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The metabolic behavior of cancer cells is adapted to meet their proliferative needs, with

notable changes such as enhanced lactate secretion and glucose uptake rates. In this work,

we use the Ensemble Modeling (EM) framework to gain insight and predict potential drug

targets for tumor cells. EM generates a set of models which span the space of kinetic

parameters that are constrained by thermodynamics. Perturbation data based on known

targets are used to screen the entire ensemble of models to obtain a sub-set, which is

increasingly predictive. EM allows for incorporation of regulatory information and captures

the behavior of enzymatic reactions at the molecular level by representing reactions in the

elementary reaction form. In this study, a metabolic network consisting of 58 reactions is

considered and accounts for glycolysis, the pentose phosphate pathway, lipid metabolism,

amino acid metabolism, and includes allosteric regulation of key enzymes. Experimentally

measured intracellular and extracellular metabolite concentrations are used for developing

the ensemble of models along with information on established drug targets. The resulting

models predicted transaldolase (TALA) and succinyl-CoA ligase (SUCOAS1m) to cause a

significant reduction in growth rate when repressed, relative to currently known drug tar-

gets. Furthermore, the results suggest that the synergistic repression of transaldolase and

glycine hydroxymethyltransferase (GHMT2r) will lead to a threefold decrease in growth

rate compared to the repression of single enzyme targets.
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INTRODUCTION

Metabolic regulation plays a key role in fulfilling the metabolic

demands of proliferative vs. quiescent tissue. While differentiated

tissue catabolize nutrients to meet bioenergetic needs (i.e., ATP

synthesis), proliferating cells channel much of the glucose derived

carbon to anabolic pathways to meet biosynthetic needs (i.e., lipid,

protein, and nucleic acids synthesis; Christofk et al., 2008). The

distinguished metabolism of cancer cells compared to differenti-

ated tissue was first observed by Otto Warburg in the 1920s where

he noted high rates of glucose consumption and lactate secretion,

regardless of oxygen availability. This metabolic behavior in cancer

cells is termed aerobic glycolysis or the “Warburg effect.” (Vander

Heiden et al., 2009). Thus, the problem remains is that how aero-

bic glycolysis affects the cancer cell phenotype and how knowledge

of this differed metabolism can be used to target cancer cells for

therapeutic purpose.

In the presence of oxygen, differentiated cells (non-

proliferating cells) metabolize glucose through glycolysis to pyru-

vate (Figure 1). Pyruvate subsequently enters the TCA cycle in

the mitochondria and is oxidized to produce carbon dioxide. This

oxidation in the TCA cycle generates NADH, which fuels oxidative

phosphorylation for the maximal production of ATP with minimal

lactate production. Oxygen is essential for the complete oxidiza-

tion of glucose as it is the final electron acceptor during oxidative

phosphorylation. In the absence of oxygen, however, differenti-

ated cells produce minimal ATP through the process of anaerobic

glycolysis. During anaerobic glycolysis pyruvate is channeled away

from the TCA cycle and is used for lactate production. Genera-

tion of lactate allows for glycolysis to continue (by cycling NADH

back to NAD+). Cancer cells display “aerobic glycolysis” and con-

vert most of the glucose into lactate regardless of the presence of

oxygen (Vander Heiden et al., 2009).

The importance of aerobic glycolysis for cancer cell growth has

been proven experimentally (Schulz et al., 2006) and this meta-

bolic adaptation has been thought to facilitate the incorporation

of nutrients into the biomass necessary to produce new cells (Van-

der Heiden et al., 2009) as many of the glycolytic intermediates

(e.g., PEP) are precursors for biomass production. However, the

biosynthetic benefits obtained through high glycolytic fluxes do

not explain why such high lactate production rates are observed

when more pyruvate could be more efficiently utilized for ATP pro-

duction through oxidative phosphorylation (DeBerardinis et al.,

2008). Otto Warburg proposed that damage in oxidative metab-

olism caused the high rates of glycolysis, however later studies

have proven otherwise and revealed the mitochondria to be func-

tional (Moreno-Sánchez et al., 2007). It has been suggested that

there is a limitation in the maximal velocity of pyruvate oxidation

and hence cells must eliminate pyruvate by conversion to lac-

tate (Curi et al., 1988). In terms of control, it has been suggested

that the high glycolytic flux allows the biosynthetic pathways,

which stem from glycolytic intermediates, to be fine tuned and

thereby, high lactate production rates compensate for the main-

tenance of biosynthetic fluxes during proliferation (Newsholme

et al., 1985).
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FIGURE 1 | Metabolic network considered. Metabolic reactions are show in black arrows, transport reactions between compartments are shown in red.

Selected enzymes are shown in blue.

The metabolic switch that occurs in cancer cells suggests that

computational modeling approaches could provide insight and

further understanding of the complex metabolic interactions.

Previous computational work on cancer metabolism has demon-

strated that aerobic glycolysis enables the maximal production of

the biomass precursor palmitate considering the stoichiometry of

only a few central metabolic pathways (Vander Heiden et al., 2009).

Another study considering two lumped reactions representing aer-

obic glycolysis and oxidative phosphorylation constrained by the

cell’s glucose uptake capacity and solvent capacity showed that

at high glucose uptake rates, aerobic glycolysis provides the cell

with the highest rate of ATP production (Vazquez et al., 2010).

