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Abstract

With the aim to improve accuracy of stereo confidence
measures, we apply the random decision forest framework
to a large set of diverse stereo confidence measures. Learn-
ing and testing sets were drawn from the recently introduced
KITTI dataset, which currently poses higher challenges to
stereo solvers than other benchmarks with ground truth for
stereo evaluation.

We experiment with semi global matching stereo (SGM)
and a census dataterm, which is the best performing real-
time capable stereo method known to date.

On KITTI images, SGM still produces a significant
amount of error. We obtain consistently improved area un-
der curve values of sparsification measures in comparison
to best performing single stereo confidence measures where
numbers of stereo errors are large. More specifically, our
method performs best in all but one out of 194 frames of the
KITTI dataset.

1. Introduction
A vast amount of algorithms to solve the stereo problem

have been proposed with the target to yield improved error

statistics on popular benchmarking datasets. It is now well

known that good rankings in benchmarks do not imply sat-

isfying results for challenging image data. Recently, this is-

sue has been approached through definition of a more chal-

lenging benchmark [9], and further improvements on per-

formance of stereo solvers are anticipated. However, little

attention has been paid to the question whether current solu-

tions in increasingly challenging matching problems are ac-

tually reliable. This question becomes more important, with

increasing degree of ill-conditioning in a matching task. We

illustrate this for the stereo case: If, in a worst case scenario,

one of the two cameras fails, dense matching results can be

computed, but these are not reliable in any location.

Related areas of mismatches need to be detected. A com-

mon method is to match in both directions and evaluate the

consistency. We illustrate that this method is not perfect but

quite effective, by plotting consistency gaps over disparity

errors, see Figure 1.

Applications where accurate stereo confidence measures

are essential in raising reliability of computer vision include

sparse [19] or dense [16] 3D scene reconstructions.

Proposals have been made in the literature on how

matching reliability could be captured [5, 13]. However,

each of the proposals incorporate certain weaknesses, that

is, these may be suitable only for specific image data and

fail in situations where discriminative power for particular

matching errors is low. This has initiated attempts to com-

bine several confidence measures with the aim of achieving

superior accuracy in detection of bad matching estimates.

Previous solutions [14, 17] were based on a very limited

set of features capturing confidence and were tested only on

data not presenting much challenge to stereo.

In this paper, we employ strong energy based confidence

clues and use a larger and significantly more challenging

stereo dataset introduced recently [9], where results com-

pare much better to real-world scenarios than was the case

with benchmarks proposed previously.

The paper is organized as follows: Section 2 provides

a brief overview of related work. Section 3 details chal-

lenges in defining confidence for matching tasks, compiles

some proposals for stereo confidence definition and intro-

duces new confidence definitions used in this paper. Sec-

tion 4 explains the machine learning framework used for

confidence accuracy improvements. Section 5 describes ex-

periments conducted. Sections 6 and 7 contain results and

discussion. Section 8 concludes.

2. Related Work
Kong and Tao [14] proposed a stereo matcher, where dis-

tributions of labels for good, bad and foreground fattening

affected disparities are estimated in a MAP-MRF frame-

work based on horizontal texture and distances to closest

foreground objects drawn from ground truth. Motten et
al. [17] derived binary confidence labels by learning from

a larger set of features amenable to hardware processing us-

ing decision trees and ANNs. Both approaches were evalu-
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Figure 1. Error of SGM stereo result to ground truth plotted against

left-right difference of corresponding points in disparity maps of

both views. In challenging images, a significant proportion of bad

pixels is not filtered (false negative). Likewise, many good esti-

mates are removed (false positives).

ated only on well-behaved stereo data.

For optical flow, Gehrig and Scharwächter [8] used

Gaussian mixtures to model a feature space composed of

spatial and temporal flow variance, residual flow energy and

structure tensor eigenvalues on small image patches. Mix-

ture coefficients and diagonal covariances were estimated

using supervised learning (fifteen classes, defined by inter-

vals of flow end point error) in an expectation maximization

framework. Multi-cue confidence was defined as classifi-

cation outcome according to the highest class posterior. It

was not clear whether the combination consistently outper-

formed single features.

