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Abstract
A plethora of research advances have emerged in the fields of optics and photonics that benefit from harnessing the

power of machine learning. Specifically, there has been a revival of interest in optical computing hardware due to its

potential advantages for machine learning tasks in terms of parallelization, power efficiency and computation speed.

Diffractive deep neural networks (D2NNs) form such an optical computing framework that benefits from deep

learning-based design of successive diffractive layers to all-optically process information as the input light diffracts

through these passive layers. D2NNs have demonstrated success in various tasks, including object classification, the

spectral encoding of information, optical pulse shaping and imaging. Here, we substantially improve the inference

performance of diffractive optical networks using feature engineering and ensemble learning. After independently

training 1252 D2NNs that were diversely engineered with a variety of passive input filters, we applied a pruning

algorithm to select an optimized ensemble of D2NNs that collectively improved the image classification accuracy.

Through this pruning, we numerically demonstrated that ensembles of N= 14 and N= 30 D2NNs achieve blind

testing accuracies of 61.14 ± 0.23% and 62.13 ± 0.05%, respectively, on the classification of CIFAR-10 test images,

providing an inference improvement of >16% compared to the average performance of the individual D2NNs within

each ensemble. These results constitute the highest inference accuracies achieved to date by any diffractive optical

neural network design on the same dataset and might provide a significant leap to extend the application space of

diffractive optical image classification and machine vision systems.

Introduction
Recent years have witnessed the emergence of deep

learning1, which has facilitated powerful solutions to an

array of intricate problems in artificial intelligence, includ-

ing image classification2,3, object detection4, natural lan-

guage processing5, speech processing6, bioinformatics7,

optical microscopy8,9, holography10–12, sensing13, and many

more14. Deep learning has become particularly popular

because of the recent advances in the development of

advanced computing hardware and the availability of large

amounts of data for training deep neural networks. Algo-

rithms such as stochastic gradient descent and error

backpropagation enable deep neural networks to learn the

mapping between an input and the target output distribu-

tion by processing a large number of examples. Motivated

by this major success enabled by deep learning, there has

also been a revival of interest in optical computing15–28,

which has some important and appealing features, such as

(1) parallelism provided by optics/photonics systems, (2)

potentially improved power efficiency through passive and/

or low-loss optical interactions, and (3) minimal latency.

As a recent example of an entirely passive optical

computing system, diffractive deep neural networks

(D2NNs)18,23,25,29–34 have been demonstrated to perform

all-optical inference and image classification through

the modulation of input optical waves by successive

diffractive surfaces trained by deep learning methods, e.g.,

stochastic gradient descent and error backpropagation.

Earlier generations of these diffractive neural networks

achieved >98% blind testing accuracies in the classifica-

tion of handwritten digits (MNIST) encoded in the

amplitude or phase channels of the input optical fields
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and were experimentally demonstrated using terahertz

wavelengths along with 3D printing of the resulting dif-

fractive layers/surfaces that form a physical network. In a

D2NN fabricated with linear materials in which nonlinear

optical processes including surface nonlinearities are

negligible, the only form of nonlinearity in the forward

optical model occurs at the opto-electronic detector

plane. Without the use of any nonlinear activation func-

tion, the D2NN framework still exhibits depth feature as

its statistical inference and generalization capabilities

improve with additional diffractive layers, which was

demonstrated both empirically18,25 and theoretically34.

The same diffractive processing framework of D2NNs has

also been utilized to design deterministic optical compo-

nents, e.g., ultra-short pulse shaping, spectral filtering and

wavelength division multiplexing30,32.

To further improve the inference capabilities of optical

computing hardware, coupling diffractive optical systems

with jointly trained electronic neural networks that form

opto-electronic hybrid systems has also been repor-

ted19,25,29, where the front end is optical/diffractive and

the back end is all-electronic. Despite all this progress,

there is still much room for further improvements in the

diffractive processing of optical information. Here, we

demonstrate major advances in the optical inference and

generalization capabilities of the D2NN framework by

feature engineering and ensemble learning over multiple

independently trained diffractive neural networks, where

we exploit the parallel processing of optical information.

To create this advancement, we first focus on diversifying

the base D2NN models by manipulating their training

inputs by means of spatial feature engineering. In this

approach, the input fields are filtered in either the object

space or the Fourier space by introducing an assortment

of curated passive filters before the diffractive networks

(see Fig. 1). Following the individual training of 1252
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Fig. 1 Schematic diagram of the ensemble diffractive network system. a Example of a D2NN using a feature-engineered input, where an input

mask with a passive transmission window opened at a certain position is employed against the object plane. An object from the CIFAR-10 image

dataset is shown as an example and is encoded in either the amplitude channel or the phase channel of the input plane of the diffractive network.

b Same as in (a) but using a passive input mask placed on the Fourier plane of a 4-f system; here, a bandpass filter is shown as an example. c An

ensemble D2NN system, formed by N different feature-engineered D2NNs, is shown where each diffractive network of the ensemble takes the form

of (a) or (b). The final ensemble class score is computed through a weighted summation of the differential detector signals obtained from the

individual diffractive networks. Through feature engineering and ensemble learning, we achieved blind inference accuracies of 62.13 ± 0.05%,

