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Abstract
One of the key challenges for high-density servers
(e.g., blades) is the increased costs in addressing the 
power and heat density associated with compaction. 
Prior approaches have mainly focused on reducing 
the heat generated at the level of an individual server. 
In contrast, this work proposes power efficiencies at a 
larger scale by leveraging statistical properties of 
concurrent resource usage across a collection of 
systems (“ensemble”). Specifically, we discuss an 
implementation of this approach at the blade 
enclosure level to monitor and manage the power 
across the individual blades in a chassis. Our 
approach requires low-cost hardware modifications 
and relatively simple software support. We evaluate 
our architecture through both prototyping and 
simulation. For workloads representing 132 servers 
from nine different enterprise deployments, we show 
significant power budget reductions at performances 
comparable to conventional systems.

1. Introduction
The increasing power density of servers poses a key 
challenge in enterprise data center environments. For 
example, the rated power consumption of a typical 
server is estimated to have increased by nearly a factor 
of 10 over the past ten years [7]. Such increased power 
densities can lead to a greater probability of thermal 
failover, impacting the availability of these systems. 
Additional cooling is required to avoid thermal 
failover, leading to a dramatic increase in facility costs 
for cooling. For example, a 30,000 square feet 10MW 
data center can easily spend $2-$5 million for the 
cooling infrastructure [16]. Additionally, cooling can 
also require significant recurring costs. Every watt of 
power consumed in the compute equipment needs an 
additional 0.5 to 1W of power to operate the cooling 
system [16]. That adds another $4-$8 million in yearly 
operational costs. Similarly, there have been increases 
in the costs for cooling at an individual server as well. 

The increasing power density also poses significant 
challenges in routing the large amounts of power 
needed per rack for future systems. For example, the 
power delivery in typical data centers is near 60 Amps 
per rack. Even if the cooling problem can be solved for 
future higher density systems, it is highly likely that 
delivering current to these configurations will reach
the power delivery limits of most data centers. 

Beyond power delivery and cooling, increased power 
also has implications on the electricity costs for the 
compute equipment. For a 10MW data center, this can 
range in the millions of dollars per year [16].
Increasing energy consumption also has an 
environmental impact (e.g., 4 millions tons of annual 
carbon-dioxide emissions) and environmental agencies 
worldwide are considering standards to regulate server 
and data center power (e.g., EnergyStar, TopRunner).

These problems are likely to be exacerbated by recent 
trends towards consolidation in data centers and 
adoption of higher-density computer systems [18]. 
Blade servers in particular, have been roadmapped to 
consume up to 55KW/rack – more than a five-fold 
increase in power density compared to recently 
announced 10KW/rack systems [15].

Traditionally, power density and heat extraction issues 
are addressed at the facilities level through changes in 
the design and provisioning of power delivery and 
cooling infrastructures (e.g., [16, 19]). However, these 
involve greater capital investment and/or additional 
transitioning costs. Furthermore, it is unlikely that 
future increases in power densities can be addressed 
purely at a facilities level. 

At the systems level, there has been relatively little 
work in the area of enterprise power management, 
with most prior work focusing on mobile battery life 
issues. There has been some work [4, 6, 17] on
algorithms to power-off or power-down servers when 
they are not in use, but these focus mainly on the 
average electricity consumption of individual servers. 



In contrast to these approaches, our work proposes a 
new approach based on power management across a 
broader collection of individual servers. Our work 
leverages observations culled from analyzing several 
months of resource (and power usage) trends over 
more than a hundred servers in several real-world 
enterprise deployments. We find that enterprise 
systems are typically underutilized. Across collections 
of systems, there are large inefficiencies from 
provisioning power and cooling resources for a worst-
case scenario, involving concurrent occurrence of 
individual power consumption spikes, which almost 
never happens in practice. 

We leverage these common-case trends to propose a 
new power budgeting approach across an “ensemble”
of systems. As a specific example, we discuss a new 
blade architecture where the power is managed and 
enforced at the level of the enclosure (or the chassis). 
Such an architecture recognizes trends across multiple 
systems and extracts power efficiencies at a larger 
scale. This leads to significant reductions in the 
requirements for power delivery, power consumption, 
and cooling in the system. As a side benefit, this 
approach also enables more flexibility in the choice of 
component power budgets and allows for improved 
low-cost designs for power-supply redundancy. 

We discuss the high-level architecture of such a 
solution and the specific implementation details of the 
design. Overall, our approach requires low-cost 
hardware modifications and small changes to the 
software. We evaluate our design through both 
prototyping and simulation. For the 132 real-world 
enterprise server traces, our results show significant 
power budget reductions – up to 50% in the processor 
component and up to 20% in the overall system power 
– with workload slowdown close to 0% in most cases.  

The rest of the paper is organized as follows. Section 2 
presents detailed information on enterprise resource 
usage and power consumption to motivate our 
approach. Section 3 discusses the design and 
implementation of our architecture, and Section 4 
provides an evaluation of the effectiveness of the 
design and the various trade-offs. Section 5 presents a 
qualitative discussion of other benefits from our 
approach, and Section 6 discusses related work. 
Section 7 concludes the paper.

