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Short-term tra
c prediction is vital for intelligent tra
c systems and in�uenced by neighboring tra
c condition. Gradient boosting
decision trees (GBDT), an ensemble learningmethod, is proposed tomake short-term tra
c prediction based on the tra
c volume
data collected by loop detectors on the freeway. Each new simple decision tree is sequentially added and trained with the error of the
previous whole ensemble model at each iteration. 	e relative importance of variables can be quanti�ed in the training process of
GBDT, indicating the interaction between input variables and response.	e in�uence of neighboring tra
c condition on prediction
performance is identi�ed through combining the tra
c volume data collected by di
erent upstream and downstream detectors
as the input, which can also improve prediction performance. 	e relative importance of input variables for 15 GBDT models is
di
erent, and the impact of upstream tra
c condition is not balanced with that of downstream.	e prediction accuracy of GBDT
is generally higher than SVM and BPNN for di
erent steps ahead, and the accuracy of multi-step-ahead models is lower than 1-
step-ahead models. For 1-step-ahead models, the prediction errors of GBDT are smaller than SVM and BPNN for both peak and
nonpeak hours.

1. Introduction

Massive tra
c data have been constantly collected from a
variety of sensors, such as inductive loop detectors, GPS-
equipped vehicles, and mobile phones [1], promoting the
development of data-driven intelligent transportation sys-
tems (ITS) [2]. Short-term tra
c prediction is one of themost
dynamic and typical researches in ITS, aiming at estimating
the tra
c state in the near future (within a fewminutes) based
on the historical tra
c data [3, 4].	e prediction tra
c infor-
mation is essentially useful for travelers to make better travel
planning in the pretrip stage or reschedule in the en route
trip [5]. Accurate short-term tra
c prediction is the �rst
important step for real-time route guidance [6] and is quite
critical in advanced travelers’ information systems (ATIS)
and advanced tra
c management systems (ATMS) [7].

Traditional statistical approaches for short-term traf-
�c prediction, such as ARIMA [8] and Kalman �ltering
technique [9], take advantages of the signi�cant temporal
dependencies of the historical univariate time series data of

tra
c variables. 	ese methods usually assume model struc-
tures beforehand and estimate model parameters from the
historical data later, with enough interpretability. It is easy for
the prediction accuracy to be a
ected by the unstable tra
c
conditions, such as the tra
c condition at peak hours [10].

Nonstationary and nonlinearity are the basic charac-
teristics of tra
c variables [11]. A variety of data-driven
approaches have been applied for short-term tra
c predic-
tion, capturing the nonlinear relationship among the vari-
ables. Higher prediction accuracy can be acquired by these
nonparametric machine learning (ML) methods, including
Back Propagation Neural Network (BPNN) [12, 13], Support
Vector Machine (SVM) [14, 15], and �-nearest neighbor
algorithm (KNN) [16]. 	ese methods belong to supervised
learning method, and the target variables need to be pre-
pared for the dataset beforehand, focusing on learning the
relationship between the response and predictors [17]. 	e
underlying information in the massive tra
c data can be
e
ciently captured by these ML methods, achieving good
prediction performance, but lacking interpretability [18].
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Considering the freeway tra
c condition independent of
signalization, most short-term tra
c prediction algorithms
have been conducted and veri�ed based on the freeway
tra
c data [3]. In the past decades, most researches focus
on the prediction of tra
c variables at one speci�c site of
interest, solely considering the e
ect of its own previous traf-
�c information. Actually, the tra
c prediction performance
for the given site is considerably in�uenced by the neigh-
boring tra
c condition. Spatial and temporal correlations
were taken into account when performing short-term tra
c
prediction [6, 19, 20]. 	e tra
c condition at a speci�c site
is closely related to that of the upstream and downstream
tra
c condition. Multivariate tra
c �ow prediction model
was constructed, improving the prediction performance by
incorporating upstream tra
c �ow series as the transfer
function input of ARIMA [21].	e in�uence of upstream and
downstream tra
c on the tra
c condition of the given site
is not symmetric [22]. 	e relationship between the current
tra
c speed at the given location and the past tra
c speeds
at the upstream and downstream locations was explored
through cross correlation analysis [10].

	e information provided by the tra
c variables of
neighboring sites can be used to improve the tra
c prediction
performance for the given site [10]. In this study, based on the
freeway tra
c data collected by the detectors, the historical
upstream and downstream tra
c volume are considered into
the variables of prediction models. Actually, the tra
c state
variation of adjacent detectors is correlative. For many ML
models, the e
ects of the input variables on the model output
are di
cult to interpret, andwhen the redundant or irrelevant
variables are added, the prediction performance may get
worse.