61.14 ± 0.23% and 60.35 ± 0.39% on the CIFAR-10 test image dataset using N= 30, N= 14 and N= 12 D2NNs, respectively. The standard deviations

are calculated through 3 repeats using the same hyperparameters
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unique D2NNs with various features, we used an iterative

pruning strategy to obtain ensembles of D2NNs that work

in parallel to improve the final classification accuracy by

combining the decisions of the individual diffractive

classifiers. Based on this feature engineering and iterative

pruning strategy, we numerically achieved blind testing

accuracies of 61.14 ± 0.23% and 62.13 ± 0.05% (referring

to the mean ± standard deviation, which was calculated

using three independent runs) on the classification of

CIFAR-1035 test images with ensemble sizes of N= 14

and N= 30, respectively. Stated differently, 14 D2NNs (30

D2NNs) selected through this pruning approach work in

parallel to collectively reach an optical inference accuracy

of 61.14 ± 0.23% (62.13 ± 0.05%) on the CIFAR-10 test

images, which provides an improvement of >16% over the

average classification accuracy of the individual D2NNs

within each ensemble, demonstrating the ‘wisdom of the

crowd’. This image classification performance is the

highest achieved to date by any diffractive optical network

design applied on the same dataset. We believe that this

substantially improved inference and generalization per-

formance provided by feature engineering and ensemble

learning of D2NNs marks a major step in opening up new

avenues for optics-based computation, machine learning

and machine vision-related systems, benefiting from the

parallelism of optical systems.

Results
Ensemble learning refers to improving the inference

capability of a system by training multiple models instead

of a single model and combining the predictions of the

constituent models (known as base models, base learners

or inducers). It is also possible to learn how to combine

the decisions of the base learners, which is known as

meta-learning36 (learning from learners). Ensemble

learning is beneficial for several reasons37; if the size of the

training data is small, the base learners are prone to

overfitting and, as a result, suffer from poor general-

izability to unseen data. Combining multiple base learners

helps to ameliorate this problem. In addition, by com-

bining different models, the hypothesis space can be

extended, and the probability of getting stuck in a local

minimum is reduced. An important aspect to consider

when generating ensembles is the diversity of the learned

base models37. The learned models should be diverse

enough to ensure that different models learn from dif-

ferent attributes of the data, such that through their

‘collective wisdom’, the ensemble of these models can

eliminate the implicit variance of the constituent models

and substantially improve the collective inference per-

formance. One approach to enrich the diversity of the

base models is to manipulate the training data used to

train different classifiers, making them learn different

features of the input space in each trained model.

In addition to the training of these unique and indepen-

dent classifiers, pruning methods that aim at finding small

ensembles while also achieving competitive inference

performance are also very important37.

Based on these considerations, Fig. 1a, b depict the two

types of D2NNs29 (base learners) selected to constitute

our ensemble diffractive system. The difference between

these two types lies in the placement of the input mask

(passive) used to filter out different spatial features of the

object field to variegate the information fed to the base

D2NN classifiers. In the structure of Fig. 1a, the input

filter is placed on the object plane, whereas the structure

of Fig. 1b uses an input filter on the Fourier plane of a 4-f

system placed before the D2NN. Further heterogeneity is

introduced by diversifying the input filter profiles for both

types of D2NNs depicted in Fig. 1a, b (see Supplementary

Table S1). For example, input filters with transmissive

windows of different shapes (rectangular, Gaussian,

Hamming, or Hanning windows) and in different loca-

tions are used at the object plane. The input filters used at

the Fourier plane also vary in terms of their pass/stop

bands (see the “Materials and methods” section for more

details). In designing the object plane filters, we used

windows of various shapes and sizes and in various

locations to help the individual D2NNs independently

learn the object features at different spatial positions and

windows of the input plane. Similar considerations were

also made during the design of the Fourier plane filters.

Although a filtering operation at the Fourier plane can be

represented by an equivalent convolution on the object

plane, the two types of input filters serve different pur-

poses. The spatial domain filters provide attention (similar

to the attention mechanism used in deep learning38) to

spatial features and regions of interest at the input plane,

while the Fourier plane filters provide different engineered

point spread functions and convolution operations that

are uniformly applied over the entire sample field of view;

in this sense, these two sets of filters complement each

other in the desired inference task.

To further improve the diversity of the base models,

the input object information is encoded into either the

phase channel with four different dynamic ranges or the

amplitude channel of the illumination field. Using all of

these different hyperparameter choices and their combi-

nations, 1252 unique D2NN classifiers were trained to

form the initial network pool. In total, 340 of these net-

works had the input object information encoded in the

amplitude channel, while 912 of them had phase-encoded

inputs; 276 of the amplitude-encoded D2NNs had an

input filter located on the object plane, and 64 had an

input filter located on the Fourier plane; 656 of the phase-

encoded-input networks had a filter on the object plane,

and 256 had a filter on the Fourier plane. For these 1252

unique D2NN classifiers, each diffractive neural network
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subsequently acts on the filtered version of the input

image, and therefore, the trained diffractive layers of each

base D2NN directly act on the space domain information

(not on the frequency or Fourier domain).

