
Ensemble-level Power Management for Dense Blade Servers

Parthasarathy Ranganathan, Phil Leech, David Irwin*, and Jeffrey Chase*
Hewlett Packard

partha.ranganathan@hp.com, phil.leech@hp.com
*Duke University

irwin@cs.duke.edu, chase@cs.duke.edu

Abstract
One of the key challenges for high-density servers
(e.g., blades) is the increased costs in addressing the
power and heat density associated with compaction.
Prior approaches have mainly focused on reducing
the heat generated at the level of an individual server.
In contrast, this work proposes power efficiencies at a
larger scale by leveraging statistical properties of
concurrent resource usage across a collection of
systems (“ensemble”). Specifically, we discuss an
implementation of this approach at the blade
enclosure level to monitor and manage the power
across the individual blades in a chassis. Our
approach requires low-cost hardware modifications
and relatively simple software support. We evaluate
our architecture through both prototyping and
simulation. For workloads representing 132 servers
from nine different enterprise deployments, we show
significant power budget reductions at performances
comparable to conventional systems.

1. Introduction
The increasing power density of servers poses a key
challenge in enterprise data center environments. For
example, the rated power consumption of a typical
server is estimated to have increased by nearly a factor
of 10 over the past ten years [7]. Such increased power
densities can lead to a greater probability of thermal
failover, impacting the availability of these systems.
Additional cooling is required to avoid thermal
failover, leading to a dramatic increase in facility costs
for cooling. For example, a 30,000 square feet 10MW
data center can easily spend $2-$5 million for the
cooling infrastructure [16]. Additionally, cooling can
also require significant recurring costs. Every watt of
power consumed in the compute equipment needs an
additional 0.5 to 1W of power to operate the cooling
system [16]. That adds another $4-$8 million in yearly
operational costs. Similarly, there have been increases
in the costs for cooling at an individual server as well.

The increasing power density also poses significant
challenges in routing the large amounts of power
needed per rack for future systems. For example, the
power delivery in typical data centers is near 60 Amps
per rack. Even if the cooling problem can be solved for
future higher density systems, it is highly likely that
delivering current to these configurations will reach
the power delivery limits of most data centers.

Beyond power delivery and cooling, increased power
also has implications on the electricity costs for the
compute equipment. For a 10MW data center, this can
range in the millions of dollars per year [16].
Increasing energy consumption also has an
environmental impact (e.g., 4 millions tons of annual
carbon-dioxide emissions) and environmental agencies
worldwide are considering standards to regulate server
and data center power (e.g., EnergyStar, TopRunner).

These problems are likely to be exacerbated by recent
trends towards consolidation in data centers and
adoption of higher-density computer systems [18].
Blade servers in particular, have been roadmapped to
consume up to 55KW/rack – more than a five-fold
increase in power density compared to recently
announced 10KW/rack systems [15].

Traditionally, power density and heat extraction issues
are addressed at the facilities level through changes in
the design and provisioning of power delivery and
cooling infrastructures (e.g., [16, 19]). However, these
involve greater capital investment and/or additional
transitioning costs. Furthermore, it is unlikely that
future increases in power densities can be addressed
purely at a facilities level.

At the systems level, there has been relatively little
work in the area of enterprise power management,
with most prior work focusing on mobile battery life
issues. There has been some work [4, 6, 17] on
algorithms to power-off or power-down servers when
they are not in use, but these focus mainly on the
average electricity consumption of individual servers.

In contrast to these approaches, our work proposes a
new approach based on power management across a
broader collection of individual servers. Our work
leverages observations culled from analyzing several
months of resource (and power usage) trends over
more than a hundred servers in several real-world
enterprise deployments. We find that enterprise
systems are typically underutilized. Across collections
of systems, there are large inefficiencies from
provisioning power and cooling resources for a worst-
case scenario, involving concurrent occurrence of
individual power consumption spikes, which almost
never happens in practice.

We leverage these common-case trends to propose a
new power budgeting approach across an “ensemble”
of systems. As a specific example, we discuss a new
blade architecture where the power is managed and
enforced at the level of the enclosure (or the chassis).
Such an architecture recognizes trends across multiple
systems and extracts power efficiencies at a larger
scale. This leads to significant reductions in the
requirements for power delivery, power consumption,
and cooling in the system. As a side benefit, this
approach also enables more flexibility in the choice of
component power budgets and allows for improved
low-cost designs for power-supply redundancy.

We discuss the high-level architecture of such a
solution and the specific implementation details of the
design. Overall, our approach requires low-cost
hardware modifications and small changes to the
software. We evaluate our design through both
prototyping and simulation. For the 132 real-world
enterprise server traces, our results show significant
power budget reductions – up to 50% in the processor
component and up to 20% in the overall system power
– with workload slowdown close to 0% in most cases.

The rest of the paper is organized as follows. Section 2
presents detailed information on enterprise resource
usage and power consumption to motivate our
approach. Section 3 discusses the design and
implementation of our architecture, and Section 4
provides an evaluation of the effectiveness of the
design and the various trade-offs. Section 5 presents a
qualitative discussion of other benefits from our
approach, and Section 6 discusses related work.
Section 7 concludes the paper.

2. Real-world Trends
In this section, we present detailed information on
resource usage in enterprise environments, including
long-term data over a spectrum of real-world

deployments. Our primary goal is to motivate and
quantify the key trends that we leverage in our power
management solution discussed next.

Resource usage as proxy for power consumption:
One of the challenges of focusing on “live” real-world
enterprise infrastructure is the lack of existing support
for fine-grained power monitoring. Given the ongoing
use of these servers in business-critical functions, we
could not shut down the machines to add the necessary
metering either. However, these environments either
already had rich support for measuring system
resource usage or allowed simple software scripts to
enable it in real time. Therefore, for the discussions in
this paper, we use the resource usage trends,
specifically, that of the processor, as a first-order
proxy for power consumption trends.