Recently, Folger et al. developed the first genome-scale model of

cancer metabolism based on the genome-scale human metabolic

network (Duarte et al., 2007). This model was used to predict

cytostatic drug targets, of which 40% were known targets and

60% new targets. In addition, combinations of synthetic legal drug

targets were identified (Folger et al., 2011). More recently, Frezza

et al. (2011) used the genome-scale model of cancer metabolism to

identify a synergistic interaction between fumarate hydratase (Fh)

and haem oxygenase, which was verified experimentally. Genome-

scale flux balance based models, however, have the limitation of

only capturing steady state metabolic behavior. In addition, key

features of metabolic regulation due to allosteric control of enzy-

matic activity cannot be represented in the steady state flux balance

framework. In this work, we aim to develop the first dynamic

model of cancer metabolism in order to gain further insight

into their metabolism and determine potential enzymatic drug

targets.

To develop the kinetic models we used an ensemble mod-

eling (EM) approach, which has been successfully used in the

past to improve l-lysine production in E. coli (Contador et al.,

2009) and identify regulatory mechanisms in hepatic cells (Dean

et al., 2010). EM generates kinetic models while bypassing the

need for detailed kinetic parameters (Tan et al., 2011) which

are often unknown or difficult to determine experimentally (Lee

et al., 2006). EM generates an ensemble of models by sampling

for kinetic parameters under thermodynamic and steady state
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constraints. Each model that is generated has a unique set of

kinetic parameters and displays unique dynamic behavior; how-

ever, all models are anchored to the same steady state. The models

in the ensemble are computationally perturbed and the model-

predicted steady state fluxes are compared to experimental per-

turbation results. Models that capture the experimental results

are retained. Continual screening of the models as further exper-

imental data becomes available allows for the convergence to an

increasingly realistic and predictive sub-set of models (Contador

et al., 2009). In EM, the reactions in the network are formulated

in the elementary reaction form, which allows the true mech-

anism of the enzymatic reactions to be captured. Furthermore,

because of the elementary reaction formulation, regulatory infor-

mation can also be incorporated in the models (Dean et al.,

2010).

MATERIALS AND METHODS

CELL CULTURE

We used the colo205 (human colorectal adenocarcinoma) cell line

(ATCC, Cat. #CCL222) between passages 9 and 10. Cells were cul-

tured in RPMI-1640 medium (Sigma-Aldrich) supplemented with

10% FBS (Sigma-Aldrich) and 1% Penicillin/Streptomycin (Invit-

rogen) and maintained in an incubator at 5% CO2. Cells were

sub-cultured whenever they reached 80% confluence.

METABOLITE QUANTIFICATION

Both intracellular and extracellular metabolites were quantified.

In brief, colo205 cells were placed in spinner flasks at a concentra-

tion of 2 × 105 cells/mL containing 150 mL of Minimum Essential

Medium Eagle Spinner Modification (SMEM) supplemented with

0.292 g/L l-glutamine, 10% FBS, and 1% Penicillin/Streptomycin.

For extracellular metabolite measurements, 1.1 mL samples were

collected every 12 h and centrifuged at 0˚C. The supernatant

was collected and carbohydrate metabolites were quantified using

high-performance liquid chromatography (HPLC), while amino

acid metabolites were quantified using nuclear magnetic resonance

(NMR) spectroscopy (Chenomx Inc., Edmonton, Canada). While

NMR is perhaps not as sensitive as other metabolomics methods,

it is valuable for identifying and quantifying the absolute con-

centrations. For intracellular metabolite measurements, 40 mL of

cell solution (∼15 million cells) was collected at the 72nd hour

(during growth phase) and centrifuged at 0˚C. The supernatant

was removed and the cells were resuspended in 1 mL of super-

natant solution. Cells were lysed and intracellular metabolites were

quantified using NMR spectroscopy (Chenomx Inc., Edmonton,

Canada).

CELL GROWTH KINETICS

To determine the growth kinetics of the cells we quantified cell

numbers in our cultures over time by manual counting. About

0.3 mL samples were collected in triplets every 12 h from each spin-

ner flask and were well mixed by pipetting. Ninety microliters of

the cell suspension solution was then removed, mixed with 10 µL

of trypan blue, and cell counts were made by counting manually

using a hemocytometer. Only non-blue (live) cells were counted

to give a measure of changes in the number of viable cells in the

culture over time.

ENSEMBLE MODELING

The theory of EM is described previously (Tran et al., 2008) and

is briefly summarized in this section. The goal of EM is to gen-

erate a set of kinetic models whereby each model is described

by different kinetic parameters but all models retain the same

mathematical structure and are anchored to the same steady state

reference state. If each enzymatic reaction in the model is rep-

resented as a non-linear ordinary differential equation with the

following mathematical representation:

dxi

dt
=

∑
vi (x , k) −

∑
vj (x , k) (1)

where xi represents the concentration of species/metabolites in

the model, and vi and vj are the enzyme kinetic functions for the

production and consumption of species xi respectively, then the

EM problem is stated mathematically as sampling and obtaining

all the different sets of kinetic parameters such that,

v (xss, k) = vref
net (2)

where vref
net is the known steady state flux, xss is the steady state con-

centration of the metabolites in the model, and k is the kinetic rate

constant (Dean et al., 2010). In this study vref
net is obtained from the

steady state fluxes calculated through flux balance analysis (FBA),

and xss is obtained from the experimentally measured metabolite

concentrations.