In order to capture the complex nonlinearity of tra
c
variation and identify the importance of variables, gradient
boosting decision trees (GBDT)method, a tree-based ensem-
ble learning method, is proposed to make short-term tra
c
prediction in this study. GBDT is a relatively new robust and
accurate method in the machine learning �eld, which can
cover di
erent types of variables and identify the e
ects of
upstream or downstream tra
c on the tra
c prediction of
the given site, achieving excellent performance over classical
methods.	emain goal of this study is to identify the relative
importance of input variables and enhance the accuracy of
short-term tra
c prediction.

Ensemble learning is one of the most popular and
promising machine learning methods, which can improve
the prediction performance by combining large numbers of
weak base models [23]. 	e most commonly used ensemble
techniques include boosting, bagging, and stacking. Di
erent
with other ML methods, the interaction between the input
variables and prediction models can be interpreted, and
the relative importance of critical factors can be identi�ed
by ensemble learning [24]. Tree-based ensemble methods,
combining multiple simple decision trees, have been applied
to handle prediction and classi�cation problems in the
transportation �eld, such as random forest, gradient boosting
machine, and boosted regression trees. 	e prediction or
classi�cation output of model is the weighted summation
or voting of the prediction of base trees. Random forests

algorithm into AdaBoost algorithm is applied to estimate
and predict tra
c �ow and congestion [25]. Stochastic
gradient boosting is used to identify crashes with a superior
classi�cation performance [26]. 	e nonlinear relationships
in the tra
c accident data and the main e
ects of crucial
variables are investigated by the boosted regression trees [27].

Additionally, the tree-based models on the basis of the
random forest algorithm in the bagging framework are
independently trained by uniformly and randomly sampling
with replacement from the original dataset, strengthening the
robustness, which can be trained by parallel computing. For
each splitting node of the based trees, features are randomly
selected [28]. Signi�cantly di
erent from the random forest,
the tree-based models of GBDT are trained sequentially, and
each base model is added to correct the error produced by its
previous tree models. For each step, the samples misclassi�ed
by previous models are more likely to be selected as the
train data, producing more accurate prediction performance.
Comparing with the simple single tree model, GBDT is more
stablewith better prediction performance and interpretability
by combining the output results of base trees [24].

	e main contribution of this study is that the short-
term tra
c �ow prediction models on the basis of gra-
dient boosting machine are constructed, focusing on the
in�uence of upstream and downstream tra
c condition
simultaneously and achieving a higher prediction accu-
racy than conventional machine learning methods. GBDT
algorithm provides a �exible framework to adopt di
erent
combinations of the upstream and downstream historical
tra
c volumes as the input variables, which can capture the
complex tra
c nonlinearity, cover the hidden tra
c patterns,
and identify the relative importance of variables, and is
of good interpretability. In addition, GBDT can resist the
outliers of variables and perform well with partly erroneous
data without cleaning [26].

2. Methodology

Single decision tree is a fast but instable algorithm, easily
a
ected by the small perturbations in the training data
[18], but the performance can be signi�cantly improved by
ensemble techniques [26]. Gradient boosting regression trees
algorithm (GBDT) is viewed as combining the strengths
of boosting algorithms and decision trees. Friedman [29]
proposed the gradient boosting machines (GBM), based on a
gradient descent formulation of boosting methods, which is
suitable for regression and classi�cation problems. Boosting
framework is essentially a constructive strategy of ensemble
formation, sequentially adding new weak base models which
are trained with respect to the error of the former whole
ensemble model for each iteration, and these base learners
just produce a slightly lower error rate than random guessing
[30].