To validate this assumption, we performed some
experiments on configurations similar to the
environments that we considered. Our results showed
that, for these cases, the trends in resource utilization
were a good first-order proxy for the overall power
(albeit with some attenuation to account for some
constant factors). Furthermore, the processor power
consumption was the dominant (40-75%) and most
variable component of total server power; this
conclusion is consistent with earlier studies (e.g., [4]).
Therefore, we focus our discussion on processor
utilization. We also collected data on the memory,
network, and disk usage, and though not reported here
for lack of space, the trends discussed below apply
qualitatively to those as well. (Note that in Section 4,
where we discuss the results from our prototype – on
an environment that we control – we present data
measuring the entire system power that validates this
assumption further.)

Data collection: We studied the variation in the CPU
utilization for 132 servers from nine “live” enterprise
environments (including HP, Walmart, and others
who requested anonymity). These deployments run a
variety of application environments such as enterprise
resource planning, online transaction processing, data
warehousing, collaborative applications, IT and web
infrastructure workloads, backend client processing,
and application development and simulation
workloads. The data includes both traces that we
collected ourselves or had access to, as well as one
public trace that provided this information [2]. The
traces were collected over 3 to 10 weeks, at sampling
time periods ranging from 15 seconds to 5 minutes.

0

25

50

75

100

0 25 50 75 100

90th percentile utilization

M
ax

im
um

 u
til

iz
at

io
n

Figure 1: Summary data on individual utilization trends of
132 enterprise servers. Each point represents a server.

Figure 1 summarizes the resource consumption
behavior of individual servers. Each point in the
scatter plot represents a server and shows the 90th

percentile of utilization with respect to the maximum
utilization. Figure 2 presents the cumulative resource
usage statistics for the nine sites across all the servers.
For each site, we pick a representative 7-day trace
when all the servers are active, and at each time
stamp, add the CPU utilization of each server
(between 0-100%) to obtain an overall resource
utilization trace for the site. We present the average,
90th percentile, and maximum value for each case. The
“sum-peaks” column presents the value obtained from
summing the peaks from the individual server
utilizations (from Figure 1). The “worst” column
shows the actual utilization that the system is
provisioned for. The “savings” column shows the
differences between the actual provisioning and the
maximum utilization.

Trends: Figures 1 and 2 summarize two key trends
relevant to our discussion.

Bursty, small-duration spikes: At an individual server
level, Figure 1 shows how resource utilization is low
and bursty, with spikes being relatively infrequent and
of small duration. For example, Figure 1 shows that
the 90th percentile of resource usage is often
significantly lower than the maximum utilization.
This has also been documented in several previous
studies and stems from seasonal variations in access
patterns, and common resource deployment practices.

Non-synchronized spikes: More interestingly, across a
large collection of servers, such as in a data center or
blade cluster, the probability of synchronized spikes on
all the servers at the same time is rather low. For
example, a server used for ATM transactions may
spike on Friday versus a server used for airline

transactions that spikes on Thursdays. Similarly,
payroll servers have increased utilizations at the end
of the month, which may not be concurrent with
asynchronous spikes of other servers timed with
advertising launches or product tape-outs. Time-zone
differences across different groups in a global
organization also shift the peak usage times. In all the
nine enterprise deployments we study, the sum of the
individual peak resource usages is significantly higher
than the peak of the total resource utilization. For
example, for Site 1, the peak of the entire solution is a
total CPU utilization (over 26 servers) around 300%.
In contrast, the sum of the peak utilizations of the
individual servers is 1100%, and the actual
provisioning is 2600%. The magnitude difference
between the provisioned worst case and the actual
worst-case utilizations is 88%.

Our data shows that these trends are relatively
general, and not limited to an individual site or mix of
workloads. For example, the world-cup infrastructure
represents usage patterns consistent with a one-time
event while the e-commerce infrastructure shows more
regular long-term usage patterns. Similarly, some sites
have servers with independent workloads (e.g.,
backend client) while others have multi-tier
interrelated workloads (e.g., e-commerce). However,
the trends are qualitatively similar in all the cases.

While we summarize instrumentation data gathered
from these sites, we also have anecdotal and less
detailed data from several other enterprise
deployments that match these trends. We do not claim
that all enterprise workloads share these trends;
however, our goal is to show that a large existing base
of enterprise workloads do share these trends.

Implications for power management: Given that
power consumption closely tracks resource usage, the
same trends exist for power consumption behavior in
these workloads, as well.

Current practice, however, is to design the power
budget for the worst-case individual system scenario.
This affects the provisioning of cooling (fans) and
power delivery (power supplies) in the server. Since
worst-case power spikes happen infrequently, this
leads to inefficient overprovisioning in the cooling and
power delivery at the system level.

When these systems operate in the context of a larger
collection of systems, such as a data center, the
inefficiencies are compounded. The total power rating
of the collection of systems is typically computed as
the sum of the individual worst-case ratings. Given

Site Workload and trace length Servers Avg 90th % Max sum-
peaks Worst Savings

1 Backend of pharmaceutical company 26 87 138 307 1128 2600 88%
2 Web hosting infrastructure for worldcup98 web site [2] 25 256 481 1166 1366 2500 53%
3 SAP-based business process application in large company 27 585 691 919 1654 2700 66%
4 E-commerce web site of a large retail company 15 83 166 234 591 1500 84%
5 Backend for thin enterprise clients - company 1 10 138 184 298 729 1000 70%
6 Backend for thin enterprise clients - company 2 14 102 159 287 1253 1400 80%
7 Front-end customer facing web site for large company 8 119 187 255 467 800 68%
8 Business processing workload in small company 3 78 132 225 278 300 25%
9 E-commerce web site of small company 4 90 136 197 228 400 51%

All sites 132 1540 1872 2682 7694 13200 80%

Figure 2: Cumulative resource utilization behavior for the nine sites. The last column summarizes the potential savings in
processor resource (and power) provisioning from ensemble-level management.

that the chances of synchronized power peaks are low
(as with the CPU utilization), this leads to even
greater differences between the estimated worst-case
power and the actual peak power at this level. Further,
this estimated worst-case power is used when planning
the cooling and power delivery at these higher levels
(e.g., air-conditioning units, power distribution units),
and consequently, these also end up being
overprovisioned.

