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Abstract

Ensemble modelling is a quantitative method that combines information from multiple indi-

vidual models and has shown great promise in statistical machine learning. Ensemble mod-

els have a theoretical claim to being models that make the ‘best’ predictions possible.

Applications of ensemble models to health research have included applying ensemble mod-

els like the super learner and random forests to epidemiological prediction tasks. Recently,

ensemble methods have been applied successfully in burden of disease estimation. This

article aims to provide epidemiologists with a practical understanding of the mechanisms of

an ensemble model and insight into constructing ensemble models that are grounded in the

epidemiological dynamics of the prediction problem of interest. We summarize the history

of ensemble models, present a user-friendly framework for conceptualizing and constructing

ensemble models, walk the reader through a tutorial of applying the framework to an appli-

cation in burden of disease estimation, and discuss further applications.
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Key Messages

• Ensemble models are a subset of machine learning with exciting applications in descriptive epidemiology.

• Ensemble models can leverage epidemiological context and prior knowledge to make accurate and precise predictions.

• Modern-day statistical and computational tools make ensemble models straightforward to implement for epidemio-

logical research.
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Background

A fundamental problem in descriptive epidemiology is

‘how many?’ For a deadly disease like malaria, how many

people are dying of it, where and at what age? Is that better

or worse than last year? For a disease like depression that

does not kill directly, but affects many people for a long

period of time, the question is how many people are suffer-

ing from it? Estimates of these metrics by age, sex and loca-

tion, as well as how they are changing over time are

critical data for public health decision-making.1,2

Globally, there are huge gaps in our knowledge about

who is getting sick from what and who is dying, and there is

a massive data integration challenge that can help to solve it.

Although routine measurements are not available, it is also

rare to know nothing. The challenge in answering the how

many question is bringing together the sparse and noisy

measurements that do exist to create estimates that take into

account the biases and other limitations of these data.1,2

Machine learning methods (see glossary of terms in

Table 1) have emerged as powerful tools in health research

to tackle this data integration challenge and make predic-

tions for important applications.3 Ensemble models are

tools rooted in statistics and machine learning that have

become known for making accurate, precise and computa-

tionally efficient predictions. Ensemble methods have been

widely applied in health research, including in applying the

super learner approach to create risk prediction scores4,5

and predict HIV-1 drug resistance,6 stacking survival mod-

els for breast cancer7 and predicting exposure-outcome

dose-response curves8 (we direct readers to further explore

ensemble models in the tutorial papers listed in the cited

references4,8).

The ensemble methodology has been adopted by scientists

as a reliable way to answer descriptive epidemiological

questions where we have noisy and often sparse data. In this

paper, we focus on a subset of specific examples where en-

semble models make use of this noisy and sparse data to

make predictions for burden of disease estimation, a subset

of descriptive epidemiology. We first develop a general

framework for constructing ensemble models for descriptive

epidemiology applications. In our main application, Foreman

and colleagues developed an ensemble model called the

Cause of Death Ensemble Model (CODEm) to make cause-

age-sex-specific mortality predictions for every country from

1980 to the present-day using diverse and disparate data

sources from all around the world as part of the Global

Burden of Disease Study (GBD).9 These ensembles consist of

many linear models with smoothing over space, time and age

that use factors related to specific causes of death as the pre-

dicting variables. In two additional applications, we discuss

the use of ensemble models to predict population-level distri-

butions of risk factors using ensembles of probability density

functions,10 and the use of ensembles to produce disease

maps at the 5x5 km level with stacking of multiple general-

ized linear models.11–13

The ensemble modelling methodology

A brief history of the ensemble approach

Ensemble models are composed of statistical learning

methods that are run on the data to predict some target pa-

rameter (e.g. mortality rate), with predictions then com-

bined in some way over these different methods. The first

theory behind the ensemble methodology was introduced

in the early 1990s with what Wolpert called stacked gener-

alization, referred to here as stacking.14 Cross-validation

procedures had existed previously as a way to select the

Table 1. Glossary of terms

Method Description

Ensemble methods A technique using multiple learning algorithms, or multiple statistical models, and combining

them to improve estimates and predictive performance.

K-fold cross-validation A technique for estimating predictive validity. Done by breaking the data into K groups and then

dropping each one in succession for model training and creating out-of-sample predictions

for it. The predictive validity metric is then estimated using the out-of-sample predictions.