	e approximation accuracy and execution speed of
gradient boosting can be generally improved by randomly
subsampling the training data to �t the base learner at each
iteration, also called stochastic gradient boosting [31], which
is employed tomake the short-term tra
c volume prediction
in this study, simultaneously considering the in�uence of the
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Initialize �0(�) with a constant, �0(�) = argmin�∑��=1 �(��, �).
For	 = 1 to
 do:

For � = 1, 2, . . . , � compute the negative gradient 
��

�� = −[��(��, �(��))��(��) ]

�=��−1
End;
Fit a new regression tree ℎ�(�)
Compute the best gradient descent step-size ��
�� = argmin�

�∑
�=1
�(��, ��−1(�) + ��ℎ�(�))

Update ��(�) = ��−1(�) + ��ℎ�(�)
End;
Output ��(�)

Algorithm 1: Generic gradient boosting decision trees algorithm.

upstream and downstream tra
c. 	e output of short-term
tra
c predictionmodel is the tra
c volume of the future time
at the given site, and the input is the historical volume at the
past 1 or 2 or 3 time steps of the given site and its adjacent
sites. Similar to other supervised learning methods, GBDT
needs to be trained by the dataset with target labels, denoted

as (x, y)�, and x = (�1, . . . , ��) are the input variables and
y = (�1, . . . , ��) are the corresponding labels of the response
variable. To �nd out the optimal combination of trees,
GBDT algorithm adopts the forward stagewise technique and
minimizes the loss function by sequentially adding a new
base learner (single tree) to the expansion at each iteration
without adjusting the parameters of the existing trees that
have already been added [23].	e loss function �(�) in using
the estimated function�(�) to predict y based on the training
data is de�ned as

� (�) = �∑
�=1
� (��, � (��)) . (1)

With regard to the continuous response variables, the
classical squared-error �2 loss is employed in this prediction
model, resulting in consecutive error-�tting in the process:

� (�)	2 =
�∑
�=1

12 [�� − � (��)]2 . (2)

In the boosting framework, when the algorithm is
repeated for 
 iterations, the overall ensemble function

estimate �̂(�) is expressed in the additive functional form:

�̂ (�) = �∑
�=0
�̂� (�) , (3)

where �̂0(�) is the initial guess and �̂�(�) (� = 1, 2 ⋅ ⋅ ⋅
)
are the function increments. 	e new base learners are
constructed to be maximally correlated with the negative
gradient of the loss function [30]. For the 	th iteration, the
negative gradient is de�ned as


�� = −[�� (��, � (��))�� (��) ]
�(
�)=��−1(
�)

. (4)


�(�) is the local directionwhere�(�)decreases themost
rapidly at �(�) = ��−1(�). ℎ�(�) denotes the base learner
model and the gradient descent step length �� is computed
as

�� = argmin�

�∑
�=1
� (��, ��−1 (�) + ��ℎ� (�)) . (5)

For each step, adding a new base tree is to correct the
mistakes made by its previous base learners [18]. 	us, the
current model is updated as

�� (�) = ��−1 (�) + ��ℎ� (�) . (6)

To sum up, the generic gradient boosting decision trees
algorithm for regression is shown in Algorithm 1. (�0(�) is
just a single terminal node decision tree.)

In the process of gradient boosting, weighted resampling
is carried out to put emphasis on observationswhich aremore
di
cult to predict accurately. 	e value of each observation
is reestimated once the new regression tree is added. 	e
observations with lower prediction accuracy are assigned
with a higher weight. 	e sampling weight is updated at
the end of each iteration, and the observations with lower
accuracy would be sampled with higher probability at the
next iteration [26].

	e input variables are seldom of equal relevance for the
prediction performance, and usually only some of them have
substantial in�uence on the model output [32]. Breiman et al.
[33] proposed a measure method of relative variable impor-
tance for the single decision tree models. 	e importance of

the variable �� is denoted as �2� (�), which is based on the

number of times that a variable is selected for splitting in the
tree weighted by the squared improvement to the model as a
result of each split [32]. As a tree based ensemble method, the
importance of the variable �� for the GBDT model is simply
averaged over all trees:

�2� = 1

�∑
�=1
�2� (��) . (7)



4 Journal of Sensors

(a)

P

1214954

1202724 1202738 1214972 1215002
1202701

1202676

1214987

1214939

583m 574m

548m476m

432
m

384m944m611m

D4 D3

D2

D1

U4U3U2U1

(b)

Figure 1: Locations: (a) the selected road segment and (b) detectors.

	e importance of all the input variable is further stan-
dardized to make sure that they add up to 100%, which can
be used for feature selection procedures [30].