2. Real-world Trends
In this section, we present detailed information on 
resource usage in enterprise environments, including 
long-term data over a spectrum of real-world 

deployments. Our primary goal is to motivate and 
quantify the key trends that we leverage in our power 
management solution discussed next.  

Resource usage as proxy for power consumption:
One of the challenges of focusing on “live” real-world 
enterprise infrastructure is the lack of existing support 
for fine-grained power monitoring. Given the ongoing 
use of these servers in business-critical functions, we 
could not shut down the machines to add the necessary 
metering either. However, these environments either 
already had rich support for measuring system 
resource usage or allowed simple software scripts to 
enable it in real time. Therefore, for the discussions in 
this paper, we use the resource usage trends, 
specifically, that of the processor, as a first-order 
proxy for power consumption trends. 

To validate this assumption, we performed some 
experiments on configurations similar to the 
environments that we considered. Our results showed 
that, for these cases, the trends in resource utilization 
were a good first-order proxy for the overall power
(albeit with some attenuation to account for some 
constant factors). Furthermore, the processor power 
consumption was the dominant (40-75%) and most 
variable component of total server power; this
conclusion is consistent with earlier studies (e.g., [4]). 
Therefore, we focus our discussion on processor 
utilization. We also collected data on the memory, 
network, and disk usage, and though not reported here 
for lack of space, the trends discussed below apply 
qualitatively to those as well. (Note that in Section 4, 
where we discuss the results from our prototype – on 
an environment that we control – we present data 
measuring the entire system power that validates this 
assumption further.)

Data collection: We studied the variation in the CPU 
utilization for 132 servers from nine “live” enterprise 
environments (including HP, Walmart, and others 
who requested anonymity). These deployments run a 
variety of application environments such as enterprise 
resource planning, online transaction processing, data 
warehousing, collaborative applications, IT and web 
infrastructure workloads, backend client processing, 
and application development and simulation 
workloads. The data includes both traces that we 
collected ourselves or had access to, as well as one 
public trace that provided this information [2]. The 
traces were collected over 3 to 10 weeks, at sampling 
time periods ranging from 15 seconds to 5 minutes. 
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Figure 1: Summary data on individual utilization trends of 
132 enterprise servers. Each point represents a server. 

Figure 1 summarizes the resource consumption 
behavior of individual servers. Each point in the 
scatter plot represents a server and shows the 90th

percentile of utilization with respect to the maximum 
utilization.  Figure 2 presents the cumulative resource 
usage statistics for the nine sites across all the servers.  
For each site, we pick a representative 7-day trace 
when all the servers are active, and at each time 
stamp, add the CPU utilization of each server 
(between 0-100%) to obtain an overall resource 
utilization trace for the site. We present the average, 
90th percentile, and maximum value for each case. The 
“sum-peaks” column presents the value obtained from 
summing the peaks from the individual server 
utilizations (from Figure 1). The “worst” column 
shows the actual utilization that the system is 
provisioned for. The “savings” column shows the 
differences between the actual provisioning and the 
maximum utilization. 

Trends: Figures 1 and 2 summarize two key trends 
relevant to our discussion. 

Bursty, small-duration spikes: At an individual server 
level, Figure 1 shows how resource utilization is low 
and bursty, with spikes being relatively infrequent and 
of small duration. For example, Figure 1 shows that 
the 90th percentile of resource usage is often 
significantly lower than the maximum utilization. 
This has also been documented in several previous 
studies and stems from seasonal variations in access 
patterns, and common resource deployment practices. 

Non-synchronized spikes: More interestingly, across a 
large collection of servers, such as in a data center or 
blade cluster, the probability of synchronized spikes on 
all the servers at the same time is rather low. For 
example, a server used for ATM transactions may 
spike on Friday versus a server used for airline 

transactions that spikes on Thursdays. Similarly, 
payroll servers have increased utilizations at the end 
of the month, which may not be concurrent with 
asynchronous spikes of other servers timed with 
advertising launches or product tape-outs. Time-zone 
differences across different groups in a global 
organization also shift the peak usage times. In all the 
nine enterprise deployments we study, the sum of the 
individual peak resource usages is significantly higher 
than the peak of the total resource utilization. For 
example, for Site 1, the peak of the entire solution is a 
total CPU utilization (over 26 servers) around 300%. 
In contrast, the sum of the peak utilizations of the 
individual servers is 1100%, and the actual 
provisioning is 2600%. The magnitude difference 
between the provisioned worst case and the actual 
worst-case utilizations is 88%. 

Our data shows that these trends are relatively 
general, and not limited to an individual site or mix of 
workloads. For example, the world-cup infrastructure 
represents usage patterns consistent with a one-time 
event while the e-commerce infrastructure shows more 
regular long-term usage patterns. Similarly, some sites 
have servers with independent workloads (e.g., 
backend client) while others have multi-tier 
interrelated workloads (e.g., e-commerce). However, 
the trends are qualitatively similar in all the cases.  

While we summarize instrumentation data gathered 
from these sites, we also have anecdotal and less 
detailed data from several other enterprise 
deployments that match these trends. We do not claim 
that all enterprise workloads share these trends; 
however, our goal is to show that a large existing base 
of enterprise workloads do share these trends.

Implications for power management: Given that 
power consumption closely tracks resource usage, the 
same trends exist for power consumption behavior in 
these workloads, as well.

