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Abstract—Ensemble modeling of Neural Networks is a strategy
where multiple alternative models (ensemble members) are con-
structed and then their forecasts are ensembled using various
combination approaches. Ensemble of Neural Networks has
proved the concept behind this strategy. Deep neural network
is a type of neural network that offers potential opportunities to
overcome traditional ensemble of neural networks. This paper
proposes an ensemble of deep belief networks (DBN). The
ensemble members of DBN are constructed with different number
of epochs so that the generalization ability can be improved.
The outputs of these DBNs are aggregated by a Bayesian model
averaging method. The proposed Bayesian adopted ensemble of
DBNs is evaluated on two benchmark data sets. Comparison of
the proposed model is evaluated with simple averaging and single
DBN over a number of forecasting measuring that shows better
performance of the proposed model.

Index Terms—Ensemble modeling, deep belief network,
Bayesian model averaging, forecast combination.

I. INTRODUCTION

Demand forecasting is essential to control the increasing

variety and complexity of planning various operations man-

agement. Being an active research area, the selection of a

forecasting model is the focus of many researchers over the last

few decades. Numerous statistical and computational model

are utilized for forecasting demands. In general, the family of

Autoregressive moving average (ARMA) have been in practice

for forecasting using statistical methods. Their linear structure

provides the most effective linear modeling; however, is in-

adequate in real world problem which are mostly non-linear.

In order to overcome this limitation, advanced sophisticated

models have been proposed as an alternative for forecasting.

Among them artificial neural networks (ANN) has gained a lot

of attention in the field of forecasting [1].

TABLE I
MEANING OF SOME OF THE abbreviations USED IN PAPER.

abbreviation Meaning

AMAPE Average Mean Absolute Percentage Error
ANN Artificial Neural Networks
ARMA Autoregressive Moving Average
BMA Bayesian Model Averaging
DBN Deep Belief Networks
DNN Deep Neural Network
MLP Multilayer Perceptron
RBM Restricted Boltzmann Machine
RMSE Root Mean Square Error
SA Simple Averaging
SMAPE Symmetric Mean Absolute Percentage Error

Utilization of ANN can be seen extensively in literature

for a wide range of application areas. With an ever increasing

number of complex issues, the shallow network structure of

ANN is deficient for their effective solution. Their popularity

starts to decline with the advent of powerful Kernel based

approaches like support vector machines. Interest in the use

of ANN was revived by substantially better performance of

deep neural network that progressively reveal low dimensional

nonlinear structure [2]. Since then DNNs have completely

revolutionized some fields including demand forecasting [3],

[4]. Another approach that improves the forecasting accuracy

is the ensemble modeling. Ensemble modeling consists of

constructing multiple member models and then combining

their output using various aggregation algorithms for better

predictive performance. In statistics, forecast combination was

pioneered by Bates and Granger [5]. Due to the remarkable

performance of this approach, it was adopted by machine

learning communities. Ensemble of Neural network was origi-

nated [6] to illustrate that the generalization ability of a single

NN can be significantly improved through an ensemble of a

number of NNs. It has been investigated that a good ensemble

Model can make different errors with same dataset [7]. Various

application of NN ensemble can be seen in literature [8],

[9]. Characteristics of DNN offers potential opportunities to

overcome traditional NN ensembles. Ensemble modeling of

DNN has also been reported in recent years. An ensemble

of DBN was initially proposed for regression and time series

forecasting [10]. Another ensemble of DNN based of recon-

struction error was presented in [11].

The design of member networks in an ensemble modeling

can be broadly categorized into two different approaches. In

the first approach, the diverse members can be obtained by

varying the architecture of the network models. This can be

achieved by selecting different weight functions, network type,

number of hidden neurons, learning algorithm and epoch [9],

[12]. In the second approach, diverse members of networks

are obtained by training them on different training set, such as

bagging [13], Boosting [14], cross validation [15]. Apart from

these two approaches, member models for an ensemble can

be selected from a large number of network models. A highly

diverse set of member networks were selected through genetic

algorithm [16], Pruning algorithm is utilized to eliminate

redundant networks [17]. Best network models are selected

based on their best forecasting measure [9]. Extreme forecasts

are discarded and the rest of the models are kept for ensemble

by trimming the tails symmetrically [9].



DBNs as Ensemble Members construction

Ensembling using BMA

. . . 

Forecast Evaluation

Data Preprocessing and Splitting of Data

EM 1 EM 2 EM nEM 3

Testing data-setTraining data-set

Fig. 1. Flowchart.

