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Abstract
This paper proposes a conceptually simple but surpris-

ingly powerful method which combines the effectiveness of

a discriminative object detector with the explicit correspon-

dence offered by a nearest-neighbor approach. The method

is based on training a separate linear SVM classifier for

every exemplar in the training set. Each of these Exemplar-

SVMs is thus defined by a single positive instance and mil-

lions of negatives. While each detector is quite specific to

its exemplar, we empirically observe that an ensemble of

such Exemplar-SVMs offers surprisingly good generaliza-

tion. Our performance on the PASCAL VOC detection task

is on par with the much more complex latent part-based

model of Felzenszwalb et al., at only a modest computa-

tional cost increase. But the central benefit of our approach

is that it creates an explicit association between each de-

tection and a single training exemplar. Because most de-

tections show good alignment to their associated exemplar,

it is possible to transfer any available exemplar meta-data

(segmentation, geometric structure, 3D model, etc.) directly

onto the detections, which can then be used as part of over-

all scene understanding.

1. Motivation

A mere decade ago, automatically recognizing everyday

objects in images (such as the bus in Figure 1) was thought

to be an almost unsolvable task. Yet today, a number of

methods can do just that with reasonable accuracy. But let

us consider the output of a typical object detector – a rough

bounding box around the object and a category label (Fig-

ure 1 left). While this might be sufficient for a retrieval task

(“find all buses in the database”), it seems rather lacking for

any sort of deeper reasoning about the scene. How is the bus

oriented? Is it a mini-bus or a double-decker? Which pix-

els actually belong to the bus? What is its rough geometry?

These are all very hard questions for a typical object detec-

tor. But what if, in addition to the bounding box, we are able

to obtain an association with a very similar exemplar from

the training set (Figure 1 right), which can provide a high

degree of correspondence. Suddenly, any kind of meta-data

provided with the training sample (a pixel-wise annotation

or label such as viewpoint, segmentation, coarse geometry,

a 3D model, attributes, etc.) can be simply transferred to the

new instance.

Of course, the idea of associating a new instance with

Figure 1. Object Category Detector vs. Ensemble of Exemplar

Detectors. Output of a typical object detector is just a bounding

box and a category label (left). But our ensemble of Exemplar-

SVMs is able to associate each detection with a visually similar

training exemplar (right), allowing for direct transfer of meta-data

such as segmentation, geometry, even a 3D model (bottom).

something seen in the past has a long and rich history, start-

ing with the British Empiricists, and continuing as exem-

plar theory in cognitive psychology, case-based reasoning

in AI, instance-based methods in machine learning, data-

driven transfer in graphics, etc. In computer vision, this

type of non-parametric technique has been quite success-

ful at a variety of tasks including: object alignment [1, 2],

scene recognition [19, 21], image parsing [13], among oth-

ers. However, for object detection data-driven methods,

such as [17, 14], have not been competitive against discrim-

inative approaches (though the hybrid method of [6] comes

close). Why is this? In our view, the primary difficulty



Figure 2. Category SVM vs. Exemplar-SVMs. Instead of training a single per-category classifier, we train a separate linear SVM

classifier for each exemplar in our dataset with a single positive example and millions of negative windows. Negatives come from images

not containing any instances of the exemplar’s category.

stems from the massive amounts of negative data that must

be considered in the detection problem. In image classifi-

cation, where dataset sizes typically range from a few thou-

sands to a million, using kNN to compute distances to all

training images is still quite feasible. In object detection,

however, the number of negative windows can go as high as

hundreds of millions, making kNN using both positives and

negatives prohibitively expensive. Using heuristics, such as

subsampling or ignoring the negative set, results in a sub-

stantial drop in performance.