3. Data Description

	e data used in this study is downloaded from the open-
access tra
c �owdatabase of Caltrans PerformanceMeasure-
ment System (PeMS) (http://pems.dot.ca.gov/). We collected
the tra
c volume data of 9 loop detectors located in State
Route 22, Garden Grove, USA, from April 4 to June 5, 2016,
lasting for 9 weeks. 	e detailed located information of the
selected road segment and 9 detectors is shown in Figure 1.
	e tra
c volume of four lanes is aggregated into one time
series, recorded every 5 minutes. 	e tra
c volume data
of �rst eight weeks are used to train the tra
c prediction
model based on GBDT, while the last week of data serves
as the testing set to identify the prediction accuracy of
models. Detector � (1202724) is the target detector for tra
c
prediction, and Detectors �1 (1202738), �2 (1214972), �3
(1214987), and �4 (1215002) are the upstream detectors of�, while �1 (1202701), �2 (1214954), �3 (1214939), and �4
(1202676) are the downstream detectors of �. 	e length
of the selected segment is 4552m, with three exits and two
entrances. 	e distance between two adjacent detectors is
shown in Figure 1(b). 	e tra
c volume variation of the
given site is closely related to the upstream and downstream
tra
c condition. 	e tra
c volume pro�le of 9 detectors on
Wednesday, June 1, 2016, is shown in Figure 2. 	e basic
statistics of the collected data for each detector is shown in
Table 1, and the tra
c volume values of 9 detectors are similar,
and tiny di
erences of the 7 statistical indicators are mainly
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Figure 2: Tra
c volume pro�le of 9 detectors for one day.

generated by the tra
c�owat exits and entrances.	e “25th,”
“50th,” and “75th” are the 25th, 50th, and 75th percentiles
of observations when ranking the tra
c volume data in an
ascending sort order for each detector.

	e predictor response of the short-term tra
c vol-
ume prediction models is the tra
c volume of Detec-
tor � at time step t, denoted as  �, which is related
to the previous historical tra
c volume of Detectors�, �1, �2, �3, �4, �1, �2, �3, and�4. All the possible vari-
ables used as the input are as follows:  �-1,  �-2,  �-3 are the
tra
c volume of Detector � at time steps !-1, !-2, and !-3;�1- �-1, �1- �-2, �1- �-3, �2- �-1, �2- �-2, �2- �-3, �3- �-1,�3- �-2, �3- �-3, �4- �-1, �4- �-2, and �4- �-3 are the tra
c

http://pems.dot.ca.gov/
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Table 1: Statistics of tra
c volume data (Vehs/5min).

Detectors Mean value Standard deviation Min Max 25th 50th 75th

� 312 162 15 620 161 358 440�1 323 166 14 635 173 372 453�2 324 167 14 619 172 372 453�3 386 198 17 726 204 453 541�4 389 198 18 738 207 458 543�1 335 176 13 669 173 384 473�2 338 176 15 669 173 389 480�3 389 198 18 738 207 458 543�4 248 130 12 535 128 286 351

volume of the 4 upstream detectors at time steps !-1, !-2,
and !-3; �1- �-1, �1- �-2, �1- �-3, �2- �-1, �2- �-2, �2- �-3,�3- �-1,�3- �-2,�3- �-3,�4- �-1,�4- �-2, and�4- �-3 are the
tra
c volume of the 4 downstream detectors at time steps!-1, !-2, and !-3; lastly, considering that the tra
c volume
varies greatly across di
erent time period during one day, the
time of day should be considered as an input variable, which
is represented by time step Time. Each time step is 5min, and
there are 288 time steps for one day.