The preparation of this initial set of 1252 unique D2NNs

was followed by iterative pruning, with the aim of

obtaining ensembles of significantly reduced size, i.e., with

a much smaller number of D2NNs (base models) in the

ensemble. Ensemble pruning was performed by assigning

weights to each class score provided by the individual

D2NN classifiers and defining the ensemble class score

as a weighted sum of the individual class scores. At each

iteration of ensemble pruning, the weights were optimized

through gradient descent and error backpropagation

method to minimize the softmax-cross-entropy (SCE) loss

between the predicted ensemble class scores and their

one-hot labelled ground truth, and the set of weights

providing the highest accuracy were chosen (see the

“Materials and methods” section). Then, the ‘significance’

of the individual D2NNs in a given state of the ensemble

was quantified and ranked by the absolute summation (i.e.,

the L1 norm) of their weights, based on which a certain

fraction of the networks was then eliminated from the

ensemble due to their relatively minor contributions. In

addition to this greedy search, periodic random elimina-

tion of the individual classifiers from the ensemble was

also used in the pruning process to expand the solution

space (see the “Materials and methods” section for details).

Based on this pruning process, the iterative search

algorithm resulted in a sequence of D2NN ensembles

with gradually decreasing sizes. To select the final

ensemble with a desired size (i.e., the number of unique

networks), we set a maximum limit on the ensemble size

(referred to as the ‘maximum allowed ensemble size’, i.e.,

Nmax) and searched for the D2NN ensemble that achieves

the best performance in terms of inference accuracy on

the validation dataset (i.e., the test dataset was never used

during the pruning phase). As we followed this procedure

for different values of the pruning hyperparameters,

D2NN ensembles with different sizes and blind testing

accuracies were created; we repeated our search three

times for each set of hyperparameters, which helped us

quantify the mean and standard deviation of the infer-

ence accuracy for the resulting D2NN ensembles. We

repeated the pruning process three times for each com-

bination of hyperparameters and reported the mean

and standard deviation over these repeats in the form of

mean ± standard deviation. Based on these analyses,

Fig. 2a reveals that as the maximum allowed ensemble

size (Nmax) increases, the blind testing accuracies

increase; Fig. 2b shows a similar trend reporting the blind

testing accuracies as a function of N, i.e., the number of

D2NNs in the selected ensemble. Figure 2c further

reports the relationship between N and Nmax during the

pruning process, which indicates that on average, these

two quantities vary linearly (with a slope of ~1).
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Fig. 2 Inference accuracy of the D2NN ensembles as a function of Nmax and N. a Variation in the blind testing accuracy as a function of the

maximum allowed ensemble size (Nmax) during the pruning; b Variation in the blind testing accuracy as a function of the selected ensemble size (N);

c Relationship between Nmax and N. The symbols in the legend denote different pruning hyperparameters used in our ensemble selection process;

also see Fig. 4 and Table 1
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While the results reported in Fig. 2a, b demonstrate

the significant gains achieved through the ensemble

learning of diffractive networks, they also highlight a

diminishing return on the blind inference accuracy of

the ensemble with an increasing number of D2NNs

selected. For example, with ensemble sizes of N= 14

and N= 30 D2NNs, we achieved blind inference and

image classification accuracies of 61.14 ± 0.23% and

62.13 ± 0.05%, respectively, on the CIFAR-10 test data-

set. Increasing the ensemble size to, e.g., N= 77 D2NNs,

resulted in a classification accuracy of 62.56% on the

same test dataset. Because of this diminishing return

achieved by larger ensemble sizes, we further focused

on the case of Nmax= 14 to better explore this optimal

point: Table 1 reports the blind testing accuracies

(means ± standard deviations) achieved for different

pruning hyperparameters for a maximum allowable

ensemble size of 14. These results summarized in

Table 1 reveal that, although not intuitive, the periodic

random elimination of diffractive models during the

pruning process results in better classification accura-

cies than pruning with no random model elimination;

see the columns in Table 1 with T=∞, where T refers

to the interval between periodic random elimination of

D2NN models. In Table 1, the best average blind testing

accuracy (61.14 ± 0.23%) that was achieved for Nmax=

14 is highlighted with a green box. For three individual

repeats of the pruning process using the same hyper-

parameters, the classification accuracies achieved by the

resulting 14 D2NNs were 60.88, 61.33 and 61.21%.

Figure 3 further presents a detailed analysis of the latter

N= 14 ensemble that achieved a blind testing accuracy

of 61.21%, which is the median for the 3 repeats. Six of

the selected base D2NN classifiers have input filters on

the object plane, while the remaining eight have input

filters on the Fourier plane (Fig. 3a). Figure 3b shows

the magnitudes of the class-specific weights optimized

for the base classifiers of this N= 14 ensemble. Even if

these optimized weights are ignored and made all to be

equal to 1, the same diffractive ensemble of 14 D2NNs

achieves a similar inference accuracy of 61.08%, a small

reduction from 61.21%.

In addition, Fig. 3c shows the true positive rates for each

class, corresponding to the individual members of N= 14

Table 1 Comparison of the blind testing accuracy results achieved under different pruning hyperparameters, with a

maximum allowed ensemble size of Nmax= 14 (see Fig. 4).