As for as output combination is concerned, Bates and

Granger [5] in 1969 presented the idea that the performance

of combined forecast is better than the single model. This

idea has been supported by many researchers [9], [18]. From

classical statistical methods to sophisticated machine learning

algorithm, various methods have been proposed for combining

forecasts. Simple mean and weighted average are the mostly

used methods for combining the forecasts. Recently, a DNN

model is used to ensemble multi models for cancer prediction

[19]. [10] utilized a support vector machine to an ensemble of

DBN.

The objective of this paper is to propose a Bayesian adaptive

ensembling of DBN for regression. Many components of DBN

are generated and a Bayesian model averaging (BMA) is

utilized to ensemble them. Specifically the BMA combines the

forecasts output of many DBN. Several benchmark datasets are

used to demonstrate the performance of the proposed ensemble

model.

Rest of the paper is structured as follows. Section II presents

the methodology used in this research for forecasting. Section

III provides the empirical results and Section IV concludes

with some remarks and recommendations.

II. PROPOSED METHODOLOGY OF THE DEEP BELIEF

NETWORK ENSEMBLE MODEL

An ensemble of multiple DBNs proposed in this research

work can be seen in Fig. 1.

A. Data Preprocessing and Splitting

The available data preprocessed and is divided into training

and testing datasets. Training dataset is used to train the

Fig. 2. Schematic Diagram of a RBM.

ensemble members. Trained ensemble members are then used

to forecast with the testing dataset.

B. Ensemble construction and training of the Deep Belief

Network

DBNs are composed of Restricted Boltzmann Machines

(RBMS). RBM is a two layer connected ANN that can

learn the probability distribution over the given set of inputs.

Structure of an RBM with a visible layer vi, hidden layer

hj and weights connection matrix Wj×i can be seen in Fig

2. Where ai and bj are the bias weights for the visible and

hidden units respectively. Stacking RBM on top of each other

such that the output of the lowest RBM is used as input to the

subsequent RBM, a DBN is formed [2] Fig 3. Each RBM

is trained in unsupervised manner. For the proposed work

ensemble members of the DBN are constructed in this way.

For better generalization ability, the ensemble members are

diversified by varying the number of epochs of each DBN. The

DBNs are trained with training dataset. Each DBN is evaluated

with the testing dataset and forecasts ŷDT
are obtained.

C. Ensembling using Bayesian Model Averaging

The forecasts obtained from DBNs are ensembled using

Bayesian setting. Bayesian model averaging (BMA) is a

Bayesian approach of combining forecasts. It can be thought of

a weighted average model, where the weights of the forecasts

are computed based on posterior probabilities of the models.

Higher weights are assigned to the member model that fit to

the data well. In order to compute the weights of the forecasts

for ensembling, the approach used in [20] is followed. They

have compared the performance of various model averaging

techniques with an application to the growth empirics.

Reference [20] introduced two types of variables: explana-

tory variables (“focus regressors”) and additional variables

(“auxiliary regressors”) which are of less certain. The research

of this paper ignores the additional explanatory variables and

uses the focus regressors only. Similar to Bayesian approach,

this method combines prior beliefs on the unknown parameters



Fig. 3. Deep Belief Network.

of the model with some extra information coming from the

data. Some of the key elements of this method are the simple

likelihood function, the prior distributions on the regression

parameters of ensemble members EMn and the prior distribu-

tions on the model space.

Referring to [20], k1 and k2 represent the number of focus

and auxiliary regressors respectively. Suppose nDBN = k1
are ensemble members of DBN and B is the weights calcu-

lated through BMA. As no auxiliary variables are considered

here therefore k2 = 0 Let EMn = {EM1, . . . , EMnDBN
}

indicates the model space of nDBN ensemble members for

forecasting y with training dataset DT and fn is the forecasts

from nth DBN. In the case y is to be forecast on the basis of

DT then according to the law of total probability the predictive

probability density can be given as [21], [22],

p(y | DT ) =

ntotal
∑

n=1

wnp(y | EMn, DT ) (1)

Where p(y | EMn, DT ) represents the posterior distribu-

tions given by single DBN EMn and wn = p(EMn | DT )
is the posterior probabilities. The posterior mean of the BMA

forecast can be calculated as:

E [y | DT ]

=

nDBN
∑

n=1

p(EMn | DT ).E [y | EMn, DT ]

=

nDBN
∑

n=1

wnfn (2)

Following the assumption made by Magnus [20] and proposed

by Zellner and Fernandez [23] and [24] the prior variance Vn

excluding auxiliary variable can be given as:

V −1

n = giEM1 (3)

where g = 1/max(L, k2
2
) is a constant scalar for each

ensemble member EMn. Since it is assumed that k2 =
0, then no model selection takes place [20] and M1 =
X1(X1TX1)−1X1T where X1 is L×k1 and L is the length

of testing data outputs. A vector of calculated weights (B) and

standard errors associated with these weights is generated from

these calculations. The forecasts ŷDT
obtained in section II-B

are combined with these weights to get the BMA combined

forecast as:

ŷBMA = ŷDT
×B (4)

D. Forecast Evaluation

Four evaluation indexes are chosen to evaluate the fore-

casting performance of the proposed model. These indexes

are AMAPE, RMSE, SMAPE and a normalized cost function

of error called J . The equations describing these evaluation

indexes are as follows.

AMAPE(%) =
1

n

n
∑

t=1

∣

∣

∣

∣

At − Ft

1

n

∑n

t=1
At

∣

∣

∣

∣

× 100 (5)

SMAPE =
1

n

n
∑

t=1

|At − Ft|

(|Ft|+ |At|)/2
(6)

RMSE =

√

√

√

√

1

n

n
∑

t=1

(At − Ft)2 (7)

J =

√

∑n

t=1
(At − Ft)2

∑n

t=1
(At −mean(At))2

(8)

where At and Ft are the real and forecasted value at time t
and n is the total number of test samples.

III. RESULTS AND COMPARISONS

A. Data and Experimental Setup

Forecasting accuracy of the proposed structure is analyzed

and tested against prediction of Mackey Glass chaotic system

[25] and Friedman Artificial Domain [26]. A number of

comparisons are done to illustrate improvement obtained using

the proposed architecture.

The Mackey-Glass models the blood cell regulation and

because of its chaotic dynamic equations, it is widely investi-

gated in papers concerning prediction and identification. The

dynamic equation describing this system is as follows.

dx

dt
= β

x(t− τ)

1 + x10(t− τ)
− αx(t), α, β, τ > 0 (9)

The number of samples generated for this dataset is equal

to 9000 from which 75% is taken for training and 25% is used

for test data.

Friedman Artificial Domain is the second dataset used in

experiences. This dataset was generated in [26] for the first

time and later described in [13], [27].

For chaotic Mackey-Glass data set the input values are

selected as
(

x(t − 18), x(t − 12), x(t − 6), x(t)
)

that is

used to predict the single output as x(t + 6). On the other

hand, Friedman Artificial Domain is a static dataset that has



(

x1, x2, ..., x10

)

as input data and y as a single output. Train

and test data in both cases are normalized to the interval of

[0, 1] as follows.

xn =
x− xmin

xmax − xmin

(10)

where xn represents the normalized dataset.

B. Results and Discussions

In order to predict the Mackey-Glass time series, 2 hidden

layers for the DBN are selected. The number of nodes for the

input layer is equal to 4 nodes and 4 nodes are selected for

each of hidden layers. 30 DBNs are trained and their results

are combined using BMA. The number of epochs considered

for DBNs varies from 440 to 1600 with increments equal to

40. In order to illustrate the efficacy of adding BMA algorithm,

the results obtained are compared with that of the case when

simple averaging method is used (DBN-SA) and the best

results obtained from the single DBN used.

Table II reported that the proposed method (DBN-BMA)

outperforms other methods in all performance indexes. Fur-

thermore, as can be seen from Figs 4 and 5 in their zoomed

figures although all 30 individual DBNs are far from the real

data, by adding BMA the predictions made become very close

to real data.

0 20 40 60 80 100

sample

0

0.5

1

Real train data
Results of proposed method
Results of individual NN

68 70 72
0.25

0.3
0.35

0.4

Fig. 4. Prediction performance for Mackey-Glass time series train data.

Figure 6 illustrates RMSE obtained from DBN-BMA,

DBN-SA and from all individual DBNs. It can be seen that

the best result is obtained with the proposed approach. The

minimum RMSE obtained with the single DBN is 0.0161 and

that with the DBN-BMA is 0.0091. DBN-SA gave RMSE of

0.0442%. That means that the individual DBN produces better

forecasting result than the DBN-SA.

Similar to Mackey-Glass case, in order to estimate Friedman

Artificial Domain dataset 2 hidden layers for the DBN are

selected. A total of 10 nodes for the input layer is taken and

10 nodes are selected for each of hidden layers. The number
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Fig. 5. Prediction performance for Mackey-Glass time series test data.