DETERMINING STEADY STATE FLUXES

The internal steady state fluxes of the system are calculated

using FBA. In FBA the metabolic reactions are represented by

an m × n stoichiometric matrix, S, of m metabolites and n reac-

tions (Schilling et al., 1999). The flux through the reactions in the

network are represented by the n × 1 vector, v. The internal fluxes

are calculated by solving the system of mass balance equations at

steady state:

Sv = 0 (3)

The solution space is constrained by upper and lower flux bounds,

vub and vlb. Moreover, through optimization of an objective func-

tion, c, FBA identifies a single optimal flux distribution amongst

the many flux distributions within the solution space. These con-

straints are mathematically represented as follows (Orth et al.,

2010):

max cT v (4)

s.t . Sv = 0 (5)

vlb ≤ v ≤ vub (6)

CONSTRUCTING THE INITIAL ENSEMBLE OF MODELS

The first step in EM involves breaking down each enzymatic reac-

tion into its corresponding set of elementary reactions. Elementary

reactions are the most fundamental form of an enzymatic reac-

tion and represent events at the molecular level. This formulism,
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gives the enzymatic reaction saturable behavior and allows for the

inclusion of regulatory steps such as inhibition and activation. For

a simple enzymatic reaction, where metabolite Xi is converted by

enzyme Ei to metabolite X i+1,

Xi
Ei
←→Xi+1, (7)

the reactions is broken down to six elementary reactions illus-

trated by:

Xi + Ei

vi,1

⇄
vi,2

step 1

XiEi

vi,3

⇄
vi,4

step 2

Xi+1Ei

vi,5

⇄
vi,6

step 3

Xi+1Ei (8)

Each elementary reaction, vi,k, follows mass action kinetics,

vi,1 = ki,1 [Xi] [Ei] , (9)

where k i,1 is the rate constant for the first elementary reaction,

[Xi] is the concentration of metabolite i, and [Ei] is the concen-

tration of enzyme i (Dean et al., 2010). Equation 9 is normalized

by scaling the concentration of metabolites with the steady state

metabolite concentration, X ss,ref
i , and by scaling the concentration

of the free enzyme and enzyme complexes with the total enzyme

concentration at steady state, Eref
i,total (Tran et al., 2008). Equation

9 then becomes

vi,1 =
(

ki,1Eref
i,totalX

ss,ref
i

)
·

[Xi]

X ss,ref
i

·
[Ei]

X ref
i,total

= K̃ ref
i,1 · X̌i · ei,1 (10)

which in the log-linear form is

ln vi,1 = ln K̃ ref
i,1 + ln X̌i + ln ěi,1. (11)

At reference steady state, [Xi] = X ss,ref
i and therefore X̌i = 1; Eq.

11 then simplifies to (Tran et al., 2008)

ln vref
i,1 = ln K̃ ref

i,1 + ln ěref
i,1 . (12)

The kinetic parameters are obtained by sampling for reversibilities

and enzyme fractions. A Monte Carlo algorithm is used to sam-

ple reversibilities which range from 0, a completely irreversible

reaction, to 1, a completely reversible reaction at equilibrium. The

reversibility is defined as the ratio of the smaller value for the

forward and reverse reaction rates over the larger value,

Ri,j =
min

(
vi,2j−1,vi,2j

)

max
(
vi,2j−1,vi,2j

) (13)

where, v i,2j−1 and v i,2j are the forward and backward rates of step

j in reaction i. From the reversibilities, the forward and backward

elementary reaction rates can be calculated using the additional

constraint,

vref
i,2j−1 − vref

i,2j = V ref
i,net, (14)

where V ref
i,net is the net flux of reaction i at reference steady state

(Tran et al., 2008). The reversibilities are constrained by Gibbs

free energy to ensure that the steady state is thermodynamically

feasible,

∑ni

j=1
ln Ri,j = sign

(
Vi,net

) ΔGi

RT
, (15)

where ni represents the number of elementary steps present in

the enzymatic reaction i and sign(Vi,net ) is the direction of the

reaction: +1 for forward reactions and −1 for reverse reactions.

Equation 17 ensures that for each reaction, the net flux is positive

if ΔG < 0 and is negative if ΔG > 0. Since the value for the Gibbs

free energy depends on the metabolite concentrations, an exact

value cannot be calculated and a range is used (Dean et al., 2010),

(
ΔGi

RT

)

lower bound

≤ sign
(

V ref
i,net

)
·
∑

j
ln Rref

i,j

≤

(
ΔGi

RT

)

upper bound

. (16)

The enzyme fractions are sampled using a Monte Carlo algorithm

with the constraint that the total enzyme amount is conserved. In

other words, the sum of the enzyme fractions of the elementary

reactions for each enzymatic reaction must equal one (Contador

et al., 2009),

nj∑

j=1

ẽref
i,j = 1. (17)

Once the reversibilities and enzyme fractions are sampled, the

kinetic parameters, K̃ ref
i,k , can be determined. The rates of ele-

mentary reactions are computed from the reversibilities as fol-

lows:

vref
i,2j−1 =

V ref
i,net

1 − R
sign

(
V ref

i,net

)

i,j

(18)

vref
i,2j =

V ref
i,net · R

sign
(

V ref
i,net

)

i,j

1 − R
sign

(
V ref

i,net

)

i,j

. (19)

Finally K̃ ref
i,k is calculated from Eq. 12 based on the ele-

mentary reaction rates and enzyme fractions (Tran et al.,

2008).

The process of calculating kinetic variables based on sampled

reversibilities and enzyme fractions can be repeated thousands of

times to obtain thousands of models. Once the kinetic parame-

ters are calculated, the net steady state fluxes are calculated. To

calculate the net steady state flux, the metabolic network is first

described as a system of ordinary differential equations, with the

metabolite concentrations, X̃i , and the enzyme fractions, ẽ i,j, as

the ODE variables:
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dX̃i

dt
=

1

X ss,ref
i

(∑
vgenereation −

∑
vconsumption

)
(20)

dẽi

dt
=

1

Eref
i,total

(∑
vgenereation −

∑
vconsumption

)
(21)

The ODEs are solved using ode15s solver in MATLAB and the con-

centrations obtained are input into Eq. 10 to calculate the steady

state fluxes (Contador et al., 2009).

