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Abstract

The emergence of the Internet of Things (IoT) concept as a new direction of technological development raises new problems 
such as valid and timely identification of such devices, security vulnerabilities that can be exploited for malicious activities, 
and management of such devices. The communication of IoT devices generates traffic that has specific features and differ-
ences with respect to conventional devices. This research seeks to analyze the possibilities of applying such features for 
classifying devices, regardless of their functionality or purpose. This kind of classification is necessary for a dynamic and 
heterogeneous environment, such as a smart home where the number and types of devices grow daily. This research uses a 
total of 41 IoT devices. The logistic regression method enhanced by the concept of supervised machine learning (logitboost) 
was used for developing a classification model. Multiclass classification model was developed using 13 network traffic 
features generated by IoT devices. Research has shown that it is possible to classify devices into four previously defined 
classes with high performances and accuracy (99.79%) based on the traffic flow features of such devices. Model performance 
measures such as precision, F-measure, True Positive Ratio, False Positive Ratio and Kappa coefficient all show high results 
(0.997–0.999, 0.997–0.999, 0.997–0.999, 0–0.001 and 0.9973, respectively). Such a developed model can have its applica-
tion as a foundation for monitoring and managing solutions of large and heterogeneous IoT environments such as Industrial 
IoT, smart home, and similar.

Keywords Boosting · Cybersecurity · Supervised learning · Internet of things · ML

1 Introduction

The application of the IoT concept in different economic 
sectors is becoming a key factor for business improvement. 
According to [1], 92% of companies believe the IoT con-
cept will be important for their business by the end of 2020. 

Consequently, the companies consider that security, privacy, 
costs, and regulatory issues pose the greatest challenges of 
implementing and applying the IoT concept. Research [2] 
conducted in 1,430 companies (small, medium, and large) 
points to a number of advantages seen by the vast majority 
(95%) of adopters of the IoT concept. In doing so, more 
than half (53%) confirm significant benefits of implementing 
the IoT concept in business, while 79% of those surveyed 
believe that by applying the IoT concept, they achieve posi-
tive results in different areas of work that they would not 
otherwise be able to achieve.

According to Gartner, the largest representation and 
application of the IoT concept, according to the number of 
IoT devices used until 2017, was in the area of smart build-
ing environments. After 2017, the smart home concept is the 
environment that brings together the largest number of IoT 
devices [3]. More precise insight into the representation of 
IoT devices by individual areas of application is provided 
by the research of the company IHS Markit [4]. It can be 
seen that the smart home concept has the largest number of 
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installed IoT devices (822.6 million) compared to other areas 
of application. The annual growth rate (prediction by 2021) 
is 19.6%, which makes the smart home concept [5–7], along 
with the industrial IoT concept (CAGR 23.4%), the fastest 
growing area of application of the IoT concept. The classi-
fication of IoT devices is essential for several reasons. Suc-
cessfully identifying IoT devices in a particular scenario and 
environment can be vital in identifying illegitimate devices, 
unauthorized devices, unwanted devices, devices that do 
not behave as expected, and have the potential to cause a 
security incident within the system. Besides, useful device 
classification and identification of new and hitherto unseen 
devices can enable more efficient traffic management as well 
as network capacity required in the environments in which 
IoT devices exist [8, 9].

The rest of this paper is organized as follows: the second 
chapter deals with the current research, their shortcoming, 
and the positioning of our research according to previous 
findings. In the third chapter, data collection approach is 
explained, which includes laboratory environment establish-
ment, raw network traffic collection, data preprocessing, and 
device class definition as key activities for further classifi-
cation model development. The fourth chapter explains the 
classification model development as well as the ensemble 
supervised machine learning method used for that purpose. 
In the fifth chapter, the results from the developed model 
were analyzed and discussed. In the final chapter, the authors 
give their conclusion and further research direction.

2  Related work

According to the forecasts presented in [10], by the end of 
2020, approximately 31 billion IoT devices will be globally 
used, and until 2025 there will be 75 billion IoT devices. At 
the same time, 41%, i.e. 12.86 billion IoT devices will be 
installed within a smart home (SH) [11]. IoT device limita-
tions in general, and thus SHIoT (smart home IoT) devices, 
are described in the research [12]. Limitations include hard-
ware limitations, requirements for high autonomy and low 
production cost, which reduces the possibility of implement-
ing advanced protection methods and increases the risk of 
many threats shown in [13]. The traffic generated by SHIoT 
devices or MTC (Machine Type Communication) traffic 
differs from the traffic generated by conventional devices, 
HTC (Human Type Communication) traffic, which was 
shown by research [14]. Specific features of MTC traffic 
have been used to solve several problems in the communi-
cation network. Research [15] looks at the impact of MTC 
traffic on QoS during integration with HTC traffic in the LTE 
(Long-Term Evolution) communications network. Identifica-
tion and classification of IoT devices in smart cities [5, 6] 

and campuses and in smart environments using MTC traf-
fic features have been presented by research [16] and [17]. 
Research [18] seeks to identify new requirements and chal-
lenges in the design and management of a mobile commu-
nication network imposed by the generation of MTC traffic.

SHIoT traffic can be observed through network activ-
ity features such as traffic volume (sum of the total traf-
fic received and total traffic transferred), traffic flow dura-
tion (time between first and last packet in traffic flow), and 
device inactivity time (the period in which the device has 
no active traffic flow). The network behavioral modeling 
is an often-used approach to address communication net-
work challenges such as detecting illegitimate events based 
on traffic generated by devices on the network. In general, 
current approaches seek to identify traffic characteristics at 
the network packet level and the traffic flow level [19]. The 
analyzed research shows more frequent consideration and 
use of traffic features at the level of traffic flow than at the 
level of network packages. Likewise, the mentioned studies 
use the presented features to identify individual devices or 
their classification based on the semantic characteristics of 
the observed devices. [20]. Authors in [21] developed a tool 
for automatic extraction of packet-level signatures of IoT 
devices form the network traffic. They have extracted packet-
level features of 18 smart home devices, which was used as a 
basis for development of classification model with a recall of 
97%. Although research represents high results of the devel-
oped classification model, it remains unclear how the model 
will behave on the previously unseen devices. It should be 
trained again for every new device that comes on the market. 
Such an approach is not suitable considering the nature of 
the IoT concept. In research [22], the authors present the 
LSIF (Locality-Sensitive IoT Fingerprinting) approach for 
identification of IoT devices. The presented approach does 
not require feature extraction from the traffic. Although this 
approach has its benefits, it is lacking in performance such 
as precision (93%) and recall (90%). Also, this approach is 
focused on the identification of individual devices, which 
raises already mentioned shortcomings. The research pre-
sented in [23] used artificial neuron network for the classifi-
cation. They developed a model that can identify nine known 
devices with approximately 99% accuracy. In research [24] 
the primary goal is to develop a model for network anom-
aly detection caused by IoT devices. For that purpose, the 
authors first developed a classification model for profiling of 
normal behavior. They used J48 machine learning method 
for model development with precsion, recall and F-measure, 
96.2%, 96.8% and 96.9%, respectively. The developed model 
is actual only for nine devices they used in research because 
profiling was done for an individual device. The lack of 
research can be noticed in the number of used devices and 
insufficient generalization of the problem, where for every 
new device a new model needs to be learned, trained, and 
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validated. In research [25], the authors use the decision trees 
and deep learning based methods for identification, classifi-
cation, and anomaly detection of IoT devices. This research 
tries to use a more general approach to the classification 
of network traffic by using tree classes of traffic (actuation, 
sensing, video streaming). Such an approach is suitable for 
recognizing normal (expected) behavior of network traf-
fic generated by IoT devices, and it is useful in resolving 
problems such as anomaly detection. Negative sides of this 
research are the number of used devices (7), the amount of 
network traffic (5 days), and the results of the developed 
classification model (93.5%).

According to the above, the possibility of developing 
an efficient classification model of IoT devices based on 
the characteristics of the generated traffic flows is set as 
a hypothesis of the current research. The research aims to 
develop a classification model based on an ensemble super-
vised machine learning method that will be able to assign 
IoT devices to predefined classes based on the values of their 
traffic flows. Current research in this domain is trying to 
identify the individual device. Such an approach is not suit-
able in the fast-evolving, heterogeneous, and dynamic envi-
ronment such as IoT, where the number of new devices is 
rising exponentially. Because of the mentioned, the approach 
in this research brings novelty and gives the opportunity to 
recognize a class of new and unseen IoT devices based on its 
network traffic behavior. Our approach tends to generalize 
the identified problem and develop a solution that would be 
adjusted to the nature of the IoT environment. Accordingly, 
IoT devices need not be observed individually in solving a 
problem such as certain types of management of IoT devices, 

detecting network anomalies generated by IoT devices, or 
identifying unauthorized IoT devices in the network. For 
that purpose, a classification model is needed that would be 
able to assign previously unseen devices to generic behavior 
profile. This research, compared to previous ones gives con-
tribution in a larger set of observed devices, longer period 
and larger amount of collected data, innovative approach 
in the classification of IoT devices, and better performance 
results of the developed classification model.