4. Experiments and Discussion

In this section, the experiment results of the short-term tra
c
prediction models based on GBDT are discussed in detail.
	e subsampling fraction is set as 0.5, signifying that 50%
of the training data observations are randomly selected to
propose the next tree in the expansion at each iteration. On
account of randomness, similar but di
erent �ts are acquired
when running the same model, and thus the prediction
accuracy for each model is set as the average of 20 groups of
experimental results slightly �uctuating in a small range. 	e
minimum number of observations in the tree terminal nodes
is set as 10.

4.1. Parameter Optimization. 	e performance of GBDT
algorithmvaries with the di
erent parameter settings, includ-
ing number of trees 
, the maximum depth of variable
interactions ", and learning rate #. In order to acquire the
optimal prediction model, the e
ect of di
erent parameter
setting on the prediction performance is studied in this
section. To uncover the in�uence of parameters setting on the
prediction performance, the input variables and data are set
to be the same for the experiments.  �-1,  �-2,  �-3 and Time
are selected as the input variables. Mean absolute percentage
error (MAPE) and mean absolute error (MAE) are used to
measure the prediction error, which are de�ned as

MAPE = ( 1�
�∑
�=1

%%%%%%%%%
 ̂� −  � �

%%%%%%%%%) × 100%,

MAE = 1�
�∑
�=1

%%%%% ̂� −  �%%%%% ,
(8)

where  � and  ̂� are the real and predicted tra
c volume at
time ! of the given site, respectively.

	e maximum depth of variable interactions " refers to
the number of nodes in a tree, signifying the tree complexity.
More complex variable interactions hid in data can be
captured by the larger ". Number of trees 
 is equivalent
to the number of iterations and the number of base models
in the additive expansion. When the other parameters are
�xed, the larger 
 is, the more complex the model is, and
more computational time will be required, which may cause
over�tting more easily and produce poor performance on
the observations not included in the training dataset [18].
In order to prevent the over�tting, the number of gradient
boosting iterations needs to be controlled. In this study,
5-fold cross-validation is applied to check the prediction
performance and acquire the optimal iteration number. For
example, with the parameter setting of " = 3 and # = 0.05,
MAPE andMAE varying with the increasing of
 are shown
in Figure 3, and it can be seen that when
 > 100, the errors
�uctuate slightly.

In order to achieve a better prediction performance, the
range of " and # is set as 3 ≤ " ≤ 6 and 0.001 ≤ # ≤ 0.5
through conducting the preliminary experiments. Figure 4
indicates the in�uence of variable interactions " and learning
rate # on the optimal iteration number and prediction errors.
	e complexity of base trees is represented by the variable
interaction ". For a given learning rate R, the higher " is, the
more complex the model is, and the fewer trees are needed
to be added. 	us, the larger iteration number is preferable
when setting a smaller " to produce high prediction accuracy.

	e contribution of each base model can be adjusted
by learning rate #. When the learning rate # is set to be a
higher value, the prediction errors dropped to the lowest with
fewer iterations, but the prediction errors are signi�cantly
higher than those with a smaller# setting. For example, when# = 0.5, the optimal iteration number is less than 200, but
MAPE is higher than 0.08, and MAE is higher than 18. More
trees need to be added for the smaller # setting, requiring
more computational time. Overall, through weighing the
computation and accuracy, # = 0.01 or 0.05 is more
suitable for these tra
c prediction models to produce better
prediction performancewith fewer iterations. Over�tting can
be prevented by setting a smaller# to restrict the contribution
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Figure 3: Prediction errors varying with
: (a) MAPE and (b) MAE.
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Figure 4: In�uence of parameters on (a) optimal iteration numbers, (b) MAPE, and (c) MAE.

of each base tree. In addition, the optimal setting of the
parameters 
, J, # varies with training datasets, and the
prediction models based on GBDT need to be retrained for
other road segments.