One option to address these overprovisioning
inefficiencies is to move the power budget
management to a higher level – at a broader collection
of systems (“ensemble”). The key idea is to set the
power budget at the ensemble level to avoid excessive
overprovisioning. Individual bursty workloads can still
be handled within this overall power budget by
dynamically redistributing power budget to that server,
from other servers not currently requiring as much
power. In the cases when this is not possible,
performance throttling can be used to reduce power to
avoid redlining (temperature increase beyond a critical
threshold). The challenges involve careful design of
the hardware hooks as well as implementing the
policies that manage and enforce the budget.

3. Ensemble-level Power Budget Management
Below, we discuss the architecture for ensemble-level
power budget management. In this paper, we focus
primarily on blade servers, since their inherent design
provides for multiple servers housed in the same
enclosure with a common control point (in the
enclosure manager); however, our approach can be
easily adapted to non-blade servers as well.

3.1 High-level description
Functional architecture: Figure 3 presents a
conceptual diagram of our approach. The key
components are (1) a controller at the ensemble level,
and (2) a management agent at each blade. The

management agent provides local power monitoring
and control per server. The controller collects all the
local readings and estimates total power consumption
at the ensemble level. This information is then fed to a
policy-driven control engine that issues directives to
the individual blades on the next steps for power
control. For example, if the total power exceeds a pre-
determined power budget, the controller directs the
individual servers to throttle the power consumption
to bring the overall power back under the threshold
(e.g., through voltage scaling). The policy heuristics
can be implemented to minimize the impact on
performance for the end user, and may be used in
concert with higher-level service-level agreements
(SLA) for different workloads.

Benefits: This approach enables us to provision the
power budget of the ensemble to a value much lower
than the sum of the worst-case power for each of the
individual servers. This allows significant reductions
in the requirements for power delivery, power
consumption, and heat extraction in the system. This,
in turn, can lead to designs that use power supplies of
lower ratings (lower costs and better efficiencies),
consume less electricity (lower costs and better
environmental friendliness), and require reduced
investment in cooling equipment like fans and air-
conditioning (lower costs).

As an illustrative example, let us consider the cooling
requirements for a 500W blade enclosure with each

Individual system (blade)
Management agent

Measure/ monitor/ predict

Policy-driven control
Monitoring hooks

Power control hooks

Power budget

Individual system (blade)
Ensemble controller

Measure/ monitor/ predict

Policy-driven control
Monitoring hooks

Power control hooks

SLA

Individual system (blade)
Management agent

Measure/ monitor/ predict

Policy-driven control
Monitoring hooks

Power control hooks

Power budget

Individual system (blade)
Ensemble controller

Measure/ monitor/ predict

Policy-driven control
Monitoring hooks

Power control hooks

SLA

Figure 3: Ensemble-level power management. The key is
to consider power budget management across a broader
collection of systems.

blade rated at 20W. On current systems, this requires
provisioning each blade with support for heat
dissipation up to 20W (heat sinks, etc) and support at
the blade enclosure level for heat dissipation of 500W
(fans, etc), and support at the data center level for heat
dissipation of 10KW per rack (air conditioning, etc.).

In contrast, consider the scenario where we implement
ensemble-level power management at the level of the
blade enclosure or chassis, and the power is set based
on the peak of the cumulative resource utilization. As
seen in Figure 2, this value is typically 25-90% lower
than the worst-case provisioning. The enclosure
power and cooling budget can be reduced significantly
without affecting any properties of the solution.

A more aggressive approach would set the power
budget to an even smaller value – say, the 90th

percentile of the cumulative power usage. Given the
bursty nature of the usage, this can achieve even more
savings (Figure 2 shows that this is an additional 25-
60% lower.), but at the expense of scenarios where
performance needs to be throttled to bring the system
within budget. The workload slowdown from such
throttling can be minimized by intelligently selecting
the blades to throttle. Additionally, one can judiciously
allow some spikes over budget as long as the heat can
be dissipated before redlining. This is further
discussed in Section 4.

Reduced enclosure power budgets also translate to
reduced rack-level cooling requirements in the data
center. The per-server cooling can also be reduced as

long as it is adequate to dissipate the heat under the
transient bursts the server encounters for the specific
policy adopted by the enclosure controller.

A similar discussion is applicable to the power
delivery to the system. However, the policies are more
constrained relative to the cooling case since transient
spikes over budgeted power will trip the fuse and need
to be prevented.

3.2 Enclosure-level Implementation
Below, we discuss the implementation of our approach
for a blade server enclosure. Figure 4 summarizes the
various elements of the architecture that we consider.
The enclosure is a rack-mountable chassis and
contains 20 blade bays, two gigabit Ethernet switches,
and an embedded enclosure management controller
called the Integrated Administrator Module (IAM).
The individual blades include the processor, chipset,
memory, hard drive, and network interfaces. In
addition, each blade also includes an ASIC that
functions as a blade management controller and
manages and controls the hardware, responds to
events, and communicates with the enclosure
manager. The changes for implementing our solution
consist of a few relatively straightforward hardware
additions at the blade level and changes to the
firmware at both the blade and enclosure levels.
Below, we discuss the key implementation issues in
more detail.

Choosing and enforcing the power budget: As
discussed earlier, the sum of the worst-case power

Power supplies

Cooling

Gigabit
ethernet
switches

Gigabit
ethernet
switches

Enclosure controller
(IAM)

Enclosure Firmware

- Resource monitor and predict
- Policy-driven throttling directives

- Initialization & heart-beat check

Enclosure
I2C bus

RAMCPUROM

Southbridge
controller

Hard drive

NICNIC USB

graphics
PCI

ATA/IDE

Blade
management
controller

Sensor
SMBUS

Thermal
monitor
Thermal
monitor Thermal

diodes
Thermal
diodes

Power
monitor

Hot swap
controllerBladesEnclosure

Blade Firmware

- Data gather and report
- Power (request) control

- Initialization & heart-beat check

Power supplies

Cooling

Gigabit
ethernet
switches

Gigabit
ethernet
switches

Power supplies

Cooling

Gigabit
ethernet
switches

Gigabit
ethernet
switches

Enclosure controller
(IAM)