Aodha et al. [2] used a similar set of features as Gehrig

and Scharwächter [8] to estimate multi-feature flow confi-

dence, but also included image gradient and distance trans-

form on the Canny image of the estimated flow field. Ad-

ditionally, these features were densely scale-space sampled

with a rescaling factor of 0.8. Learning was performed us-

ing a random decision forest [6] framework. It was demon-

strated, that the combination outperforms single features on

many elements of a medium sized dataset of engineered and

synthetic images.

Work of Aodha et al. makes the assumption that solu-

tions of the flow problem are well defined in general. This

is expressed in the idea that a confidence measure can suc-

cessfully select best fitting results from multiple algorithms,

ignoring the fact that flow is often undefined, e.g., in areas

becoming occluded in subsequent frames.

Quality of results in combinaton-by-classification ap-

proaches entirely depends on the strength of contributing

features and on the capability of the learning algorithm to

deal with correlated variables.

Regarding above mentioned confidence features for opti-

cal flow [2], image gradients in conjunction with flow vari-

ance are likely to detect lowly textured areas in input im-

ages with high variance in flow. Indeed, such flow results

are likely to be unreliable in our experience.

However, in stereo and motion alike, reasons for failure

may not be restricted to low texturedness. Hence, using a

more diversified set of confidence measures as contribut-

ing features is very likely to result in improved accuracy

for good or bad pixel detection due to consideration for an

increased number of possible reasons for algorithm failure.

So, in the following section, we discuss various stereo

confidence measures proposed in the literature, and attempt

to motivate a selection of most promising measures.

3. Confidence Measures for Stereo
Causes for errors in disparity estimation within a global

stereo optimization framework can be based on inappropri-

ate model assumptions, highly nonconvex energies causing

multiple strong local minima or numerically instable global

minima.

Confidence is commonly understood either as error pre-

diction or only as a measure for uncertainty of results. As-

suming error prediction worked out, we would know error

magnitudes and could plug these into the stereo estimation

model to improve stereo results directly.

However, we can only hope to gain knowlege about suit-

ability of signals to provide good estimates of stereo dispar-

ities in most cases, e.g., in untextured or repetitive image

regions. If this is the case, all we can do is to attempt pre-

diction of potentially large matching errors.

In the absense of a strong theoretical foundation to ac-

count for properties of global energies in commonplace

stereo aggregation schemes, many spatially local stereo

confidence measures have been proposed [5, 13]. However,

evaluation has been carried out for a local stereo matching

algorithm and on a small dataset only. Also, these measures

may be accurate only in specific matching situations. Below

we briefly discuss the most prominent proposals for stereo

confidence.

To clarify the intention behind defining confidence mea-

sures for matching, we would like to point out again, that

confidence is not supposed to be a measure for potential

disparity error magnitudes. Rather it should be a measure

for the likelihood of an algorithm to fail due to high chal-

lenges of a specific matching situation. Failing means to

exceed a certain error bound. For low confidence matching

situations, no improved or specialist algorithm may exist

for obtaining a solution. Good confidence measures detect

areas that cannot be matched reliably.
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In the following definitions, c refers to matching costs

resulting from a Semi global matching (SGM) [11] aggre-

gation scheme.

Curvature of a parabola fit to matching costs c for sub-

pixel estimation at a pixel p is frequently considered to be

a confidence measure. However, this curvature rarely pro-

vides accurate information about gross mismatches. It may

only be useful to estimate variances of disparities, given that

a match is known to be correct.

The peak ratio measure is widely used in descriptor

matching to reject correspondences with close matching

costs which are believed to be ambiguous. In the follow-

ing, d1 denominates the disparity with lowest associated

cost c(p, d1) and d2 is a disparity where c(p, d2) is a lo-

cal minimum with second lowest cost at pixel p. The peak

ratio for a disparity at pixel p is then defined as

Γ0(p) = c(p, d1)/c(p, d2) .

Note that with some dataterms (e.g. census), image noise

can propagate through aggregation and lead to large peak

ratios even in reliable matches. This can be the case if |d1−
d2| is very small.