Machine learning Algorithms that aim to ‘learn’ or predict outputs from inputs (covariates) based on a dataset that

contains both inputs and labelled output.

Out-of-sample predictions Predictions from a model that are made for data that was not used in training the model.

Predictive validity metric A metric used to assess the performance of a model’s predictions.

Random forest Also known as random decision trees, an ensemble method for classification or regression that

creates decision trees during training/learning to map an input to an output.

Root-mean-squared-error A commonly used predictive validity metric, calculated as the square root of the average of the

squared error in predictions compared with the observed data.

Super-learning (stacking) An algorithm that finds the optimal combination of a number of prediction algorithms.
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best-performing model out of a set of models based on

some predictive validity metric, like root-mean-squared-

error (RMSE). Wolpert proposed a method that could take

information from all of the models and combine their pre-

dictions, rather than just using the predictions from the

best one. Wolpert showed that this would out-perform na-

ive methods that only used predictions from one model.14

Building on this general framework, Breiman developed an

extension of stacking that used linear regression to com-

bine the predictions made by each of the individual mod-

els.15 Because linear regression minimizes squared error,

Breiman’s method of stacked regressions implicitly opti-

mizes squared error predictive validity metrics in combin-

ing the predictions of individual models.15

Stacking and stacked regression were applied for a vari-

ety of prediction problems and studied theoretically for a

better understanding of why combining predictions from

multiple models works.16 Stacking was further generalized

as the super learner, an ensemble of multiple algorithms,

and explored theoretically by van der Laan and colleagues.

They showed that the super learner was as asymptotically

efficient as if one knew a priori the optimal model to

use.17–20 Subsequent work even explored creating an en-

semble of ensemble models.21 As modern statistical and

computing methods have made the creation of ensemble

models more tractable, ensemble modelling has gained

popularity as repeatedly succeeding in making better pre-

dictions by combining the predictions of many different

algorithms. In 2006, Netflix, the movie and TV streaming

service, initiated a competition where teams could submit

a model to make the best predictions for Netflix customers’

streaming preferences. All of the successful teams used

some type of ensemble method.22

Why do ensemble models work?

The statistical theory underlying the superior performance of

ensemble methods has been outlined in detail by

others.16,17,19 Heuristically, we live in a complex world and

deal with complex problems. In general, teams that are more

‘cognitively diverse’ are better at problem solving.23 A sys-

tematic analysis of studies on diversity in the workplace

showed that most studies on organizational diversity found

that teams that are more diverse in terms of roles and team

functions have better performance.24 Diversity leads to im-

proved performance when ideas are debated within the team,

and when there is a culture of learning and synthesizing infor-

mation.24 This is the philosophical underpinning of ensemble

models: each component model brings a unique set of predic-

tions. Performance is enhanced when model validation tech-

niques ‘learn’ from all of the component models and ‘debate’

the best combination of them.

When do ensemble models work?

Statistical modelling tasks generally fall into two catego-

ries: inferential statistics and descriptive statistics.

Questions like, ‘Does smoking cause lung cancer?’ are an-

swered using causal modelling strategies that fall into the

inferential category. Questions like ‘How many children

are dying from malnutrition?’ or ‘How many children will

die from malnutrition from now until 2040?’ are funda-

mentally descriptive. This is the application where ensem-

ble models become very useful. Ensemble models require

additional care when used in causal modelling. Other

authors explore the rich intersection of prediction, ma-

chine learning and causal modelling in detail.25,26

An ensemble framework for descriptive

epidemiology

Though there are many types of ensemble models, they all

share a few key ingredients. We now present a framework

for thinking about ensemble modelling that references and

builds on methodology from stacked generalization and

the super learner that we have just discussed,19,20 and

relates to ensemble taxonomies developed by others27,28

but focuses particularly on breaking down the concepts

and steps as they relate to descriptive epidemiology.

Labelled data and the prediction task

In burden of disease estimation, each location unit has a set

of variables that may relate to the health status of the individ-

uals living in that location, along with a set of health out-

comes. In epidemiology, each individual in a cohort study

has information on their exposure and outcome variables

clearly defined and recorded at each time point. These are

examples of labelled data: predictor and response variables

with meaningful values for the prediction task at hand.