IN SILICO ENZYME TUNING

After generating the ensemble of models, the models are perturbed

to study the behavior of each model under the perturbations. Per-

turbations involved overexpressing or repressing specific enzymes

in the network by a factor of n. In this study the enzymes of interest

are cancer drug targets and are therefore repressed with an n value

of 0.1 to study their respective effects on the growth rate of cancer

cells. The models which display a reduction in growth rate after

enzymatic repression are retained and as such the ensemble of

models are screened. For the perturbation case Eq. 11 is rewritten

as follows:

ln vi,1 = ln K̃ ref
i,1 + ln X̃i + ln ẽi,1 + ln Ei,r . (22)

where Ei,r represents the fold change in the total enzyme con-

centration over the reference steady state value (Ei,r = 0.1 for this

study). Furthermore, for the perturbation studies, if the meta-

bolic network contains moiety conservation relationships such as

cofactors, the initial conditions are set such that the sum of the

cofactors and their intermediates are conserved before and after

the perturbation (Contador et al., 2009).

RESULTS

GROWTH RATE AND METABOLITE MEASUREMENTS

The experimental growth rate for the colo205 cells was used as bio-

mass production rate in the FBA model (Figure 2A). The shape

of the growth curve obtained agrees with the sigmoidal behavior

for growth of mammalian cells cultured in suspension previously

reported in the literature (Jakoby, 1979). Assuming an average

colorectal adenocarcinoma cell density of 1.15 ng/cell during the

growth phase (Park et al., 2010) the growth rate was determined

to be 0.0224 gDWhr−1.

Extracellular and intracellular measurements of metabolites

were made in triplicates. The values for the extracellular metabo-

lites concentrations are presented in Figure 2. Notable trends

include the high rates of glutamine and glucose uptake, con-

sistent with the idea that these are the main source of nutrient

uptake in cancer cells (DeBerardinis et al., 2008). Glucose is the

major lipogenic substrate in cancer cells and therefore high uptake

rates are essential (DeBerardinis et al., 2008). Glutamine is an

anaplerotic source during cell proliferation, replenishing the TCA

cycle carbon that is used for biosynthesis, and therefore is proposed

to be an essential nutrient for cancer metabolism (DeBerardinis

et al., 2008). In addition, the high secretion rate of lactate, the

prominent indicator of the Warburg effect, was also observed in

FIGURE 2 | Growth rate and extracellular metabolite profiles. (A) The growth curve showing cell counts made every 12 h. (B) Extracellular amino acid

metabolite profiles measured at three time points in the medium. (C,D) Extracellular carbohydrate concentration profiles. Error bars represent the standard

deviation between triplicate samples.
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our experiments. Another interesting finding was the accumula-

tion of pyruvate in the medium. The high rates of glycolysis in

cancer cells result in high pyruvate production. However, para-

doxically, most of the pyruvate does not enter the TCA cycle for

ATP production, but is converted to lactate by the highly expressed

enzyme LDH-A which is induced by oncogenes during prolifera-

tion (Vander Heiden et al., 2009). The experimentally observed

pyruvate secretion rate out of the cell further strengthens the

hypothesis made by Curi et al. (1988) that there is a limitation

to the maximum rate of pyruvate oxidation. However, in terms of

LDH-A activity the question of whether there is a limitation also

in the maximum rate of lactate production from pyruvate could

be addressed, and further experiments conducted to verify this

model-predicted observation.

The intracellular metabolites used in the study were measured

by NMR spectroscopy (Chenomx Inc., Edmonton, Canada). The

metabolite concentrations used in this study for developing the

model include pyruvate, glutamine, malate, lactate, glucose, cit-

rate, fumarate, succinate, alanine, and glutamate (Figure 3). The

standard deviation associated with the metabolite measurements

(error bars in Figure 3) was less than 18% suggesting that there is

significant consistency among biological replicates.

MODEL CONSTRUCTION AND STEADY STATE FLUXES

A metabolic network for cancer is reconstructed based on the

previously developed genome-scale human metabolic network

(Duarte et al., 2007). The network includes 58 reactions and 57

metabolites, representing the major metabolic pathways essen-

tial for growth and cell maintenance. These pathways include

glycolysis,TCA cycle,pentose phosphate pathway,pyruvate metab-

olism, amino acid metabolism for selective amino acids, lipid

biosynthesis, and nucleotide biosynthesis. The model is compart-

mentalized to account for the extracellular, cytosolic, and mito-

chondrial compartments (Figure 1). Metabolites are exchanged

between compartments through exchange reactions. However

in this model cofactors are assumed to be freely transported

between compartments and no exchange reactions are consid-

ered for them. Furthermore, balancing of cofactors (ATP/ADP,

NADH/NAD, NADPH/NADP, GTP/GDP, and FADH2/FAD) is

taken into account.

The internal fluxes were calculated using the COBRA toolbox

in the MATLAB programming environment. These fluxes were

calculated such that the simulated values for the biomass, uptake,

and secretion fluxes met the experimentally measured vales. This

was done by selecting biomass, as well as the uptake and secretion

reactions as the objective function and maximizing the objective

fluxes while constraining the upper bounds to the experimentally

measured values. The steady state fluxes of the reference state are

reported in Figure 4.

As demonstrated in Figure 4, the highest numerical flux val-

ues in the metabolic network are observed in glycolysis, and agree

with the aerobic glycolysis metabolism seen in cancer cells. The

FIGURE 3 | Intracellular metabolite profiles. Metabolites were measured using NMR spectroscopy during the growth phase at the 72nd hours of growth.