3  Proposed approach

This research has been conducted in three phases with the 
activities shown in Fig. 1. In the first phase the research 
problem was identified and laboratory environment estab-
lished. The dataset was formed from primary and second-
ary data sources. In the second research phase index Cu 
was extracted for each device and IoT device classes were 
defined. The collected data have been preprocessed which 
included feature engineering and data normalization (deal-
ing with null and categorical values). In the final, third phase 
the dataset was balanced, and the classification model was 
developed. For the model development, the ensemble super-
vised machine learning method was used. The developed 
model performance was measured using standard valida-
tion measures for the classification models such as confu-
sion matrix, accuracy, kappa coefficient, TPR (True Posi-
tive Ratio), FPR (False Positive Ratio), F-measure, ROC 
(Receiver Operating Characteristics) curve and other.

Fig. 1  Research phases and activities
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One of the crucial research activities was primary data 
collection for which the laboratory environment with SHIoT 
devices was established. SHIoT devices are supplied by 
authorized distributors and representatives of each device 
manufacturer. They are connected to the communication 
network as recommended by the manufacturer, and in no 
way are the devices modified at the software and hardware 
level. Therefore, it is assumed that the devices that are 
used to collect legitimate traffic in this research work are 
as designed and are in no way previously compromised in 
terms of security.

The network topology, as well as the characteristics of 
the smart home environment, can be seen in Fig. 1. The 
devices are connected, directly or indirectly, by Wi-Fi com-
munication technology to the Fortinet AP 221C wireless 
access point, except for Phillips Hue, which communicates 
with the rest of the local network via Ethernet (IEEE 802.3) 
communication standard. Some devices, such as the Blink 
smart camera, Netatmo smart thermostat, and Philips Hue 
smart lighting fixtures, use an IoT hub with which they com-
municate wirelessly, but with ZigBee technology. The rea-
son is the energy efficiency of the device since they use the 
battery as the power source of the end device, which gives 
them advantages in terms of mobility and independence 
of the device from electricity as a power source. The IoT 
hub is connected to Wi-Fi (or Ethernet in the case of Phil-
lips Hue devices) technology with a wireless access point. 

Based on the above, a wireless access point has been deter-
mined as an adequate collection point for traffic generated 
by SHIoT devices. Due to the known modes of operation 
and characteristics of computers, and thus wireless Wi-Fi 
networks, traffic in the communication network cannot be 
collected directly. Several methods are available for traf-
fic collection, often using physical port mirroring on the 
switch. This method is efficient in several studies, such as 
[15, 26–28], which provides a basis for the application of the 
same method in conducting this research.

A software-hardware platform consisting of a Fortinet 
AP 221C wireless access point, a Cisco 2960 Catalyst 48 
PoE switch (Power over Ethernet) and an HP Pavillion 
dm1 workstation (Microsoft Windows 10 10.0.17134 build 
17,134, × 64 processor architecture, AMD E-350, 1600 MHz 
2 cores, 4 GB RAM) has been set up to collect traffic by 
port mirroring with Wireshark software tool version 2.6.3 
installed.

As shown in Fig. 2, port mirroring is configured for the 
physical communication ports (FA0 / 1 and FA0 / 3) of the 
switch to which the wireless access point and IoT hub for 
the Phillips Hue device are connected. These ports are con-
figured as a source, which means that all traffic coming to 
or from these ports will be mirrored (mapped) to the des-
tination communication port (FA0 / 2). A traffic collection 
workstation is connected to this port (Fig. 2).

Fig. 2  Laboratory environment of a smart home formed for data collection [29]
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3.1  Analysis of the used SHIoT devices

The laboratory environment of a smart home was formed 
to collect primary data. It contains SHIoT devices commer-
cially available on the market, considering that, according 
to statistical indicators, such devices feature continuous 
growth of the application. Figure 3 shows the distribution 
of SHIoT devices, i.e., the representation of each group in 
the total number of devices and the number of devices that 
will be used to collect the primary and secondary data. The 
complete list of SHIoT devices included in this research is 
shown in Table 1.

The smart home laboratory environment was formed 
within the Laboratory for security and forensic analysis of 
the information and communication system of the Depart-
ment for information and communication traffic at the Fac-
ulty of Transport and Traffic Sciences. In addition to SHIoT 
devices intended for the collection of primary data, for the 
subject research, secondary data already collected through 
various SHIoT devices within the existing research were 
used [17, 30, 31].

Table 1 lists the MAC (Media Access Control) addresses 
as the unique identifiers of the SHIoT device in the net-
work, the device name, the P / S code indicating whether 
the observed device was used to collect primary or second-
ary data, and to which functional group the observed SHIoT 
the device belongs.

A total of 41 devices in a smart home environment were 
used for the research, part of which was already shown in 
[29]. According to statistics, there are differences in the esti-
mate of the average number of SHIoT devices per household 
that has implemented a specific form of a smart home. These 
estimates range from 6.53 to 14 SHoT devices per house-
hold. In the Republic of Croatia, the representation of smart 
homes is still low, and telecom operators are taking on the 
role of smart home service providers through the offer of 

SHIoT devices for end-users. For example, the Internet ser-
vice provider Iskon Internet offers customers the opportunity 
to purchase a smart home package consisting of four SHIoT 
devices [32]. In comparison, the telecom operator A1 offers 
customers the opportunity to implement a total of five SHIoT 
devices in a smart home environment [33].

Despite the above, this research sought to achieve the 
highest possible diversity of SHIoT devices due to the need 
to define device classes based on the characteristics of the 
generated traffic. Therefore, the number of devices used is 
higher than the current statistical estimate of the average 
value of SHIoT devices per smart home in the Republic of 
Croatia and the world. The predictions shown in [34] refer 
to the period until 2023, but given the upward trend in the 
growth of the number of devices, it is to be assumed that 
the number of devices will reach 40 per smart home in the 
foreseeable future.

3.2  Descriptive statistical analysis of collected data

The primary dataset formed for this research consists of 
a total of 103 files in.pcap format that contain a complete 
record of network traffic. The secondary dataset consists 
of 41 files of the same format as the primary set, which 
makes a total of 144 network traffic files generated by vari-
ous SHIoT devices and represents the legitimate network 
traffic. Each of the 144 files contains traffic generated in a 
24-h time interval.

Table 2 shows the statistical description of the dataset 
through statistical measures of standard deviation, mini-
mum, maximum, and mean values at the level of 24-h inter-
vals of collected traffic for primary and secondary data and 
the consolidated dataset. Statistical description is repre-
sented through three logical parts: primary data, secondary 
data and total.

Fig. 3  Distribution of SHIoT device groups
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For every logical part we gave standard deviation, mini-
mum, maximum and mean value for the parameters such 
as Number of collected packets, File size, Amount of col-
lected data, Average data transfer rate, Average packet trans-
fer rate, and Average packet size. These measures show the 

characteristics of the collected data. For example, it can be 
concluded that secondary dataset is bigger than the primary 
one or that the average packet size is smaller in the second-
ary dataset than in the primary. All previously mentioned 
can be explained with a high level of device heterogeneity 

Table 1  SHIoT devices for data 
collection purposes

P primary; CL comfort and lighting; HE home entertainment; CC control and connectivity; S secondary; S 
security; SA smart appliances; EM energy management