Enclosure Firmware

- Resource monitor and predict
- Policy-driven throttling directives

- Initialization & heart-beat check

Enclosure
I2C bus

RAMCPUROM

Southbridge
controller

Hard drive

NICNIC USB

graphics
PCI

ATA/IDE

RAMCPUROM

Southbridge
controller

Hard drive

NICNIC USB

graphics
PCI

ATA/IDE

Blade
management
controller

Sensor
SMBUS

Thermal
monitor
Thermal
monitor Thermal

diodes
Thermal
diodes

Power
monitor

Hot swap
controller

Blade
management
controller

Sensor
SMBUS

Thermal
monitor
Thermal
monitor Thermal

diodes
Thermal
diodes

Power
monitor
Power
monitor

Hot swap
controller
Hot swap
controllerBladesEnclosure

Blade Firmware

- Data gather and report
- Power (request) control

- Initialization & heart-beat check

Power supplies

Cooling

Gigabit
ethernet
switches

Gigabit
ethernet
switches

Power supplies

Cooling

Gigabit
ethernet
switches

Gigabit
ethernet
switches

Enclosure controller
(IAM)

Enclosure Firmware

- Resource monitor and predict
- Policy-driven throttling directives

- Initialization & heart-beat check

Enclosure
I2C bus

RAMCPUROM

Southbridge
controller

Hard drive

NICNIC USB

graphics
PCI

ATA/IDE

RAMCPUROM

Southbridge
controller

Hard drive

NICNIC USB

graphics
PCI

ATA/IDE

Blade
management
controller

Sensor
SMBUS

Thermal
monitor
Thermal
monitor Thermal

diodes
Thermal
diodes

Power
monitor

Hot swap
controller

Blade
management
controller

Sensor
SMBUS

Thermal
monitor
Thermal
monitor Thermal

diodes
Thermal
diodes

Power
monitor
Power
monitor

Hot swap
controller
Hot swap
controllerBladesEnclosure

Blade Firmware

- Data gather and report
- Power (request) control

- Initialization & heart-beat check

Power supplies

Cooling

Gigabit
ethernet
switches

Gigabit
ethernet
switches

Power supplies

Cooling

Gigabit
ethernet
switches

Gigabit
ethernet
switches

Enclosure controller
(IAM)

Enclosure Firmware

- Resource monitor and predict
- Policy-driven throttling directives

- Initialization & heart-beat check

Enclosure
I2C bus

RAMCPUROM

Southbridge
controller

Hard drive

NICNIC USB

graphics
PCI

ATA/IDE

RAMCPUROM

Southbridge
controller

Hard drive

NICNIC USB

graphics
PCI

ATA/IDE

Blade
management
controller

Sensor
SMBUS

Thermal
monitor
Thermal
monitor Thermal

diodes
Thermal
diodes

Power
monitor
Power
monitor

Hot swap
controller
Hot swap
controller

Blade
management
controller

Sensor
SMBUS

Thermal
monitor
Thermal
monitor Thermal

diodes
Thermal
diodes

Power
monitor
Power
monitor

Hot swap
controller
Hot swap
controllerBladesEnclosure

Blade Firmware

- Data gather and report
- Power (request) control

- Initialization & heart-beat check

Figure 4: Implementation of enclosure-level power management.

ratings of the individual blades in the enclosure gives
an upper bound on the power budget. The lower
bound of the enforceable power budget can be
determined by examining the maximum reduction in
power possible at the subcomponents from power
throttling (discussed next). The specific power budget
is chosen within this range, based on whether we are
targeting savings in the cooling or power delivery
subsystem, and specific constraints in the
implementation of those. For example, the rated value
of an available power supply or the heat extraction
capacity of a specific cooling arrangement can
determine the chosen power budget. Similarly, in
terms of strictness, occasional transients over budget
can be better tolerated when optimizing the cooling
than when optimizing the power delivery.

Power monitoring and control at the blade level: A
key aspect of the architecture is the power monitoring
at the individual blades. On-board thermal sensors
available in many current systems can detect thermal
redlining; however, measuring the current and power
consumed is necessary to optimize power delivery, and
can provide finer control on heat dissipation. These
can be obtained with relatively low-cost circuits to
measure the voltage drop across a sense resistance and
the rail voltage at the blade input. The measured
values can be communicated by the hot swap
controller/power monitoring device through an
interface such as sensor SMBUS to the blade
management controller. If needed, data can also be
collected at each power plane to provide a finer
breakdown of power consumption. Additional higher-
level system resource utilization metrics, if exposed to
the drivers, can also be communicated the same way.

From a power control point of view, most current
systems already have some hooks for power
reconfiguration. For example, these could be in the
support of the different power states (P-states) in the
ACPI specification [1]. Voltage and frequency scaling
is either already supported or is planned to be
supported for server processors (e.g., AMD, Intel).
Previous work has also evaluated power control of
other components such as memory and disk [11, 12].
The BIOS and embedded controller on the blade can
be used to implement whatever power control
mechanisms are chosen. Alternatively, power control
can also be effected at a system level by turning off
servers [6] or by using a choice of servers in
heterogeneous systems to provide power control [10].

Communication between the blade and enclosure:
The communications between the enclosure

administrator and the individual blades can be
performed on top of standard interfaces such as I2C or
SMBUS. Data collection can be done through both
polling and interrupts. For example, the enclosure
manager can periodically poll every blade in the
enclosure and gather power data. Alternatively, the
blade controller can communicate pre-defined power
and thermal events on the blade through alert signals
(such as SMBALERT) to the enclosure manager.

Policy choices in enclosure controller: There are
two broad classes of policies to control the individual
blades to meet the specified power budget – pre-
emptive and reactive.

Pre-emptive management proceeds through pre-
defined budget allocation to each blade server by the
enclosure manager. If a blade server requires more
power, the blade must request power from the
enclosure manager to be allowed to proceed to the next
power level. The embedded controller sets the blade
power level to the allocated power level and only
allows a higher power level when permission is
granted from the enclosure. (Don’t assume you can
use more power, always ask.)

Reactive management, on the other hand, proceeds by
having the enclosure monitoring the power levels of
the entire enclosure and responding only in the event
of a threshold violation. This has the advantage of
being less conservative about throttling, but incurs the
possibility of transient power spikes over the
threshold. (Use as much power as needed until told
you can’t.)

Consequently, while pre-emptive policies can be used
in all applications of power budget control, reactive
policies cannot be used in situations like power supply
optimizations which need stricter budget enforcement.