Error bars represent standard deviation between triplicate samples.
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FIGURE 4 |The flux map at reference steady state for the colo205 cells. Black arrows show metabolic reactions and red arrows show transport reactions

between compartments. Flux values are reported in units of mmol/gDWhr.

pyruvate produced through glycolysis can enter many pathways:

lactate production, amino acid synthesis, TCA cycle, and secretion

out of the cell. The numerical results demonstrate this split quan-

titatively and suggest that 19.3% of the pyruvate enters the TCA

cycle, 9.4% is used for synthesis of the amino acid alanine, 66.1%

of the pyruvate is converted to lactate, and 5.2% is secreted out of

the cell. It is clear that most of the pyruvate is converted to lactate

as described by the Warburg effect.

CONSTRUCTION OF THE INITIAL ENSEMBLE

An ensemble of 1000 models was constructed as described in

the Section “Materials and Methods.” In addition to the steady

state input obtained through FBA, other input include Gibbs

free energies for each net reaction that were collected form

literature (Jankowski et al., 2008) as well as experimentally

measured intracellular metabolite concentrations at reference state

(Figure 3). Allosteric regulation is also included in the model, a

list of which is presented in Table 1. When all the allosteric reg-

ulations in Table 1 were initially included, the models did not

describe the cancer phenotype and did not converge to the steady

state reference flux values. Each of the regulatory components

was then examined individually and we found that the models

would not converge when the activation of pyruvate kinase by

fructose-1,6-bisphosphate was included. In mathematical terms,

none of the kinetic parameter sets generated using the Monte

Carlo algorithm would result in steady state flux distribution val-

ues similar to experimental results when the ordinary differential

equations were solved. Indeed studies have shown that in cancer

cells the growth factor signaling pathway activates the protein tyro-

sine kinases which bind to pyruvate kinase and result in the release
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Table 1 | Allosteric regulation considered in the cancer metabolic network.

Enzyme Regulatory metabolite Activator (+)/inhibitor (−) Source

Hexokinase Glucose-6-phosphate − Michal (1999)

Phosphofructokinase ATP − Elliott et al. (2009)

Citrate − Elliott et al. (2009)

Phosphoenolpyruvate − Michal (1999)

Pyruvate kinase Fructose-1,6-bisphosphate + Elliott et al. (2009)

ATP − Elliott et al. (2009)

Alanine − Michal (1999)

Acetyl-CoA − Elliott et al. (2009)

Pyruvate dehydrogenase Acetyl-CoA − Elliott et al. (2009)

NADH − Elliott et al. (2009)

ATP − Elliott et al. (2009)

Citrate synthase Citrate − Michal (1999)

Succinyl-CoA − Michal (1999)

NADH − Michal (1999)

ATP − Michal (1999)

ADP + Michal (1999)

Isocitrate dehydrogenase ATP − Michal (1999)

NADH − Michal (1999)

ADP + Michal (1999)

α-Ketoglutarate dehydrogenase NADH − Michal (1999)

Succinyl-CoA − Michal (1999)

of the otherwise tightly bound fructose-1,6-bisphosphate. The low

activity form of pyruvate kinase has shown to be essential for aero-

bic glycolysis (Christofk et al., 2008). The ensemble of models were

then generated with the allosteric regulators listed in Table 1 except

for activation of pyruvate kinase by fructose-1,6-bisphosphate.

PERTURBATION AND SCREENING OF THE ENSEMBLE

The ensemble of models is screened based on experimental drug

target data (Table 2) available in the literature (Wishart et al.,

2008). The models are perturbed by under-expressing each of the

enzymes listed in Table 2 by a factor of 0.1. As demonstrated

by Figure 5 the ensemble of 1000 models converges to a set of

4 models capable of describing the perturbation phenotypes. It

should be noted that the perturbation data used are experimental

drug targets and are not yet approved drug targets. As targeting

the enzymes listed in Figure 2 would reduce the tumor size it is

assumed that targeting the enzymes in this study reduces biomass

production.

PREDICTING CANCER DRUG TARGETS

The models obtained through screening of the ensemble were

used to identify potential drug targets. This step was accom-

plished by perturbing every enzyme in the network and identifying

enzymes that showed a greater decrease in biomass production

rate compared to the previously identified drug targets used

for screening the models (Table 2). Two enzymes were iden-

tified to cause a greater decrease in biomass production, when

their enzyme activity was repressed, compared to glycine hydrox-

ymethyltransferase (GHMT2r). Transaldolase (TALA) was the

enzyme target predicted to cause the greatest reduction in growth

rate (Figure 6A). The gene encoding transaldolase, Taldo1, has

Table 2 | Perturbations used for screening (experimental drug targets).

Gene Enzyme Source

Hk1 Hexokinase (HEX1) Wishart et al. (2008)

LdhA Lactate dehydrogenase (LDH) Wishart et al. (2008)

Shmt1 Glycine hydroxymethyltransferase (GHMT2r) Wishart et al. (2008)

Nme1 Nucleoside-diphosphate kinase (NDPK1) Wishart et al. (2008)

not been previously reported as a known, approved, or exper-

imental anticancer drug target. Transaldolase is a key enzyme

in the non-oxidative pentose phosphate pathway that provides

ribose-5-phosphate for nucleic acid synthesis and NADPH for

lipid biosynthesis (Ma et al., 2009). In addition, the product

of the transaldolase reaction, erythrose-4-phosphate, is used for

the synthesis of the three amino acids, tyrosine, phenylalanine,

and tryptophan (Samland and Sprenger, 2009). Furthermore, this

enzyme has been found to be overexpressed in all cancer cells (Lee

et al., 2006) and has been suggested as a cancer biomarker specifi-

cally for colon cancer (Ma et al., 2009). These results highlight the

potential of transaldolase as a cancer target. Further experimen-

tal studies are required to evaluate the impact of repressing the

enzyme in normal proliferating cells in vivo.