No.# Device Label Device name Data collec-
tion source

Functional cat-
egory of SHIoT 
device

1 ph_hue_2 u10 Phillips Hue Starter kit 2xE26 P CL

2 ph_hue_4 u33 Phillip Hue Starter kit 4xE26 S CL

3 wiz_F3 u2 WiZ Colors ESP_0531F3 P CL

4 wiz_B0 u4 WiZ Colors ESP_0506B0 P CL

5 lifx u20 Light Bulbs LiFX Smart Bulb S CL

6 wit_aura u14 Withings Aura Sleep Tracking Mat S CL

7 google_chr u36 Google Chromecast P HE

8 triby u39 Invoxia Triby Speaker S HE

9 pix u34 PIX-STAR Photo-frame S HE

10 amz_dot u17 Amazon Alexa Dot P HE

11 amz_echo u30 Amazon Alexa Echo S HE

12 google_mini u41 Google Home mini P HE

13 hs110 u12 TPlink Smart Plug HS110 P CC

14 hs105 u3 TPlink Smart Plug HS105 S CC

15 my_strom u24 MyStrom switch P CC

16 w245 u15 D-link DSP-W245 plug P CC

17 w115 u6 D-link DSP-W115 plug P CC

18 ihome u7 iHome Power Plug S CC

19 belk_sw u13 Belkin Wemo switch S CC

20 sams_st u5 Samsung Smart Things S CC

21 bc_blood u26 Blipcare Blood Pressure meter S CC

22 aw_aq u40 Awair air quality monitor S CC

23 i896 u23 iRoobot Roomba 896 P SA

24 i895 u22 iRoobot Roomba 895 P SA

25 wit_body u35 Withings Body S SA

26 smartw_cam u21 Smartwares C923IP Camera P S

27 blink_cam u18 Blink XT2 Camera P S

28 cana_cam u11 Canary View Camera S S

29 net_cam u32 Netatmo Welcome Camera S S

30 tp_cam u1 TPlink Day Night Cloud NC220 camera S S

31 sams_cam u19 Samsung SmartCam S S

32 nest_cam u38 Nest Dropcam S S

33 belk_cam u25 Belkin NetCam Camera S S

34 inst_cam u28 Insteon HD WiFi Camera S S

35 wit_baby u8 Withings Smart Baby Monitor S S

36 belk_mot u31 Belkin Wemo Motion Sensor S S

37 nest_smoke u9 NEST Protect Smoke Alarm S S

38 aug_door u29 August Doorbell Cam S S

39 ring_vd u37 Ring Video Doorbell S CL

40 net_therm u16 Netatmo smart thermostat P EM

41 net_weath u27 Netatmo Smart Weather Station S EM
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and diversity in both datasets which are characteristics of the 
devices in IoT concept. The characteristics of the initially 
collected data are shown in Table 3. They are expressed 
through the number of collected files containing 24-h inter-
vals of generated traffic, number of collected packets, file 
size, amount of collected data, and the total period of data 
collection.

The network traffic acquisition tool (Wireshark) uses spe-
cific metadata that it records within files with the collected 
traffic, which makes a difference between the size of the 
file and the amount of collected data (traffic) contained in 
the file.

3.3  Extraction of identified traffic features

To develop the SHIoT device classification model, the pro-
cess of filtering traffic from an individual.pcap file accord-
ing to the MAC address of the device was performed. The 
reason for this way of filtering is the assignment of an IP 
(Internet Protocol) address to devices via a DHCP (Dynamic 
Host Configuration Protocol) server, which is why it can 
change over time and does not represent a reliable feature 

according to which it is possible to accurately filter traffic to 
a particular device over time.

The research observes the traffic characteristics for 
individual SHIoT devices covered by the research (41 
devices) at the traffic flow level. The traffic flow is defined 
by a sequence of packets with equal values of source IP 
address, destination IP address, source communication 
port, destination communication port and the proto-
col used, TCP (Transmission Control Protocol) or UDP 
(User Datagram Protocol) [35]. The reason for choosing 
the traffic flow as the level of observation and analysis of 
traffic characteristics is that it represents the aggregated 
(statistical) data of the packet header for communication 
between the source and the destination. The analysis of 
packet-level traffic features encompasses more information 
such as packet content, and also requires more comput-
ing resources to store and process them. An example of 
the relationship between the number of traffic flows and 
the number of packages in 24 h is visible for the Google 
Chromecast device (covered by this study), where 11,877 
separate traffic flows were generated while the number of 
packets is 2,459,538. Nowadays, the number of devices 

Table 2  Statistical description of the collected legitimate network traffic data

Statistical measure Number of col-
lected packets

File size (Byte) The amount of data 
collected (Byte)

Average data 
transfer rate (B/s)

Average packet trans-
fer rate (packets/s)

The average 
packet size 
(Byte)

Primary data

 Standard deviation 2,613,702.80 2,503,780,307 2,462,270,632 28,498.13 30.25 175.48

 Minimum value 1,019,339 288,056,862 271,747,414 3,145.21 11.80 252.50

 Maximum value 14,815,959 13,562,522,315 13,325,466,947 154,232.80 171.48 899.40

 Mean value 4,428,879.60 3,416,448,737 3,345,586,639 38,721.71 51.25 677.78

Secondary data

 Standard deviation 1,646,515.40 804,291,290.10 765,130,504.3 12,047.91 186,6204 20.69

 Minimum value 527,035 89,615,024 71,959,664 832.87 136.54 6.10

 Maximum value 7,720,905 3,483,660,828 3,322,027,939 60,188.48 910.56 730.47

 Mean value 2,365,097.30 986,887,232.4 908,751,070 11,565.99 330.12 45.21

Total

 Standard deviation 2,557,564.50 2,429,423,670 2,396,969,893 27,864.11 165.57 329.45

 Minimum value 527,035 89,615,024 71,959,664 832.87 11.80 6.10

 Maximum value 14,815,959 13,562,522,315 13,325,466,947 154,232.80 910.56 899.40

 Mean value 3,835,384.10 2,714,894,474 2,641,775,718 30,881.53 132.69 492.91

Table 3  Characteristics of the 
initial traffic dataset

Number of files Number of col-
lected packets

File size (GB) The amount of 
data collected 
(GB)

Collec-
tion period 
(hours)

Primary (sum) 103 456,174,601 351.89 344.59 2,472.01

Secondary (sum) 41 99,334,088 41.44 38.16 986.45

Total 144 555,508,689 393.33 382.75 3,458.47
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and applications uses cryptographic methods for commu-
nication. The contents of the packet cannot be observed 
and analyzed in an economically, temporally, and legally 
acceptable way. Therefore, the observation and analysis 
of traffic characteristics at the traffic flow level represent 
an acceptable and frequently used approach in numerous 
studies.

The CICFlowMeter software tool was used to extract 
traffic flow features. CICFlowMeter is a tool developed at 
the Canadian Institute of Cyber Security, University of New 
Brunswick [36]. The tool was developed in the Java pro-
gramming language, which provides flexibility in selecting 
traffic flow features that can be calculated as well as adding 
new features. By using this tool, a total of 83 traffic flow 
features were extracted (z1,…,z83). The extracted traffic flow 
characteristics are the result of the analysis and identification 
of relevant traffic characteristics for MTC traffic resulting 
from the research [20]. The reason is to collect as many fea-
tures as possible in the initial set in order to determine in the 
later stages of the research (classification of SHIoT devices 
and anomaly detection) which independent features have 
the most significant influence on the change of the selected 
dependent feature.

Figure 4 shows the distribution of traffic flows (feature 
vectors), i.e., the share of traffic flows extracted from the 
collected traffic of SHIoT devices covered by the research.

The total number of collected traffic flows is 2,045,052. 
The presented feature vectors were used in the later phases, 
which include defining of SHIoT device classes and develop-
ing a SHIoT device classification model.

3.4  Defining classes of IoT devices

Identification of devices in the IoT environment is an impor-
tant step and the basis for activities related to the security 
of the environment in which such devices exist, such as the 
detection of unauthorized activities, unauthorized devices 
within the network, malicious program code. The authors in 
the research [16] use the cluster method for the purpose of 
classifying 21 IoT devices whereby the devices are classified 
separately based on 11 features. Based on the identification 

of the device, research [28] seeks to detect unauthorized 
devices connected to the observed network. For this pur-
pose, a total of 11 IoT devices was used, which are classi-
fied according to the semantic characteristics of the devices, 
i.e., their purpose (child monitoring devices, motion sen-
sors, refrigerators, security cameras, smoke sensors, sock-
ets, thermostats, televisions, clocks). A similar method of 
classification, based on the semantic characteristics of the 
device, is shown in research [37] in which the authors use a 
secondary dataset collected in [16]. The research included 
a total of 15 devices that are classified into four categories 
concerning the purpose of each device (concentrators, elec-
tronic devices, cameras, and sockets). Based on the analysis 
conducted by the research, the authors point out that the 
diversity of devices included in the data collection phase 
is more critical for the classification of SHIoT devices than 
the size of the dataset (the period of collection and amount 
of collected traffic).

From previous research, it is noticeable that the classifica-
tion approaches so far are based mainly on semantic features, 
which means that the device classes are defined according 
to the application of such devices or their functionalities. 
The lack of such an approach for defining classes can be 
observed from the aspect of the dynamism of the smart 
home environment. According to the statistical indicators 
presented in [34], the number of SHIoT devices is continu-
ously increasing, which is accompanied by an increase in 
the number of companies developing new solutions and new 
SHIoT devices. Therefore, SHIoT device classes need to be 
defined in a way that will apply to the upcoming SHIoT 
devices that will differ in functionality and application from 
the currently available devices.