In contrast, current state-of-the-art methods in object de-

tection ( Dalal-Triggs [7], Felzenszwalb et al. [9] and their

derivatives) are particularly well-suited for handling large

amounts of negative data. They employ “data-mining” to

iteratively sift through millions of negatives and find the

“hard” ones which are then used to train a discriminative

classifier. Because the classifier is a linear SVM, even the

hard negatives do not need to be explicitly stored but are

represented parametrically, in terms of a decision boundary.

However, the parametric nature of these classifiers, while

a blessing for handling negative data, becomes more prob-

lematic when representing the positives. Typically, all pos-

itive examples of a given object category are represented

as a whole, implicitly assuming that they are all related to

each other visually. Unfortunately, most standard seman-

tic categories (e.g., “car”, “chair”, “train”) do not form co-

herent visual categories [14], thus treating them paramet-

rically results in weak and overly-generic detectors. To

address this problem, a number of approaches have used

semi-parametric mixture models, grouping the positives

into clusters based on meta-data such as bounding box as-

pect ratio [9], object scale [15], object viewpoint [11], part

labels [3], etc. But the low number of mixture components

used in practice means that there is still considerable varia-

tion within each cluster. As a result, the alignment, or visual

correspondence, between the learned model and a detected

instance is too coarse to be usable for object association

and label transfer. While part-based models [9] allow dif-

ferent localizations of parts within distinct detections, the

requirement that they must be shared across all members

of a category means that these “parts” are also extremely

vague and the resulting correspondences are unintuitive. In

general, it might be better to think of these parts as soft,

deformable sub-templates. The Poselets approach [3] at-

tempts to address this problem by manually labeling parts

and using them to train a set of pose-specific part detectors.

While very encouraging, the heavy manual labeling burden

is a big limitation of this method.

What seems desirable is an approach that has all the

strengths of a Dalal/Triggs/Felzenszwalb/Ramanan-style

detector – powerful descriptor, efficient discriminative

framework, clever mining of hard-negatives, etc. – but with-

out the drawbacks imposed by a rigid, category-based rep-

resentation of the positives. To put it another way, what we

want is a method that is non-parametric when representing

the positives, but parametric (or at least semi-parametric)

when representing the negatives. This is the key motivation

behind our approach. What we propose is a marriage of

the exemplar-based methodology, which allows us to prop-

agate rich annotations from exemplars onto detection win-

dows, with discriminative training, which allows us to learn

powerful exemplar-based classifiers from vast amounts of

positive and negative data.

2. Approach Overview

Our object detector is based on a very simple idea: to

learn a separate classifier for each exemplar in the dataset

(see Figure 2). We represent each exemplar using a rigid

HOG template [7]. Since we use a linear SVM, each classi-

fier can be interpreted as a learned exemplar-specific HOG

weight vector. As a result, instead of a single complex

category detector, we have a large collection of simpler

individual Exemplar-SVM detectors of various shapes and

sizes, each highly tuned to the exemplar’s appearance. But,

unlike a standard nearest-neighbor scheme, each detector

is discriminatively trained. So we are able to generalize

much better without requiring an enormous dataset of ex-

emplars, allowing us to perform surprisingly well even on

a moderately-sized training dataset such as the PASCAL

VOC 2007 [8].

Our framework shares some similarities with distance-

learning approaches, in particular those that learn per-

exemplar distance functions (e.g., [10, 14]). However, the

crucial difference between a per-exemplar classifier and a



Figure 3. Comparison. Given a bicycle training sample from PASCAL (represented with a HOG weight vector w), we show the top 6
matches from the PASCAL test-set using three methods. Row 1: naive nearest neighbor (using raw normalized HOG). Row 2: Trained

Exemplar-SVM (notice how w focuses on bike-specific edges). Row 3: Learned distance function – an Exemplar-SVM but trained in the

“distance-to-exemplar” vector space, with the exemplar being placed at the origin (loosely corresponding to [10, 14]).

per-exemplar distance function is that the latter forces the

exemplar itself to have the maximally attainable similarity.

