA���; (e) KPCA��
; (f) KPCA���; (g) KPCA����; (h) A-KPCA; (i) M-KPCA.�e classi�cation was done by SVM with an RBF kernel.

Dimension reduced HSI data is classi�ed by nonlinear
SVMs to compare classi�cation performance for several
models. Experiments on two real HSI data sets demonstrate
that the best kernel type varies according to data (see

Tables 3 and 4). In the �rst test, KPCA presents better
performance compared to the conventional PCA. Overall
evaluation for dimension reduction performance of PCA,
KPCAs, A-KPCA, and M-KPCA techniques shows that the
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(a) Labeled scene (b) Raw (c) PCA

(d) KPCA��� (e) KPCA��
 (f) KPCA���

(g) KPCA���� (h) A-KPCA (i) M-KPCA

Figure 5: Classi�cation results obtainedwith the KSC: (a) labeled scene and classi�cationmaps using the (b) raw data; (c) PCA; (d) KPCA���;
(e) KPCA��
; (f) KPCA���; (g) KPCA����; and (h) A-KPCA; (i) M-KPCA.�e classi�cation was done by SVM with an RBF kernel.

M-KPCA is more successful than the others. In the second
experiment, we have employed seven candidate kernel func-
tions using di	erent kernel parameters for each data. �ese
KPCAs are then utilized to construct the A-KPCA and M-
KPCA. Experiments on the AVIRIS data sets con�rm that
the M-KPCA outperforms the individual KPCAs and the A-
KPCA in terms of both OA and Kappa coe�cient. Moreover,

the comparative results in Section 4.3 demonstrate that M-
KPCA experimentally accomplished superior or competitive
classi�cation accuracy more than the other unsupervised
state-of-the-art FE methods.

�e results clearly validate that semisupervised learning
of kernels with M-KPCA increases the robustness of nonop-
timizedKPCAs. One and probablymost important limitation
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Figure 6: Classi�cation results of SVM on the two data sets for varying subspace dimension produced by six FE methods.

of theM-KPCA is its computational complexity, related to the
number of samples used for constructing the kernel matrix.
�erefore, our future work aims to address the problem of
reducing the complexity. It is also possible to extend the
proposed method to a selective approach which eliminates
weak kernels before feature extraction.

Data Availability

�e Indian Pines and KSC data that support the �ndings of
this study are, respectively, available in https://engineering
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.php?title =Hyperspectral Remote Sensing Scenes.
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