Figures 5(a) and 5(b) summarize the pseudocode for
both the algorithms. Note that several variants of these
algorithms are possible. Figure 5(c) provides a brief
high-level taxonomy of the design space. An
exhaustive study of this policy space is outside the
scope of this paper; however, in Section 4, we discuss
the variation of several of these parameters.

3.3 Operation
The operation of the system has three phases:

Initialization and setup: When a blade first turns on
in an enclosure, as part of the power-on-self-test, it
reports the power it uses in the different p-states, to
the enclosure manager. The BIOS and blade
controller perform calibration experiments varying the

processor frequency and voltage (and more broadly the
various power control options) and executing code to
exercise the system. During these experiments, the
power consumption data is gathered from the hot swap
controllers, and reported to the enclosure manager.
The enclosure manager then uses this power data to
make later decisions about which power level a blade
may need to operate.

Data gathering and heartbeat checking: Data
gathering takes place after the blade server has
reported its power levels to the enclosure manager.
During data gathering, the enclosure manager polls
each blade in the enclosure periodically and gathers
power data from the blade. The polling also lets the

blade know that the enclosure manager is still
operating properly. A watchdog timer in the blade
management controller also monitors for the enclosure
manager heartbeat. In the event of two consecutive
intervals without an enclosure response, all blades
transition to the lowest operational level to ensure no
power budget violation. Depending on the
communication latencies of the design, one of the
blades can then optionally take on the role of the
power management controller.

Responding to events: Power and thermal events are
triggered when the polling and power estimation
models determine a possible violation of the power
budget. Alternatively, power and thermal events can
be triggered when the thermal diode on the blade
server exceeds a pre-programmed limit or when the
blade power exceeds or falls below pre-defined limits.
As discussed above, these power and thermal events
trigger specific recommendations from the policy
engine in the enclosure manager and corresponding
actions by the blade management controller.

4. Evaluation
Our architecture optimizes for common-case usage
behavior likely to be seen in actual deployments over
multiple servers. Validating this solution poses several
challenges.

Ideally, we would like to develop a protoype
implementation and deploy it in a live enterprise
environment spanning multiple servers. However,
building a prototype blade enclosure from scratch
requires significant resources. Getting enterprises to
trust their business applications to prototype hardware
is also a difficult proposition. Even if we were to
mirror some of the software setup on these enterprise
platforms, exercising our setup to show behavior akin
to a live deployment is even more challenging.
Additionally, it is hard to perform a detailed design
space exploration with the one specific hardware
implementation a prototype would represent.

However, the alternate approach of using a simulator
is also challenging. A detailed full system simulation
has all the disadvantages of the prototype and is
additionally several orders of magnitude slower than
the real system.

Given these challenges, we choose a hybrid approach
to validate our solution, based on real prototyping and
simulation. We build a prototype and use it to validate
the implementation details discussed earlier, as well as
measure actual performance and power data on toy
workloads modeling typical enterprise usage. We

Start with all servers throttled

At each control period or on interrupt
Compute total power consumption

Identify servers with “low” utilization
Prioritize which servers to throttle

 Throttle each server to decided level

Check if room in power budget
If yes

Identify servers with “high” utilization
Prioritize which servers to unthrottle

 Unthrottle each server to decided level
Stop if power budget likely exceeded

If no
Stop

(a) Preemptive algorithm

Start with all servers unthrottled

At each control period or on interrupt
Compute total power consumption

Check if power above threshold
If yes
 Prioritize which servers to throttle
 Throttle each server to decided level
Stop when power budget below threshold

If no
Prioritize which server to unthrottle

 Unthrottle each server to decided level
Stop if power budget likely exceeded

(b) Reactive algorithm

Parameter Options
When to assign
power budgets Pre-emptive or reactive

Which server to
(un)throttle

Round-robin, random, p-state, power, performance, fair-
shared based on past-history, customer-service
requirements

What (un)throttle
knob to use

Processor voltage/frequency scaling, memory, disk,
turn blades off/on, heterogeneity, others…

What level to
(un)throttle to Next P-state, lowest/highest P-state, per-blade policy

How to predict
future power

Use past history as future indicator, other resource
prediction models, conservativeness of prediction

Event trigger Interrupt-driven on power event, polling
How often to
monitor/control

Polling frequency, number of blades to poll per second,
interrupt service times, hysterisis times

(c) Policy design space
Figure 5: Policies to manage enclosure power budget.

supplement this with results from simulating the
workloads representing the 132 servers from the nine
real-world enterprise sites discussed earlier. We
validate the simulator models against the prototype.
We also use the simulator to evaluate synthetic
workload traces of varying concurrency and
utilization, and to perform a design space exploration
of tradeoffs in various hardware and software
parameters.

4.1 Methodology
Prototype: Our prototype implementation builds on
an existing blade design from an earlier project. Each
blade includes a 1GHz Transmeta Efficeon (TM8000)
processor, 256 MB SODIMM memory, and 40 GB
storage (Seagate 5400 RPM). The blade management
controller architecture includes a super I/O chip and
an integrated 8051 controller. At a firmware level,
additional software modules are added to the BIOS,
and the blade and enclosure controllers. These
implement the initialization/setup routines, data
gathering and measurement, heartbeat timers, and the
pre-emptive and reactive power management policies
discussed earlier. Software in the ROM/BIOS handles
configuration and support for power control at the
individual blade level. The only power control
mechanism available in our prototype is the use of
voltage and frequency scaling in the processor. There
were five voltage and frequency settings: (1) 533MHz
at 0.8V, (2) 600 MHz at 0.925V, (3) 700 MHz at 1V,
(4) 833MHz at 1.1V, and (5) 1000 MHz at 1.25V. All
the blades run Windows XP and our enclosure-level
testbed includes 8 blades.

For the results reported on the prototype, we log power
consumption as measured by a power meter connected
to the actual hardware and report the average power
for the experiment.

Simulator: Our simulator models high-level
properties of the prototype blade enclosure. It takes
resource utilization traces as input and models the
impact of different enclosure controller policies on
performance and power under various load and policy
conditions. The basic operation of the simulator is as
follows. The main simulator loop operates on a timer
that matches the time of the simulated system. When
reading the input trace file, the simulator uses this
timer to access resource utilization data at the
corresponding time stamp associated with it.

