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The paper presents an improved method for 1–24 hours load forecasting in the power system, integrating and combining
different neural forecasting results by an ensemble system. We will integrate the results of partial predictions made by three
solutions, out of which one relies on a multilayer perceptron and two others on self-organizing networks of the competitive
type. As the expert system we will apply different integration methods: simple averaging, SVD based weighted averaging,
principal component analysis and blind source separation. The results of numerical experiments, concerning forecasting
the hourly load for the next 24 hours of the Polish power system, will be presented and discussed. We will compare the
performance of different ensemble methods on the basis of the mean absolute percentage error, mean squared error and
maximum percentage error. They show a significant improvement of the proposed ensemble method in comparison to the
individual results of prediction. The comparison of our work with the results of other papers for the same data proves the
superiority of our approach.
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1. Introduction

The prediction of the 1–24 hours ahead load demand
plays an important role in the economy of power sys-
tem generation and distribution (Mandal et al., 2006).
Thanks to the precise forecasting for any hour of the
day, we can deliver really needed power and in this way
reduce the cost of the energy. Many prediction meth-
ods exist and are used in practice. The most common
are linear methods based on autoregressive models of
time series, such as AutoRegressive with eXogenous input
(ARX), AutoRegressive Moving Average with eXogenous
input (ARMAX) or AutoRegressive Integrated Moving
Average (ARIMA) (Gonzalez-Romera et al., 2006; Hip-
pert et al., 2001; Ljung, 1999). More advanced ap-
proaches apply nonlinear models based mainly on artifi-
cial neural networks, such as the MultiLayer Perceptron
(MLP), Radial Basis Function (RBF) networks, the Sup-

port Vector Machine (SVM) or self-organizing neural net-
works of the Kohonen type (Cottrell et al., 1995; Fidalgo
and Pecas Lopez, 2005; Kandil et al., 2006; Lendasse
et al., 2002; Osowski and Siwek, 2002; Yalcinoz and
Eminoglu, 2005). Neural networks are nonlinear struc-
tures, capable of taking into account more complex re-
lations existing among the analyzed data. Thanks to this
feature, they are able to generate more accurate prediction.

These methods differ by the particularity of the net-
work structure and the basic nonlinear functions used in
prediction, the principle of operation, the way of learn-
ing, and rely their prediction ability on different aspects
of the processing of the learning data. For example,
the application of a Kohonen network exploits the con-
cept of the clusterization of similar data points (Cottrell
et al., 1995; Osowski and Siwek, 1999), while the MLP,
RBF and the SVM take into account the universal approx-
imation ability of these networks (Osowski, 2006; Yalci-
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noz and Eminoglu, 2005). On the other hand, the MLP
network performs global approximation, while the RBF
network is a typical local approximation tool. The ways
of adapting the parameters of all these forms of solution
differ also significantly (Haykin, 2002; Osowski, 2006).

The most often used approach is to train many net-
works and then take the one, which guarantees the best
reproduction results on the data not taking part in learn-
ing (verification data). A more general approach is to
take into account all partial prediction results, combine
them into one ensemble system of presumably better qual-
ity and treat the combined output as the final forecast
(Haykin, 2002; Kuntcheva, 2004). This paper develops
and investigates the latter philosophy. Instead of dis-
carding less fortunate prediction results, we analyze them
and take the results of such analysis into account dur-
ing the preparation of the final forecasting. The ensem-
ble of neural predictors is composed of several individ-
ual neural networks. The prediction data generated by
each predictor of the ensemble are combined together to
form one forecasted power pattern for 24 hours ahead. We
will investigate here different integration methods: simple
and weighted averaging, Principal Component Analysis
(PCA) decomposition and Blind Source Separation (BSS)
(Cichocki et al., 2009; Haykin, 2002; Osowski, 2006).
The numerical results of all these integration schemes will
be presented and discussed.

2. Integration methods of prediction

The general ensemble system of forecasting applies many
individual predictors and combines them into one final
forecasting system. Let us assume that there are M indi-
vidual predictive channels combined into one forecasting
system by the integrating part of the network as shown in
Fig. 1.

We assume that each of the M predictive neural net-
works generates a 24 hours load pattern on the basis of
the information delivered by the user to the input of each
predictor. The output signals of each individual predictor
form the vectors xi (i = 1, 2, . . . , M) of the same size (24
components corresponding to 24 hours of the day). These
vectors are combined in the integrating unit to form one
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Fig. 1. Ensemble of predictive networks for integrated forecast-
ing.

output vector x̂ = [x̂1, x̂2, . . . , x̂24]
T of the final forecast-

ing.

Various integration methods may be applied in prac-
tice. In this paper, we will check and compare methods
belonging to three main groups. One is based on the av-
eraging of the results of individual predictors, the second
on the application of PCA to the data created by the com-
bined predictors, and the third one on the application of
independent component analysis of the time series formed
by the individual predictors.