Once we have these labelled data, the prediction prob-

lem must be clearly defined. We use information from the

labelled data to make predictions about the outcome(s) of

interest, for the population of interest. Not only do we

want to make predictions for data where we have the

labels on the predictor variables but not the outcome varia-

bles, but also to make the best predictions we can for fully

labelled data when we know that the data are noisy (e.g.

when the outcome variable is measured poorly, we may be

able to better predict it than just relying on the mismeas-

ured variable we are provided with, and/or to narrow the

uncertainty around the estimates). In our burden of disease

example, we may want to use country-level variables on

socio-economic status, fertility and vaccination coverage

rates over time to predict child mortality from vaccine-
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preventable diseases over the next 10 years. In our epidemi-

ology example, we might want to use observed relation-

ships between exposure and outcome variables in a clinical

trial as well as individual-level characteristics to predict

which medication an individual will respond best to.

Component models

After defining the prediction problem that we want to solve,

we can specify a set of what we will call component models,

each of which will make its own predictions. In order to cre-

ate an ensemble model, we must have a minimum of two dis-

tinct component models. Depending on the type of variables

that we have, and the type of prediction task that we want to

perform, a component model could take many different

forms. Any two component models could be different in

terms of functional forms (e.g. regressions that use ordinary

least squares compared to a decision tree), or they could be

very similar (e.g. two linear regression models that differ only

in the inclusion or exclusion of a particular predictor). This

flexibility in component model specification makes ensemble

models attractive for a wide variety of prediction problems.

Estimate of prediction quality

There are two key elements to evaluating the quality of com-

ponent model predictions: (i) a clearly defined metric repre-

senting prediction quality, and (ii) a method for estimating

this metric. Examples of metrics of prediction quality are

RMSE, median absolute deviation, Kullback-Leibler

divergence29 and the Kolmogorov-Smirnov (KS) statistic.30

One can then estimate this metric in a variety of ways,

some of which may give more robust estimates. An impor-

tant consideration when choosing how to estimate the met-

ric is that ultimately our goal is to make the best out-of-

sample predictions. Another way of talking about the dis-

tinction between in- and out-of-sample predictions is hav-

ing a training data set (in-sample) that is used to train the

component model, and a test data set (out-of-sample) that

is used solely for evaluating the performance of the compo-

nent model. Methods of calculating performance measures

that utilize this train-test framework are preferred when

fitting flexible models to large datasets, because they help

us avoid over-fitting the component model. Over-fitting is

when a model is fit too closely to the training dataset. As a

result, the model does not capture the signal between pre-

dictors and an outcome and instead fits to noise in the

training data.

A common strategy for estimating predictive validity met-

rics is K-fold cross-validation. This type of cross-validation

strategy involves ‘hiding’ some data from the model and only

training it on the data that are not hidden. After the model is

trained, it makes predictions for the data points that were

hidden using only the values of the predictor variables for the

hidden outcomes, called out-of-sample predictions. We can

then compare the predictions for the ‘hidden’ outcome to the

observed outcome variable. We can repeat this process K

times so that eventually all of the data has been ‘hidden’ at

some point. This will give us a robust estimate of the accu-

racy of out-of-sample predictions.31 Cross-validation is a

very important feature of ensemble models in burden of dis-

ease estimation because we are often modelling with sparse

data and thus are especially susceptible to over-fitting.

Another strategy for estimating predictive validity metrics is

to repeatedly hide data based on group labels (e.g. the data

from P locations are hidden).31 The strategy that works best

for estimating the metric of predictive validity may differ

based on the prediction problem at hand. It is often desired

to hide data in such a way that reflects the true patterns of

missingness observed.9

Method for combining predictions

The final step in creating an ensemble is to combine the

predictions from the component models in a way that max-

imizes the quality of the predictions. At its most general

level, this step requires (i) translating the predictive validity

quality measure into some other measure that represents

how much weight a component model’s predictions are

given in the ensemble, and (ii) combining the predictions in

a way that utilizes the weights. Weighting schemes and

methods to combine predictions will vary based on the pre-

diction problem. We will talk more about specific exam-

ples of weighting schemes with the application to cause of

death modelling, and when we discuss other examples of

ensemble modelling.