However, there are several challenges with using
traces that only capture resource utilization
information. First, we need to determine the variation

in resource utilization when the system is changed, for
example, with voltage and frequency scaling. Second,
we need to be able to correlate these changes in
resource utilization to performance, to better
understand the impact on application latencies and
throughputs. Finally, we need to correlate resource
utilization to the power consumed in the system.

To address these challenges, we run experiments on
the prototype using gamut [13], a synthetic load
generator, to execute a pre-determined synthetic stress
kernel, while controlling the resource utilization in
progressive steps. For example, we can exercise the
processor with an compute-intensive loop at CPU
utilizations from 0% to 100% in small increments. At
each of these data points, we measure the power
(using a power meter) and the performance (in terms
of the useful work done, as reported by gamut). We
repeat this experiment for all the different states of the
system (in our prototype, the five voltage and
frequency settings). Based on these experiments, we
create high-level models that correlate resource
utilization to power consumption, identify changes in
resource utilization with changes in frequency, and
convert changes in utilization to the corresponding
impact on actual work done. Using this approach, we
validated high-level properties of the simulator with
the prototype and found good correlations.

To report performance degradation (workload
slowdown) in this section, we compare the total work
done across all blades in the enclosure across different
policies. This metric represents the degradation for the
entire solution. However, in some cases, a per-server
(associated with a specific user or application) metric
might be more appropriate. Consequently, we also
study per-blade workload degradation averaged across
the individual blades in the system. We do not call this
metric out in our results since the trends were similar
to the enclosure workload degradation.

We also studied the degradation in clock frequency as
opposed to work done (this gives a sense of peak MIPS
degradation) and also looked at metrics that averaged
the percentage of time a blade is throttled and the
number of blades throttled per second. In addition, the
simulator allows us to monitor and analyze trends on a
host of other statistics. These include the variation in
power and performance from different perspectives, at
a temporal level, at a per-blade level, at an enclosure
level, and at the level of specific phases in workloads
(e.g., peaks vs idle). In addition we can monitor
parameters at the hardware level such as the usage of
multiple power states, the effect of delays in servicing

0

10

20

30

Low Medium High
Concurrency

%
 p

er
fo

rm
an

ce
 d

eg
ra

da
tio

n

450W 425W 400W

Figure 7. Sensitivity to concurrency (synthetic traces).
the interrupts, etc. We use these to further validate
our intuition behind the results.

4.2 Results
Simulation Results: Figure 6 summarizes simulation
results for the 9 enterprise sites discussed earlier. We
consider three different values of the power budgets –
450W, 425W, and 400W – corresponding to
enclosure-level power budget reductions of 10%, 15%,
and 20%. Note that this corresponds to equivalent
reductions of approximately 25%, 37%, and 50% of
the total processor power budget.

As seen from Figure 6, overall, enclosure-level power
management can achieve power budget reductions
with marginal reductions in total solution
performance. Even when the power budget is set to
400W, the performance reductions are less than 5%.
The backend desktop trace (site 8) has the maximum
slowdown; the higher numbers in this case are due to
the occurrence of several utilization traces that stay at
100% for a long period of time. The pre-emptive
algorithm has slightly higher performance loss
compared to the reactive algorithm because of its
conservative budgeting policy. Results with other
performance metrics are all qualitatively similar. Note
that though the net enclosure power reduction is 20%,
the CPU power reduction is almost 50%. Power
control at the other components including memory,
disk, and switching fabric, would have likely achieved
higher power reductions at the overall system level.
Further, though not quantified here, power savings at

the enclosure level can lead to corresponding benefits
in cooling and power delivery at the data center level,
as well.

Interestingly, in all cases, the fraction of time the
reactive algorithm exceeds the power budget is less
than 0.5%. This is because our algorithm makes a
number of assumptions biased towards performance
loss over power budget violations (e.g., 25W budget
headroom, unthrottle hysteresis). Note that as
discussed earlier, pre-emptive algorithms, by design,
can never exceed the power budget.

Sensitivity to workload, policy, implementation:
The low performance degradation stems from the low
utilization and limited concurrency of spikes in the
real-world traces (Section 2). To assess the sensitivity
of our results to workload concurrency, we evaluated
three synthetic traces, with fine-grained utilization
variation, and low (25%), medium (50%), and high
(75%) concurrencies. For example, a trace with 25%
concurrency has synchronized peak utilization across
all the blades 25% of the time. Figure 7 summarizes
the performance degradation for the reactive
algorithms with the three power budget thresholds as
before. As expected, the performance degradation
increases with the concurrency of the workload. The
fraction of time that the system exceeds the power
budget increases as well, but even at the high-
concurrency value, this is still less than 5%.

We also evaluated several different policies.
Specifically, we considered two different approaches
for which servers to throttle (and unthrottle): one
where priority was given to servers at the highest
power and one where priority was given to servers at
the lowest utilization. Similarly, we considered two
different approaches on the level to which to throttle
the servers: either incrementally transition to the next
power-state, or transition to the lowest or highest
power state. For the nine real-world enterprise traces,
these algorithmic variations made little difference,
because of the low utilizations and concurrencies. For
the synthetic workloads with higher concurrencies, in
general, deep throttling of a few servers consuming

Power
budget Algorithm Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9

400W 1% 1% 4% 1% 1% 2% 2% 5% 4%
425W 1% 1% 3% 1% 1% 2% 2% 5% 3%
450W 1% 1% 3% 1% 1% 2% 1% 4% 3%
400W 0% 0% 0% 0% 0% 0% 0% 1% 0%
425W 0% 0% 0% 0% 0% 0% 0% 0% 0%
450W 0% 0% 0% 0% 0% 0% 0% 0% 0%

Preemptive

Reactive

Figure 6: Summary of workload slowdown for the 9 enterprise traces. The power budgets of 450W, 425W, and 400W
represent CPU power reductions of 25%, 38%, and 50%, compared to the base power budget of 500W.