Fig. 6. RMSE obtained from models.

of individual DBN as well as the combination method and

the ranges of epochs are considered to be exactly the same as

Mackey-Glass case.

It can also be observed from Table III that better forecasting

results obtained belong to the proposed method namely DBN-

BMA. The zoomed figure in Fig. 7 further illustrates the

performance. The addition of BMA makes it possible to obtain

the closest results to the real data. The ”Best DBN” results

reported in these tables are the minimum forecasts obtained

among the individual 30 DBNs.

IV. CONCLUSIONS

An ensemble deep learning structure is proposed in this

paper. The proposed structure benefits from multiple DBNs

with different number of epochs. BMA is used to combine

the results obtained from 30 different DBNs. It is shown

that the addition of BMA highly improves the results. The

results obtained are compared with that of DBN-SA and the

best results obtained from individual DBN. The benchmark

functions used are Mackey-Glass chaotic time series and

Friedman Artificial Domain dataset. The comparisons are made
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TABLE II
TEST AND TRAIN RESULTS OBTAINED FOR MACKEY-GLASS CHAOTIC

TIME SERIES

DBN-BMA DBN-SA Best DBN

AMAPE test 1.28% 7.1714% 2.3932%
RMSE test 0.0091 0.0442 0.0161
SMAPE test 0.0316 0.1319 0.0529
J of test 0.0353 0.1715 0.063
AMAPE train 1.2734% 7.2218% 2.3813%
RMSE train 0.0091 0.0443 0.016
SMAPE train 0.0324 0.1327 0.0539
J of train 0.0351 0.1719 0.062

in terms of AMAPE, SMAPE, RMSE and a normalized cost

function of error. It is shown that addition of BMA improves

the results considerably. It is further shown that BMA works

better than finding the simple average of all DBNs.

One of the most challenging parts in the training of DBN is

finding appropriate value for its epoch number. The proposed

method is a solution to such challenge as the information

obtained during training using different number of epochs is

not lost and they are all used to predict the real output.

TABLE III
TEST AND TRAIN RESULTS OBTAINED FOR FREEDMAN ARTIFICIAL

DOMAIN

DBN-BMA DBN-SA Best DBN

AMAPE test 5.1789% 8.9061% 5.8379%
RMSE test 0.0319 0.0552 0.0362
SMAPE test 0.0599 0.1040 0.0677
J of test 0.2 0.3458 0.2269
AMAPE train 5.22% 8.7943% 5.8623%
RMSE train 0.0323 0.0547 0.0363
SMAPE train 0.0590 0.1002 0.0662
J of train 0.2076 0.3514 0.2334

V. ACKNOWLEDGMENT

REFERENCES

[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359–366, Jul. 1989. [Online]. Available: http://dx.doi.org/10.1016/
0893-6080(89)90020-8

[2] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul.
2006. [Online]. Available: http://dx.doi.org/10.1162/neco.2006.18.7.1527

[3] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep
learning based natural language processing,” CoRR, vol. abs/1708.02709,
2017. [Online]. Available: http://arxiv.org/abs/1708.02709

[4] J. Lago, F. D. Ridder, and B. D. Schutter, “Forecasting spot
electricity prices: Deep learning approaches and empirical comparison
of traditional algorithms,” Applied Energy, vol. 221, pp. 386 – 405,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S030626191830196X

[5] J. Bates and C. Granger, “The combination of forecasts,” Operations

Research, vol. 20, no. 4, pp. 451 – 468, 1969.

[6] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 10, pp. 993–1001, Oct 1990.

[7] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation methods:
a survey and categorisation,” Information Fusion, vol. 6, no. 1, pp. 5
– 20, 2005. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1566253504000375

[8] A. A. Masaud, B. Stewart, and S. McMeekin, “Application of an
ensemble neural network for classifying partial discharge patterns,”
Electric Power Systems Research, vol. 110, pp. 154 – 162,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0378779614000145

[9] S. Hassan, A. Khosravi, and J. Jaafar, “Examining performance of
aggregation algorithms for neural network-based electricity demand
forecasting,” International Journal of Electrical Power & Energy

Systems, vol. 64, pp. 1098 – 1105, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0142061514005511

[10] X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga,
“Ensemble deep learning for regression and time series forecasting,”
in 2014 IEEE Symposium on Computational Intelligence in Ensemble

Learning (CIEL), Dec 2014, pp. 1–6.

[11] W. Huang, H. Hong, K. Bian, X. Zhou, G. Song, and K. Xie, “Improving
deep neural network ensembles using reconstruction error,” in 2015

International Joint Conference on Neural Networks (IJCNN), July 2015,
pp. 1–7.