Application of the ensemble framework to

predicting causes of death

We will now walk through an application of the ensemble

methodology from the GBD Study32 called the CODEm that

was first introduced by Foreman et al. in 2012.9 Foreman

et al. give details of CODEm methods elsewhere.9 Here we

present a high-level overview of these methods and describe

how they fit into the more general ensemble framework out-

lined above. Figure 1 presents a conceptual flowchart for ap-

plying the ensemble modelling framework to CODEm.

Cause of death data and the prediction problem

Vital registration systems, verbal autopsies, disease regis-

tries and police reports are all examples of the diverse data

sources that exist to record who is dying from what disease

2068 International Journal of Epidemiology, 2020, Vol. 49, No. 6
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or injury.9,32 We do not always have cause of death data

available for all locations and demographic groups across

the world and through the years. Even for populations

where we do, these data sources are often imperfect.

Component model specification

A disease modeller with epidemiological expertise might

have some prior knowledge about variables that she thinks

are likely to be associated with the disease of interest at the

population level. These might be based on known relation-

ships between individual-level factors like blood pressure

and cholesterol, or more distantly related variables like

socio-economic status or amount of air pollution in a given

country. We will call these independent variables or predic-

tors, and they go into a statistical model because of their

utility in predicting the outcome. A standard statistical

method that one might select to model cause of death

based on appropriate predictors is an ordinary least-

squares regression. In burden of disease estimation, we of-

ten have nested data: states are contained within countries,

countries are contained within regions, etc. These nested

relationships lend themselves to mixed-effect modelling, an

extension of linear regression but with nested random

effects to capture systematic variation in each of the ran-

dom effect units that are not adequately captured by the

predictors. The model specification for this mixed-effect

model is given by

yij ¼ xi1b1 þ :::þ xipbp þ zj1�1 þ :::þ zjq�q þ �ij

where yij is the response for observation i in random

effect group j that we want to predict (e.g. death rate)

with one entry for each location-year-age group, xik is the

value for observation i for the corresponding kth of p

predictors (with a column of 1s to specify an intercept), bk
is the coefficient for the kth predictor, zj is the indicator of

observation, the ith observation belonging to random effect

group j, �s is the coefficient for the jth random effect, and

�ij is an independent error term normally distributed

around 0.9

A commonly used metric to assess the goodness-of-fit of

a model, and one that is used often as a predictive validity

metric, is RMSE. It is calculated as the square root of the

mean of the squared deviations of the predictions from the

raw data. In other words,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðp̂i � piÞ
2

s

where p̂i is the prediction for the ith data point, pi. As a

general rule, as the modeller adds more predictors to her

model, she will get better predictions in terms of in-sample

RMSE. In fact, with enough predictors, the RMSE will go

to zero: she can hit each of the data points perfectly. The

story looks different when we consider out-of-sample pre-

dictions. With too many predictors we run the risk of over-

fitting to our training data. If we try to predict for places

that we do not have data, our model may perform quite

poorly. An additional issue arises when we have collinear

predictors: when two predicting variables are highly line-

arly related to one another. When models are fit using col-

linear predictors, the predictions from those models for

data that it was not trained on may be very unstable.

Additionally, the disease modeller might also be uncer-

tain about which response variable to use. Different causes

of death may also follow different data generating proce-

dures and thus are better approximated by different types

of models. She could predict the death rate, cause fraction

or the death count.9 In the case where her cause of death

Figure 1. Conceptual flowchart applying the ensemble modelling framework to the Cause of Death Ensemble Model (CODEm).
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has an abundance of data from many countries but lacks

data in many others, she may also want to do more

smoothing beyond the mixed-effect model.9

CODEm uses these different response variables and the

modeller’s prior beliefs about which predictors are associated

with her cause to create a set of component models that be-

come the building blocks for the ensemble model. First,

CODEm tests for significant relationships between different

combinations of predictors and the cause-of-death outcome,

resulting in component models with distinct combinations of

predictors.9 Next, these component models are fit using a

range of functional forms (predicting the logit-transformed

cause fraction, the log-transformed death rate or the number

of deaths per unit). Lastly, component models for diseases

with lots of data may have better predictions and more ro-

bust uncertainty intervals after undergoing additional

smoothing where predictions can borrow strength over the

dimensions of age, space and time.9

Measuring prediction quality

To measure the quality of predictions from the component

models, CODEm uses a combination of RMSE and trend

(the percentage of predictions that correctly predict either the

increasing or decreasing time-trend seen in the raw data).