For the reported classification accuracies, the means and standard deviations are from the three independent repeats of the pruning process using the same
hyperparameters. The lower table describes the schemes used for ri denoted by (i), (ii) and (iii). The green box highlights the D2NN ensemble achieving the best
average blind testing accuracy (N= 14), and the red box highlights the D2NN ensemble achieving the best average blind testing accuracy per network (N= 12)

Rahman et al. Light: Science & Applications (2021) 10:14 Page 5 of 13



D2NNs as well as the ensemble. The improvements in the

true positive rates of the ensemble over the mean per-

formance of the individual classifiers for different

data classes lie between 13.47% (for class 0) and 19.98%

(for class 6). Figure 3d further presents a comparison of

the classification accuracies of the individual diffractive
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classifiers compared against their ensemble. Through

these comparative analyses reported in Fig. 3c, d, it is

evident that the performance of the ensemble is sig-

nificantly better than any individual D2NN in the

ensemble, demonstrating the ‘wisdom of the crowd’

achieved through our pruning process.

In Table 1, we also report another metric, i.e., ‘the

accuracy per network’, which is the average accuracy

divided by the number of networks in the ensemble, to

reveal the performance efficiency of the ensembles that

achieve at least a 60% average blind testing accuracy for

the CIFAR-10 test dataset. The best performance

achieved in Table 1 based on this metric is highlighted

with a red box: N= 12 unique D2NNs selected by the

pruning process with Nmax= 14 achieved a blind testing

accuracy of 60.35 ± 0.39%, where the accuracy values for

the individual 3 repeats were 60.77, 60.00 and 60.29%.

Details of the latter ensemble with a blind testing accu-

racy of 60.29%, which is the median for the 3 repeats, can

be found in Supplementary Fig. S1, revealing the selected

input filters and the class-specific weights of the 12

D2NNs in this ensemble.

Our results reveal that encoding the input object

information in the amplitude channel of some of the base

D2NNs and in the phase channel of the other D2NNs

helps to diversify the ensemble. Supplementary Table S2

further confirms this conclusion by reporting the blind

testing accuracies achieved when the initial ensemble

consists of only the 912 D2NNs whose input is encoded in

the phase channel. A direct comparison of Table 1 and

Supplementary Table S2 reveals that including both types

of input encoding (phase and amplitude) within the

ensemble helps improve the inference accuracy. Using

only phase encoding for the input of D2NNs, the best

average blind testing accuracy achieved using Nmax= 14

was 60.74 ± 0.17% with an ensemble of N= 14 D2NNs. A

detailed description of the median of these D2NN

ensembles with a classification test accuracy of 60.65% is

provided in Supplementary Fig. S2. Supplementary Fig. S3

shows the details of another phase-only input encoding

ensemble with N= 12 D2NNs, achieving a blind testing

accuracy of 60.43%.

Furthermore, it is noteworthy that the top 10 D2NNs in

terms of their individual blind testing accuracies from the

initial pool of 1252 networks were not selected in any of

the D2NN ensembles of Fig. 3 and Supplementary Figs.

S1, S2 and S3. This finding corroborates our conjecture

that the individual performance of a base model might not

be indicative of its performance within an ensemble. In

fact, several of the base D2NNs selected in the ensembles

of Fig. 3 and Supplementary Figs. S1, S2 and S3 had blind

testing accuracies <40%, whereas the blind testing

accuracies of the best models (not chosen in any of the

ensembles) were >50%.

Thus far, the pruning strategy that we have investigated

is based on assigning weights to each differential class

score of the individual D2NNs. Based on a differential

detection scheme29, these class scores are computed

through the normalized difference of the signals from the

class detector pairs. To further explore whether this

weight assignment can be improved, we also considered a

more general case, where the trainable weights are

assigned not only to the class scores but also to each of

the detectors, representing a broader solution space

compared to differential balanced detection29. We opti-

mize this augmented set of weights in two different

schemes: (1) the detector signal weights are optimized

simultaneously with the class score weights in each

iteration of the pruning process, and (2) the detector

signal weights and the class score weights are alternatively

optimized in different iterations (see the “Materials and

methods” section for details). The results of these alter-

native pruning strategies are shown in Supplementary

Tables S3 and S4. With Nmax= 14, the best testing

accuracy reported using optimization scheme (1) was

61.02%; when using optimization scheme (2), we achieved

a blind test accuracy of 61.35%. Compared to the previous

classification accuracy (61.14%) achieved using only the

weights assigned to class scores, these new results present

a very similar performance. This comparative analysis

further confirms our previous observation that although

the weights are vital for ensemble pruning, their ultimate

effect on the inference accuracy is not substantial.

Discussion
Although forming an ensemble of separately trained

D2NNs ensues a major improvement in the classifica-

tion and generalization performance of diffractive

networks, further improvements could reduce the per-

formance gap with respect to state-of-the-art electronic

neural networks. The classification accuracies of widely

known all-electronic classifiers on the greyscale CIFAR-

10 test image dataset can be summarized as follows29:

37.13% for support vector machine (SVM)39, 66.43% for

LeNet40, 72.64% for AlexNet2, and 87.54% for ResNet3.

While the blind testing accuracy for an ensemble of

N= 30 unique diffractive optical networks (62.13 ±

0.05%) comes close to the performance of LeNet, which

was the first demonstration of a convolutional neural

network (CNN), there is still a large performance gap

with respect to the state-of-the-art CNNs, and this fact

suggests that there might be more room for improve-

ment, especially through a wider span of input feature

engineering within larger pools of D2NNs, forming a

much richer and more diverse initial condition for

iterative pruning.