An Exemplar-SVM has much more freedom in defining the

decision boundary, and is better able to incorporate input

from the negative samples (see Figure 3 for a comparison,

to be discussed later).

One would imagine that training an SVM with a single

positive example will badly over-fit. But note that we re-

quire far less from a per-exemplar classifier as compared to

a per-category classifier – each of our detectors only needs

to perform well on visually similar examples. Since each

classifier is solving a much simpler problem than in the full-

category case, we can use a simple regularized linear SVM

to prevent over-fitting. Another crucial component is that,

while we only have a single positive example, we have mil-

lions of negative examples that we mine from the training

set (i.e., from images that do not contain any instances of the

exemplar’s category). As a result, the exemplar’s decision

boundary is defined, in large part, by what it is not. One of

the key contributions of our approach is that we show gen-

eralization is possible from a single positive example and a

vast set of negatives.

At test-time, we independently run each classifier on

the input image and use simple non-maximum suppression

to create a final set of detections, where each detection

is associated with a single exemplar. However, since our

independently-trained classifiers might not output directly

comparable scores, we must perform calibration on a vali-

dation set. The intuition captured by this calibration step is

that different exemplars will offer drastically different gen-

eralization potential. A heavily occluded or truncated object

instance will have poorer generalization than a cleaner ex-

emplar, thus robustness against even a single bad classifier

is imperative to obtaining good overall performance. Since

our classifiers are trained without seeing any other positive

instances but itself, we can use them for calibration in a

“leave-all-but-one-out” fashion.

It is worthwhile pointing out some of the key differences

between our approach and other related SVM-based tech-

niques such as one-class SVMs [18, 5], multi-class ker-

nel SVMs, kernel-learning approaches [20], and the KNN-

SVM algorithm [22]. All of these approaches require map-

ping the exemplars into a common feature space over which

a similarity kernel can be computed (which we avoid), but

more importantly, kernel methods lose the semantics of

single-exemplar associations which are necessary for high

quality meta-data transfer.

3. Algorithm Description

Given a set of training exemplars, we represent each ex-

emplar E via a rigid HOG template, xE . We create a de-

scriptor from the ground-truth bounding box of each exem-

plar with a cell size of 8 pixels using a sizing heuristic which

attempts to represent each exemplar with roughly 100 cells.

Instead of warping each exemplar to a canonical frame, we

let each exemplar define its own HOG dimensions respect-

ing the aspect ratio of its bounding box. We create negative

samples of the same dimensions as xE by extracting nega-

tive windows, NE , from images not containing any objects

from the exemplar’s category.

Each Exemplar-SVM, (wE , bE), tries to separate xE

from all windows in NE by the largest possible margin in

the HOG feature space. Learning the weight vector wE

amounts to optimizing the following convex objective:

ΩE(w, b) = ||w||2 +C1h(w
T
xE + b) +C2

∑

x∈NE

h(−w
T
x− b)

We use the hinge loss function h(x) = max(0, 1 − x),
which allows us to use the hard-negative mining approach

to cope with millions of negative windows because the solu-

tion only depends on a small set of negative support vectors.

Figure 3 offers a visual comparison of the proposed

Exemplar-SVM method against two alternatives for the task



Figure 4. Exemplar-SVMs. A few “train” exemplars with their top detections on the PASCAL VOC test-set. Note that each exemplar’s

HOG has its own dimensions. Note also how each detector is specific not just to the train’s orientation, but even to the type of train.

of detecting test-set matches for a single exemplar, a snow-

covered bicycle. The first row shows a simple nearest-

neighbor approach. The second row shows the output of

our proposed Exemplar-SVM. Note the subtle changes in

the learned HOG vector w, making it focus more on the

bicycle. The third row shows the output of learning a dis-

tance function, rather than a linear classifier. For this, we

applied the single-positive Exemplar-SVM framework in

the “distance-to-exemplar” vector space, with the exemplar

being placed at the origin (this is conceptually similar to

[14, 10]). We observed that the centered-at-exemplar con-

straint made the distance function less powerful than the

linear classifier (see Results section). Figure 4 shows a few

Exemplar-SVMs from the “train” category along with their

top detections on the test-set. Note how specific each detec-

tor is – not just to the train’s orientation, but even the type

of train.