4.2. Prediction Performance. GBDT provides a �exible
framework to adopt various combination of di
erent types
of attributes as input variables for the prediction models.
Firstly, 5min (1-step) ahead short-term prediction models
based on GBDT algorithm are built to uncover the e
ects
of the upstream and downstream tra
c condition on the
prediction accuracy. 	e detailed information of 15 models
is shown in Table 2. In order to compare the prediction
performance of di
erent models, balancing the computation
and prediction accuracy, the parameters setting for the 15
models is " = 5 and # = 0.05. 	e input variables
are the di
erent combinations of historical tra
c volume
of Detectors �, �1, �2, �3, �4, �1, �2, �3, and �4 at time
steps !-1, !-2, and !-3, and the response is the tra
c volume
of Detector � at the next time step !. 	rough comparing the

prediction accuracy of di
erent models, the optimal variable
combination can be acquired for the freeway short-term
tra
c prediction model.

	e prediction accuracy of GBDT models is ranked
as shown in Table 2. 	e top three high-accuracy models
are Model 10, Model 15, and Model 4, signifying that the
upstream tra
c condition has more positive impact on the
prediction accuracy of GBDT models. In particular, MAPE
and MAE reach the minimum at Model 10, just considering
the in�uence of upstream historical tra
c volume. Interest-
ingly, the prediction accuracy ofModel 11 and 14 is the lowest,
just taking the downstream tra
c volume as the input of
GBDT. Generally, the prediction accuracy of GBDT models
is lower when considering more downstream tra
c variables
as the input variables.

Furthermore, the prediction accuracy of short-term pre-
diction for a given site is in�uenced by the upstream and
downstream tra
c condition on the freeway. 	e GBDT
models considering the neighboring tra
c condition tend
to outperform the traditional simple temporal prediction
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Table 2: “5min ahead” prediction models based on GBDT.

Model Detectors for prediction Number of input variables Spatial factors MAPE MAE Accuracy sorting

Model 1 � 4 No 0.07652 17.53 11

Model 2 �,�1 7 Upstream 0.07570 17.3 7

Model 3 �,�1 7 Downstream 0.07648 17.51 10

Model 4 �,�1, �2 10 Upstream 0.07480 17.22 3

Model 5 �,�1, �2 10 Downstream 0.07690 17.61 12

Model 6 �,�1, �1 10 Upstream and downstream 0.07580 17.32 8

Model 7 �,�1, �1, �2 13 Upstream and downstream 0.07510 17.3 4

Model 8 �,�1, �1, �2 13 Upstream and downstream 0.07630 17.48 9

Model 9 �,�1, �2, �1, �2 16 Upstream and downstream 0.07560 17.4 6

Model 10 �,�1, �2, �3 13 Upstream 0.07458 16.99 1

Model 11 �,�1,�2,�3 13 Downstream 0.08583 22.14 15

Model 12 �,�1, �2, �3,�1,�2,�3 22 Upstream and downstream 0.07738 18.15 13

Model 13 �,�1, �2, �3, �4 16 Upstream 0.07550 17.17 5

Model 14 �,�1,�2,�3,�4 16 Downstream 0.08504 21.98 14

Model 15 �,�1, �2, �3, �4,�1,�2,�3,�4 28 Upstream and downstream 0.07464 17.20 2

models (Model 1), and the prediction performance can be
enhanced by adding the neighboring tra
c information to
the input of models.

4.3. Relative Importance of Variables. In the training process
of the GBDT models, the number of times that a variable
is selected for splitting in the trees can be described by
the relative importance. 	e relative importance of each
variable forModels 1∼15 based on GBDT can be conveniently
computed, identifying the e
ects of input variables on the
model output and prediction accuracy, as shown in Figure 5.
	e contribution of the same variables to the performance
of di
erent models is diverse. For example, the relative
importance of  �-1 in Model 1 is 76.7%, while that in Model 9
is 55.0%. 	e ranking of the variable importance also varies
greatly among di
erent models. For example, the importance
of�2- �-1 ranks fourth inModel 8 and ranks second inModel
9.

	e immediate previous tra
c volume  �-1 of Detector �
is the most important variable for the 15 GBDT models, and
we could consider that  �-1 is the most frequently selected
variable to split the terminal nodes in decision trees when
training the GBDT models, which is also in accordance with
the actual situation that the tra
c state in the near future
tends to be in�uenced by the tra
c just happening previously
[18]. 	e variable  �-2 of Detector � is the second important
input variable for Model 1, Model 2, Model 3, and Model 11,
while �2- �-1 is for Model 4, Model 7, Model 10, and Model
13, �1- �-1 is for Model 6, Model 8, and Model 12, �2- �-1
is for Model 5 and Model 9, and �4- �-1 is for Model 14
and Model 15. Moreover, when more variables of upstream
or downstream detectors are considered for prediction, the
models show less reliance on the historical temporal variables
of themselves. For example, the importance of  �-1 in Model
15 is about 45%, much lower than that of the other models.