The presented improvement in the classification per-

formance of D2NNs obtained with feature engineering
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and ensemble learning is not cost-free. Due to the mul-

tiple optical paths that are part of this framework, the

number of diffractive layers and the opto-electronic

detectors to be fabricated and used increases in propor-

tion to the number of networks (N) used in the final

ensemble, which results in an increased complexity for

the optical network setup. The required training time

also increases significantly because of the need for a large

number of individual networks in the initial pool, which

was 1252 individual D2NNs in our case. However, this

training process is a one-time effort, and the inference

time or latency remains the same by virtue of the parallel

processing capability of the diffractive optical system;

stated differently, the information processing occurs

through diffraction of light within each D2NN of the

ensemble, and because all of the individual diffractive

networks of an ensemble are passive devices that work in

parallel, we do not expect a slowdown in the inference

speed. In addition, the detection circuitry complexity of

the diffractive optics-based solutions is still minimal

compared to its electronic counterparts, and the hard-

ware complexity of D2NN ensembles can be reduced

even further by using an additive sum of the individual

class scores instead of the weighted sum at the cost of a

very small reduction in the inference accuracy. For

example, for the ensemble of D2NNs depicted in Fig. 3, if

a simple additive sum of the individual class scores is

used instead of the optimized class-specific weights, the

blind classification accuracy reduces only slightly from

61.21% to 61.08%. This finding suggests that a further

reduction in the hardware complexity is attainable with a

very small reduction in the inference accuracy by dis-

carding the specific weights of the class scores. However,

these weights still play a very significant role in the

pruning process, as they help in our selection of the

diffractive models to be retained in each iteration during

ensemble pruning by measuring/quantifying the sig-

nificance of the individual networks in an ensemble (see

the “Materials and methods” section). Some of the

drawbacks associated with the relatively increased size

and complexity of optical hardware should also become

less restrictive since advances in integrated photonics and

fabrication technologies have led to continuous minia-

turization of opto-electronic devices41. The physical

dimensions of an individual D2NN model with a fixed

number of diffractive layers are dictated by the illumi-

nation wavelength. For example, the longitudinal

dimension of the D2NN designs used in our models is

~240 λ, which refers to the distance between the input

and the output planes, and the lateral dimension is

~100 λ, which refers to the width of each diffractive layer.

Using state-of-the-art fabrication technologies, it is pos-

sible to create diffractive structures with a feature size of

a few hundred nanometres42,43, potentially extending the

application of diffractive systems to, e.g., the visible

spectrum. The realization of D2NNs in the visible spec-

trum would also significantly reduce the overall size of

the ensemble. In addition to these 3D nanofabrication

technologies based on multiphoton polymerization,

multilayer photolithographic methods44 could also be

used for the fabrication of D2NN systems. For the same

purpose, nanoimprint lithography and roll-to-roll pat-

terning techniques45,46 might be less expensive alter-

natives to some of these relatively costly fabrication

techniques. Such miniaturized D2NNs operating at visi-

ble wavelengths would also present 3D alignment chal-

lenges, requiring high-resolution structuring of free-

space diffractive layers, which need to be precisely

aligned with each other. Recent work on the design of

misalignment-resilient31 D2NN models could be useful

for practical implementations of such diffractive systems

operating at visible wavelengths. Furthermore, while the

miniaturization of D2NN systems with the currently

available large-area nanofabrication methods is feasible

to support an ensemble of diffractive networks that

operate at visible wavelengths, high-throughput fabrica-

tion and integration of miniaturized optical components

such as filters and lenses might be challenging due to the

relative bulkiness of such optical components. However,

the recently emerging research in meta-surface-based flat

optics47,48 has enabled significant miniaturization of tra-

ditionally bulky optical components, and this research

could be further utilized for practical realizations of

miniaturized D2NN ensembles.

In addition to the issues of hardware complexity and

size, to maintain a desired signal-to-noise (SNR) ratio at

the output detectors, the optical input (illumination)

power of the system needs to be increased in proportion

to the ensemble size. However, due to the availability of

various high-power laser sources, this higher demand for

illumination power of the system should not be a sig-

nificant obstacle for its operation. While the use of high-

power lasers might not offer a cost-effective solution, all-

optical object detection and classification applications

that require extremely fast inference on the spot (e.g., for

threat detection) might still justify their use. In addition,

since D2NNs are inherently passive, the availability of

low-loss materials for the fabrication of diffractive layers

might lead to power-efficient diffractive networks, par-

tially offsetting the high-power illumination require-

ment. Furthermore, given that broadband diffractive

networks have already been reported to process pulsed

optical inputs30,32,33, the utilization of pulsed lasers, such

as those that are widely used in telecommunications and

microscopy applications, might help to provide sufficient

SNR at each detector plane of the ensemble. Another

potential solution to reduce the input power require-

ment could be to time-gate the illumination signals to
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different diffractive networks at the cost of some increase

in the inference time by illuminating each individual

D2NN of the ensemble sequentially, i.e., one by one.