2.1. Integration based on averaging. In this approach
the final forecast is defined as the average of the results
produced by all different predictors. Two kinds of averag-
ing techniques are used. The simplest one is the ordinary
mean of the partial results. In such a case the final pre-
diction vector x̂ for the particular 24 hours load pattern is
defined as

x̂ =
1
M

M∑

i=1

xi. (1)

This formula makes use of the stochastic distribution
of predictive errors. The process of averaging reduces the
final error of forecasting. It works quite well if all predic-
tive networks are of comparable accuracy. If it is not true,
the final results may be inferior with respect to the best
individual predictor. In such a case better results may be
obtained by applying weighted averaging, that is, by tak-
ing the summation of terms in (1) with different weights
following from the estimated accuracy of each predictor.
This accuracy may be measured on the basis of particular
predictor performance on the data from the past. The most
reliable predictor should be considered with the highest
weight, and the least accurate one with the least attention.
The forecasted load for the j-th hour of the day can be
now defined in the following form:

x̂j =
M∑

i=1

w
(i)
j xj(i), (2)

where the upper index means the i-th neural network. The
weights are adjusted individually for each hour and should
be adapted in a way to provide the best result of fore-
casting. The easiest way to determine the values of the
weights (i = 1, 2, . . . , M and j = 1, 2, . . . , 24) is to solve
the set of linear equations for each hour of the day corre-
sponding to the learning data. The equations written for
j = 1, 2, . . . , 24 and all p training data may be presented
in the following matrix form:

Xjwj = dj , (3)
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in which x
(i)
j (k) is the load predicted by the i-th neural

network for the j-th hour at the k-th learning data and
dj(k) is the destination value (the accurate load) at the
j-th hour for the k-th learning data. The solution of the
above equation is straightforward by applying singular
value decomposition of the data matrix Xj and pseudoin-
verse (Golub and Van Loan, 1991),

wj = X+
j dj . (4)

After solving such equations for j = 1, 2, . . . , 24, we get
all coefficients forming the weighting vectors wi used for
the final forecasting (Eqn. (2)).

2.2. Integration based on PCA. In this solution the
weighted voting of the individual predictors is substituted
with linear transformation of the data provided by PCA.
PCA represents a classical statistical technique for ana-
lyzing the covariance structure of multivariate statistical
observations, enhancing the most important elements of
information (Diamantras and Kung, 1996). Assuming that
an N -dimensional input vector x is transformed into a K-
dimensional output vector z, PCA is defined as follows:

z = Wx, (5)

where W = [w1,w2, . . . ,wK ]T is the transformation
matrix formed by K eigenvectors of the covariance ma-
trix Rx associated with K largest eigevalues. The reduced
size vector z is composed of K principal components, be-
ginning from the most important, z1, and ending on the
least importance component, zK . The reconstruction of
the original vector x, denoted here by x̂, on the basis of
principal components and the orthogonal transformation
matrix W is described by the relation

x̂ = WT z. (6)

The reconstructed vector is deprived of the least impor-
tant information associated with the reduced eigenvalues
of the covariance matrix Rx. The cut information usually
corresponds to the noise contaminating the measurements.

In our implementation of PCA we form the x vectors
as a combination of the predicted 24 hours loads (vectors

xi) generated by individual neural predictors. The number
of such combined vectors is equal to p, i.e., the number of
learning data. The size of the vector x is thus equal to
nx = 24 × M . In the learning phase of PCA, we form
the covariance matrix Rx of p data vectors generated by
M predictors. The size of Rx is equal to nx × nx. Then
we perform eigenvalue analysis of this matrix. As a re-
sult, we get nx eigenvalues λi and the same number of
the eigenvectors wi associated with them. We arrange the
eigenvalues in decreasing order. The K eigenvectors as-
sociated with largest eigenvalues of this matrix (K < nx)
form the PCA transformation matrix W. At this stage, the
system is ready for on-line operation. The actual vectors x
formed by M neural predictors are first transformed into a
reduced size vector z by using (5) and then reconstructed
back by applying the relation (6).

After this double transformation, the vector x̂ is de-
prived of the least important components (the noise exist-
ing in the original vector x) and thanks to this it may es-
tablish a more accurate forecast of the load pattern. PCA
acts here like a lowpass filter eliminating the noise. The
result of this transformation contains filtered versions of
individual prediction vectors x̂ for i = 1, 2, . . . , M . The
final forecast for 24 hours can be calculated using a simple
averaging procedure of the results, corresponding to each
predicted pattern contained in the extended vector x̂.