3.1. Calibration

Using the procedure above, we train an ensemble of

Exemplar-SVM, one for each positive instance in the train-

ing set. However, due to the independent training proce-

dure, their outputs are not necessarily compatible. A com-

mon strategy to reconcile the outputs of multiple classifiers

is to perform calibration by fitting a probability distribu-

tion to a held-out set of negative and positive samples [16].

However, in our case, since each exemplar-SVM is sup-

posed to fire only on visually similar examples, we cannot

say for sure which of the held-out samples should be consid-

ered as positives a priori. For example, for a frontal view of

an train, only other frontal views of similar trains should be

considered as positives. Fortunately, just like during train-

ing, what we can be sure about is that the classifier should

not fire on negative windows. Therefore, we let each ex-

emplar select its own positives and then use the SVM out-

put scores on these positives, in addition to lots of held-out

negatives, to calibrate the Exemplar-SVM.

To obtain each exemplar’s calibration positives, we run

the Exemplar-SVM on the validation set, create a set of non-

redundant detections using non-maximum suppression, and

compute the overlap score between resulting detections and

ground-truth bounding-boxes. We treat all detections which

overlap by more than 0.5 with ground-truth boxes as posi-

tives (this is the standard PASCAL VOC criterion for a suc-

cessful detection). All detections with an overlap lower than

0.2 are treated as negatives, and we fit a logistic function

to these scores. Note that, although we cannot guarantee

that highly overlapping correct detections will indeed be vi-

sually similar to the exemplar, with very high probability

they will be, since they were highly ranked by the exemplar-

SVM in the first place.

Our calibration step can be interpreted as a simple re-

scaling and shifting of the decision boundary (see Figure 5)

– poorly performing exemplars will be suppressed by hav-

ing their decision boundary move towards the exemplar and

well-performing exemplars will be boosted by having their

decision boundary move away from the exemplar. While

the resulting decision boundary is no longer an optimal so-

lution for the local-SVM problem, empirically we found

this procedure greatly improves the inter-exemplar order-

ing. Given a detection x and the learned sigmoid parame-

ters (αE , βE), the calibrated detection score for exemplar

E is as follows:

f(x|wE , αE , βE) =
1

1 + e−αE(wT

E
x−βE)

While the logistic fitting is performed independently for

each exemplar, we found that it gives us a considerable

boost in detection performance over using raw SVM output

scores. At test-time, we create detections from each classi-

fier by thresholding the raw SVM output score at −1 (the

negative margin) and then rescale them using each exem-

plar’s learned sigmoid parameters.



Figure 5. Exemplar-SVM calibration. The calibration step

rescales the SVM scores but does not affect the ordering of

the matches, allowing us to compare the outputs of multiple

independently-trained Exemplar-SVMs.

3.2. Implementation Details

We use libsvm [4] to train each exemplar’s w. We al-

ternate between learning the weights given an active set of

negative windows, and mining additional negative windows

using the current w as in [9]. We use the same regulariza-

tion parameter C1 = 0.5 and C2 = .01 for all exemplars,

but found our weight vectors to be robust to a wide range of

Cs, especially since they are re-scaled during calibration.

While we learn w’s for a large number of exemplars, each

exemplar’s learning problem and calibration can be solved

independently allowing for easy parallelization. We con-

sider images as well as their left-right flipped counterparts

for both training and testing.