Current practice, however, is to design the power 
budget for the worst-case individual system scenario. 
This affects the provisioning of cooling (fans) and 
power delivery (power supplies) in the server. Since 
worst-case power spikes happen infrequently, this 
leads to inefficient overprovisioning in the cooling and 
power delivery at the system level.

When these systems operate in the context of a larger 
collection of systems, such as a data center, the 
inefficiencies are compounded. The total power rating 
of the collection of systems is typically computed as 
the sum of the individual worst-case ratings. Given 



Site Workload and trace length Servers Avg 90th % Max sum-
peaks Worst Savings

1 Backend of pharmaceutical company 26 87 138 307 1128 2600 88%
2 Web hosting infrastructure for worldcup98 web site [2] 25 256 481 1166 1366 2500 53%
3 SAP-based business process application in large company 27 585 691 919 1654 2700 66%
4 E-commerce web site of a large retail company  15 83 166 234 591 1500 84%
5 Backend for thin enterprise clients - company 1 10 138 184 298 729 1000 70%
6 Backend for thin enterprise clients - company 2 14 102 159 287 1253 1400 80%
7 Front-end customer facing web site for large company 8 119 187 255 467 800 68%
8 Business processing workload in small company 3 78 132 225 278 300 25%
9 E-commerce web site of small company 4 90 136 197 228 400 51%

All sites 132 1540 1872 2682 7694 13200 80%

Figure 2: Cumulative resource utilization behavior for the nine sites. The last column summarizes the potential savings in 
processor resource (and power) provisioning from ensemble-level management. 

that the chances of synchronized power peaks are low
(as with the CPU utilization), this leads to even 
greater differences between the estimated worst-case 
power and the actual peak power at this level. Further, 
this estimated worst-case power is used when planning 
the cooling and power delivery at these higher levels 
(e.g., air-conditioning units, power distribution units), 
and consequently, these also end up being 
overprovisioned.  

One option to address these overprovisioning 
inefficiencies is to move the power budget 
management to a higher level – at a broader collection 
of systems (“ensemble”). The key idea is to set the 
power budget at the ensemble level to avoid excessive 
overprovisioning. Individual bursty workloads can still 
be handled within this overall power budget by 
dynamically redistributing power budget to that server, 
from other servers not currently requiring as much 
power. In the cases when this is not possible, 
performance throttling can be used to reduce power to 
avoid redlining (temperature increase beyond a critical 
threshold). The challenges involve careful design of 
the hardware hooks as well as implementing the 
policies that manage and enforce the budget. 

3. Ensemble-level Power Budget Management
Below, we discuss the architecture for ensemble-level 
power budget management. In this paper, we focus 
primarily on blade servers, since their inherent design 
provides for multiple servers housed in the same 
enclosure with a common control point (in the 
enclosure manager); however, our approach can be 
easily adapted to non-blade servers as well. 

3.1 High-level description
Functional architecture: Figure 3 presents a 
conceptual diagram of our approach. The key 
components are (1) a controller at the ensemble level, 
and (2) a management agent at each blade. The 

management agent provides local power monitoring 
and control per server. The controller collects all the 
local readings and estimates total power consumption 
at the ensemble level. This information is then fed to a 
policy-driven control engine that issues directives to 
the individual blades on the next steps for power 
control. For example, if the total power exceeds a pre-
determined power budget, the controller directs the 
individual servers to throttle the power consumption 
to bring the overall power back under the threshold 
(e.g., through voltage scaling). The policy heuristics 
can be implemented to minimize the impact on 
performance for the end user, and may be used in 
concert with higher-level service-level agreements
(SLA) for different workloads.  

Benefits: This approach enables us to provision the 
power budget of the ensemble to a value much lower 
than the sum of the worst-case power for each of the 
individual servers. This allows significant reductions 
in the requirements for power delivery, power 
consumption, and heat extraction in the system. This, 
in turn, can lead to designs that use power supplies of 
lower ratings (lower costs and better efficiencies), 
consume less electricity (lower costs and better 
environmental friendliness), and require reduced 
investment in cooling equipment like fans and air-
conditioning (lower costs). 

As an illustrative example, let us consider the cooling 
requirements for a 500W blade enclosure with each 
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Figure 3: Ensemble-level power management. The key is 
to consider power budget management across a broader 
collection of systems.



blade rated at 20W. On current systems, this requires 
provisioning each blade with support for heat 
dissipation up to 20W (heat sinks, etc) and support at 
the blade enclosure level for heat dissipation of 500W 
(fans, etc), and support at the data center level for heat 
dissipation of 10KW per rack (air conditioning, etc.). 

In contrast, consider the scenario where we implement 
ensemble-level power management at the level of the 
blade enclosure or chassis, and the power is set based 
on the peak of the cumulative resource utilization. As 
seen in Figure 2, this value is typically 25-90% lower 
than the worst-case provisioning. The enclosure
power and cooling budget can be reduced significantly 
without affecting any properties of the solution. 