2.3. Integration based on BSS.

2.3.1. Principle of the method. The approach based
on blind source separation (Cichocki et al., 2009; Ci-
chocki and Amari, 2003) integrates different methods of
prognosis into one forecasting system by combining the
results of BSS of time series. The results of prognosis
(vectors xi) generated by each predictive network for the
period used in training create time series that are put in
parallel to the BSS system. The number of inputs to BSS
is equal to the number M of the prognosis networks ap-
plied. The BSS system decomposes the original stream
of signals of length q, forming a matrix X ⊂ R

M×q

(q is the number of prognosis hours used in learning,
q = 24p), into independent components using a matrix
W ⊂ R

M×M .
The independent component signals, generated by

BSS, form a matrix Y of M rows and q columns. This
is the linear transformation described by Y = WX. Each
row of the matrix X represents independent component
series. Some of these series represent essential informa-
tion and some represent noise. Reconstructing the original
time series back into a real prognosis on the basis of essen-
tial independent components will only provide a prognosis
deprived of the noise, that is, of presumably better qual-
ity. The problem is that we do not know in advance which
component is the noise and which represents the useful
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information. It is possible to solve the problem by trying
in reconstruction all combinations of independent compo-
nents and accepting the one which provides the best re-
sults of prediction on the learning data. Another approach
is to find out which component is of the noisy character
using statistical tests (Nikias and Petropulu, 1993), for ex-
ample, correlation analysis. The signals of noisy channels
are then replaced with zeros in the reconstruction phase.

The reconstruction of the original data matrix X
is done by using the inverse operation, called deflation
(Cichocki et al., 2009; Cichocki and Amari, 2003),

X̂ = W−1Ŷ. (7)

In this equation X̂ denotes the reconstructed time series
matrix and Ŷ is the independent component matrix built
out of the original matrix Y by zeroing row or rows cor-
responding to noise. In recovering signals we may try all
sensible combinations of independent components, sub-
stituting the rejected components (appropriate rows of Y)
with zeros. The combination corresponding to the best re-
sult of prediction on the learning data is assumed as the
final solution. In the reconstruction phase on the testing
data, only this combination will be used.

Figure 2 presents a graphical illustration of the pro-
posed method. The input signals xi(k) for BSS (block
of the matrix W) are formed from the stream of data for
the particular hour k generated by the predictors. The
switches in the figure represent possible elimination of the
appropriate independent components at the reconstruction
stage of the data.

At the learning stage, the stream of each channel is
formed by the components of the vectors xi, i.e., the out-
put signals of neural predictors for succeeding days com-
bined together. In the retrieval mode, they are the com-
ponents of 24 hours load patterns predicted by each pre-
dictor. Note that the BSS method, very popular in many
signal processing problems, has been proposed in the load
forecasting for the first time here.

2.3.2. Blind source separation algorithm. The blind
source separation system decomposes the streams of in-
put signals of M channels into M independent com-
ponents. The basic assumption is that the input sig-
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Fig. 2. General scheme of the proposed solution.

nals are mixtures of some unknown basic original in-
dependent sources which are to be recovered by the
separation algorithm. There are many different solu-
tions developed for BSS (Belouchrani et al., 1997; Choi
et al., 2002; Cichocki et al., 2009; Cichocki and Amari,
2003). We have tried some of them installed actually
in ICALAB (Cichocki et al., 2009), and the best re-
sults have been obtained during the application of the
second order blind identification algorithm (Choi et al.,
2002). SOBI applies two covariance matrices: Rx(0),
where Rx(0) = 1/p

∑p
k=1 x(k)xT (k), and Rx(L) =

1/p
∑p

k=1 x(k)xT (k − L) for some selected value of L
(for example, L = 1 or 2). We perform the eigenvalue
decomposition for Rx(0),

Rx(0) = UxDxUT
x . (8)

The standard whitening of the vectors xi is real-
ized by applying the linear transformation (Cichocki and
Amari, 2003),

xi = Qxxi = D−1/2
x UT

x xi, (9)

where Qx = D−1/2
x UT

x . On the basis of this, we define
two covariance matrices: one for the vectors x̄i and the
other for the same vectors with the assumed shift L,

Rx̄(0) =
1
p

p∑

k=1

x̄(k)x̄T (k) = QxRx(0)QT
x , (10)

Rx̄(L) =
1
p

p∑

k=1

x̄(k)x̄T (k − L) = QxRx(L)QT
x .

(11)

An orthogonal eigenvalue transformation is then applied
to diagonalize the matrix Rx̄(L) . It takes the form

Rx̄(L) = Ux̄Dx̄UT
x̄ . (12)

The demixing matrix W is then described as
(Cichocki and Amari, 2003)

W = UT
x̄ Qx. (13)

The estimated independent sources for each k-th hour of
the day for k = 1, 2, . . . , 24 are described by the relation

y(k) = UT
x̄ Qxx(k), (14)

where x(k) = [x1(k), x2(k), . . . , xM (k)] is the vector
formed by the k-th components of the vectors generated
by individual predictors (k means a particular hour). The
mixed signals can be reconstructed back using the relation

x̂(k) = W+y = Q+
x Ux̄y(k), (15)

where + means the pseudoinverse (Golub and Van Loan,
1991). Observe that for the number of mixed signals equal
to the number of independent components, it is a simple
matrix inversion.
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Fig. 3. MLP structure for forecasting the 24-hour load pattern.