Entropy of disparity costs for controlling a diffusion pro-

cess in cost aggregation [20] attracted some attention as a

potential confidence measure. Certainly, flat or noisy cost

functions contain little information and are less likely to re-

sult in a good correspondence. For defining entropy, costs c
need to be normalized into a probability distribution p:

Γ1(p) = −
∑

d

p(d) log p(d) with p(d) =
e−c(p,d)

∑
d′ e

−c(p,d′)

Merrell et al. [16] propose another measure integrating

costs for all disparity estimates. We coin it Perturbation

measure due to its design target to capture the deviation of

cost function c to an ideal function which is large at all lo-

cations except at the minimum d1. The definition is

Γ2(p) =
∑

d �=d1

e−
(c(p,d1)−c(p,d))2

s2

We found careful scaling with parameter s crucial in avoid-

ing numerical problems related to floating point accuracy.

Though not perfect, as illustrated in Fig. 1, consistency

between left and right disparity is an established criterion

for identification of mismatches and occlusions [11]. The

definition requires disparity maps Dl and Dr of left and

right image:

Γ3(p) =
∣∣Dl(p)−Dr(p− (dl1, 0)

T )
∣∣

Image gradient determines the ability of data terms to

generate distinctive scores. In stereo, low texture along

epipolar lines is critical. This motivates the definition of

horizontal gradient as a confidence measure:

Γ4(p) =‖ ∇xI
l(p) ‖

Note, however, that estimated depth edges often do not

coincide with image gradients due to foreground fatten-

ing [18].

Disparity map variance, defined as

Γ5(p) =‖ ∇Dl
1(p) ‖

is usually a good indication of problematic correspondences

as errors occur often on or near depth discontinuities. How-

ever, Γ5 may be less suitable if used in conjunction with

stereo algorithms that frequently locate discontinuities well.

This may be the case in segmentation based stereo ap-

proaches.

A measure coined disparity ambiguity here is introduced

to capture potential error magnitudes for the case of mis-

matches resulting from matching ambiguities (which may

be detected by peak ratio Γ0 defined above).

Γ6(p) = |Dl
1(p)−Dl

2(p)|

Although not beneficial as a confidence measure itself, in-

clusion of disparity ambiguity into a learning framework is

an attempt to separate small from large errors in image lo-

cations where the peak ratio may fail as explained above.

As an additional confidence measure, we use Zero mean
Sum of Absolute Differences (ZSAD) matching costs be-

tween (left and right) image intensities I l and Ir for the

winning disparity d1:

Γ7(p) = ZSAD
(
I l(p), Ir

(
p− (dl1, 0)

T
))

Another proposal for confidence is what we call semi global

energy: We compute the sum of data and smoothness term

in a small neighborhood for each pixel, choosing a patch

size of 25× 25 and aggregate along emerging rays in eight

directions r for these experiments. The feature is defined in

analogy to the SGM objective energy, but with the winning

disparity d1 = Dp fixed:

Γ8(p) =
∑

r

∑

q∈r(p)
c(q, d1) + b1t(|Dq −DN(q)| = 1)

+ b2t(|Dq −DN(q)| > 1)

Here, Nq denotes the successor of q in the set of pixels r(p)
along ray r emerging from p. b1 and b2 are distinct penalties

for different magnitudes of disparity map gradient, and t is

a decision function.
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Feature Vector Setup
We define one feature vector f7 ∈ R

7, containing only

information derived from input images and computed dis-

parity maps. It is defined pixel-wise as follows (we omit

argument p and learning sample indices here):

f7 = (Γ1
3,Γ

1
4,Γ

2
4,Γ

3
4,Γ

1
5,Γ

2
5,Γ

3
5)

Most features are included for three scales with a rescal-

ing factor of two. The notation indicates this with super-

scripts. Features for lower scales are separately extracted

from stereo computed on down-scaled images and not by

downscaling of feature maps. Bi-linear interpolation was

used for upscaling.

Vector f7 can be computed for arbitrary stereo results.