With the increasing of the neighboring tra
c information,
the importance of upstream and downstream tra
c vari-
ables is improved in the GBDT models, and the prediction
performance is enhanced simultaneously. 	e importance of
upstream tra
c condition on the tra
c prediction accuracy
for the given site is not equal to that of downstream tra
c.
Considering both the prediction accuracy and importance
ranking of variables, the historical tra
c variables of adjacent
detectors should be added to the short-term tra
c prediction
models.

From the temporal perspective, the importance of tra
c
volume of the 9 detectors at time steps !-2 and !-3 is lower
than that at time step !-1 in GBDT models. 	e importance
of variable Time is signi�cant for the 15 models, for the
reason that the tra
c volume of each detector varies greatly
across the di
erent time periods, and the �uctuation in the
short term is irregular and complex.	erefore, the prediciton
models for peak andnonpeak hourswould be discussed in the
following.

4.4. Multi-Step-Ahead Tra�c Prediction Models. 	e Sup-
port Vector Machine (SVM) and Back Propagation Neural
Network (BPNN) have been widely used in short-term
tra
c prediction on the freeway, which are trained for each
combination of input variables in Table 2. 	e accuracy of
5min (1-step) ahead GBDT prediction models is compared
with that of SVM and BPNN based on 20 groups of repeated
experiments for each model, as shown in Figure 6. 	e
prediction errors of GBDT are signi�cantly smaller than
those of SVM and BPNN.

To identify the performance of GBDT, SVM, and BPNN
approaches with di
erent prediction horizons, the 10min
(2-step) and 15min (3-step) ahead tra
c prediction models
are built to compare with the 5min (1-step) ahead pre-
diction model. 	e accuracy of 10min and 15min ahead
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Figure 5: Continued.
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Figure 5: Relative importance of variables in GBDTmodels (5min ahead) (%): (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4, (e) Model
5, (f) Model 6, (g) Model 7, (h) Model 8, (i) Model 9 (j) Model 10, (k) Model 11, (l) Model 12, (m) Model 13, (n) Model 14, and (o) Model 15.
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Figure 6: Prediction accuracy comparison of GBDT, SVM, and BPNNmodels: (a) MAPE and (b) MAE (5min ahead).
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Figure 7: Prediction accuracy comparison of GBDT, SVM, and BPNNmodels: (a) MAPE and (b) MAE (10min ahead).

prediction models is shown in Figures 7 and 8, respec-
tively. It is obvious that the prediction accuracy tends to
be reduced for the multi-step-ahead models in comparison
with 1-step-ahead models. As a whole, the prediction errors
of 5min ahead prediction models are smaller than those
of 10min and 15min ahead prediction models. Generally,
from the perspective of prediction accuracy, GBDT models
perform relatively better than SVM and BPNN models

in the short-term tra
c prediction for the three hori-
zons.

	e computational time for 5min, 10min, and 15min
ahead tra
c prediction models based on GBDT, SVM, and
BPNN is shown in Figure 9. GBDT algorithm costsmore time
than SVM for the reason that it needs to train large numbers
of decision trees. As for BPNN models, the computational
time varies greatly for di
erent input variables.
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Figure 8: Prediction accuracy comparison of GBDT, SVM, and BPNN models: (a) MAPE and (b) MAE (15min ahead).

Among all the models, the prediction errors reach the
minimum at Model 10 (5min ahead) based on GBDT,
considering the historical tra
c volume of �, �1, �2, and �3
as the input. 	e tra
c volume of the 9th week at Detector� is estimated based on Model 10 (5min ahead) for GBDT,
SVM, and BPNN methods respectively. 	e predicted tra
c
volume is compared with the real observations, with the
total number of time steps 288 × 7 = 2016, as shown in
Figure 10.