3. Individual neural predictors

To obtain accurate results of forecasting, we have to ap-
ply individual predictors of superior performance, since
the better the results of partial predictions, the better the
expected forecasting accuracy of the whole system. There
are many different methods used currently for the predic-
tion of the time series of the power demand. To the most
well-known belonged in the past linear prediction meth-
ods, like ARX or ARMAX (Ljung, 1999). We have tried
ARMAX for the data of the Polish power system related
to the last four years. However, the results were not en-
couraging. The average prediction error calculated for the
whole year ranged from 5% to 6%, depending on a partic-
ular year.

Actually, neural network based predictors are re-
garded as best. Supervised learning (Afkhami-Rohani
and Maratukulam, 1998; Kiartzis et al., 1997; Fidalgo and
Pecas Lopez, 2005; Osowski and Siwek, 2002) as well as
competitive self-organizing (Cottrell et al., 1995; Osowski
and Siwek, 1999) networks are most widely known. In our
work we have used three neural prediction methods. One
is based on the MLP and applies the most popular super-
vised learning. The other two rely on the application of
the hybrid approach exploiting self-organizing networks
working either in a crisp or a fuzzy mode.

3.1. Multilayer perceptron based method. The first
predictor type makes use of the universal approxima-
tion ability of the MLP network (Haykin, 2002; Os-
owski, 2006). To represent the generally unknown func-
tion of the next day load pattern, it maps the past loads
of the system into the present forecasted load at the d-th
day and the the h-th hour. Our general MLP model of the
load is assumed here in the following mathematical form
(Osowski and Siwek, 2002):

P̂ (d, h) =f(w, t, s, P (d, h − 1), . . . , P (d, h − H),
P (d − 1, h) . . . , P (d − D, h − H)), (16)

where w represents the vector of synaptic weights of the
network, H and D are the number of past hours and days,
respectively, influencing the prediction process, t denotes
the type of the day (workday or holiday) and s signifies
the season of the year (autumn, winter, spring or summer).
The value P̂ (d, h) represents the predicted loads and the
values P (d−i, h−j) written without hat—the known val-
ues of the load from the past. All data samples have been
normalized dividing the real load by the mean value of the
data base of the Polish power system, formed years, tak-
ing part in the experiments. The forecasting model does
not take into account temperature, although in general it
might have a significant impact on the accuracy.
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We have omitted temperature simply, because the
prediction is concerned with data corresponding to the ter-
ritory of the whole country. Temperature changes a lot in
different regions of Poland, so it would be difficult to ad-
just the proper value of temperature for a particular day.
However, in the case of forecasting energy consumption
for a small region, the inclusion of temperature and its
gradient in the model would be beneficial and easy to con-
sider in our model.

The expression (16) may be associated with the MLP
network of the particular structure presented in Fig. 3. The
neural network architecture of this figure contains a cer-
tain number of input nodes. One node is used for binary
coding of the type of day (working day or holiday) and
two—the season of the year (winter, spring, summer and
autumn). Some nodes represent the loads of some past
days (up to D) and previous hours (up to H). All these sig-
nals put to the input nodes form the input vector x. The
output layer contains 24 linear neurons. Their quantity
is equal to the number of hours of prediction (24 hours
ahead). The signals of output neurons represent the nor-
malized forecasted 24 hours load pattern.

The MLP network consists of many simple neuron-
like processing units of a sigmoidal activation function
grouped together in layers. The number of hidden layers
and neurons of sigmoidal non-linearity are usually subject
to adjustment in an experimental way by training different
structures and choosing the smallest one, still satisfying
the learning accuracy.

The information put to the input of the network
is processed locally in each unit by computing the dot
product between the corresponding input vector and the
weighting vector of the neuron. Before training, the
weights are initialized randomly. Training the network to
produce a desired output vector di (load pattern of the
next 24 hours) when presented with an input vector xi

involves systematical changing of the weights of all neu-
rons until the network produces the desired output within
a given tolerance. The procedure is repeated over the en-
tire training set. Learning is just reduced to the mini-
mization of the Euclidean error measure over the entire
learning set. The most effective learning approach applies
gradient information and uses second order optimization
algorithms, like Levenberg-Marquard or conjugate gradi-
ent ones (Osowski, 2006). The gradient vector in a multi-
layer network is computed using the backpropagation al-
gorithm.

The important point in designing the optimal net-
work structure is adjusting the length of the input vector x,
which depends explicitly on the chosen values of D and
H . The structure of the network is treated as optimal if
it provides the most accurate prediction for the data not
taking part in the learning process. There are some meth-
ods for optimal selection of input variables (Drezga and
Rahman, 1998; Guyon and Elisseeff, 2003). Such tools

include covariance analysis, PCA, projection pursuit, the
application of linear SVM feature ranking, etc. In this
work we have applied correlation analysis studying the de-
gree of correlation of the learning errors of the MLP with
different numbers of D and H . On the basis of numerical
simulations, we have found that the optimal number of in-
put nodes in our case is 19, which corresponds to D = 3
and H = 4.