A more aggressive approach would set the power 
budget to an even smaller value – say, the 90th

percentile of the cumulative power usage. Given the 
bursty nature of the usage, this can achieve even more 
savings (Figure 2 shows that this is an additional 25-
60% lower.), but at the expense of scenarios where 
performance needs to be throttled to bring the system 
within budget. The workload slowdown from such 
throttling can be minimized by intelligently selecting 
the blades to throttle. Additionally, one can judiciously 
allow some spikes over budget as long as the heat can 
be dissipated before redlining. This is further 
discussed in Section 4. 

Reduced enclosure power budgets also translate to 
reduced rack-level cooling requirements in the data 
center. The per-server cooling can also be reduced as 

long as it is adequate to dissipate the heat under the 
transient bursts the server encounters for the specific 
policy adopted by the enclosure controller. 

A similar discussion is applicable to the power 
delivery to the system. However, the policies are more 
constrained relative to the cooling case since transient 
spikes over budgeted power will trip the fuse and need 
to be prevented. 

3.2 Enclosure-level Implementation
Below, we discuss the implementation of our approach
for a blade server enclosure. Figure 4 summarizes the 
various elements of the architecture that we consider. 
The enclosure is a rack-mountable chassis and 
contains 20 blade bays, two gigabit Ethernet switches, 
and an embedded enclosure management controller 
called the Integrated Administrator Module (IAM).
The individual blades include the processor, chipset, 
memory, hard drive, and network interfaces. In 
addition, each blade also includes an ASIC that 
functions as a blade management controller  and  
manages and controls the hardware, responds to 
events, and communicates with the enclosure 
manager. The changes for implementing our solution  
consist of a few relatively straightforward hardware 
additions at the blade level and changes to the 
firmware at both the blade and enclosure levels. 
Below, we discuss the key implementation issues in 
more detail. 

Choosing and enforcing the power budget: As 
discussed earlier, the sum of the worst-case power 
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Figure 4: Implementation of enclosure-level power management.



ratings of the individual blades in the enclosure gives 
an upper bound on the power budget. The  lower 
bound of the enforceable power budget can be 
determined by examining the maximum reduction in 
power possible at the subcomponents from power 
throttling (discussed next). The specific power budget 
is chosen within this range, based on whether we are 
targeting savings in the cooling or power delivery
subsystem, and specific constraints in the 
implementation of those. For example, the rated value 
of an available power supply or the heat extraction 
capacity of a specific cooling arrangement can 
determine the chosen power budget. Similarly, in 
terms of strictness, occasional transients over budget 
can be better tolerated when optimizing the cooling 
than when optimizing the power delivery.

Power monitoring and control at the blade level: A 
key aspect of the architecture is the power monitoring 
at the individual blades. On-board thermal sensors 
available in many current systems can detect thermal 
redlining; however, measuring the current and power 
consumed is necessary to optimize power delivery, and 
can provide finer control on heat dissipation. These 
can be obtained with relatively low-cost circuits to 
measure the voltage drop across a sense resistance and 
the rail voltage at the blade input. The measured 
values can be communicated by the hot swap 
controller/power monitoring device through an 
interface such as sensor SMBUS to the blade 
management controller. If needed, data can also be 
collected at each power plane to provide a finer 
breakdown of power consumption. Additional higher-
level system resource utilization metrics, if exposed to 
the drivers, can also be communicated the same way. 

From a power control point of view, most current 
systems already have some hooks for power 
reconfiguration. For example, these could be in the 
support of the different power states (P-states) in the 
ACPI specification [1]. Voltage and frequency scaling 
is either already supported or is planned to be 
supported for server processors (e.g., AMD, Intel). 
Previous work has also evaluated power control of 
other components such as memory and disk [11, 12].
The BIOS and embedded controller on the blade can 
be used to implement whatever power control 
mechanisms are chosen. Alternatively, power control 
can also be effected at a system level by turning off 
servers [6] or by using a choice of servers in 
heterogeneous systems to provide power control [10]. 

Communication between the blade and enclosure:
The communications between the enclosure 

administrator and the individual blades can be 
performed on top of standard interfaces such as I2C or 
SMBUS. Data collection can be done through both 
polling and interrupts. For example, the enclosure 
manager can periodically poll every blade in the 
enclosure and gather power data. Alternatively, the 
blade controller can communicate pre-defined power 
and thermal events on the blade through alert signals 
(such as SMBALERT) to the enclosure manager. 

Policy choices in enclosure controller: There are 
two broad classes of policies to control the individual 
blades to meet the specified power budget – pre-
emptive and reactive. 

Pre-emptive management proceeds through pre-
defined budget allocation to each blade server by the 
enclosure manager. If a blade server requires more 
power, the blade must request power from the 
enclosure manager to be allowed to proceed to the next 
power level.  The embedded controller sets the blade 
power level to the allocated power level and only 
allows a higher power level when permission is 
granted from the enclosure. (Don’t assume you can 
use more power, always ask.)

Reactive management, on the other hand, proceeds by 
having the enclosure monitoring the power levels of 
the entire enclosure and responding only in the event 
of a threshold violation. This has the advantage of 
being less conservative about throttling, but incurs the 
possibility of transient power spikes over the 
threshold. (Use as much power as needed until told 
you can’t.)

Consequently, while pre-emptive policies can be used 
in all applications of power budget control, reactive 
policies cannot be used in situations like power supply 
optimizations which need stricter budget enforcement. 