Another feature vector, f23 ∈ R
23, in addition contains in-

formation of spatially aggregated costs, as captured by the

features defined above. This feature vector is therefore de-

fined only for stereo schemes with pixel-wise cost compu-

tations for each matching candidate. We define:

f23 = (Γ1
0,Γ

2
0,Γ

3
0,Γ

1
1,Γ

2
1,Γ

3
1,Γ

1
2,Γ

2
2,Γ

3
2,Γ

1
3,Γ

1
4,Γ

2
4,Γ

3
4,

Γ1
5,Γ

2
5,Γ

3
5,Γ

1
6,Γ

2
6,Γ

3
6,Γ

1
7,Γ

2
7,Γ

3
7,Γ

1
8)

4. Ensemble Learning for Confidence Mea-
sures

In the following, we explain the machine learning ap-

proach chosen for combining confidence measures. In par-

ticular, we motivate to formulate this as a standard classifi-

cation problem over feature vectors defined in the previous

section, that is, estimation of a mapping

R : F �→ {−1, 1} ,

where R maps to each sample f ∈ F one of two class la-

bels, depending on stereo error bounds derived from ground

truth. Separate models are created with f7 and f23 feature

vectors, denoted here RDF7 and RDF23.

We choose a classification approach instead of regres-

sion, as confidence measures do not contain matching error

magnitude information as explained previously.

Random tree ensembles [6], which have several

amenable properties over other learning approaches, are

used for this study. Advantages over other classification

methods include robustness towards parametrization, low

tendency of overfitting data and interpretation of feature rel-

evance.

Each decision tree in the random forest partitions fea-

ture space recursively by greedily choosing a feature and

a binary test thereupon, which minimizes an entropy based

objective function. Once the resulting partition is pure or

some other stopping criterion is met, class counts in this

partition are recorded. This corresponds to a tree structure

that can then be traversed during prediction time from root

to the leaf containing the predicted density by performing

the binary tests learned during training.

In random tree ensembles, T randomized decision trees

are grown independently with two ways of introducing ran-

domization:

• Bagging: Each tree only uses a random subset R of all

available samples.

• Random subspace selection: For each space partition-

ing decision, only the best possible split of a random

subset of all possible variables is considered.

During prediction, each tree casts a vote for a class density.

Random tree ensembles can also provide information on

variable importance. Two different measures are used here

for discussion [3]: The GINI importance measures the con-

tribution of each variable to the decrease of the objective

function, while the permutation importance calculates the

decrease in accuracy on the out of bag samples after per-

muting the values of the feature.

5. Experiments
Stereo estimates are computed using semi global match-

ing stereo [11] (penalties b1 = 20, b2 = 100) with a binary

census data term on 7 × 7 matching windows. The choice

of this algorithm is due to best overall performance on un-

constrained image data in terms of stereo accuracy [12, 21]

as well as computational costs low enough for on-line re-

sults in, e.g., automotive applications [7]. We restrict our

experiments to this powerful stereo algorithm, as we are not

interested in stereo errors introduced through weak models.

We intend to work only on genuinely hard matching prob-

lems.

We select training data from a few frames of KITTI with

depth ground truth available, consisting of laser range finder

measurements aggregated over five consecutive frames us-

ing ego-motion compensation [9]. In an effort to reduce

adaptation to a specific matching problem domain, these

frames are selected such that a variety of different chal-

lenges are posed to the stereo algorithm, including tex-

tureless areas, very large baseline, repetitive structures,

transparencies and specular reflections. In particular, these

frames are those containing following numbers in their file-

names: 43, 71, 82, 87, 94, 120, 122, 180. Samples of the

above described feature vector are collected only in loca-

tions where data term values for stereo matching are avail-

able (that is, these are not set to be invalid) on all scales

and for all disparity candidates. In practice, this excludes

areas along image boundaries, in particular where occlu-

sions are present near the left image border. The intention

is to avoid biases in learning and classification due to non-

uniform scaling of some of the used cost function based fea-

tures in the presence of undefined matching cost values.
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Figure 2. Area under curve measures of our result (red), in comparison to four confidence measures that usually perform best. Lower values

are better. The proposed method outperforms other approaches consistently in all but one frame.