The optimal number of hidden layers and neurons in
these layers was found using the trial and error approach
by learning many different structure MLP networks and
accepting the one which has provided the least value of the
error on the validation data, extracted from the learning
data set (20% of the learning pairs). On the basis of these
numerical experiments we have found the optimal struc-
ture containing two hidden layers of 20 and 15 sigmoidal
neurons, respectively. In this way the optimal structure of
the MLP network used in the prediction is described as
19-20-15-24. Note finally that we have not distinguished
holidays or special days like Christmas or Easter. The 24-
elements of the load patterns for these specific days were
predicted in the same way as for regular days. This was
done just to create more difficult conditions of forecasting.

3.2. Neural predictor based on self-organization.
The second type of predictor makes use of self-
organization of the learning data (Cottrell et al., 1995; Os-
owski and Siwek, 1999). The main task of the self-
organizing network is to learn the characteristics of the
daily loads of the system. The days of the same type
belonging to the same seasons of the year have similar
load characteristics and form clusters, grouping similar
data. Each cluster is then represented by one neuron act-
ing in a competitive mode. To make the prediction inde-
pendent of the general trend, changing from year to year,
we transform the input data by cutting out the mean value
and dividing the result by the standard deviation of the
data for this day. In this way the so-called profile p(d, h)
for the d-th day and the h-th hour is defined (Cottrell
et al., 1995; Nikias and Petropulu, 1993),

p(d, h) =
P (d, h) − Pm(d)

σ(d)
, (17)

where P (d, h) is the real load of the d-th day at the h-th
hour, Pm(d) is the mean value of the load of the d-th day
and σ(d) is the standard deviation of the load of this day.
Observe that in an extreme case the profile value can be
negative.

The set of 24 profiles for each hour of
the day represent the profile vector p(d) =
[p(d, 1), p(d, 2), . . . , p(d, 24)]T . These vectors form
the training data of the self-organizing network of the
Kohonen type. In training such a network we have used
the neural gas algorithm (Haykin, 2002; Osowski, 2006).
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In practice, we have trained the self-organizing network
containing 100 neurons. This number was established
on the basis of introductory numerical experiments per-
formed using different numbers of neurons and choosing
the one providing the best results of prediction. Figure 4
presents the map of the profile vectors for these 100
neurons trained using the data of the Polish power system
from the last three years. Each profile vector represents a
24-hour load pattern of the cluster center (central neuron).
It depicts the data closest to its weighting vector in the
chosen metric space.

If we want to make the prediction for the 24 hours
load pattern of the particular day, we simply take the re-
versed form of Eqn. (17). The prediction of the load for
the d-th day and the h-th hour may be expressed in the
form

P̂ (d, h) = σ̂(d)p̂(d, h) + P̂m(d), (18)

where the variables with hat mean predicted values. Suc-
cessful application of this method needs solving three
tasks. One is accurate prediction of the profiles p̂(d, h),
the second—good estimation of the mean value P̂m(d)
and the third—the estimation of the standard deviation
σ̂m(d) for the particular day under consideration.

The latter two problems have been solved by apply-
ing the MLP network. Two separate MLP networks: one
for the mean and the second for the standard deviation of
the same structure have been designed. To obtain accurate
mean (standard deviation) prediction we have taken the
input vector to the network composed of eight nodes, rep-
resenting the mean (standard deviation) of the load for the
previous days (up to D days) and of the previous weeks
(up to W weeks), the binary code of the actual season of
the year and the type of day. In practice we have assumed
W = 1 and D = 2. The destination associated with the
output neuron represents the predicted value of the mean
(standard deviation) for the d-th day, respectively. The
mean and standard deviation values used in the experi-

Fig. 4. Map of profile vectors of 100 self-organizing neurons.

ments have been normalized by proper linear scaling of
the real data to the range [0, 1]. The general MLP struc-
ture for mean load prediction of the d-th day is presented
in Fig. 5. The symbol P̂m(d, w) = P̂ (d) means the mean
value of the load for the d-th day of the w-th week under
consideration. An identical structure has been used for the
prediction of the standard deviation for the d-th day of the
w-th week.

The number of hidden neurons has been chosen on
the ground of the good generalization ability of the net-
work. It was adjusted after a series of numerical experi-
ments using the validation data. As a result of such exper-
iments the final structure of the MLP network used in the
prediction of P̂m(d) and σ̂(d) was 8-12-1.