Figures 5(a) and 5(b) summarize the pseudocode for 
both the algorithms. Note that several variants of these 
algorithms are possible. Figure 5(c) provides a brief 
high-level taxonomy of the design space. An 
exhaustive study of this policy space is outside the 
scope of this paper; however, in Section 4, we discuss 
the variation of several of these parameters. 

3.3 Operation
The operation of the system has three phases:

Initialization and setup: When a blade first turns on 
in an enclosure, as part of the power-on-self-test, it 
reports the power it uses in the different p-states, to 
the enclosure manager.  The BIOS and blade 
controller perform calibration experiments varying the 



processor frequency and voltage (and more broadly the 
various power control options) and executing code to 
exercise the system. During these experiments, the 
power consumption data is gathered from the hot swap 
controllers, and reported to the enclosure manager. 
The enclosure manager then uses this power data to
make later decisions about which power level a blade 
may need to operate.  

Data gathering and heartbeat checking: Data 
gathering takes place after the blade server has 
reported its power levels to the enclosure manager.  
During data gathering, the enclosure manager polls
each blade in the enclosure periodically and gathers
power data from the blade.  The polling also lets the 

blade know that the enclosure manager is still 
operating properly. A watchdog timer in the blade 
management controller also monitors for the enclosure 
manager heartbeat. In the event of two consecutive 
intervals without an enclosure response, all blades 
transition to the lowest operational level to ensure no 
power budget violation. Depending on the 
communication latencies of the design, one of the 
blades can then optionally take on the role of the 
power management controller. 

Responding to events: Power and thermal events are 
triggered when the polling and power estimation 
models determine a possible violation of the power 
budget. Alternatively, power and thermal events can 
be triggered when the thermal diode on the blade 
server exceeds a pre-programmed limit or when the 
blade power exceeds or falls below pre-defined limits. 
As discussed above, these power and thermal events 
trigger specific recommendations from the policy 
engine in the enclosure manager and corresponding 
actions by the blade management controller.  

4. Evaluation
Our architecture optimizes for common-case usage 
behavior likely to be seen in actual deployments over 
multiple servers. Validating this solution poses several 
challenges. 

Ideally, we would like to develop a protoype 
implementation and deploy it in a live enterprise 
environment spanning multiple servers. However, 
building a prototype blade enclosure from scratch 
requires significant resources. Getting enterprises to 
trust their business applications to prototype hardware 
is also a difficult proposition. Even if we were to 
mirror some of the software setup on these enterprise 
platforms, exercising our setup to show behavior akin 
to a live deployment is even more challenging. 
Additionally, it is hard to perform a detailed design 
space exploration with the one specific hardware 
implementation a prototype would represent. 

However, the alternate approach of using a simulator 
is also challenging. A detailed full system simulation
has all the disadvantages of the prototype and is 
additionally several orders of magnitude slower than 
the real system. 

Given these challenges, we choose a hybrid approach 
to validate our solution, based on real prototyping and
simulation. We build a prototype and use it to validate 
the implementation details discussed earlier, as well as 
measure actual performance and power data on toy 
workloads modeling typical enterprise usage. We 

Start with all servers throttled

At each control period or on interrupt
Compute total power consumption

 
Identify servers with “low” utilization
Prioritize which servers to throttle

 Throttle each server to decided level

Check if room in power budget
If yes 

Identify servers with “high” utilization
Prioritize which servers to unthrottle

 Unthrottle each server to decided level
Stop if power budget likely exceeded

If no
Stop

(a) Preemptive algorithm

Start with all servers unthrottled

At each control period or on interrupt
Compute total power consumption

 
Check if power above threshold
If yes
 Prioritize which servers to throttle
 Throttle each server to decided level
Stop when power budget below threshold

If no
Prioritize which server to unthrottle

 Unthrottle each server to decided level
Stop if power budget likely exceeded

(b) Reactive algorithm

Parameter Options
When to assign 
power budgets Pre-emptive or reactive

Which server to 
(un)throttle

Round-robin, random, p-state, power, performance, fair-
shared based on past-history, customer-service 
requirements

What (un)throttle 
knob to use

Processor voltage/frequency scaling, memory, disk, 
turn blades off/on, heterogeneity, others…

What level to 
(un)throttle to Next P-state, lowest/highest P-state, per-blade policy

How to predict 
future power

Use past history as future indicator, other resource 
prediction models, conservativeness of prediction

Event trigger Interrupt-driven on power event, polling
How often to 
monitor/control

Polling frequency, number of blades to poll per second, 
interrupt service times, hysterisis times

(c) Policy design space
Figure 5: Policies to manage enclosure power budget.



supplement this with results from simulating the 
workloads representing the 132 servers from the nine 
real-world enterprise sites discussed earlier. We 
validate the simulator models against the prototype. 
We also use the simulator to evaluate synthetic 
workload traces of varying concurrency and 
utilization, and to perform a design space exploration 
of tradeoffs in various hardware and software 
parameters. 