The enzyme that showed the second highest decrease in

biomass production is succinyl-CoA ligase (SUCOAS1m). Like

transaldolase, succinyl-CoA ligase has not been reported as a

known, approved, or experimental drug target (Wishart et al.,

2008) however the gene associated with the enzyme has been

shown to be overexpressed in cancer cells (Lee et al., 2006).
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FIGURE 5 | Screening of the ensemble of models. The 1000 models

were screened by repressing each of the enzymes hexokinase (HEX1),

lactate dehydrogenase (LDH), glycine hydroxymethyltransferase

(GHMT2r), and nucleoside-diphosphate kinase (NDPK1) by a factor of 0.01.

The models which remained after screening by each enzyme are shown in

black. The corresponding models which are common between multiple

perturbations are shown in red. The four perturbations resulted in four

remaining models.

The effect of a simultaneous repression of enzymes was stud-

ied by repressing two enzymes at a time. The effect of TALA–

SUCOAS1m repression and TALA–GHMT2r repression was stud-

ied (Figure 6B). It was found that the TALA–SUCOAS1m combi-

nation did not result in a much greater decrease in growth rate

compared to TALA alone. However the combination of TALA

and GHMT2r showed about a three time greater decrease in

growth rate.

DISCUSSION

In this work intracellular and extracellular metabolite concen-

trations were experimentally measured along with the growth

rate of colo205 cells to develop a kinetic model of cancer

metabolism using the EM computational approach. An ensem-

ble of 1000 models was initially generated, whereby each of

the models in the ensemble consisted of different kinetic para-

meters, but all models were anchored to the same steady state

flux. The steady state reference flux values were computed by

FBA using experimentally measured uptake and secretion rates.

The ensemble of 1000 models was then screened for models,

which more accurately represented the system under study, using

perturbation data. Four enzymes (LDH, GHMT2r, HEX1, and

NDPK1) have previously been noted in literature to show a

reduction in cancer cell proliferation rate when their activity

was repressed (Wishart et al., 2008). In this work, we computa-

tionally reduced the activity for each of these enzymes to ana-

lyze the effect of this repression on growth rate. Four models

out of the 1000 initial models were able to accurately display a

reduction in growth rate when the aforementioned enzymes were

repressed.

The four models that remained after screening and determined

to be most representative of the actual metabolic behavior in can-

cer cells were used for predictive studies. These models predicted

that repressing the activity of the transaldolase enzyme would

result in the greatest reduction in growth rate. Transaldolase is

a key enzyme in the pentose phosphate pathway and takes part in

nucleotide, lipid, and amino acid synthesis. As biomass production

is also a function of nucleotide, amino acid, and lipid production

rates, it seems reasonable that transaldolase has a substantial role

in biosynthesis. Transaldolase has not previously been reported as

an experimental or approved drug target (Wishart et al., 2008).

Previous computational studies on cancer metabolism using FBA

alone have also not identified transaldolase as a potential drug tar-

get (Folger et al., 2011). Interestingly, the gene associated with the

transaldolase enzyme is overexpressed in all cancer cell lines (Lee

et al., 2006) and has been established as a cancer biomarker for

colon cancer patients (Ma et al., 2009).

The four remaining kinetic models differ from each other in

the values for their kinetic rate constants (Table A1 in Appendix).

This variation was quite large for some of the reactions in the

models, while some reactions displayed similar kinetics. Ideally,

only one unique set of kinetic parameters would most accurately

capture the “true” dynamics of the system. In this study the kinetic

parameters of the four models differ due to many factors: (1)

the model developed is a quite simplistic model accounting for

only 58 reactions, therefore not enough constraints are imposed

on the system and many sets of kinetic parameters could cap-

ture this simplistic system (2) the starting number of models

in the ensemble is 1000 models. As kinetic parameters are sam-

pled using a Monte Carlo algorithm, increasing the number of

initial models generated would introduce kinetic parameter sets

which could more accurately match the experimentally observed

cancer cell phenotypes (3) the criteria used to screen the models

was only concerned with relative changes such as an increase or

decrease in growth rate. Increasing the stringency of the criteria

(e.g., quantitative values for the percent change in growth rate)

could further screen the ensemble to a smaller more accurate set

of models.
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FIGURE 6 |Targets identified showing reduction in cell growth rate.

(A) Each of the enzymes in the remaining models were individually perturbed

and enzyme targets with higher reductions in growth rate relative to the

previously known experimental drug targets are presented. (B) Effect of

simultaneously repressing two enzyme targets on growth rate. Error bars

represent standard deviation between the four perturbed models.

To enhance the predictive capability of the models developed in

our study, the most significant improvement would be to measure

the steady state fluxes using 13C labeling. As the ensemble of

models that is initially generated is anchored to the steady state

fluxes, it is critical that these fluxes be as close to their real val-

ues as possible. The assumptions inherent in FBA are responsible

for the greatest fraction of uncertainty in the overall uncertainty

present in the methodology used in this study. FBA is based on

mass balance constraints and does not account for regulatory

constraints (Shlomi et al., 2011). In addition, enzyme capacity

constraints are usually unknown. Moreover, there is a possi-

bility that due to the redundancies in the metabolic pathways,

multiple optimal steady states could exist. However, when exper-

iments are conducted, the steady state fluxes measured would

capture the metabolic behavior of the cells most accurately. In

this study, the models generated were used to predict potential

enzymatic drug targets. There are many other studies that can

be conducted using these models. For example, kinetic models

can be used for understanding the mode of action of a drug

under study. If the mode of action of a drug is unknown, or the

exact target of the drug is unknown, EM could predict which

perturbations would result in the experimentally observed phe-

notype. Furthermore, if the target of the drug is known the

efficacy of the drug can be determined by comparing the steady

state fluxes observed after perturbing the enzyme target com-

putationally to the steady state fluxes observed experimentally.