The profile prediction problem has been solved by
us in two different ways. In the Crisp Self-Organization
(CSO) approach (Cottrell et al., 1995; Osowski and Si-
wek, 1999) we estimate the profiles by averaging the win-
ner vectors for this particular day (for example, all Mon-
days of July) on the past learning data,

p̂(d) =
∑m

i=1 kdiwi∑m
i=1 kdi

. (19)

In this expression, kdi is the number of appearances
of the i-th neuron among the winners in the past for this
particular the d-th day and wi is the weighting vector of
the i-th self-organizing neuron (learned load pattern of the
i-th cluster). Only winners have been taken into account
in this method.

In the second, slightly different, approach, we have
fuzzified the process of the determination of the profile
vector. At the prediction stage we take into account not
only the winner but also the activity of some losers, clos-
est to the winner. The learning phase is performed in the
same way as it was done in the first case. However, as a re-
sult of learning, we memorize not only the signal y of the
winner, but also of some limited number (say q) of neu-
rons closest to the winner, keeping their relative activities.
On the basis of these distributed activities of neurons at
the presentation of the input vector to the self-organizing
network we define the membership degree of the i-th neu-
ron in the form

μi =
yi∑q
i=1 yi

. (20)

The highest membership value corresponds to the winner,
but q losers take also some nonzero values. The stage of
the profile prediction for the d-th day (Osowski and Si-
wek, 1999) takes into account not only the winners but
also their q neighbors and their relative activities

p̂(d) =

∑m
i=1

∑q
j=1 μ

(j)
i w(j)

i
∑m

i=1

∑q
j=1 μ

(j)
i

. (21)

The parameter μ
(j)
i denotes the membership degree of the

j-th neuron taking part in prediction of the profile vector
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Fig. 5. MLP structure for the mean load of a particular d-th day. An identical structure is used for standard deviation prediction.

for the d-th day. The index i means the notation of par-
ticular day profiles of the past taking part in prediction.
The variable m is the number of similar days (for exam-
ple, Mondays of July) from the learning data base of the
past. The relations (20) and (21) are of the fuzzy nature,
thus the method is called Fuzzy Self-Organization (FSO).

4. Results of numerical experiments

The numerical experiments have been performed for the
data of the Polish power system collected over four years.
The whole data base has been split into two parts: the
learning set containing the data of three years and the test-
ing set composed of data of one year, not taking part in
learning. We have used three different neural predictors
combined into one ensemble network performing the final
forecasting. One is based on the application of the MLP
structure and two others on self-organization (CSO and
FSO). They have been combined together using different
methods of integration, discussed in Section 2. The results
have been compared on the basis of the committed errors.
There are three most important types of errors from the
practical point of view. Let us denote by P (h) and P̂ (h)
the real and predicted load at the h-th hour, respectively,
and by n—the total number of hours of prediction. We
have adopted the following definitions of errors:

• the Mean Absolute Percentage Error (MAPE),

MAPE =
1
n

n∑

h=1

| P (h) − P̂ (h) |
P (h)

· 100%; (22)

• the Mean Squared Error (MSE),

MSE =
1
n

n∑

h=1

[
P (h) − P̂ (h)

]2

; (23)

• the Normalized Mean Squared Error (NMSE),

NMSE =
MSE

(mean(P ))2
, (24)

where mean(P ) represents the mean value of the
load in the time period of prediction;

• the MAXimum Percentage Error (MAXPE),

MAXPE = max

{
| P (h) − P̂ (h) |

P (h)
· 100%

}
.

(25)

The errors have been calculated separately for the learning
and testing data. Here we will present only the testing
errors, related to the data not taking part in learning, since
this information is most important from the practical point
of view.

Table 1 presents the obtained results of the load fore-
casting for the last (testing) year in the form of the mean
absolute percentage error, maximum error (both in %)
and the mean square error measured as the mean of the
squared errors (in MW2). These results represent indi-
vidual predictors. The superiority of the MLP is evident.
Note that both self-organizing approaches are based on
the same principle of operation and, as a result, represent
similar accuracy.
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The first experiments of integration have been per-
formed by applying the averaging principle. The obtained
results in the form of three error measures are presented in
Table 2. There is an evident improvement of the prediction
quality in terms ofthe MAPE and MSE. Both methods of
integration deliver similar results, although weighted av-
erage is a bit better.

The next experiments are concerned with PCA based
integration. Different numbers of principal components
have been considered. Table 3 presents the results for
three different numbers: 5, 11 and 20 of principal compo-
nents. The best results correspond to 11 components, and
this number was regarded as the optimal one. The results
related to the PCA method are similar to the averaging
approach in terms of the MAPE, MSE and MAXPE. No
significant decrease in errors has been observed in com-
parison to averaging.

The last form of integration (BSS) needs special sig-
nal processing. The learning data streams of the 1–24
hours ahead load forecast, corresponding to MLP, CSO
and FSO approaches, have been submitted to the input of
the BSS system in the form of three parallel time series.
The SOBI algorithm of separation has been applied. As
a result, we have got the separation matrix W and three
independent component streams packed in the matrix Y,

Table 1. Testing errors of the load forecasting for the Polish
power system using individual predictors.