0

25

50

75

100

0 25 50 75 100
Normalized latencies

%
 d

is
tri

bu
tio

n

Base Reactive

Figure 8: Variation in latencies for VNCplay on prototype.

the highest power was desirable to throttling a large
number of servers at low utilization. Our experiments
varying the polling frequency and the interrupt service
time showed that the algorithms are fairly robust at
adapting to changes in these parameters. It is natural
to use a proportional sharing model, in which the
power budget is allocated to the contending workloads
proportionally to weights assigned to each workload.

Prototype results: In addition to running emulated
production workload traces on the protoype, we
evaluated two other simple workloads. The first
models interactive workloads and is based on the
VNCplay tool developed by Zeldovich et al [22]. This
tool records a user’s interactive session with a system
and allows it to be replayed multiple times under
different configurations. This benchmark allows us to
measure the impact of our approach in an interactive
GUI environment.

When comparing the total execution time of the
session with and without enclosure-level power
management, our results showed relatively little
variation (less than 1% even with 20% reduction in
the enclosure power budget). This is consistent with
the simulation data for similar benchmarks with
equivalent utilization (site 6). However, in interactive
applications, rather than throughput, it is more
important to capture the impact on latency for user
events. Consequently, following the methodology
adopted by Zeldovich et al [22], we also study
cumulative distribution functions of the latencies. An
example is summarized in Figure 8. As can be seen
from the figure, for the different latencies seen by user
events in the benchmark, the variation between the
base system and the system with enclosure-level power
budgeting is quite small.

The second benchmark models batch workloads that
stress the CPU. A simulation program that consumes

100% CPU resources is interspersed with smaller
periods of idle time, to model a high-concurrency
benchmark. As expected, the performance
degradations are higher for this workload – 3%, 7%,
and 35% for power budget settings of 450, 425, and
400W respectively. Again, this is consistent with the
results we observe in our simulations of medium-to-
high concurrency workloads.

5. Other Enclosure-level Benefits
While our primary focus in this paper was on reducing
the peak power budget to get the associated benefits in
power delivery and cooling, enclosure-level power
management can have other advantages.

Cost benefits from component choice flexibility:
Based on volumes of chips shipped, low-power
processors such as those used in blade systems can
sometimes be more expensive than higher-power
(possibly even higher-performance) processors using a
different technology for a different market segment.
Enclosure-level power management allows individual
components in a blade (and individual blades in the
enclosure) to exceed their local budgets as long as the
overall system budget is enforced. This effectively
means that power-budget-imposed limits on the choice
of components can be relaxed, allowing the use of
cheaper higher-volume components even if they are
rated for higher power. In some cases, having the
option for higher-performance peaks can also provide
better single-thread performance during bursty cases.

Cost reduction through reduced redundancy: Most
enterprise servers provide redundancy in the power
delivery with two or more power supplies per system.
In these designs, all the power supplies are each rated
at the peak capacity of the system. Our approach,
however, allows for an alternative design point where
the secondary power supplies can potentially be rated
at lower capacities. Even if the primary supply were to
fail, the enclosure can detect that and change the
power threshold to that of the secondary supply’s
rating. (Most power supply specifications support the
transient overloading likely during this transition.)
The system would continue to stay operational with
the secondary supply, with potentially lower
performance, until the problem is fixed. Given the
rarity of these failure events, our approach can help
reduce costs that are otherwise not recovered during
the server lifetime.

Average power reduction: The main motivation (and
focus) of our approach is the peak power. However,
one could retain the overprovisioning in power and

cooling and still use this approach to extract average
power consumption efficiencies. Enclosure-level
throttling, say for the 90th percentile cumulative
utilization, is likely to be much simpler to implement
than equivalent 90th percentile utilizations at the local
level where each server threshold is potentially
different. Further, enclosure-level power management
can also extend local-level power throttling with
knowledge of enclosure-level trends (resource
consumption, efficiency) to minimize global
performance degradation.

6. Related Work
To the best of our knowledge, our work is the first to
manage and enforce a peak power budget across a
server ensemble, e.g., a blade enclosure. As part of
this, we discuss algorithms to redistribute the power
budget in two contexts: strict constraints for power
delivery and looser constraints for heat dissipation.

At a single-server level, Brooks et al proposed setting
a thermal threshold and enforcing it from a cooling
point of view [5] while Felter et al suggest dynamic
shifting of power within the processor and memory
components of a single server [8]. Similar to these
studies, we also use the notion of setting and enforcing
a power budget, but our work differs from these in its
focus on trends across multiple systems, and, indeed,
all these optimizations can (and probably will) be used
together on future systems.

At a cluster level, Femal and Freeh [9] discuss how,
for a given cluster power budget, one can choose
different permutations of the quantity and size of
individual nodes to better improve throughput, by
optimizing for the different power-performance
efficiency curves. Individual nodes are responsible for
determining their power limits and the environment
assumes an explicit trust model between nodes. Other
previous work has evaluated algorithms to turn off or
turn-down individual servers when they are not used
[4, 6, 17]. However, these have been mainly focused
on reducing electricity consumption in such
environments.

Many papers have studied the resource demand
profiles of competing workloads through time in order
to evaluate the performance impact of resource
sharing. For example, one recent study examines
several workloads and concludes that overbooking
resources for a shared hosting platform may increase a
hosting provider’s revenue while meeting probabilistic
service level agreements [20]. Our work uses a
similar idea to constrain the power budget for a shared

ensemble of servers, with little performance impact.
Our use of dynamic voltage scaling to throttle CPU
power consumption dynamically is similar to GRACE-
OS [21], which profiles CPU usage in conjunction
with soft real-time CPU scheduling to conserve battery
power while bounding missed deadlines. They
leverage a similar insight at the OS level: all
processes will not demand cycles at the same time.

7. Conclusions
In this paper, we address the increasing power density
challenges in enterprise servers. We propose the
notion of “ensemble-level” power management to
leverage concurrent resource usage trends across
collections of systems, for power savings beyond that
possible from optimizing a single system in isolation.

We present resource utilization data across a large
collection of servers from several live enterprise
deployments and identify the potential benefits from
such an approach. We discuss an implementation of
this approach at the blade enclosure level to monitor
and manage the power across the individual blades in
a chassis. Our proposed design requires low-cost
hardware additions and simple software support to
conventional systems.