4.1 Methodology
Prototype: Our prototype implementation builds on 
an existing blade design from an earlier project. Each 
blade includes a 1GHz Transmeta Efficeon (TM8000) 
processor, 256 MB SODIMM memory, and 40 GB 
storage (Seagate 5400 RPM). The blade management 
controller architecture includes a super I/O chip and
an integrated 8051 controller. At a firmware level, 
additional software modules are added to the BIOS, 
and the blade and enclosure controllers. These 
implement the initialization/setup routines, data 
gathering and measurement, heartbeat timers, and the 
pre-emptive and reactive power management policies
discussed earlier. Software in the ROM/BIOS handles
configuration and support for power control at the 
individual blade level. The only power control 
mechanism available in our prototype is the use of 
voltage and frequency scaling in the processor. There
were five voltage and frequency settings: (1) 533MHz 
at 0.8V, (2) 600 MHz at 0.925V, (3) 700 MHz at 1V, 
(4) 833MHz at 1.1V, and (5) 1000 MHz at 1.25V. All 
the blades run Windows XP and our enclosure-level 
testbed includes 8 blades. 

For the results reported on the prototype, we log power 
consumption as measured by a power meter connected  
to the actual hardware and report the average power 
for the experiment. 

Simulator: Our simulator models high-level 
properties of the prototype blade enclosure. It takes 
resource utilization traces as input and models the 
impact of different enclosure controller policies on 
performance and power under various load and policy 
conditions. The basic operation of the simulator is as 
follows. The main simulator loop operates on a timer 
that matches the time of the simulated system. When 
reading the input trace file, the simulator uses this
timer to access resource utilization data at the 
corresponding time stamp associated with it. 

However, there are several challenges with using 
traces that only capture resource utilization
information. First, we need to determine the variation 

in resource utilization when the system is changed, for 
example, with voltage and frequency scaling. Second, 
we need to be able to correlate these changes in 
resource utilization to performance, to better 
understand the impact on application latencies and 
throughputs. Finally, we need to correlate resource 
utilization to the power consumed in the system.

To address these challenges, we run experiments on
the prototype using gamut [13], a synthetic load 
generator, to execute a pre-determined synthetic stress 
kernel, while controlling the resource utilization in 
progressive steps.  For example, we can exercise the 
processor with an compute-intensive loop at CPU 
utilizations from 0% to 100% in small increments. At 
each of these data points, we measure the power 
(using a power meter) and the performance (in terms 
of the useful work done, as reported by gamut). We 
repeat this experiment for all the different states of the
system (in our prototype, the five voltage and 
frequency settings). Based on these experiments, we 
create high-level models that correlate resource 
utilization to power consumption, identify changes in 
resource utilization with changes in frequency, and 
convert changes in utilization to the corresponding 
impact on actual work done. Using this approach, we
validated high-level properties of the simulator with 
the prototype and found good correlations.

To report performance degradation (workload 
slowdown) in this section, we compare the total work 
done across all blades in the enclosure across different
policies. This metric represents the degradation for the 
entire solution. However, in some cases, a per-server 
(associated with a specific user or application) metric 
might be more appropriate. Consequently, we also 
study per-blade workload degradation averaged across 
the individual blades in the system. We do not call this 
metric out in our results since the trends were similar 
to the enclosure workload degradation. 

We also studied the degradation in clock frequency as 
opposed to work done (this gives a sense of peak MIPS 
degradation) and also looked at metrics that averaged 
the percentage of time a blade is throttled and the 
number of blades throttled per second. In addition, the 
simulator allows us to monitor and analyze trends on a 
host of other statistics. These include the variation in 
power and performance from different perspectives, at 
a temporal level, at a per-blade level, at an enclosure 
level, and at the level of specific phases in workloads
(e.g., peaks vs idle). In addition we can monitor 
parameters at the hardware level such as the usage of 
multiple power states, the effect of delays in servicing 
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Figure 7. Sensitivity to concurrency (synthetic traces).
the interrupts, etc.  We use these to further validate 
our intuition behind the results.

4.2 Results
Simulation Results: Figure 6 summarizes simulation 
results for the 9 enterprise sites discussed earlier. We 
consider three different values of the power budgets –
450W, 425W, and 400W – corresponding to 
enclosure-level power budget reductions of 10%, 15%, 
and 20%. Note that this corresponds to equivalent 
reductions of approximately 25%, 37%, and 50% of 
the total processor power budget. 

As seen from Figure 6, overall, enclosure-level power 
management can achieve power budget reductions
with marginal reductions in total solution 
performance. Even when the power budget is set to 
400W, the performance reductions are less than 5%. 
The backend desktop trace (site 8) has the maximum 
slowdown; the higher numbers in this case are due to 
the occurrence of several utilization traces that stay at 
100% for a long period of time. The pre-emptive 
algorithm has slightly higher performance loss 
compared to the reactive algorithm because of its 
conservative budgeting policy.  Results with other 
performance metrics are all qualitatively similar. Note 
that though the net enclosure power reduction is 20%, 
the CPU power reduction is almost 50%. Power 
control at the other components including memory, 
disk, and switching fabric,  would have likely achieved 
higher power reductions at the overall system level.
Further, though not quantified here, power savings at 

the enclosure level can lead to corresponding benefits 
in cooling and power delivery at the data center level,
as well.

Interestingly, in all cases, the fraction of time the 
reactive algorithm exceeds the power budget is less 
than 0.5%. This is because our algorithm makes a 
number of assumptions biased towards performance 
loss over power budget violations (e.g., 25W budget 
headroom, unthrottle hysteresis). Note that as 
discussed earlier, pre-emptive algorithms, by design, 
can never exceed the power budget. 