Method MAPE MSE NMSE MAXPE
[%] [MW2] [%]

MLP 1.98 1.65e5 0.64e-3 16.92
CSO 2.35 2.45e5 0.96e-3 18.10
FSO 2.34 2.43e5 0.95e-3 18.08

Table 2. Results of integration using averaging.
Method MAPE MSE NMSE MAXPE

[%] [MW2] [%]
Ordinary 1.86 1.48e5 0.58e-3 16.98

mean
Weighted 1.84 1.47e5 0.57e-3 16.97
average

Table 3. Results of integration using PCA with different num-
bers of principal components.

Method MAXPE MSE NMSE MAXPE
[%] [MW2] [%]

PCA 2.15 1.92e5 0.75e-3 17.08
(5 comp.)

PCA 1.81 1.46e5 0.57e-3 16.23
(11 comp.)

PCA 1.89 1.52e5 0.59e-3 16.88
(20 comp.)

whose graphical forms for one year period of time are pre-
sented in Fig. 6. It looks that only Channel 1 depicts the
components of essential information and the rest—some
kind of noise or outliers with a very small portion of use-
ful information.

To confirm this statement, we have made some ad-
ditional experiments and calculated the autocorrelation
functions of these three streams of data. The results of
these experiments in the form of correlation values for
positive (right) and negative (left) delays are presented in
Fig. 7. The middle point of the figure represents the de-
lay equal to zero. The correlation function of the noise
is very characteristic, since there are only few dominating
stripes corresponding to delays close to zero (for purely
white noise there is only one high magnitude stripe at
zero delay). The distribution of the correlation function
of other delays forms the noisy sequence of small value.
It is now evident that the signal of Channel 2 may be re-
garded as white noise. The signal of Channel 3, visible in
Fig. 6, is the mixture of white noise and some outliers with
(maybe) a very small portion of some useful information.
On the other hand, the correlation function of the time
series of Channel 1 is very typical for the deterministic
signals forming the useful information used in prediction.

Using the obtained decomposition, we may recon-
struct three streams of original data (forecasted values) by
applying the relation (15) and omitting some basic compo-
nents (the rows of Y) during the deflation process. Since
in a general case (without performing correlation analysis)
we do not know which independent stream represents es-
sential information, we may try all possible combinations
of them. Along with three independent components there
are also three possible solutions corresponding to the ap-
plication in the reconstruction stage of the combinations
of two streams and three solutions after the reconstruction
of the data on the basis of one stream only. The combina-
tion of streams resulting in the best prediction accuracy of
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Fig. 6. Independent components of load pattern prognosis for
one year data.
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the reconstructed time series of the power demand may be
assumed as the optimal solution, and this one should be
tested on new data (in our case the testing data correspond
to the last year, not taking part in learning). For illustrat-
ing these phenomena, the results of testing the BSS based
forecasting system for all six combinations of indepen-
dent components at the reconstruction stage are collected
in Table 4.

They are presented in the form of the MAPE, MSE,
NMSE and MAXPE. As can be seen, the best case (dis-
tinguished in bold) corresponds to the case of omitting the
component no. 2, which can be treated as evident noise.
Note that the relevant information is contained mainly in
the first channel. Reconstructing the prognosis on the ba-
sis of this channel generates the results only slightly worse
than in the best combination 1–3 (the MAPE difference
of 0.01% within the tolerance limit). On the other hand,
combining two noisy signals of Channel 2 and 3 or taking
only individual noisy channels 2 or 3, we reconstruct the
forecast of the 24 hours ahead load pattern, which repre-
sents the noise only (MA PE above 99%).

From the practical point of view, in our further prog-
nosis we can rely only on the component no. 1, regarding
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Fig. 7. Distribution of values of the autocorrelation function of
separated streams of data (a) Channel 1, (b) Channel 2,
(c) Channel 3.

Table 4. Errors of forecasting the power demand for the testing
data using the BSS based integration system.

Combination MAXPE MSE NMSE MAXPE
[%] [MW2] [%]

1-2 1.99 1.67e5 0.65e-3 17.18
1-3 1.73 1.25e5 0.49e-3 16.21
2-3 99.87 2.64e8 1.03 110.93
1 1.74 1.26e5 0.49e-3 16.42
2 99.73 2.63e8 1.02 110.05
3 99.97 2.65e8 1.04 100.87

the others as noise. This conclusion is not very surpris-
ing if we observe that only three forecasting methods have
been applied in the numerical experiments. The decompo-
sition of three mixed signals has resulted in the essential
information (Channel 1), the evident noise (Channel 2)
and some combination of the noise and outliers visible in
the channel no. 3.

In practice, especially with a high number of the
prognosis methods applied, the combination approach
presented above may be too tedious and time consuming.
In such a case, the best approach is to apply the autocor-
relation analysis of all separated signals. The results of
this analysis indicate which signals are deterministic and
which are stochastic (noise). The noisy signals should be
simply zeroed and only the deterministic signals should
be combined together in the deflation procedure.