The passive nature of a physically fabricated D2NN

model, while an advantage in terms of power requirements,

is also a disadvantage, as it creates limitations for dyna-

mically changing datasets. Incorporating dynamic spatial

light modulators (SLMs) to implement the diffractive layers

would augment the D2NN framework to become reconfi-

gurable at the cost of additional hardware complexity and

power. Furthermore, diffractive networks have been shown

to benefit from transfer learning, where the performance of

an already fabricated D2NN can be improved by inserting

new additional diffractive layers or replacing some of the

existing diffractive layers with newly trained layers18,32

benefiting from the modularity of the D2NN design.

Another partial limitation of the proposed approach is the

computation time that is needed for the training of the initial

diffractive ensemble. In this paper, we trained a total of 1252

D2NNs, which resulted in a relatively large computational

burden and a long training time. However, this is a one-time

effort, and a significant reduction in the training time might

be possible through further optimization of the numerical

implementation of our optical forward models. Further-

more, since our investigation of the optimized ensembles

after the pruning stage revealed that many types of filters

were rarely represented/selected in the final ensembles (see

Supplementary Table S1), there is also the possibility to

significantly reduce the total number of diffractive networks

to be trained as part of the initial ensemble.

Finally, the diffractive networks reported in this work

utilize coherent illumination and operate at a single illu-

mination wavelength. Recent studies have reported

diffractive networks that can process a continuum of

wavelengths30,32,33, which lends itself to the possibility of

multiplexing the object information at different wavelength

channels of the illumination. The inference accuracy of an

ensemble diffractive model might benefit from this wave-

length diversity by utilizing diffractive networks that process

specific colour channels (e.g., red, green and blue), either

jointly or individually. These are promising research direc-

tions for future D2NN ensemble designs that might further

enhance their blind inference performance.

In summary, we significantly improved the statistical

inference and generalization performance of D2NNs using

feature engineering and ensemble learning. We indepen-

dently trained 1252 unique D2NNs that were diversely

engineered with various passive input filters. Using a

pruning algorithm, we searched through these 1252

D2NNs to select an ensemble that collectively improves

the image classification accuracy of the optical network.

Our results revealed that ensembles of N= 14 and N= 30

D2NNs achieve blind testing accuracies of 61.14 ± 0.23%

and 62.13 ± 0.05%, respectively, on the classification of

CIFAR-10 test images, which constitute the highest

inference accuracies achieved to date by any diffractive

optical neural network design applied to this dataset.

The versatility of the D2NN framework stems from its

applicability to different parts of the electromagnetic

spectrum and the availability of miscellaneous fabrication

techniques such as 3D printing and lithography. Together

with further advances in the miniaturization and fabrica-

tion of optical systems, the presented results and the

underlying platform might be utilized in a variety of

applications, e.g., ultrafast object classification, diffraction-

based optical computing hardware, and computational

imaging tasks.

Materials and methods
Implementation of D2NNs

As the basic building block of our diffractive ensemble,

all the individual D2NN base classifiers presented in this

paper consist of five successive diffractive layers, which

modulate the phase of the incidence optical field and are

connected to each other by free-space propagation in air.

The propagation model we used was formulated based

on the Rayleigh-Sommerfeld diffraction equation18,25,

assuming that each diffractive feature (or ‘neuron’) on the

diffractive layers serves as a source of modulated sec-

ondary waves, which jointly form the propagated wave

field. The presented results and analyses of this manu-

script are broadly applicable to any part of the electro-

magnetic spectrum as long as the diffractive features and

the physical dimensions are accordingly scaled with

respect to the wavelength of light. Using a coherent illu-

mination wavelength of λ, for all the diffractive network

designs, the size of each neuron and the axial distance

between two successive diffractive layers were set to be

~0.5 λ and 40 λ, respectively, which guarantees an ade-

quate diffraction cone for each neuron to optically com-

municate with all the neurons of the consecutive layer and

enables the diffractive optical network to be ‘fully con-

nected’. Each photodetector at the output plane of a

D2NN is assumed to be a square of width 6.4 λ. Since

we employed a differential detection scheme here29, the

detectors were divided into two groups, namely, positive

detectors and negative detectors, and were collectively

used to compute the differential class scores for network

k, i.e., Zck, through the following equation:

zck ¼
zþck � z�ck
zþck þ z�ck

ð1Þ

where zþck and z�ck denote the optical signals from the

positive and negative detectors for class c, respectively.

Since the dataset used in this paper, i.e., the CIFAR-10

image dataset, has 10 classes, and a pair of positive

and negative detectors constitutes the score for each
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class, therefore, there are a total of 20 detectors at the

detector/output plane of a single D2NN. An empirical

factor of K= 0.1, also called the ‘temperature’ coefficient

in the machine learning literature49, was a non-trainable

hyperparameter utilized to achieve more efficient con-

vergence during the training phase by dividing Eq. 1 by K.

In addition, the input object was encoded either in the

amplitude or in the phase channel of the input illumina-

tion, which is assumed to be a uniform plane wave

generated by a coherent source. The phase encoding of

the input objects took values from either of the following

four intervals: 0–0.5π, 0–π, 0–1.5π or 0–2π.

Feature engineering of diffractive networks

We used two types of feature-engineered diffractive net-

work architectures: one diffractive architecture employed

an input filter placed on/against the object plane that filters

the spatial signals directly, while the other architecture used

an input filter placed on the Fourier plane of a 4-f system to

filter certain spatial frequency components of the object.