Sensitivity to workload, policy, implementation:
The low performance degradation stems from the low 
utilization and limited concurrency of spikes in the 
real-world traces (Section 2). To assess the sensitivity 
of our results to workload concurrency, we evaluated 
three synthetic traces, with fine-grained utilization 
variation, and low (25%), medium (50%), and high 
(75%) concurrencies. For example, a trace with 25% 
concurrency has synchronized peak utilization across 
all the blades 25% of the time. Figure 7 summarizes 
the performance degradation for the reactive 
algorithms with the three power budget thresholds as 
before. As expected, the performance degradation 
increases with the concurrency of the workload. The 
fraction of time that the system exceeds the power 
budget increases as well, but even at the high-
concurrency value, this is still less than 5%.

We also evaluated several different policies. 
Specifically, we considered two different approaches
for which servers to throttle (and unthrottle): one 
where priority was given to servers at the highest 
power and one where priority was given to servers at 
the lowest utilization. Similarly, we considered two 
different approaches on the level to which to throttle 
the servers: either incrementally transition to the next 
power-state, or transition to the lowest or highest
power state. For the nine real-world enterprise traces, 
these algorithmic variations made little difference, 
because of the low utilizations and concurrencies. For 
the synthetic workloads with higher concurrencies, in 
general, deep throttling of a few servers consuming 

Power 
budget Algorithm Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9

400W 1% 1% 4% 1% 1% 2% 2% 5% 4%
425W 1% 1% 3% 1% 1% 2% 2% 5% 3%
450W 1% 1% 3% 1% 1% 2% 1% 4% 3%
400W 0% 0% 0% 0% 0% 0% 0% 1% 0%
425W 0% 0% 0% 0% 0% 0% 0% 0% 0%
450W 0% 0% 0% 0% 0% 0% 0% 0% 0%

Preemptive

Reactive

Figure 6: Summary of workload slowdown for the 9 enterprise traces. The power budgets of 450W, 425W, and 400W 
represent CPU power reductions of 25%, 38%, and 50%, compared to the base power budget of 500W. 
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Figure 8: Variation in latencies for VNCplay on prototype.

the highest power was desirable to throttling a large 
number of servers at low utilization. Our experiments 
varying the polling frequency and the interrupt service 
time showed that the algorithms are fairly robust at 
adapting to changes in these parameters. It is natural 
to use a proportional sharing model, in which the 
power budget is allocated to the contending workloads 
proportionally to weights assigned to each workload.

Prototype results: In addition to running emulated 
production workload traces on the protoype, we 
evaluated two other simple workloads.  The first 
models interactive workloads and is based on the 
VNCplay tool developed by Zeldovich et al [22]. This 
tool records a user’s interactive session with a system 
and allows it to be replayed multiple times under 
different configurations.  This benchmark allows us to 
measure the impact of our approach in an interactive 
GUI environment. 

When comparing the total execution time of the 
session with and without enclosure-level power 
management, our results showed relatively little 
variation (less than 1% even with 20% reduction in 
the enclosure power budget).  This is consistent with 
the simulation data for similar benchmarks with 
equivalent utilization (site 6). However, in interactive 
applications, rather than throughput, it is more 
important to capture the impact on latency for user 
events. Consequently, following the methodology 
adopted by Zeldovich et al [22], we also study 
cumulative distribution functions of the latencies. An 
example is summarized in Figure 8. As can be seen 
from the figure, for the different latencies seen by user 
events in the benchmark, the variation between the 
base system and the system with enclosure-level power 
budgeting is quite small.  

The second benchmark models batch workloads that 
stress the CPU. A simulation program that consumes 

100% CPU resources is interspersed with smaller 
periods of idle time, to model a high-concurrency 
benchmark. As expected, the performance 
degradations are higher for this workload – 3%, 7%, 
and 35% for power budget settings of 450, 425, and 
400W respectively. Again, this is consistent with the 
results we observe in our simulations of medium-to-
high concurrency workloads. 

5. Other Enclosure-level Benefits
While our primary focus in this paper was on reducing 
the peak power budget to get the associated benefits in 
power delivery and cooling, enclosure-level power 
management can have other advantages.

Cost benefits from component choice flexibility: 
Based on volumes of chips shipped, low-power 
processors such as those used in blade systems can 
sometimes be more expensive than higher-power
(possibly even higher-performance) processors using a 
different technology for a different market segment. 
Enclosure-level power management allows individual 
components in a blade (and individual blades in the 
enclosure) to exceed their local budgets as long as the 
overall system budget is enforced. This effectively 
means that power-budget-imposed limits on the choice 
of components can be relaxed, allowing the use of 
cheaper higher-volume components even if they are 
rated for higher power.  In some cases, having the 
option for higher-performance peaks can also provide 
better single-thread performance during bursty cases. 