Figure 8 presents the results of experiments in the
form of MAPEs for individual predictors and different
forms of their combinations (averaging, PCA and BSS).
It is evident that the integration improves significantly the
accuracy of forecasting. The least efficient is the simple
averaging (mean) of the results of all predictors. More
powerful is weighted averaging, and the best results cor-
respond to the application of the BSS approach.

Table 5 depicts relative improvements in the best fi-
nal results (BSS based integration) over individual fore-
casting methods for the testing data of one year and all
three categories of errors. There is a significant improve-
ment in forecasting results in all categories. The highest
improvement has been observed for the MSE. If we com-
pare the results with the best predictor (MLP), we note
13.02% for the MAPE, 23.87% of the MSE and 4.24%
of the MAXPE. The improvements over other prediction
methods are even more impressive (almost 50% improve-
ment in terms of the MSE).

Figure 9 depicts the relative improvement in fore-
casting results for the MAPE (Fig. 9(a)) and the MAXPE
(Fig. 9(b)) in comparison with the best individual pre-
dictor (MLP). Also, both self-organizing methods are in-
cluded in this comparison. It is evident that the integration

Fig. 8. Summary of MAPE results of power demand forecasting
for the testing data not taking part in learning.
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of many predictors, even not equally good, brings an im-
provement of the final statistical results. In the most ex-
treme case (BSS), the relative improvement with respect
to the best individual predictor (MLP) is over 13%. Even
the maximum percentage error has been slightly reduced,
although this time the improvement is around 4% only.

The next experiment has been performed by omitting
one of the self-organizing results. We have taken into ac-
count the results of the MLP and FSO since the results
of CSO are very close to these of FSO and both methods
rely on a similar principle. The observed results are only
slightly worse than in the best case (1.75% of the MAPE
and 16.36% of the MAXPE). This confirms the fact that
the highest potential improvement of results may be ex-
pected when independent individual predictors are inte-
grated into one forecasting system.

It is interesting to compare the patterns of the load on
particular days of the year. Figure 10 depicts two repre-
sentatives of typical days of the year. Figure 10(a) corre-
sponds to the working days of the chosen week of the year,

Table 5. Relative improvement in the BSS method over individ-
ual predictors.

Predictor MAXPE MSE MAXPE
[%] [MW2] [%]

MLP 13.02 23.87 4.24
CSO 26.36 48.87 8.38
FSO 25.38 47.27 8.20

(a)

(b)

Fig. 9. Comparison (in %) of different prediction methods with
respect to the best individual predictor: (a) MAPE, (b)
MAXPE.

and Fig. 10(b) — to the weekend days of the same week.
Three time series are depicted: the real one, the results
corresponding to the best individual predictor, and those
related to the best results of the ensemble network (BSS).
It is evident that both prognoses follow the real load pat-
tern of the system; however, the integration results trace
better the general trend of the load change in comparison
to the best individual prognosis made by the MLP.
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Fig. 10. Typical load patterns for the working days (a) and the
weekend days (b).

5. Conclusions

The paper has presented a neural network ensemble ap-
proach to forecasting the 24-hour load pattern of a power
system. In this method many different predictors are
trained and their results compared to each other. In the
classical approach, less fortunate predictors are discarded
and the results of the best one are treated as the final re-
sults. In the presented approach, we analyze all of them
and take the results of such analysis into account during
the preparation of the final forecasting by integrating them
into the final outcome.
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The ensemble of neural predictors is composed of
three individual neural networks, although this number
may be easily extended to more individual predictors.
The prediction data generated by each component of the
ensemble are combined together to form one forecasted
power pattern for 24 hours ahead. We have tried different
methods of integrating the results of individual predictors:
simple and weighted averaging, PCA filtering and BSS
processing. The best results have been obtained with the
application of the BSS method by decomposing the data
into streams of statistically independent components and
reconstructing the time series omitting the noise.

The experimental results have shown that the perfor-
mance of individual predictors was improved significantly
by the integration of their results. The improvement is
observed even during the application of different quality
predictors. For the data corresponding to the Polish power
system and the application of three different predictors,
we have got a 13% relative improvement of the MAPE
and more than 23% of the MSE over the best individual
predictors (MLP network).

It is interesting to compare the accuracy of our re-
sults with the other approaches presented in different pa-
pers. The same data of the Polish power system have been
predicted in (Lendasse et al., 2002; Sorjamaa et al., 2007).
These papers gave the results only in the form of the nor-
malized mean squared error defined as the real MSE value
divided by the square of the mean value. The best re-
sulting NMSE of (Lendasse et al., 2002) was equal to
NMSE=1.6e–3. In the case of (Sorjamaa et al., 2007),
the best result of the NMSE was 1.8e–3. Our best result
corresponding to the same data was equal to 0.49e–3.
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