This could then give insight into possible side effects by show-

ing what other pathways are affected. Finally, the extension of

such modeling approaches to analyze the metabolism of normal

proliferating cells will provide an opportunity to compare and

contrast their metabolism with cancer cells and could provide

valuable insights on potential metabolic differences between these

cell types.

CONCLUSION

Metabolic profiling provides information on the end results of

the transcriptional and enzymatic changes that occur in the cell

(Boros et al., 2002). In this study, we used experimentally measured

metabolomic data obtained from a colon cancer cell line to con-

struct a kinetic model of cancer metabolism using the EM method-

ology. The kinetic models were used to predict potential enzymatic

drug targets to target cancer metabolism. Two enzymatic targets,

transaldolase and succinate-CoA ligase, computationally showed

a greater potential decrease in growth rate compared to cur-

rent experimental or approve enzymatic drug targets (Wishart

et al., 2008). Furthermore, we studied the effect of simultane-

ous targeting of the enzymes identified and found a threefold

increase in effectiveness when transaldolase and glycine hydrox-

ymethyltransferase were synergistically repressed but no difference

when transaldolase and succinate-CoA ligase were synergistically

repressed. This suggests that transaldolase and succinate-CoA lig-

ase do not interact significantly within the metabolic network in

the cancer cell.

We have demonstrated that the EM methodology is suitable

for studying metabolic perturbations such as repression targets

for drug discovery. Further experimental work is necessary to

determine the accuracy of our approach and to complement the

computational predictions made in this study. The greatest sen-

sitivity in the computational predictions lies in the steady state

fluxes that are input to the EM algorithm (Tran et al., 2008).

The 1000 models generated are anchored to this set of fluxes and

therefore any discrepancy between the actual flux values and the

values input would reduce the predictive ability of the resulting

ensemble of models. In this work, FBA was used to determine

the steady state fluxes. FBA has many assumptions inherent in

the methodology that introduce uncertainty to the values it cal-

culates. FBA is based on mass balance constraints and does not

account for regulatory constraints. In addition, enzyme capacity

constraints are usually unknown. Moreover, there is a possibility

that due to the redundancies in the metabolic pathways, multi-

ple optimal steady states exist (Mahadevan and Schilling, 2003).

Experimentally measured steady state fluxes could overcome these

uncertainties. Current methodologies for experimentally measur-

ing internal reaction fluxes involve 13C labeling. Furthermore,

expansion of the metabolic and regulatory network considered

would allow for a more precise representation of the metabolic
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system of interest and hence increasingly realistic model predic-

tions. However, this expansion highlights the limitation in the

EM methodology in terms of the computation time (hours to

days) that is involved due to the large parameter spaces involved.

This limitation could be overcome by improvements in the EM

algorithm and enhanced computing capabilities (Dean et al.,

2010).

Notwithstanding this limitation, the model presented here

provides the first step toward the development of detailed mod-

els that account not only for the stoichiometry but also the

effect of metabolite concentrations and the associated concen-

tration dependent regulation of the enzymes in the metabolic

network. We anticipate that in the future, such an approach

could be extended to represent large-scale models of cancer

metabolism, which will be valuable for the improved under-

standing of the metabolic dysregulation in cancers and suggest

strategies for targeting these metabolic changes while maintain-

ing homeostasis in normal proliferating cells. Finally, another

important component of metabolism in higher level organisms

is the 3-D organization of cells into tissues and the inherent

spatio-temporal heterogeneity in the local environment, partic-

ularly in the tumor. Hence, the extension of these kinetic models

of cellular metabolism to represent metabolism in such 3-D envi-

ronments will be critical to further our understanding of the role

of microenvironment in tumor metabolism and the efficacy of

chemotherapy in solid tumors. We believe that our work pre-

sented here represents the first step toward achieving an improved

understanding of the kinetics of cancer metabolism and consti-

tutes an important advance to the field of systems biology of cancer

metabolism.
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APPENDIX

Table A1 |The overall lumped kinetic parameter values for the 4 models remaining after screening of the ensemble. Detailed steps for the

calculation of the overall lumped kinetic parameter values from the kinetic rate constants for the elementary reactions are outlined in Tran et al. (2008).

Name Stoichiometry K1 (model 1) K2 (model 2) K3 (model 3) K4 (model 4)

Glycolysis HEX1 [c]: atp + glc-d → adp + g6p 6.46E+01 8.46E+00 1.78E+00 1.37E+00

PGI [c]: g6p ↔ f6p 2.56E−02 2.75E−04 3.73E−04 1.71E−01

PFK [c]: atp + f6p → adp + fdp 5.17E+00 1.52E−02 1.21E−01 7.79E+00

FBA [c]: fdp ↔ dhap + g3p 3.72E+02 1.76E+03 5.20E+04 8.63E+01

GAPD [c]: g3p + nad ↔ 13dpg + nadh 4.39E+01 6.51E+02 1.32E+03 4.78E+01

PGK [c]: 3pg + atp ↔ 13dpg + adp 2.63E+02 1.93E+03 8.56E+03 2.23E−01

PGM [c]: 2pg ↔ 3pg 2.57E−01 2.38E−01 1.09E−02 1.10E+02

ENO [c]: 2pg ↔ pep 7.15E−04 2.28E−04 3.10E−06 2.17E−03

PYK [c]: adp + pep → atp + pyr 2.47E+02 1.45E+03 3.78E+00 1.58E+01

TPI [c]: dhap ↔ g3p 2.39E+02 6.39E+02 4.49E+03 5.40E+00

Cytoplasmic MDH [c]: mal-l + nad ↔ oaa + nadh 2.97E+01 4.56E+01 2.07E+01 6.02E+00