Unless the filters are specifically mentioned to be trainable,

these input filter designs were pre-defined, keeping the

transmittance of their pixels constant during the training of

the diffractive networks (see Supplementary Table S1 for

examples). Each feature-engineered diffractive network

subsequently acts on the filtered input image, directly

processing the input information on the spatial domain, not

the frequency or Fourier domain.

The object plane filters are designed to be the same size

as the object, containing transmissive patterns, the ampli-

tude distribution of which takes one of the following forms:

(1) 2D Gaussian functions defined with variable shapes and

centre positions; (2) multiple superposed 2D Gaussian

functions defined with variable centre positions; (3) 2D

Hamming/Hanning functions defined with variable centre

positions; (4) square windows of different sizes at variable

centre positions; (5) multiple square windows at variable

centre positions; (6) patch-shaped windows rotated at

variable angles; (7) circular windows at variable centre

positions; (8) sinusoidal gratings with variable periods and

orientations; (9) Fresnel zone plates with variable x-y spa-

tial positions; and (10) superpositions of Gaussian func-

tions and square windows at variable spatial x-y positions.

For the second type of D2NN with a Fourier plane input

filter, using the same Rayleigh-Sommerfeld diffraction

equation mentioned above, we numerically implemented a

4-f system with two lenses; the first lens transforms the

object information from the spatial domain to the frequency

domain, and the second lens does the opposite. On the

Fourier plane that is 2f distance away from the object plane,

a single amplitude-only input filter, designed in one of the

following forms, is employed: (1) various combinations of

circular/annular passbands, which are defined by specifying

a series of equally spaced concentric ring-like areas, such

that it can serve as a low/high-pass, single-band-pass or

multi-band-pass filter or (2) a single trainable layer enabling

the system to learn an input spatial frequency filter on its

own. On the output image plane of the 4-f system that is 4f

distance away from the object plane, a square aperture is

placed with the same size as the object or 1.5 times the size

of the object before feeding the resulting complex-valued

field into the diffractive network. In the numerical imple-

mentation, the lens has a focal length f of ~145.6 λ and a

diameter of 104 λ.

For each type of input filter design, the number of

trained base D2NNs and some input filter examples can

be found in Supplementary Table S1.

Training details

All the D2NNs and their weighted ensembles in this

paper were numerically implemented and trained using

Python (v3.6.5) and TensorFlow (v1.15.0, Google). An

Adam optimizer50 with the default parameters from

TensorFlow was used to calculate the back-propagated

gradients during the training of the individual optical

models and the ensemble weights. The learning rate,

starting from an initial value of 0.001, was set to decay at a

rate of 0.7 every 8 epochs. The publicly available CIFAR-10

dataset consists of 50,000 training images and 10,000 test

images35. The training images were split into sets of 45,000

and 5000 images for training and validation, respectively.

All the blind testing accuracies reported in this paper

(individual D2NN and ensemble models) were evaluated

on the 10,000 test images, which were never used during

the training of the individual networks nor during the

optimization of the weights for the ensemble pruning

(detailed in the following subsection). Since the images in

the original CIFAR-10 dataset contain three colour chan-

nels (red, green and blue) and monochromatic illumina-

tion is used in our diffractive optical network models,

the built-in rgb_to_grayscale function in TensorFlow was

applied to convert these colour images to greyscale. In

addition, to enhance the generalization capability of the

trained D2NNs, we randomly flipped the images (left to

right) with a probability of 0.5 while training. For training

the individual D2NNs, we used a batch size of 8, trained

each model for 50 epochs using the training image set and

selected the best model based on the classification per-

formance on the validation image set. The D2NN loss

function for a given network k was the softmax-cross-

entropy between the differential class scores zck and their

one-hot labelled ground-truth vector g:

D2NN Loss ¼ �E
X

C

c¼1

gc log
exp zckð Þ

PC
c¼1 exp zckð Þ

 !" #

ð2Þ

where E[.] denotes the expectation over the training

images in the current batch, C=10 denotes the total
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number of classes in the dataset, and gc represents the c
th

entry of the ground-truth label vector g.

Ensemble pruning

The method we followed for ensemble pruning

involved iterative elimination of the D2NN members

from the initial pool of 1252 unique networks based on

a quantitative metric, which is indicative of an indivi-

dual network’s ‘significance’ in the collective inference

process. However, since a member’s individual perfor-

mance supremacy might not always translate to an

improvement in the ensemble, during the iterative

process, we occasionally eliminated some members

randomly. Ensemble pruning with intermittent random

elimination of members was found to result in better

performing ensembles compared to pruning without

random elimination, as detailed in the “Results” section

and Table 1.

Our pruning method (see Fig. 4) was initiated with an

ensemble that consisted of all the n0= 1252 individually

trained D2NN models. An ensemble class score zc was

defined as:

zc ¼
X

k

wckzck ð3Þ

where zck is the score predicted for class c by member/

network k (Eq. 1) and wck is the corresponding class-

specific weight. The weight vectors wk ¼ wckf gCc¼1, k= 1,

2, …, n0, were optimized by minimizing the softmax-

cross-entropy loss of the class scores predicted by the

ensemble of D2NNs; C=10 denotes the total number of

Start:

= 0
Output:

=

(i + 1)% T
= 0?