Cost reduction through reduced redundancy: Most 
enterprise servers provide redundancy in the power 
delivery with two or more power supplies per system. 
In these designs, all the power supplies are each rated 
at the peak capacity of the system. Our approach, 
however, allows for an alternative design point where 
the secondary power supplies can potentially be rated 
at lower capacities. Even if the primary supply were to 
fail, the enclosure can detect that and change the 
power threshold to that of the secondary supply’s 
rating. (Most power supply specifications support the 
transient overloading likely during this transition.) 
The system would continue to stay operational with 
the secondary supply, with potentially lower 
performance, until the problem is fixed. Given the 
rarity of these failure events, our approach can help 
reduce costs that are otherwise not recovered during 
the server lifetime.

Average power reduction: The main motivation (and 
focus) of our approach is the peak power. However, 
one could retain the overprovisioning in power and 



cooling and still use this approach to extract average 
power consumption efficiencies. Enclosure-level 
throttling, say for the 90th percentile cumulative 
utilization, is likely to be much simpler to implement 
than equivalent 90th percentile utilizations at the local 
level where each server threshold is potentially 
different. Further, enclosure-level power management 
can also extend local-level power throttling with 
knowledge of enclosure-level trends (resource 
consumption, efficiency) to minimize global 
performance degradation.  

6. Related Work
To the best of our knowledge, our work is the first to 
manage and enforce a peak power budget across a 
server ensemble, e.g., a blade enclosure. As part of 
this, we discuss algorithms to redistribute the power 
budget in two contexts: strict constraints for power 
delivery and looser constraints for heat dissipation. 

At a single-server level, Brooks et al proposed setting
a thermal threshold and enforcing it from a cooling 
point of view [5] while Felter et al suggest dynamic 
shifting of power within the processor and memory 
components of a single server [8]. Similar to these 
studies, we also use the notion of setting and enforcing 
a power budget, but our work differs from these in its 
focus on trends across multiple systems, and, indeed, 
all these optimizations can (and probably will) be used 
together on future systems. 

At a cluster level, Femal and Freeh [9] discuss how, 
for a given cluster power budget, one can choose 
different permutations of the quantity and size of 
individual nodes to better improve throughput, by 
optimizing for the different power-performance 
efficiency curves. Individual nodes are responsible for 
determining their power limits and the environment 
assumes an explicit trust model between nodes. Other 
previous work has evaluated algorithms to turn off or 
turn-down individual servers when they are not used 
[4, 6, 17]. However, these have been mainly focused 
on reducing electricity consumption in such 
environments. 

Many papers have studied the resource demand 
profiles of competing workloads through time in order 
to evaluate the performance impact of resource 
sharing.  For example, one recent study examines 
several workloads and concludes that overbooking 
resources for a shared hosting platform may increase a 
hosting provider’s revenue while meeting probabilistic 
service level agreements [20].  Our work uses a 
similar idea to constrain the power budget for a shared 

ensemble of servers, with little performance impact.   
Our use of dynamic voltage scaling to throttle CPU 
power consumption dynamically is similar to GRACE-
OS [21], which profiles CPU usage in conjunction 
with soft real-time CPU scheduling to conserve battery 
power while bounding missed deadlines.  They 
leverage a similar insight at the OS level:  all 
processes will not demand cycles at the same time. 

7. Conclusions
In this paper, we address the increasing power density 
challenges in enterprise servers. We propose the 
notion of “ensemble-level” power management to
leverage concurrent resource usage trends across 
collections of systems, for power savings beyond that 
possible from optimizing a single system in isolation. 

We present resource utilization data across a large 
collection of servers from several live enterprise 
deployments and identify the potential benefits from 
such an approach. We discuss an implementation of 
this approach at the blade enclosure level to monitor 
and manage the power across the individual blades in 
a chassis. Our proposed design requires low-cost 
hardware additions and simple software support to 
conventional systems. 

We evaluate our design on a prototype that uses 
voltage and frequency scaling for CPU power 
throttling, and also through simulation. Our results 
show significant power budget reductions (up to 50%
reduction in the processor power and 20% in system 
power) with marginal (close to zero in most cases) 
impact on performance. The power reductions are 
likely to be higher on systems with support for power 
control of other components (e.g., memory, disk). 
These savings also have a cascading effect in the  
cooling and power delivery costs at other levels such 
as in the data center. Beyond power budget reductions, 
we also discuss how our approach enables lower-cost 
resiliency and per-component budget flexibility.

Beyond the policies we examined, a rich design space 
exists for other policies for ensemble-level power 
control, particularly in the context of geographically-
dispersed servers. Another interesting area of future 
research is the applicability of our approach to high-
performance technical computing and virtualized 
environments. While processor utilization in these 
environments is higher, opportunities may exist for 
ensemble-level control of other sub-components of the 
system. Finally, our approach allows the power budget 
to be varied on the fly as long as the power delivery 
and cooling can also be suitably varied. This might be 



a promising avenue of research, especially when our 
ensemble-level control loop is interfaced with local 
per-server control [1] and broader data center level 
control [14, 16] of power and cooling. As part of 
ongoing work, we are currently evaluating these 
options further.

Overall, as trends towards consolidation and 
compaction exacerbate the power and heat 
management challenges, it will become critical to go 
beyond conventional approaches to solve these 
problems. We believe that approaches like ours – that 
optimize at the ensemble level, and for common-case 
behavior of commercial enterprise workloads – are 
likely to be an integral part of future solutions to 
address these challenges. 
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