We evaluate our design on a prototype that uses
voltage and frequency scaling for CPU power
throttling, and also through simulation. Our results
show significant power budget reductions (up to 50%
reduction in the processor power and 20% in system
power) with marginal (close to zero in most cases)
impact on performance. The power reductions are
likely to be higher on systems with support for power
control of other components (e.g., memory, disk).
These savings also have a cascading effect in the
cooling and power delivery costs at other levels such
as in the data center. Beyond power budget reductions,
we also discuss how our approach enables lower-cost
resiliency and per-component budget flexibility.

Beyond the policies we examined, a rich design space
exists for other policies for ensemble-level power
control, particularly in the context of geographically-
dispersed servers. Another interesting area of future
research is the applicability of our approach to high-
performance technical computing and virtualized
environments. While processor utilization in these
environments is higher, opportunities may exist for
ensemble-level control of other sub-components of the
system. Finally, our approach allows the power budget
to be varied on the fly as long as the power delivery
and cooling can also be suitably varied. This might be

a promising avenue of research, especially when our
ensemble-level control loop is interfaced with local
per-server control [1] and broader data center level
control [14, 16] of power and cooling. As part of
ongoing work, we are currently evaluating these
options further.

Overall, as trends towards consolidation and
compaction exacerbate the power and heat
management challenges, it will become critical to go
beyond conventional approaches to solve these
problems. We believe that approaches like ours – that
optimize at the ensemble level, and for common-case
behavior of commercial enterprise workloads – are
likely to be an integral part of future solutions to
address these challenges.

8. Acknowledgements
We would like to thank Hernan Laffitte, Charlie
Shaver, Khaldoun Alzien, Chandra Patel, and John
Sontag for support of this work. We are indebted to
Martin Arlitt as well as the enterprise customers for
the real-world traces. We would also like to thank the
reviewers, Luiz Barroso, Mike Schlansker, Manohar
Prabhu, and Norm Jouppi for their comments.

9. References
1. Advanced Configuration and Power Interface

Specification. Intel Corporation, Microsoft Corporation,
and Toshiba Corporation. http://www.teleport.com/acpi,
December 1996.

2. M. Arlitt and T. Jin. Workload Characterization of the
1998 World Cup Web Site.
http://www.hpl.hp.com/techreports/1999/HPL-1999-35R1.html,
February 1999.

3. L. Barroso, J. Dean, and U. Hoelzle. Web Search for A
Planet: The Architecture of the Google Cluster. In IEEE
Micro Magazine, April 2003.

4. P. Bohrer, D. Cohn, E. Elnozahy, T. Keller, M. Kistler,
C. Lefurgy, R. Rajamony, F. Rawson, and E. V.
Hensbergen. Energy Conservation for Servers. In IEEE
Workshop on Power Management for Real-time and
Embedded Systems, May 2001

5. D. Brooks and M. Martonosi. Dynamic Thermal
Management for High-performance Microprocessors. In
the 7th International Symposium on High-Performance
Computer Architecture (HPCA), January 2001

6. J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R.
Doyle. Managing Energy and Server Resources in
Hosting Centers. In 18th Symposium on Operating
Systems Principles (SOSP), October 2001.

7. Datacom Equipment Power Trends and Cooling
Applications. ASHRAE,http://www.ashrae.org, 2005

8. Wes Felter, Karthick Rajamani, Cosmin Rusu, Tom
Keller. A Performance-Conserving Approach for
Reducing Peak Power Consumption in Server Systems. In

Proceedings of 19th International Conference on
Supercomputing (ICS), June 2005.

9. M. Femal and V. Freeh. Safe Over-provisioning: Using
Power Limits to Increase Aggregate Throughput. In
Workshop on Power-Aware Computing Systems (PACS),
December, 2004

10. T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and R.
Bianchini. Energy Conservation in Heterogeneous Server
Clusters. In 10th Symposium on Principles and Practice
of Parallel Programming (PPoPP), June 2005

11. D. Helmbold, D. Long, and B. Sherrod. A Dynamic
Disk Spin-down Technique for Mobile Computing. In
Proceedings of the 2nd ACM International Conference on
Mobile Computing (MOBICOM96), November 1996.

12. A. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power
Aware Page Allocation. In 9th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS IX), November 2000.

13. J. Moore, J. Chase, K. Farkas, and P, Ranganathan.
Data Center Workload Monitoring, Analysis, and
Emulation. In Eighth Workshop on Computer
Architecture Evaluation Using Commercial Workloads,
February, 2005.

14. J. Moore, J. Chase, and P. Ranganathan. Making
Scheduling “Cool”: Temperature-Aware Resource
Assignment in Data Centers. In Proceedings of the
USENIX Annual Technical Conference, April 2005.

15. J. Mouton. Enabling the Vision: Leading the
Architecture of the Future. Keynote at Server Blade
Summit, 2004

16. C. D. Patel, C. E. Bash, R. Sharma, and M. Beitelmal.
Smart Cooling of Data Centers. In Proceedings of IPACK,
July 2003.

17. E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath.
Load Balancing and Unbalancing for Power and
Performance in Cluster-Based Systems. In Proceedings of
the Workshop on Compilers and Operating Systems for
Low Power (COLP), September 2001.

18. P. Ranganathan and N. Jouppi. Enterprise IT Trends
and Implications for Architecture Research, In 11th
International Symposium on High-Performance Computer
Architecture (HPCA), February 2005

19. R.Sullivan. Alternating Hot and Cold Aisles Provides
more Reliable Cooling for Server Farms. In Uptime
Institute, 2000.

20. B.Urgaonkar, P. Shenoy, and T. Roscoe. Resource
Overbooking and Application Profiling in Shared Hosting
Platforms. In 5th Symposium on Operating Systems
Design and Implementation (OSDI), December, 2002.

21. W. Yuan and K. Nahrstedt. Energy-Efficient Soft
Real-Time CPU Scheduling for Mobile Multimedia
Systems. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP), October, 2003.

22. N.Zeldovich and R.Chandra. Interactive Performance
Measurement with VNCplay. In Proceedings of the
FREENIX Track: USENIX Annual Technical Conference,
April 2005.