Form a set Sd,i of

last nd,i networks in

the sorted pool

Form a set Sd,i of nd,i

networks randomly picked

from last pni networks in
the sorted pool

Stop

Initialize and optimize 

class specific weights 

wk for the networks in 

the pool Si to maximize 

accuracy

+ 1

Input:

Initial pool

=

Sort the pool of

networks based

=

=

Update 

and store the 

weights

Yes

Yes

No

No

i

S0 Nk k=1

n0

i i

nd,i = ni (1 − ri)

ni+ 1 = 1 ?

Si+ 1

on 1wk

Si+ 1 Si Sd,i

ni+ 1 ni nd,i

nd,i = ni m (1− ri)

Fig. 4 Flow chart of the ensemble pruning process. The meaning of the symbols is as follows: i is the iteration number; S is the set of ensembles,

resulting after each iteration; Si is the ensemble after iteration i; ni is the number of networks in the ensemble after iteration i; wk is the weight vector

for network k; T is the interval between the random eliminations of D2NNs; Sd,i is the set of networks to eliminate from the ensemble in iteration i; nd,i
is the number of networks to eliminate from the ensemble in iteration i; ri is the fraction of networks to retain in iteration i; m is the ratio of the

number of randomly eliminated networks to the number of networks eliminated based on ranking; p is the fraction of the networks in the ensemble

to which random elimination is applied. At the end of the pruning process, S comprises a series of D2NN ensembles (formed by Si) of gradually

decreasing size
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classes in our dataset. To reduce overfitting of the weights

to the training data examples, an L2 loss term was also

included in our pruning loss function:

Pruning loss ¼ �E
X

C

c¼1

gc log
exp zcð Þ

PC
c¼1 exp zcð Þ

 !" #

þα
1

2

X

n0

k¼1

X

C

c¼1

w2
ck

 ! ð4Þ

where α is set to 0.001, E[.] denotes the expectation over

the image batch, and gc represents the cth entry of the

ground-truth label vector g. During the optimization of the

ensemble, in each iteration of the backpropagation

algorithm, all the image samples in the validation set were

fed into the ensemble model (i.e., the batch size equals 5 K);

using training images for weight optimization during

ensemble pruning resulted in overfitting and therefore

was not implemented. The class-specific weights were

optimized using the gradient descent algorithm (Adam50)

for 10,000 steps. After optimizing the weights, the

individual members/networks were ranked based on a

quantitative metric. An intuitive choice for this metric is

the individual prediction accuracy of each network.

However, a better metric for measuring the significance

of individual networks in an ensemble was found to be the

L1 norm of the individual weight vectors optimized for the

validation accuracy. The superiority of the weight L1 norm

as a metric was substantiated by the fact that it consistently

resulted in ensembles achieving much better blind testing

accuracies. After ranking the members based on their

weight vectors, a certain fraction of them was eliminated

from the bottom (i.e., the lowest-ranked members), and the

procedure was repeated with the reduced ensemble until

only one member was left in the ensemble. As mentioned

earlier, at every T-th iteration of the pruning process, this

member/network elimination was performed randomly

instead of via ranking-based elimination. However, to avoid

elimination of the members with the largest weights,

random elimination was selected within a fraction p of the

networks counted from the bottom; p was 2/3 in our case.

Once the pruning process was complete (see Fig. 4), a

maximum allowable ensemble size (Nmax) was set, and the

ensemble with the best performance on the validation

dataset and satisfying the size limit was chosen. The test

image dataset was never used during the pruning process.

To further explore an extended weight assignment

scheme, we used a modified version of Eq. 3:

zc ¼
X

k
wck

wþ
ckz

þ
ck � w�

ckz
�
ck

wþ
ckz

þ
ck þ w�

ckz
�
ck

ð5Þ

where wþ
ck and w�

ck are the newly introduced weights

assigned to the positive and the negative detector of each

detector pair, respectively. Accordingly, the pruning loss

defined in Eq. 4 was changed to be:

Pruning loss ¼ �E
X

C

c¼1

gc log
exp zcð Þ

PC
c¼1 exp zcð Þ

 !" #

þα
1

2

X

n0

k¼1

X

C

c¼1

w2
ck

 !

þβ
1

2

X

n0

k¼1

X

C

c¼1

w�2
ck þwþ2

ck

 !

ð6Þ

where α and β are both empirically set to 0.001. During

the pruning process, when weight assignment scheme (1)

described in the Results section was used, all the weights

wck, w
þ
ck and w�

ck were simultaneously optimized for 10,000

iterations. In weight assignment scheme (2) described

in the “Results” section, the optimization of wck and

(wþ
ck , w

�
ck) was performed alternatively; each time, one

group of weights was optimized for 100 iterations, and in

total, 50 cycles were used to obtain an equivalent number

of total iterations (10,000), the same as in scheme (1).

For all the training and optimization tasks detailed

above, we used multiple desktop computers all with one

or two GTX 1080 Ti graphical processing units (GPUs,

Nvidia Inc.), Intel® Core™ i7-8700 central processing

units (CPUs, Intel Inc.) and 64 GB of RAM, running

the Windows 10 operating system (Microsoft Inc.).

The typical training time for one D2NN model on a single

GPU is ~3 h. The time required for the iterative ensemble

pruning process depends on the pruning hypermeters,

varying between 0.75 and 7.5 h.
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