3.4.1  Determining the traffic flow feature for the definition 

of device classes

The predictability of IoT device behavior is a phenomenon 
that is the result of the communication activities of IoT devices 
observed in research [15, 27, 38]. Since SHIoT devices pos-
sess a limited number of functionalities, specific devices will 
behave approximately equally in time according to the values 

Fig. 4  Distribution of the num-
ber of traffic flows according to 
the SHIoT device



3187International Journal of Machine Learning and Cybernetics (2021) 12:3179–3202 

1 3

of the observed traffic characteristics. Unlike IoT devices, the 
conventional devices (smartphones, desktops, laptops, and 
servers) support the installation of a large number of appli-
cations where the communication activity of such devices 
depends on the end-users and the way the device is used. 
Accordingly, the index of the level of predictability of the 
behavior of IoT devices expressed by the coefficient of varia-
tion of the received and sent data (Cu index) is a measure based 
on which it is possible to determine the behavior of SHIoT 
devices in a certain period. The closer the index (Cu) is to 0, 
the smaller the deviation of the observed device in relation to 
the amount of received and sent data, and it is considered that 
the level of predictability of the behavior of such a device is 
higher than the device whose Cu index is farther than 0. All 
notation used in paper are shown in.

The Cu index was calculated for the mean values of con-
secutive traffic flows of an individual SHIoT device in 30 days 
according to expression (1).

where:
Cu = CVar

u
 traffic predictability level index for SHIoT 

device u;

N total number of mean values of the ratio of received and 
sent traffic for consecutive traffic flows in period T;

xi the amount of the mean value of the ratio of received and 
sent traffic volume for consecutive traffic flows.

In order to avoid the mean values to weigh 0, which is a 
problem of applying the method of the coefficient of variation, 
as normalized values of dispersion, traffic flows in which the 
ratio of received and sent data is equal to 0 are removed from 
the data set.

3.4.2  Defining IoT device classes based on coefficients 

of variation

To define the device classes based on the Cu index value, we 
used the method of coefficients of variation classification used 
in research [29, 39–42]. It assumes a normal distribution of 
data. Since the distribution of the obtained values (Cu index) 
is asymmetric (slanted to the left), the data are transformed. 
The data transformation method was selected using the Ladder 
of powers method (Tukey method), which clearly shows the 

(1)C
u
= CVar

u
=

�

1

N−1

∑N

i=1

�

x
i
− x

�2

1

N

∑N

i=1
x

i

appropriate data transformation function to achieve a normal 
distribution [43].

From the results obtained by the applied method, the 
suitability of the application of the logarithmic function 
for data transformation is observed, since in this case, it 
results in a normal distribution. The distribution of data 
is closest to normal the closer chi2 is to 0, i.e., the closer 
P (chi2) is to 1. The normal distribution of the obtained 
data was confirmed by both the Shapiro–Wilk and Shap-
iro-Francia normality test, seen in Table 4, wherein both 
cases, p > 0.05 and the null hypothesis (that the values of 
the log (Cu) variable follow the normal distribution) can-
not be rejected. Parameters W and V represent coefficients 
that indicate the deviation from the normal distribution of 
data where the value of W ≈ 1 indicates the normal dis-
tribution of data, while z is a z-statistic that indicates how 
many standard deviations are observed data away from the 
mean value [44].

To apply the coefficients of variation classification 
method, the logarithmic values of Cu index were normal-
ized by the min–max method according to expression (2):

where:
C

u(norm) normalized value of a logarithmically trans-
formed value Cu in the interval [0,1];

log
(

C
u

)

 logarithmic value of Cu for device u;
log(C

umin
) – minimum logarithmic value of Cu of all 

devices;
log(C

umax
) maximum logarithmic value of Cu of all 

devices.
After establishing the normal distribution of data and 

their normalization, the method of defining classes based 
on coefficients of variation was applied as a result of the 
mean values of the coefficients of variation and their 
standard deviation.

The mean value of the coefficient of variation was cal-
culated according to expression (3):

where:
A

C
u(norm)

 arithmetic mean of the coefficients of variation 
of all devices;

(2)C
u(norm) =

log
(

C
u

)

− log(C
umin

)

log(C
umax

) − log
(

C
umin

)

(3)A
C

u(norm)
=

1

N

n
∑

u=1

C
1(norm) + C

2(norm) +⋯ + C
n(norm)

N

Table 4  Results of Shapiro–
Wilk and Shapiro-Francia 
normality tests

Variable Observations W V z p > z

log(Cu) – Shapiro–Wilk 41 0.98831 0.471 − 1.588 0.94382

log(Cu) – Shapiro-Francia 41 0.98887 0.495 − 1.367 0.91420
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N number of devices;
C

u(norm) coefficient of variation of device u.

The standard deviation of the coefficients of variation 
was calculated according to expression (4):

where:
�

C
u(norm)

 standard deviation of the coefficients of variation 
of all devices;

N number of devices;
C

u(norm) coefficient of variation of device u;

C arithmetic mean of the coefficients of variation of 
all devices.

Based on the previously performed data processing, a 
total of four classes of IoT devices were defined according 
to the method used in the research [41]. The first class 
includes devices where the condition is met Cu(norm) ≤ A

C
u(norm)

-�
C

u(norm)
 . The second class includes devices that meet the 

condition A
C

u(norm)
-�

C
u(norm)

< Cu(norm) ≤ 
A

Cu
+�

Cu

2
. The third class 

i nc ludes  dev i ce s  t ha t  mee t  t he  cond i t i on 
A

Cu
+�

Cu

2
 < Cu(norm) ≤ A

C
u
+ �

C
u
 , while the last class includes 

devices that satisfy the condition Cu(norm) > A
C

u
+ �

C
u
.

Values of Cu index, logarithmically transformed val-
ues, and min–max normalized values for each analyzed 
device are shown in Table 5. According to the data shown 
in Table  5, a total of four device classes was defined 
based on the values of the Cu index. The first class (C1) 
includes all devices whose logarithmically transformed, 
and normalized value of Cu index is Cu(norm) ≤ 0.253722. 
The second class (C2) includes devices which met 
the condition 0.253722 < Cu(norm) > 0.354866. The 
third class (C3) includes devices that met condition 
0.354866 < Cu(norm) ≤ 0.709732 while the last class (C4) 
includes devices that met condition Cu(norm) > 0.709732.

Class C1 denotes IoT devices with a very high level of 
behavioral predictability since the coefficient of variation 
of the ratio of received and sent data is closest to 0. This 
means that such devices behave approximately equally 
over time from the aspect of the observed feature. If a 
Class C1 IoT device is used by a user, another device, or 
the environment, there will be no significant effect on the 
change in the Cu index value.

Class C2 combines devices with a high level of predict-
able behavior. If a device in the specified class is used by 
a user, another device, or the environment, it can result 
in minor changes to the ratio of received and sent data. 
Devices integrated into class C3 represent devices with a 
medium level of predictable behavior. The impact of user 
interaction, other devices, or the environment on the rela-
tionship between received and sent data can be significant. 

(4)�
C

u(norm)
=

√

√

√

√

1

N − 1

n
∑

u=1

(C
u(norm) − C)2

This behavior can result in additional functionality of the 
device that, at certain times, results in a larger amount of 
data in the incoming or outgoing direction.

The latest class (C4), combines SHIoT devices with a low 
level of predictable behavior. The use of such devices and 
their interaction with the user, other devices, or the envi-
ronment significantly affects the relationship between the 
received and sent data. The reason is a significantly higher 
amount of data in the incoming direction (download) as a 
result of user requests. An example is seen with a device 
such as Google Chromecast, where video content is played at 
the user’s request, which requires it to be downloaded via the 
Youtube service. This class also includes the Google Home 
mini, a smart speaker that can provide a variety of audio 
contents at the user request, which also causes a more con-
siderable variation in the ratio of received and sent traffic.

Figure 5 shows an example of the behavioral relation-
ships of four SHIoT devices (TPlink Day Night Cloud 
NC220 camera, NEST Protect Smoke Alarm, iRoobot 
Roomba 896, and Google Home mini) belonging to different 
classes for 1,000 consecutive traffic flows. There is a differ-
ence in the variation of the ratio of received and sent traf-
fic (Cgoogle_mini = 4.18) in relation to the devices TPlink Day 
Night Cloud NC220 camera (Ctp_link = 0.042), NEST Protect 
Smoke Alarm (Cnest_smoke = 0.19), and iRoobot Roomba 896 
(Ci896 = 0.37).