4.5. Tra�c Prediction Models for Peak and Nonpeak Hours.
To identify how the GBDT, SVM, and BPNN approaches
perform under di
erent conditions, we build the short-term
tra
c prediction models under the congested and smooth
tra
c condition by selecting the tra
c volume data at
peak hours (7:00–9:00, 17:00–19:00) and nonpeak hours
(4:00–6:00, 21:00–23:00) as the dataset.

	e prediction accuracy comparison of GBDT, SVM,
and BPNN (5min ahead) models for peak hours (7:00–9:00,
17:00–19:00) and nonpeak hours (4:00–6:00, 21:00–23:00) is
shown in Figures 11 and 12. Generally, the prediction errors of
GBDT models are lower than SVM and BPNN for the tra
c
condition at both peak hours and nonpeak hours. Moreover,
MAPE of the prediction models at peak hours is lower than
that of nonpeak hours for GBDT, SVM, and BPNN models,
while MAE is the opposite.

Computational time comparison of GBDT, SVM, and
BPNN models (5min ahead) for peak and nonpeak hours
is shown in Figure 13. As a whole, GBDT algorithm costs
more time than that of SVM and less time than BPNN for
peak and nonpeak hours. Generally, three prediction models
for nonpeak hours cost less computational time than those
for peak hours. In addition, the prediction performance is
signi�cantly improved by training the prediction models

separately for di
erent time periods of one day, such as
peak or nonpeak hours, comparing with the tra
c prediction
models for the whole day.

5. Conclusions

	is study indicates that gradient boosting machine is suit-
able for the short-term tra
c prediction of freeway, providing
a �exible framework to adopt di
erent combinations of vari-
ables referring to the neighboring tra
c information for the
prediction models. 	e performance of GBDT is in�uenced
by the parameter settings. Considering the computation and
accuracy, the three main parameters
, ", # are optimized to
produce better prediction performance with fewer iterations
and avoid over�tting.

GBDT models perform better than the classical SVM
and BPNN models in the short-term tra
c prediction. 	e
prediction accuracy is a
ected by adding the upstream or
downstream tra
c information to the prediction models,
and the highest accuracy is produced by Model 10 for
GBDT algorithm, just considering the in�uence of upstream
tra
c condition. 	e relative importance of variables varies
considerably in the GBDT models with di
erent variable
combination.	e previous tra
c volume of the same site �-1
is the most important variable for the GBDT models, and
the importance of upstream tra
c condition on the tra
c
prediction of the current site is not equal to that of down-
stream tra
c condition. From the temporal perspective, the
importance of tra
c condition at time steps !-2 and !-3 is
lower than that at time step !-1.

As a whole, GBDT performs relatively better than SVM
and BPNN algorithms for the 5min, 10min, and 15min
ahead prediction models, and the prediction errors of 5min
ahead prediction models are smaller than that of 10min and
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Figure 9: Computational time comparison of GBDT, SVM, and BPNN: (a) 5min ahead; (b) 10min ahead; (c) 15min ahead.
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Figure 11: Prediction accuracy comparison of GBDT, SVM, and BPNN models for peak hours: (a) MAPE and (b) MAE (5min ahead).
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Figure 12: Prediction accuracy comparison of GBDT, SVM, and BPNNmodels for nonpeak hours: (a) MAPE and (b) MAE (5min ahead).

15min ahead prediction models. 	e prediction errors of
GBDT models are lower than SVM and BPNN for the tra
c
condition at peak and nonpeak hours.

Overall, the superior prediction performance and model
interpretability can be achieved by GBDT for the short-term
tra
c prediction, simultaneously considering the neighbor-
ing tra
c condition. Short-term tra
c prediction is of crucial
importance for the tra
c management and route guidance at
the road network level. Considering the high e
ciency and

robustness of GBDT algorithm, more spatial and temporal
tra
c information could be taken into account for the
accurate tra
c prediction in a larger scale road network in
the future work.
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Figure 13: Computational time comparison of GBDT, SVM, and BPNN (5min ahead): (a) for peak hours; (b) for nonpeak hours.
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