[12] Y. Zhao, J. Gao, and X. Yang, “A survey of neural network ensembles,”
in 2005 International Conference on Neural Networks and Brain, vol. 1,
Oct 2005, pp. 438–442.

[13] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, Aug. 1996. [Online]. Available: http://dx.doi.org/10.1023/A:
1018054314350

[14] R. E. Schapire, “The strength of weak learnability,” Machine

Learning, vol. 5, no. 2, pp. 197–227, Jun 1990. [Online]. Available:
https://doi.org/10.1007/BF00116037

[15] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation,
and active learning,” in Advances in Neural Information Processing

Systems, vol. 8. MIT Press, 1995, pp. 231–238.

[16] Z.-H. Zhou, J.-X. Wu, Y. Jiang, and S.-F. Chen, “Genetic algorithm
based selective neural network ensemble,” in Proceedings of the

17th International Joint Conference on Artificial Intelligence -

Volume 2, ser. IJCAI’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001, pp. 797–802. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1642194.1642200

[17] A. Lazarevic and Z. Obradovic, “Effective pruning of neural network
classifier ensembles,” in IJCNN’01. International Joint Conference on

Neural Networks. Proceedings (Cat. No.01CH37222), vol. 2, July 2001,
pp. 796–801 vol.2.

[18] K. F. Wallis, “Combining forecasts - forty years later,” Applied Financial

Economics, vol. 21, no. 1-2, pp. 33–41, 2011.

[19] Y. Xiao, J. Wu, Z. Lin, and X. Zhao, “A deep learning-based multi-
model ensemble method for cancer prediction,” Computer Methods and

Programs in Biomedicine, vol. 153, pp. 1 – 9, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169260717304947

http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://arxiv.org/abs/1708.02709
http://www.sciencedirect.com/science/article/pii/S030626191830196X
http://www.sciencedirect.com/science/article/pii/S030626191830196X
http://www.sciencedirect.com/science/article/pii/S1566253504000375
http://www.sciencedirect.com/science/article/pii/S1566253504000375
http://www.sciencedirect.com/science/article/pii/S0378779614000145
http://www.sciencedirect.com/science/article/pii/S0378779614000145
http://www.sciencedirect.com/science/article/pii/S0142061514005511
http://dx.doi.org/10.1023/A:1018054314350
http://dx.doi.org/10.1023/A:1018054314350
https://doi.org/10.1007/BF00116037
http://dl.acm.org/citation.cfm?id=1642194.1642200
http://www.sciencedirect.com/science/article/pii/S0169260717304947


[20] J. Magnus, O. Powell, and P. Prufer, “A comparison of two model
averaging techniques with an application to growth empirics,” Journal

of E, vol. 154, pp. 139 – 153, 2010.
[21] A. E. Raftery, F. Balabdaoui, T. Gneiting, and M. Polakowski, “Using

bayesian model averaging to calibrate forecast ensembles,” Monthly

Weather Review, vol. 133, pp. 1155–1174, 2005.
[22] G. Li, J. Shi, and J. Zhou, “Bayesian adaptive combination of short-term

wind speed forecasts from neural network models,” Renewable Energy,
vol. 36, no. 1, pp. 352 – 359, 2011.

[23] A. Zellner, Bayesian Inference and Decision techniques: Essay in Honor

of Bruno de Finetti. North-Holland, Amesterdam, 1986, ch. On
assessing prior distributions and Bayesian regression analysis with g-
prior distributions, pp. 233 – 243.

[24] C. Fernandez, E. Ley, and M. F. Steel, “Benchmark priors for bayesian
model averaging,” Journal of Econometrics, vol. 100, no. 2, pp. 381 –
427, 2001.

[25] M. Mackey and L. Glass, “Oscillation and chaos in physical control
system,” Science, vol. 197, pp. 287–289, 1977.

[26] J. FRIEDMAN, “Multivariate adaptative regression splines,” Annals of

Statistics, vol. 19, 1991.
[27] “Regression datasets.” [Online]. Available: http://www.dcc.fc.up.pt/

∼ltorgo/Regression/DataSets.html

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

	Introduction
	Proposed Methodology of the Deep Belief Network Ensemble Model
	Data Preprocessing and Splitting
	Ensemble construction and training of the Deep Belief Network
	Ensembling using Bayesian Model Averaging
	Forecast Evaluation

	Results and Comparisons
	Data and Experimental Setup
	Results and Discussions

	Conclusions
	Acknowledgment
	References