For the development of a classification model based on 
the method of logistic regression improved by the concept of 
supervised machine learning, a dataset was formed contain-
ing the values of extracted characteristics of SHIoT devices 
traffic flows and belonging to the class of each device for 
each traffic flow in the dataset. The process of forming a 
dataset that contains aggregated data on the values of the 
characteristics of individual traffic flow and the affiliation of 
the traffic flow to the defined classes is shown by the UML 
(Unified Modeling Language) flow diagram in Fig. 6.

Each traffic flow is generated by a SHIoT device belong-
ing to a particular class according to the classification shown 
in Table 5. Accordingly, each traffic flow is associated with 
a corresponding class, as shown in Table 6.

The extraction of traffic flow characteristics generated 
by an individual SHIoT device and the definition of SHIoT 
device classes are the basis for the formation of a data 
set of SHIoT device traffic flows to which class labels are 
associated.

4  Development of SHIoT device 
classi�cation model

In order to develop a multiclass classification model of 
SHIoT devices, the logitboost method was used. The method 
used belongs to the ensemble machine learning methods 
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and is based on the statistical method of logistic regression. 
Ensembles combine several models, as shown in Fig. 7, with 
each model solving the original problem to obtain a better 
composite global model with better performance than using 
a single model [45].

Boosting belongs to a set of ensemble methods that can 
convert multiple "weak" classifiers (models that predict the 
target class depending on the values of the observed feature 
vectors) into "strong" classifiers. In general, a "weak" clas-
sifier is a model whose class prediction accuracy is slightly 
better than random guessing, while a strong classifier is 

Table 5  Defined device classes according to Cu index value

No.# Device Index Cu log(Cu) transformation min–max normaliza-
tion (Cu(norm))

Class defition Class label

1 tp_cam 0.042916917 − 1.36737 0 Cu(norm) ≤ A
C

u
-�

C
u

C1

2 wiz_F3 0.075820416 − 1.12021 0.124242056

3 hs105 0.076231674 − 1.11786 0.125423008

4 wiz_B0 0.08086321 − 1.09225 0.138299504

5 sams_st 0.123562483 − 0.90811 0.230861447

6 w115 0.142241675 − 0.84697 0.261595627

7 ihome 0.148887517 − 0.82714 0.271564558
A

C
u
-�

C
u
< Cu(norm) ≤ 

A
Cu

+�
Cu

2

C2

8 wit_baby 0.176239975 − 0.7539 0.308384178

9 nest_smoke 0.192606687 − 0.71533 0.327771139

10 ph_hue_2 0.200187894 − 0.69856 0.336199355

11 cana_cam 0.209863653 − 0.67806 0.346504073

12 hs110 0.24742122 − 0.60656 0.382445795 A
Cu

+�
Cu

2
 < Cu(norm) ≤ A

C
u
+ �

C
u

C3

13 belk_sw 0.254614637 − 0.59412 0.388702406

14 wit_aura 0.261184872 − 0.58305 0.394264423

15 w245 0.27041724 − 0.56797 0.401848085

16 net_therm 0.290797956 − 0.53641 0.417711253

17 amz_dot 0.318918293 − 0.49632 0.437862868

18 blink_cam 0.344500361 − 0.46281 0.454707915

19 sams_cam 0.34686605 − 0.45984 0.456201948

20 lifx 0.346886878 − -0.45981 0.456215056

21 smartw_cam 0.357559305 − 0.44665 0.462830477

22 i895 0.358681004 − 0.44529 0.463514273

23 i896 0.379012744 − 0.42135 0.475551248

24 my_strom 0.432393144 − 0.36412 0.5043173

25 inst_cam 0.479119397 − 0.31956 0.526719365

26 bc_blood 0.479127026 − 0.31955 0.526722841

27 net_weath 0.543491131 − 0.26481 0.554240633

28 belk_cam 0.565787022 − 0.24735 0.563017747

29 aug_door 0.610206124 − 0.21452 0.579517618

30 amz_echo 0.632948837 − 0.19863 0.587506285

31 belk_mot 0.724907331 − 0.13972 0.617121319

32 net_cam 0.764635407 − 0.11655 0.628769456

33 ph_hue_4 0.791347539 − 0.10163 0.636265899

34 pix 0.958787396 − 0.01828 0.678167108

35 wit_body 1.140461786 0.057081 0.716048538 Cu(norm) > A
C

u
+ �

C
u

C4

36 google_chr 1.267801595 0.103051 0.739157175

37 ring_vd 1.370122066 0.136759 0.756101612

38 nest_cam 1.985562839 0.297884 0.837096166

39 triby 2.468462951 0.392427 0.884621355

40 aw_aq 2.553917945 0.407207 0.89205118

41 google_mini 4.187473486 0.621952 1
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characterized by near-ideal performance. Boosting methods 
have proven to be a suitable classification technique that 
provides excellent results in solving problems from different 
domains [46]. Given the classification problem that is being 
addressed and the proven effectiveness of the boosting group 
of machine learning methods, the logitboost method was 
used in this research.

4.1  Feature selection for development of SHIoT 
device classification model

Selecting the traffic characteristics generated by SHIoT 
devices is a crucial step in the process of developing a SHIoT 
device classification model. The importance of feature selec-
tion has been proven in numerous studies using statistical 
and machine learning methods, especially in the area of 

classification and regression. The aim is to identify a subset 
of the original feature set that is relevant to the classification 
problem being addressed and to remove those features that 
are irrelevant or redundant, thus reducing the dimensional-
ity of the feature space as well as the entire dataset. The 
choice of features has a positive effect on the accuracy of 
the classification model, the speed of classification, and can 
reduce the occurrence of overfitting, which often leads to 
poor results in the validation process [47].

Features related to traffic flow identification (z1,.., z7) 
were preventively removed from the initial feature set to 
reduce its bias, a phenomenon that causes "wrong assump-
tions" during the model learning phase and results in a 
failure to identify the relevant relationships between inde-
pendent and dependent features. Therefore, the initial set of 
independent features was reduced from 83 to 76.
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Fig. 5  Display of the difference in the behavior of four SHIoT devices in time according to the ratio of received and sent traffic for 1,000 con-
secutive traffic flows
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For the purpose of selecting features, the information gain 
(IG) method was used. The selected method is based on 
entropy and belongs to a set of feature ranking methods. This 
group of methods is characterized by simplicity and good 
results in practical applications, which is why it is often used 
in the process of selecting features in different domains such 
as text categorization, genome analysis, anomaly detection 
in communication networks, and bioinformatics [48–51].

According to [52], the IG method belongs to the meas-
ures based on correlation and serves to calculate the degree 
of correlation between the selected independent feature 
and the dependent feature (device class) and to evaluate 
the suitability of the feature for the classification purpose 
(goodness of feature). According to [53], an independent 
feature is appropriate if it is relevant to the observed depend-
ent feature, but it is also not redundant with other relevant 
independent features. IG expresses a measure to reduce the 
uncertainty of identifying a dependent feature in the case 
where the value of the independent feature is unknown. The 
uncertainty calculation is based on information theory, and 
Shannon entropy to select those independent features that 
have the most significant impact on the dependent feature. 
The entropy of the dependent feature X is defined by expres-
sion (5) [53].

where:

(5)H(X) = −

n
∑

i=1

P
(

xi

)

log
2

(

P
(

xi

))

U1 U2 U3 U4 Un

Extraction of traffic flow features

...