As confidence measures generally contain no informa-

tion about error magnitudes, solving a regression problem

for feature combination is not likely to yield the intended

results. Therefore, we solve a classification task taking into

account only error bounds as follows: Learning samples are

categorized into two classes: good and bad disparities. The

class boundary is defined by a threshold of 3 px between

ground truth disparities and stereo estimates, in line with

the default of the KITTI online evaluation. Presumably,

higher accuracies of laser range finder measurements can-

not be guaranteed.

Due to very high quality of stereo results on KITTI in

general, these two classes are highly unbalanced, which

may deterioate class model quality and result in unnece-

sary computational costs due to high data volumes. There-

fore, we apply stratified sampling to balance training data.

Learning was conducted using the machine learning module

of the Vigra library [15]. Generalisation error is monitored

within the random forest framework by computing out of

bag errors for increasingly large stratified random subsets

of the training set.

Decision forest parameters are chosen as follows: Num-

ber of trees: T = 50, Selection ratio: R = 0.6, Minimum

sample size in each node to split: M = 20. Parameters T ,

R and M were tuned to achieve an optimum in computa-

tional cost and minimize the out of bag error of the random

decision forest.

Combined confidence measures for f7 and f23 alike are

defined as the posterior probability of the bad disparity

class.

Confidence measures, including decision forest results,

are compared using the sparsification strategy: Pixels in

disparity maps are successively removed, in the order of de-

scending confidence measure values, until the disparity map

is empty. Stereo error measures are computed on remaining

pixels in each iteration. If the area under the resulting curve

(AUC) is smaller than for concurrent confidence measures,

it indicates that this measure is more accurate. AUC val-

ues are normalized such that confidence measures discard-

ing pixels randomly yield a value of 0.5.

6. Results
Area under the curve (AUC) values for the proposed

RDF 23 confidence measure indicate superior accuracy

compared to best performing of all single confidence mea-

sures on 193 out of 194 frames on the KITTI dataset, see

Fig. 2. Our result is slightly inferior only to the perturbation

measure on KITTI Frame 30. The respective sparsification

plot for this Frame is displayed in Figure 4. On few other

frames (Frames 13,20 and 89), our method is just on a par

with the best performing single measure in terms of AUC

values.

In the presence of frequent gross stereo errors which are

generally detected well by all features including the semi

global energy feature proposed, the RDF 23 results still

show a slight improvement, see Fig. 5. Even if a single

contributing confidence measure fails (see Fig. 6), results

of RDF 23 are not compromised.

Outstanding accuracy gains from RDF 23 results are not

achieved if the confidence feature set is reduced to such
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Figure 3. Area under curve measures of our result when the feature set is reduced to information from disparity maps and image intensities.

Again, we compare to best performing single confidence measures. Lower values are better. Frequently, results from this reduced feature

set are outperformed by single features. This demonstrates that energy based features as included in f23 are essential.

variables that can be obtained solely from disparity maps

and image intensities, assuming the stereo algorithm be a

black box (see Fig. 3). Still, results are above the average

of single features.

In RDF 23 estimation, disparity variance, perturbation,

peak ratio and left-right difference have the largest contri-

bution according to Gini importance in decision forest esti-

mation (see Tab. 1).

In the reduced feature set f7, Gini importance is highest

for the disparity variance variable as well (see Tab. 2).

Possible reductions of false positives and negatives of the

proposed method in comparison to the standard consistency

check method are illustrated in Fig. 7. A signifant reduction

in both, false positives and false negatives, can be observed

on depicted road surface and vehicles.

Out of bag errors do not decrease significantly when

adding data beyond the choosen training set of size 2.2·105.

We provide a complete set of sparsification plots, i.e.

plots for each KITTI frame [4].

7. Discussion
Class posteriors of f7 features yielding inferior results

to those of f23 (compare Figures 2 and 3) samples is not

surprising, as the main reason for stereo failure detectable

by f7 is textureless areas with co-located disparity discon-

tinuities, which are less frequent in KITTI data, as related

objects (e.g. sky areas) are not covered by ground truth.

Samples from f23 better cover a wider range of potential

matching problems, such as errors at depth discontinuities,
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Figure 4. Sparsification plot for the worst result of our method on

KITTI data on Frame 30. Note, however, that stereo estimates are

almost perfect for this frame. So, this single negative result is little

significant.

despite the most important variable according to the Gini

measure in both feature spaces being disparity variance.