Now, how can we adequately capture the performance of the

component models in the absence of data? We could ran-

domly remove some of the data multiple times with a strategy

like K-fold cross-validation. Or we could remove groups of

locations at a time with a strategy like leave P-groups out.

However, since cause of death data is based mainly on vital

registration, disease-specific registries and verbal autopsy, we

often find unique patterns of missingness in the data.

CODEm has a custom cross-validation process, where it

looks for real patterns of missingness in a given location and

then replicates that pattern of missingness in other locations.9

We can do this many times so that we have multiple training-

test sets that have patterns of missingness that look like the

full data set. This is the method that CODEm uses to calcu-

late the measure of quality based on RMSE and trend.9

This out-of-sample cross-validation strategy allows us

to create ensemble models that are robust to missingness in

the data. However, one must always be careful not to ex-

trapolate beyond the range of the data. For example, if we

have data for only 1980–2017, we would need more so-

phisticated statistical methods to predict into years that are

not represented by the data.

Combining predictions to maximize quality

Once we have calculated the measure of quality, we then need

to combine these predictions in a ‘smart’ way, so that we are

getting the best estimates possible. CODEm assigns a rank for

each of the component models based on how they perform

out-of-sample in terms of RMSE and trend. The next step is

to translate these ranks into weights. CODEm uses a mono-

tone decreasing function that determines what weights to ap-

ply to component models in their ranked order, given by

wi ¼
wN�ranki

PN
j¼1 w

N�j

where w is a hyper-parameter determining how quickly the

weights decline.9 The hyper-parameter is tuned by making en-

semble models at various values of w and then assessing its

out-of-sample performance on additional sets of test data sets.9

For example, a w ¼ 1 will have evenly distributed weights, and

a w ¼ 1:5 will have relatively less evenly distributed weights.

Now we can combine the component models based on

their weights. A potential way to combine component mod-

els would be to multiply their predictions by their weight,

and sum this over all of the component models, i.e.:

ŷ ¼
X

n

i¼1

ŷi �wi

This may give a sensible point estimate, but we want to

incorporate uncertainty from the model variability. Instead,

CODEm sets a desired number of ‘draws’, n (usually chosen

to be 1000), and then takes n �wi number of draws from

component model i.9 The method of creating a draw from a

component model means taking one sample from the

variance-covariance matrix of the fixed effects estimates,

multiplying that by the design matrix and adding on a ran-

dom draw from the random effect probability distribution

for the group that each data point belongs to. We typically

report the mean of all 1000 draws as the best estimate of the

prediction, and quantify uncertainty with an interval esti-

mate ranging from the 2.5th and 97.5th percentiles of the

1000 draws.9 This strategy for estimating uncertainty can

be used for any ensemble model that creates draws, or ran-

dom realizations, from the component models. Figure 2

shows the ensemble model predictions using different values

of w to weight the component models, and compares these

models to the best component model.

Simple ensemble examples

To demonstrate some advantages of ensemble modelling,

we have constructed simplified examples of the CODEm

ensemble models for cause of death data in the USA. We

have made an interactive example of this section available

in a Jupyter Notebook on GitHub33 to clearly show the

utility and accessibility of the ensemble framework. In

2070 International Journal of Epidemiology, 2020, Vol. 49, No. 6
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these ensembles, we focus on varying one property of the

component models: the independent variables included in

each model. Additionally, instead of using RMSE and

trend as the measure of prediction quality, we use only

RMSE.

Further applications and discussion

Ensemble modelling in burden of disease estimation, let

alone descriptive epidemiology, is not limited to the above

application. Stacking in geostatistical models and risk fac-

tor density ensembles are two other prominent examples.

To illustrate the flexibility of the ensemble approach to

various epidemiological questions, we will briefly describe

how these two applications fit into the ensemble

framework.