Calculating the value of
a dependent feature

Determining the affiliation of a

SHIoT device to a class

Assign a class label to device feature vectors

Extraction / calculation of
independent feature values

Filtering the collected traffic by SHIoT device

Fig. 6  UML activity diagram of the data set creation process

Table 6  Example and aggregation of traffic flows and class labels

No.# Device label z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 … z83 class

1 u6 110,176,901 5 4 372 648 186 0 74 102 186 154 … 54,900,000 C1

2 u6 110,117,149 5 4 372 648 186 0 74 102 186 154 … 54,800,000 C1

3 u4 113,285,202 30 23 2012 3831 267 0 67 78 1460 0 … 5,740,188 C1

4 u4 8,334,253 3 2 96 80 32 32 32 0 48 32 … 5,269,207 C1

5 u4 79,698,183 25 21 1,805 4905 267 0 72 83 1460 0 … 5,767,895 C1

6 u11 9,383 7 1 2,156 308 308 308 308 0 308 308 … 0 C2

7 u11 1,649 3 1 924 308 308 308 308 0 308 308 … 0 C2

8 u10 4,785,250 17 1 5,104 296 305 296 300 4 296 296 … 0 C2

9 u10 4,795,180 17 1 5,104 296 305 296 300 4 296 296 … 0 C2

10 u10 90,304,076 4 5 0 74 0 0 0 0 39 0 … 30,000,000 C2

11 u19 2,461 1 3 33 143 33 33 33 0 61 33 … 0 C3

12 u19 2,337 1 3 33 143 33 33 33 0 61 33 … 0 C3

13 u30 108,109,786 4 1 596 149 149 149 149 0 149 149 … 27,000,000 C3

14 u30 108,113,739 4 1 636 159 159 159 159 0 159 159 … 27,000,000 C3

15 u30 119,577,279 9 11 164 246 41 0 18 22 41 0 … 29,100,000 C3

16 u41 141,088 4 7 454 2,881 357 28 114 162 1350 16 … 0 C4

17 u42 68,231 1 3 32 140 32 32 32 0 60 32 … 0 C4

18 u43 15,158,091 9 9 6,181 3,268 1,350 23 687 660 1,350 20 … 14,900 C4

19 u44 15,125,583 8 8 4,966 3,058 1,350 23 621 657 1,350 20 … 14,900 C4

20 u45 75,000,643 3 4 26 26 26 0 9 15 26 0 … 29,800 C4
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H(X) entropy of dependent feature X;

P(xi) probability of occurrence of value xi for feature X.

The entropy of the dependent feature X, after observing 
the value of the independent feature Y, is defined by expres-
sion (6).

where:
P(yi) probability of occurrence of value yj for feature Y;

P(xi|yj) conditional probability of feature X concerning 
values of feature Y.

The information gain reflects the amount by which the 
uncertainty of an individual value identification of the 
dependent feature X (device class) decreases with respect to 
the values of the observed independent feature Y according 
to the expression (7).

Since the dependent feature X can only take four val-
ues (four possible classes), the maximum value of IG is 
2 (log2X). Therefore, the value obtained for an individual 
independent feature represents the amount of information 
of the independent feature, i.e., the amount by which the 
observed independent feature reduces the entropy (uncer-
tainty) of the dependent feature. Table 7 shows the character-
istics of the traffic flow with the expressed value of IG. From 
the presented table it can be seen that, for example, feature 
z12 almost completely reduces the entropy of the dependent 
feature (IG = 1.832) while certain features (e.g. z67, z39, 

z37) do not contribute to the decrease of the entropy of the 
dependent feature (IG = 0).

Accordingly, the set of 76 has been further reduced to 58 
independent features. In doing so, those features that satisfy 
the condition IG > 0 are considered. The obtained subset 
of features cannot be considered final since, in the devel-
opment phase of the SHIoT device classification model, it 
is necessary to examine the model performance further if 

(6)H(X|Y) = −

m∑

j=1

P
(
yj

) n∑

i=1

P
(
xi|yj

)
log2

(
P
(
xi|yj

))

(7)IG = H(X) − H(X|Y)

features with lower IG values are removed. The goal is to 
use the minimum set of features that gives the best perfor-
mance of the classification model in order to reduce the time 
required to predict the class, reduce complexity, and reduce 
the occurrence of model bias.

4.2  Dataset used in the development 
of the classification model

The classification model, which aims to determine the class 
to which a device belongs based on the traffic flow charac-
teristics it generates, is based on traffic flow characteristics 
collected over a period of 10 days for each device. The traffic 
flow feature vectors extracted for SHIoT devices are labeled 
with the appropriate class (Table 6). The number of traffic 
flows generated in the observed period depends on the char-
acteristics of each SHIoT device [54].

The initial dataset, according to the above, has the char-
acteristics of an unbalanced dataset and contains a total of 
681,684 feature vectors distributed in four classes, according 
to Fig. 8. Therefore, before the development of the classifica-
tion model, the number of traffic flows in the used dataset 
was balanced by stratification with the under-sampling of the 
majority represented class. Representation of traffic flows 
of an individual device in the initial dataset has been taken 
into account. The reason for this approach is the possibility 
of model bias occurring to the class that contains the largest 
number of feature vectors, and according to [55] it is neces-
sary to stratify the classes before the model development. 
Following the stratification, the dataset contains 117,423 
feature vectors used to further develop the classification 
model.

Fig. 7  Generalized presenta-
tion of the working principle of 
an ensemble machine learning 
method
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4.3  Application of the additive logistic regression 
method for multiclass classification of SHIoT 
devices

Additive logistic regression (logitboost) is a method of con-
trolled machine learning that can be viewed as a generaliza-
tion of the classical statistical method of logistic regression. 
The Logitboost method was developed in the year 2000 and 
presented in the research [56].

4.3.1  Logistic regression method

The logistic regression method models the conditional prob-
ability of belonging of the observed example to a particular 
class Pr(G = j|X = x) for the J class, where it is possible to 
determine the classes of unknown examples according to 
expression (8).

(8)j = argmax
j

Pr(G = j|X = x)

Table 7  Information gain values 
as the basis for selecting a 
subset of relevant independent 
features

No.# IG value Feature label No.# IG value Feature label No.# IG value Feature label

1 1.831 z71 27 1.2383 z27 53 0.171 z51

2 1.831 z12 28 1.2116 z15 54 0.1671 z54

3 1.7287 z11 29 1.2116 z60 55 0.1101 z58

4 1.7287 z69 30 1.2021 z20 56 0.1058 z53

5 1.7279 z17 31 1.2015 z80 57 0.1058 z38

6 1.7133 z46 32 1.1743 z31 58 0.0233 z50

7 1.6839 z13 33 1.1615 z29 59 0 z66

8 1.6836 z49 34 1.1105 z83 60 0 z37

9 1.6178 z25 35 1.1008 z36 61 0 z52

10 1.5472 z19 36 1.0894 z26 62 0 z39

11 1.5472 z61 37 1.0516 z42 63 0 z55

12 1.5247 z47 38 1.0341 z41 64 0 z40

13 1.5182 z30 39 0.997 z18 65 0 z75

14 1.5179 z35 40 0.9598 z21 66 0 z56

15 1.501 z48 41 0.9487 z79 67 0 z65

16 1.4204 z59 42 0.726 z78 68 0 z64

17 1.374 z73 43 0.6428 z68 69 0 z67

18 1.318 z23 44 0.6428 z9 70 0 z62

19 1.3006 z16 45 0.5977 z14 71 0 z72

20 1.29 z28 46 0.5942 z45 72 0 z57

21 1.2837 z33 47 0.5809 z74 73 0 z63

22 1.2761 z8 48 0.4579 z70 74 0 z81

23 1.2727 z24 49 0.4579 z10 75 0 z77

24 1.2675 z82 50 0.4032 z22 76 0 z76

25 1.2488 z32 51 0.3145 z44

26 1.2467 z34 52 0.3103 z43

Fig. 8  Distribution of traf-
fic flows according to SHIoT 
device classes
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where:
j j-th class from the set of classes G;

G set of classes (1,…,J);
x independent feature from set X;

X a set of independent features.
Logistic regression models probabilities using linear 

functions in x while at the same time ensuring that their 
sum remains within limits [0,1]. The model is specified in 
terms of J—1 log-odds that separate each class from the 
"basic" class J according to expressions (9, 10, 11).

where:
�j logistic coefficient of the independent feature for 

class j;

Expression (9) implies a multiclass classification model 
in which xi is the i-th feature vector, and J represents a 
class where j ∈ {0,1,2,..,J-1} under condition J ≥ 3. This 
model sets linear boundaries between areas correspond-
ing to different classes. Thus, examples (xi) that lie on the 
boundary between two classes (j and J) are those for which 
implies Pr(G = j|X = x) = Pr (G = J|X = x) which is also 

(9)log
Pr

[
G = j|X = x

]

Pr[G = J|X = x]
= �T

j
xi;j = 1, .., J − 1

(10)Pr (G = j�X = x) =
e
�T

j
xi

1 +
∑J−1

l=1
e�

T
l

xi

;j = 1, .., J − 1

(11)Pr (G = J�X = x) =
1

1 +
∑J−1

l=1
e
�T

l
xi

the equivalent of log odds = 0. Adaptation of the logistic 
regression model involves estimating parameter �j where 
the standard statistical procedure is to find the maximum 
of the likelihood function [57].

4.3.2  Logitboost method

In models based on logistic regression, there is no single 
method for estimating parameter �j that would result in 
maximizing the plausibility function, but it is necessary to 
use the optimization methods. In this way, the maximum of 
the likelihood function is reached by an iterative procedure. 
Logitboost is one such method used in this study, and is 
based on the multinomial ordinal logistic regression method 
due to the existence of more than two dependent features 
whose values follow a natural sequence. In general, logit-
boost takes the form shown by expression (12).

where:
Fj(x) independent feature function (x).