ACITL [c]: atp + cit + coa → accoa + adp + oaa 0.00E+00 5.00E−02 3.46E+00 2.00E−02

LDH_L [c]: lac-l + nad ↔ nadh + pyr 1.43E−01 1.37E+01 4.72E−01 1.26E−01

ALATA_L [c]: akg + ala-l ↔ glu-l + pyr 1.20E+00 4.62E−01 2.57E−04 3.21E−01

ASPTA [c]: akg + asp-l ↔ glu-l + oaa 9.76E−02 1.22E−01 4.49E−02 1.48E−01

PGCD [c]: 3pg + nad → 3php + nadh 5.68E+00 2.64E+02 8.63E+01 9.51E−02

PSERT [c]: 3php + glu-l → akg + pser-l 9.44E+02 2.33E+03 2.82E+03 2.00E+01

PSP_L [c]: pser-l → ser-l 2.33E−04 6.22E−05 3.77E−05 8.96E−04

GHMT2r [c]: ser-l ↔ gly 3.98E−03 5.24E−04 1.95E−03 3.86E−03

GLNS [c]: glu_l + atp + nh4 → gln_l + adp 1.33E+00 4.98E+00 1.25E+01 1.90E+00

glu_rec [c]: akg → glu_l 9.62E−02 9.93E−03 1.03E−02 2.94E−02

NDPK1 [c]: atp + gdp ↔ adp + gtp 4.55E+00 2.48E+00 4.71E+00 4.81E−01

Pentose phosphate combPP [c]: g6p + 2 nadp → 2 nadph + ru5p-d 1.01E−02 2.21E−02 1.52E−03 8.85E−01

TALA [c]: g3p + s7p ↔ e4p + f6p 2.82E−05 1.93E−03 3.77E−06 6.90E−03

TKT1 [c]: r5p + xu5p-d ↔ g3p + s7p 1.21E+03 4.89E+02 8.28E+04 2.39E+00

TKT2 [c]: e4p + xu5p-d ↔ f6p + g3p 1.44E−05 1.26E−03 3.06E−05 2.17E−01

RPI [c]: r5p + xu5p-d ↔ g3p + s7p 1.60E+01 3.41E−02 1.06E+02 9.70E−01

RPE [c]: ru5p-d ↔ xu5p-d 9.27E−01 1.62E+01 2.34E−02 1.53E+00

TCA cycle and

mitochondrial reactions

PDHm [m]: coa + nad + pyr → accoa + nadh 1.50E−01 1.62E+01 2.04E+01 3.30E−02

CSm [m]: accoa + oaa → cit + coa 7.90E+02 5.54E+03 2.48E+05 2.09E+02

ACONTm [m]: cit ↔ icit 1.48E+03 3.10E+03 1.15E+00 2.51E+02

ICDHxm [m]: icit + nad → akg + nadh 8.95E−02 3.37E−02 2.86E−01 1.84E+00

AKGDm [m]: akg + coa + nad → nadh + succoa 1.50E−01 4.00E−02 4.00E−02 5.00E−02

SUCOAS1m [m]: coa + gtp + succ ↔ gdp + succoa 5.01E+04 2.51E+03 1.22E+07 3.88E+02

SUCD1m [m]: fad + succ ↔ fadh2 + fum 4.14E−03 1.37E+00 2.84E−04 3.89E+00

FUMm [m]: fum ↔ mal-l 4.92E−04 6.13E−04 1.83E−05 3.44E−03

MDHm [m]: mal-l + nad ↔ nadh + oaa 4.41E−02 3.73E−02 5.26E−02 2.78E−01

GLUDxm [m]:glu-l + nad ↔ akg + nadh + nh4 1.10E−01 1.00E−02 6.90E−02 1.60E−01

GLUNm [m]: gln-l → glu-l + nh4 3.32E−01 5.54E−01 2.42E+00 3.20E+00

ATPprod_nadh [c]: nadh + 2 adp ↔ 2 atp + nad 2.47E+00 7.27E−01 5.30E−01 1.19E+01

ATPprod_fadh2 [c]: fadh2 + adp ↔ atp + fad 1.07E+00 5.83E−02 9.03E−01 1.80E+00

PCm [m]: pyr + atp ↔ oaa + adp 3.47E−01 1.91E+00 1.44E+00 4.84E−01

Cytoplasmic/transport MALEXm mal-l[c] ↔ mal-l[m]

PYREXm pyr [c] ↔ pyr [m]

CITEXm cit [c] ↔ cit [m]

COAEXm coa [c] ↔ coa [m]

NH4EXm nh4[m] → nh4[c]

AKGEXm akg[m] ↔ akg[c]

ASPEXm asp-l[c] ↔ asp-l[m]

(Continued)
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Table A1 | Continued

Name Stoichiometry K1 (model 1) K2 (model 2) K3 (model 3) K4 (model 4)

GLNEXm gln-l[c] → gln-l[m]

GLUEXm glu-l[c] ↔ glu-l[m]

Exchange reactions EX_glc [e]: ↔glc-d

EX_pyr [e]: pyr↔

EX_cit [e]: cit↔

EX_lac [e]: lac-l↔

EX_glu [e]: glu-l↔

EX_ala [e]: ala-l↔

EX_gln [e]: ↔gln-d

Biomass composition: biomass (1.326)nadph + (0.7956)accoa + (0.536)ala-l + (5.2134)asp-l + (3.2687)gln-l + (0.6282)gly + (0.1675)ser-l + (9.9384)atp + (0.6416)nh4 +

(0.0285)nadh + (0.4812)gtp + (1.6040)r5p + (0.2542)dhap → Biomass + (1.326)nadp + (0.7956)coa + (1.648)glu-l + (0.0285)nad + (9.9384)adp + (0.4812)gdp.
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