The perturbation measure attracting higher variable im-

portance on a smaller scale suggests that confidence may be

more appropriate to be looked upon at superpixel level.

In opposition to Aodha et al. [2], who apply a leave-one-

out strategy for learning and testing, we use only a very

small fraction of data for training. This is a closer match to

applications in practice, where an extensive training dataset
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Figure 5. KITTI Frame 123, resulting in a significant amount of

SGM stereo errors (approx. 30 percent), results in all confidence

measures responding well. Our method still achieves an improve-

ment on top of this.
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Figure 6. Though one of the contributing measures, SGM energy,

fails on Frame 151, our method results in superior accuracy com-

pared to all single measures over the entire sparsification range.

cannot be made available due to prohibitive costs or tech-

nical limitations. Still, failure of our method is extremely

infrequent. For the only instance on KITTI Frame 30, error

rates of the stereo algorithm are very low. In such a case,

failure is of no relevance in practical applications.

Even if our class posteriors were only on par with the

best single measure in each frame, this would be an advan-

tage as each single measure may fail in some situations.

Undefined stereo values due to occluded regions cannot

be handled separately in this study, as corresponding ground

truth data is not yet made public in KITTI. However, this

does not affect outcomes, as occlusions are simply consid-

ered to be a subclass of mismatches. Yet, separate evalua-

tions, as done in stereo benchmarking, would be of interest.

Feature Scale Permutation Gini

Disparity variance 1 0.099 4473

Perturbation 2 0.095 3469

Peak ratio 1 0.045 2548

Left right difference 1 0.046 1533

Perturbation 1 0.080 1474

Peak ratio 2 0.031 1424

Disparity variance 2 0.041 1375

Entropy 2 0.036 1234

ZSAD 1 0.028 1083

ZSAD 2 0.030 1029

Semi global energy 1 0.032 970

ZSAD 3 0.023 837

Entropy 2 0.029 809

Disparity variance 3 0.019 771

Entropy 1 0.023 587

Perturbation 3 0.028 560

Peak ratio 3 0.018 538

Gradient 3 0.011 502

Disparity ambiguity 3 0.006 496

Gradient 2 0.010 426

Disparity ambiguity 2 0.005 396

Gradient 1 0.007 345

Disparity ambiguity 1 0.005 317

Table 1. Variable importance in f23

Feature Scale Permutation Gini

Disparity variance 1 0.135 8095

Disparity variance 2 0.073 5303

Left right difference 1 0.071 4506

Disparity variance 3 0.028 2527

Gradient 3 0.035 1633

Gradient 2 0.047 1463

Gradient 1 0.032 1246

Table 2. Variable importance in f7

8. Conclusion

We have demonstrated that learning a classifier on multi-

variate confidence measures is an appropriate approach to

increase accuracy in stereo error detection if a suitable set

of confidence features is selected. In particular, variance

based features on image intensities and matching results

as previously applied to the optical flow problem are in-

sufficient for consistently outperforming contributing con-

fidence measures in stereo analysis. This requires strong

energy based features. Additionally, we confirm that scale

space sampling of features is a crucial contributing factor

for success. This suggests, that modeling of spatial depen-

dencies may further improve results.

Apart from bias that may have been introduced due to
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Figure 7. Visualization of true positives (green), false positives

(red), true negatives (blue) and false negatives (yellow) accord-

ing to the denominations given in the plot of Fig. 1 on KITTI

Frame 112. Our result, based on 23 dimensional features (bottom),

significantly reduces false positives and false negatives compared

to left-right difference results (top).

flaws in the ground truth data [10] used here, advantages

of the proposed method are larger where stereo is more

challenging and hence produces more error prone results.

Yet, to shed light on this, new challenges for stereo need

to be defined (and come with ground truth), beyond what

is present in KITTI data. These challenges could include

dark scenes, harsh backlight or any kind of image degrada-

tion, including issues resulting from compromised record-

ing equipment. This would help to shift attention to specific

problems which need to be addressed before stereo vision

systems can confidently be used in applicantions relevant to

safety, such as driver assistance systems.
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