Functions Fj(x) =
M
∑

m=1

fmj(x) and fmj are functions of inde-

pendent features. In each iteration m (m ∈ {1,2,…, M}), for 
example (xi) that is misclassified, the weighting factor (w) 
increases while in the correctly classified example, the 
weighting factor decreases. In this way, the m-th "weak" 
classifier  fm focuses on examples that have been misclassi-
fied in previous iterations.

(12)Pr (G = j�X = x) =
eFj(x)

∑J

k=1
eFk(x)

;

J�

k=1

Fk(x) = 0

Fig. 9  Logitboost method [46]
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The output of the logitboost method is a set of J + 1 
response functions {Fj(x); j = 0,1,…,J} as shown in Fig. 9. 
Each Fj(x) is a linear combination of a set of "weak" 
classifiers.

5  Results analysis and discussion

Model development, testing, and validation were per-
formed using the WEKA software tool with the support 
of MS Excel 2016 during the preparation of the dataset for 
model development. Because a total of 59 features were 
selected in the feature selection process using the informa-
tion gain method, the number of features was gradually 
reduced during the model development when validation 

measures for each model were compared. This process 
aims to develop a model that will use the least possible 
number of independent features that will not significantly 
negatively affect its performance.

Each model was validated by k-fold cross-validation 
with k = 10. The principle of operation of the k-fold cross-
validation for k = 5 is shown in Fig. 10. Cross-validation is 
a statistical method intended to assess the performance of 
machine learning models on new, unseen data. This method 
is used to assess the behavior of the model over data that 
was not used in the learning phase. In doing so, the model is 
applied k times iteratively over the dataset. In each iteration, 
the dataset is divided into k parts. One part of the set is used 
to validate the model, while the remaining k-1 parts of the 
set are combined into a subset for model learning.

Fig. 10  Representation of k-fold cross-validation with k = 5 [58]

Table 8  Performance representation of the SHIoT device classification model

M1–59 M2–48 M3–33 M4–13 M5–8

Accurately classified examples 117,197 (99.8075%) 117,188 (99.7999%) 117,178 (99.7914%) 117,183 (99.7956%) 117,087 (99.7139%)

Misclassified examples 226 (0.1933%) 235 (0.2001%) 245 (0.2086%) 240 (0.2044%) 336 (0.2861%)

Kappa coefficient (κ) 0.9974 0.9973 0.9972 0.9973 0.9962

Total examples 117,423
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Tables 8, 9, 10, 11 show the performance and results 
of validation measures for a total of five models (M1,…, 
M5) with a different number of independent features used 
(M1–59 features, M2–48 features, M3–33 features, M4–13 
features and M5–8 features). Features were reduced to the 
lowest IG value (Table 7). The initial dataset was divided 
into a 70/30 ratio, where 70% of the examples in the set were 
used for model learning, while 30% were used for model 
testing. This division, along with 60/40 and 80/20, is com-
mon in the development of models based on machine learn-
ing methods [58].

The performance of a classification model based on 
machine learning needs to be expressed through several dif-
ferent measures, especially when the model is multiclass, 
given that each measure has advantages and limitations [59]. 
Accuracy is one of these measures that represents the share 
of accurately classified examples in the set of all examples 
according to expression (13) where TP (true positive exam-
ples), TN (true negative examples), FP (false positive exam-
ples) and FN (false negative examples).

where:

(13)Acc =
TP + TN

TP + TN + FP + FN

Acc proportion of accurately classified examples in the 
set of all examples;

TP number of true positive examples;
TN number of true negative examples;
FP number of false positive examples;
FN number of false negative examples.
Table 8 shows that all models have approximately the 

same classification accuracy (≈ 99.8%). The drop in accu-
racy is only noticeable with the M5 model, which uses 
eight independent features. The accuracy of the classifica-
tion is 99.71% or 336 misclassified examples. The table 
shows a slight decrease in the accuracy of the classifica-
tion for the M4 model (99.7956%) compared to the M1 
model (99.8075%) which uses all 59 features.

Kappa coefficient (κ) expresses the measure of the suc-
cess of the observed model according to the ideal with 
the correction of random selection [60]. The values of 
the kappa coefficient range from [0,1] where κ = 0–0.2 
is an extremely bad model, κ = 0.2–0.39 is a bad model, 
κ = 0.4–0.59 is a moderate model, κ = 0.6–0.79 a good 
model, κ = 0.8–0.9 a very good model and κ = 0.9–1 an 
excellent model. According to the scale shown and the 
results seen in Table 8, all models show excellent charac-
teristics according to the kappa coefficient, whereas the 
M4 model shows a minimal deviation from the M1 model 
(0.0001) with a significant reduction in the independent 
features used.

The accuracy of the model in predicting SHIoT device 
classes according to the traffic flow characteristics is also 
given by the confusion matrix shown in Table 9. Con-
fusion matrix represents the performance measure for 
machine learning classification models where output can 
be two or more classes, representing the basis for other 
performance measures. In the confusion matrix shown in 
Table 9, the relation between traffic flow class affiliation 

Table 9  Confusion matrix for classification model M4

Predicted class affiliation

C1 C2 C3 C4

28,068 7 16 54 C1 Actual 
class 
affiliation

12 29,831 3 7 C2

18 3 29,331 28 C3

57 12 23 29,953 C4

Table 10  Overview of model 
validation measures (TPR and 
FPR)

Class True positive rate (TPR) False positive rate (FPR)

M1–59 M2–48 M3–33 M4–13 M5–8 M1–59 M2–48 M3–33 M4–13 M5–8

C1 0.998 0.998 0.997 0.997 0.997 0.001 0.001 0.001 0.001 0.001

C2 0.999 0.999 0.999 0.999 0.999 0 0 0 0 0.001

C3 0.998 0.998 0.998 0.998 0.997 0.001 0 0.001 0 0.001

C4 0.997 0.997 0.997 0.997 0.996 0.001 0.001 0.001 0.001 0.001

Table 11  Overview of model 
validation measures (F-measure 
and precision)

Class Precision F-measure (F1 score)

M1–59 M2–48 M3–33 M4–13 M5–8 M1–59 M2–48 M3–33 M4–13 M5–8

C1 0.998 0.997 0.997 0.997 0.995 0.998 0.997 0.997 0.997 0.996

C2 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999 0.999

C3 0.998 0.999 0.998 0.999 0.998 0.998 0.998 0.998 0.998 0.998

C4 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.996
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predicted by the developed model and actual class affilia-
tion of observed traffic flow is visible. Accordingly, a high 
number of traffic flows whose class affiliation is accurately 
predicted in relation to the number of instances whose 
class affiliation is incorrectly predicted is observed.

Additional validation measures are expressed through 
sensitivity, i.e., the rate or frequency of TPR and the rate or 
frequency of FPR are shown in Table 10.

The true positive rate results represent accurately classi-
fied examples of a class in the set of all examples assigned 
to that class according to expression (14). The false posi-
tive example rate represents the ratio of misclassified class 
examples in the set of all examples assigned to that class to 
expression (15)

where:
TPR true positive rate;

where:
FPR false positive rate;
Table 10 shows that models M1 and M2 provide the best 

results according to the TPR measure for class C1, for class 
C2 all observed models provide the same results, while for 
classes C3 and C4 model M5 provides slightly worse results 
compared to the others. From the aspect of FPR measures, 
the M2 and M4 models provide better or equally good results 
compared to other models, with the M5 model providing the 
worst results.

Additional validation measures that show the quality of 
the classification model are the precision or positive pre-
diction value (PPV) and the F-measure shown in Table 10, 
as well as ROC and PRC (Precision-Recall Curve) curves 
whose values are shown in Table 12.

The measure of precision is used to express the number of 
correctly classified examples in relation to the total number 
of examples belonging to that class according to expression 
(16).

(14)TPR =
TP

TP + FN

(15)FPR =
FP

FP + TN

where:
PPV positive prediction value
According to the values expressed in Table 11, it can be 

seen that for class C1 the best results are given by model 
M1 while the worst results are visible with model M5. For 
classes C2 and C4, equally good results are observed for all 
models with the exception of the M5 model for the C2 class, 
while for the C3 class, the M2 and M4 models provide the 
best results.

The F-measure or F1 score represents the harmonic mean 
of the precision measures and the TPR according to expres-
sion (17) [59]. According to [61], the harmonic mean is 
more intuitive than the classical arithmetic mean to calculate 
the mean of the ratio.