Creating 5x5 km disease maps

This section outlines the approach of geostatistical stack-

ing, with detailed methodology and applications else-

where.11–13

Labelled data and the prediction problem

To predict disease at a more granular level, one can create

maps of the probability of disease at the 5x5 km grid

spanning any location of interest. The data used for geo-

statistical analyses are geographically located cases (e.g.

case of malaria) aggregated up to this grid-level structure

and paired with predictor variables.12,13

Component models

With more granularity, disease maps become complex and

may not be well represented by a single model. The ‘stacking’

ensemble framework can account for this complexity11–13

Component models that tend to work well for this applica-

tion include a generalized additive model with non-linear

splines, a boosted regression trees model and a penalized re-

gression (such as the lasso).11,12 Each of these popular models

for high-dimensional data is used individually to predict the

probability of disease at the 5x5 km level.

Measure of prediction quality

In order to assess out-of-sample performance, the data is

split using 5-fold cross-validation holding out 20% of the

data for testing each time. Each component model is fit on

each of the five training sets and makes predictions for the

five test sets. This process creates an out-of-sample predic-

tion for the entire data set for each of the component

models.11,12

Method of combining predictions

Rather than explicitly using RMSE or another metric to

rank and then weight the models, the stacking method uses

these out-of-sample predictions from each of the compo-

nent models as independent variables in a linear regression

model with priors specifying spatio-temporal correlation

and a constraint that the coefficients for each model sum

to 1. With this constraint, the coefficients act as weights on

the component models, such that the ensemble is a

weighted prediction where the weight on a given compo-

nent model is determined based on its ability to predict the

data points relative to the other component models. To

make the final predictions, the in-sample predictions from

the first stage are used as predictors in the second stage

model that was fit using the out-of-sample predictions.

Using in-sample predictions in this step allows us to be as

precise as possible, while not over-fitting.11

Predicting distributions of risk factors

This section outlines the method of using ensembles to esti-

mate probability density functions of random variables,

with detailed methodology and application elsewhere.10

Labelled data and the prediction problem

Many variables that are considered risk factors for disease

are continuous measures like weight, number of cigarettes

Figure 2. Influence of w values of ensemble composition and perfor-

mance compared to the bestcomponent model. The figure shows the

effect that the w weighting parameter has on the composition of the en-

semble model, and how the RMSE for ensembles created with different

weighting parameters compares to the best single component model

included in the ensemble. The RMSE shown is calculated over all time

series data and predictions included in the model, but we only show

one time series to illustrate the performance of the ensemble.
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smoked per day or lead exposure in blood. These types of

variables are often measured in individual or household

surveys. In order to make statements about population-

level exposure to risk, it is necessary to predict the distribu-

tion function of the continuous risk variable.10

Component models

Since the functional form of the distribution is unknown, a

set of continuous distribution functions could be specified,

such as the normal distribution, log-normal, Weibull, lo-

gistic, etc. These functions act as component models that

are fit to the mean and standard deviation of the

individual-level data using the method of moments.10

Measure of prediction quality

The prediction of each component model is just the distri-

bution function. The KS-statistic, which describes how

close the predicted distribution function is to the empirical

distribution function, can be used to measure each compo-

nent model’s quality of prediction.10

Method of combining predictions

The ensemble distribution is a weighted linear combination

of each of the component distributions, where the weights

on the component models are the combination that mini-

mizes the KS-statistic of the ensemble distribution (using

Nelder-Mead numeric optimization).10

Discussion

Ensemble models are powerful tools that can be used to

generate the most accurate predictions from incomplete

and imperfect data. The flexibility of the ensemble model-

ling technique, as demonstrated in the applications of the

ensemble modelling framework to three very different

epidemiological applications—cause of death modelling,

geospatial disease mapping and risk distribution model-

ling—makes it a useful tool for a variety of descriptive epi-

demiology problems in burden of disease estimation.

Ensemble models use a range of ‘perspectives’, in the form

of component models, and consequently perform better

than single models can do by themselves. As seen in all

three examples above, we make use of out-of-sample cross-

validation to prioritize the best-performing component

models to make the optimal final ensemble predictions.

In the field of burden of disease estimation where there

are many unanswered questions about who is dying or suf-

fering from what and where, ensemble models provide an

analytic methodology that utilizes many sources of infor-

mation in a smart way to answer these questions, filling a

critical need for accurate health evidence. One can imagine

exciting future applications for ensemble models in

descriptive epidemiology. For example, non-fatal disease

modelling (incidence and prevalence), disease burden fore-

casting and costing.
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