The calculated values of the F-measure shown in Table 11 
indicate the M5 model as the worst observed from the aspect 
of classes C1 and C4 while the other models show approxi-
mately the same results.

Table 12 shows the values of ROC and PRC validation 
measures. The ROC curve, or AUROC (Area Under the 
ROC Curve), is one of the most important and most fre-
quently used measures that show the quality of the clas-
sification model.

ROC is, although in this case, expressed in tabular form, 
a graphical representation of the relationship between the 
rate of true positive classifications (TPR) and specificity, 
i.e. the rate of true negative classifications (TNR = 1–FPR). 
An example of a graphical representation of the ROC curve 
is seen in Fig. 11 for the M4 model. The area under the 
curve, AUROC, is interpreted as the average TPR value for 
all TNR values in the interval [0,1]. The closer the AUROC 
is to the value of 1, the better the performance of the clas-
sification model. A lower value of 0.5 represents the per-
formance of the model equal to random guessing [8]. The 
values shown in Table 12 indicate the excellent performance 
of all observed models, i.e. almost all AUROC values are 
very close to the value of 1.

(16)PPV =
TP

TP + FP

(17)F1 =
2(PPV ⋅ TPR)

PPV + TPR

Table 12  Overview of model 
validation measures (ROC and 
PRC)

Class ROC PRC

M1–59 M2–48 M3–33 M4–13 M5–8 M1–59 M2–48 M3–33 M4–13 M5–8

C1 0.9999 0.9999 0.9998 0.9997 0.9998 0.999 1 0.999 0.998 0.999

C2 1 1 1 0.9999 0.9998 1 1 1 1 1

C3 0.9997 0.9999 0.9999 0.9998 0.9998 1 1 1 1 1

C4 0.9998 0.9999 0.9998 0.9996 0.9997 1 1 0.999 0.999 0.999
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An alternative measure to the ROC is the PRC (Precision-
Recall Curve), which is often used in cases of unbalanced 
datasets, whereas in the ROC measure a significant change 
in the number of false positively classified examples may 
result in small change in the rate of false positively classified 
examples. Therefore, since PRC uses the ratio of PPV and 
TPR, i.e. focuses on positively classified examples (TP and 
FP), it can better demonstrate the impact of many negative 
examples on the model performance. Because the dataset 
was stratified in this research, the PRC measure gives almost 
the same results as the ROC measure for all the observed 
models.

According to the analysis of the results, the M4 model 
was selected as the optimal model of SHIoT device clas-
sification, considering that its performance according to all 
presented measures does not deviate significantly from other 
observed models (TPR 0–0.001, FPR 0–0.001, PPV 0–0.001, 
F1 0–0.001, ROC 0.0001–0.0003 and PRC 0–0.002) with a 
significant reduction in the independent features used. In 
the M4 model, a total of 13 independent features were used 

compared to the initial 59, which, according to the IG value, 
had some influence on the dependent feature. The independ-
ent features used are shown in Table 13.

As can be seen from the table, the most relevant fea-
tures are information-related to the length of packets in the 
observed traffic flow (z11–total length of sent packets in 
traffic flow; z12–total length of received packets; z13–the 
maximum length of sent packets; z17–the maximum length 
of received packets, z19–mean value of received packet 
length, z46–maximum packet length, z47–mean packet 
length value, z49–packet length variation), then information 
on interarrival packet times in traffic flow (z25–maximum 
interarrival packet time in traffic flow; z30–the maximum 
time between two consecutive packets sent in traffic flow). 
Features that provide information on the segments in the 
traffic flow (z61–the average size of the received segment), 
as well as features that provide information on the amount of 
data transmitted in the sub-stream (z60–the amount of data 
sent in the sub-stream; z71–the amount of data received in 
the sub-stream), proved to be relevant (Table 14).

Fig. 11  ROC curve representation for classification model M4
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6  Conclusion and future work

The research presented in this paper provides a new 
approach in observing the behavior of IoT devices based on 
the generated network traffic. The goal, which was achieved 
by this research, was to develop an effective model of IoT 
device classification in a smart home environment, which 
is based on the outgoing and incoming traffic ratio coef-
ficient of variation as a measure of device behavior pre-
dictability. The basis of the research and achieving the 
defined goal is the scientific hypothesis that it is possible 
to define classes of IoT devices and develop an effective 
classification model based on supervised machine learning 

methods acknowledging traffic characteristics generated by 
IoT devices in a smart home environment. The scientific 
hypothesis was proved by defining four classes of devices 
based on the coefficient of variation ratio of received and 
sent traffic. The defined classes conditioned the development 
of the classification model of IoT devices.

The mentioned coefficient was named Cu index, which 
was chosen as a dependent feature used for the purpose of 
defining a total of four classes of SHIoT devices using the 
method of the coefficient of variation classification. Based 
on the defined classes of SHIoT devices, a multiclass clas-
sification model based on the boosting method of addi-
tive logistic regression as a machine learning method was 
developed, which according to all validation measures, 

Table 13  Independent 
features used in the process of 
developing the classification 
model

A subset of features Number of 
features

Feature label

Initial set 83 z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14, z15, 
z16, z17, z18, z19, z20, z21, z22, z23, z24, z25, z26, z27, 
z28, z29, z30,z31, z32, z33, z34, z35, z36, z37, z38, z39, 
z40, z41, z42, z43, z44, z45, z46, z47, z48, z49, z50, z51, 
z52, z53, z54, z55, z56, z57, z58, z59, z60, z61, z62, z63, 
z64, z65, z66, z67, z68, z69, z70, z71, z72, z73, z74, z75, 
z76, z77, z78, z79, z80, z81, z82, z83

Information gain 59 z9, z10, z11, z12, z13, z14, z15, z16, z17, z18, z19, z20, z21, 
z22, z23, z24, z25, z26, z27, z28, z29, z30, z31, z32, z33, 
z34, z35, z36, z38, z41, z42, z43, z44, z45, z46, z47, z48, 
z49, z50, z51, z53, z54, z58, z59, z60, z61, z68, z69, z70, 
z71, z73, z74, z78, z79, z8, z80, z82, z83

Model M4 13 z11, z12, z13, z17, z19, z25, z30, z46, z47, z49, z61, z69, z71

Table 14  Notation used in 
paper

Notation Description

Cu Coefficient of variation of the received and sent data

CVaru Traffic predictability level index for SHIoT device

xi The amount of the mean value of the ratio of received and sent traffic volume 
for consecutive traffic flows

Cu(norm) Normalized value of a logarithmically transformed value  Cu in the interval [0,1]

log(Cu) Logarithmic value of Cu for device u;

log
(

C
u

min

)

Minimum logarithmic value of Cu of all devices

log
(

C
u

max

)

Maximum logarithmic value of Cu of all devices

A
C

u(norm)
Arithmetic mean of the coefficients of variation of all devices

σ
C

u(norm)
Standard deviation of the coefficients of variation of all devices

C Arithmetic mean of the coefficients of variation of all devices

H(X) Entropy of dependent feature X

P(xi) Probability of occurrence of value xi for feature X

P(yi) Probability of occurrence of value yj for feature Y

P(xi|yj) Conditional probability of feature X concerning values of feature Y

j j-th class from the set of classes G

G set of classes (1,…,J);

βj Logistic coefficient of the independent feature for class j

Fj(x) Independent feature function (x)
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shows high performance. The accuracy of SHIoT device 
recognition to one of the defined classes based on inde-
pendent traffic flow features is 99.79%. Relevant independ-
ent traffic flow features used in the development of the 
model were selected using the information gain method.

The research proved that it is possible to assign, with high 
accuracy, new and unseen devices, and traffic flow that they 
generate into predefined classes with the application of boost-
ing methods of machine learning. Besides, this approach 
responds to the needs of the newly created IoT environment in 
which the number of devices is growing exponentially, and it is 
not possible (or requires substantial resources) to know traffic 
profiles for each device, but it is sufficient to identify which 
class the device belongs to. This innovative approach has the 
potential to lay the foundations for many other activities and 
research in the IoT concept problem domain. The detection 
of anomalies in the communication network caused by IoT 
devices is one of the future research directions that will use 
findings and conclusions gathered in this research. Besides 
further research, developed model can have real-life applica-
tions as a software solution that can upgrade functionalities 
of the existing solutions for the device and network monitor-
ing and management in an environment where many various 
IoT devices exist. This solution can help to monitor device 
groups that have similar communication patterns, manage their 
behavior in the network, plan future communication capaci-
ties for various device classes or similar activities. This kind 
of a solution is only usable as a support process for various 
other activities. That is why future research, as well as future 
real-life applications and service, will have a foundation in the 
results achieved in this research.
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