The run-time complexity of our approach at test time

scales linearly with the number of positive instances (but

unlike kernel-SVM methods, not the negatives). However,

in practice, the bottleneck appears to be per-image tasks

(loading, computing HOG pyramid etc.) – the actual per-

instance computation is just a single dot-product, which

can be done extremely fast. For an average PASCAL class

(∼ 300 training examples yielding ∼ 300 separate classi-

fiers) our method is only 6 times slower than a category-

based method such as [9]. More generally, because of the

long-tailed distribution of objects in the world (10% of ob-

jects own 90% of exemplars [19]), the extra cost of using

exemplars vs. categories will greatly diminish as the num-

ber of categories increases.

4. Experimental Evaluation

We first evaluate our Exemplar-SVM framework on the

well-established benchmark task of object detection. We

then showcase the ability of our method to produce a high-

quality alignment between training exemplars and their as-

sociated detections. For this, we present results on a set of

tasks including segmentation, qualitative-geometry estima-

tion, 3D model transfer, and related object priming.

For our experiments, we use a single source of ex-

emplars: the PASCAL VOC 2007 dataset [8] – a popu-

lar dataset used to benchmark object detection algorithms.

During training, we learn a separate classifier w for each

of the 12, 608 exemplars from the 20 categories in 5, 011

trainval images. We mine hard negatives from out-of-

class images in the train set and perform calibration using

all positive and negative images in trainval (See Sec-

tion 3.1).

4.1. Object Detection

At test time, each Exemplar-SVM creates detection win-

dows in a sliding-window fashion, but instead of using a

standard non-maxima-suppression we use an exemplar co-

occurence based mechanism for suppressing redundant re-

sponses. For each detection we generate a context feature

similar to [3, 9] which pools in the SVM scores of nearby

(overlapping) detections and generates the final detection

score by a weighted sum of the local SVM score and the

context score. Once we obtain the final detection score, we

use standard non-maximum suppression to create a final,

sparse set of detections per image.

We report results on the 20-category PASCAL VOC

2007 comp3 object detection challenge. Figure 6 shows

several detections (green boxes) produced by our Exemplar-

SVM framework. We also show the super-imposed exem-

plar (yellow boxes) associated with each detection. Fol-

lowing the protocol of the VOC Challenge, we evaluate our

system on a per-category basis on the test set, consisting

of 4, 952 images. We compare the performance of our ap-

proach (ESVM+Co-oc) to several exemplar baselines apart

from the VOC results reported in [9, 6]. These results have

been summarized in Table 1 as Average Precision per class.

Our results show that standard Nearest Neighbor 1 (NN)

does not work at all. While the performance improves af-

ter calibration (NN+Cal), it is still not comparable to other

approaches due to its lack of modeling negative data. We

also compared against a distance function formulation sim-

ilar to the one proposed in [14] but learned using a single

positive instance. The results clearly indicate that the ex-

tra constraint due to a distance function parameterization is

worse than using a hyperplane. To highlight the importance

of using the co-occurence mechanism above, we also report

our results using calibration (ESVM+Cal).

On the PASCAL test set, our full system obtains a mean

Average Precision (mAP) of .227, which is competitive with

with Felzenszwalb’s state-of-the-art deformable part-based

mixture model. Note however, that our system does not use

parts (though they could be easily added) so the compar-

ison is not entirely fair. Therefore, we also compare our

performance to Dalal/Triggs baseline, which uses a single

category-wise linear SVM with no parts, and attains a mAP

of .097, which is less than half of ours. We also com-

pared against the PASCAL VOC 2007 winning entry, the

exemplar-based method of Chum et al. [6], and found that

our system beats it on 4 out of 6 categories for which they

1We experimented with multiple similarity metrics and found that a dot

product with a normalized HOG template worked the best. The normalized

HOG template is created by subtracting a constant from the positive HOG

features to make them 0-mean.



Figure 6. Object Detection and Appearance Transfer. Each example shows a detection from our ensemble of Exemplar-SVMs along

with the appearance transferred directly from the source exemplar, to demonstrate the high quality of visual alignment. Bottom row shows

object category detection failures.
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NN .006 .094 .000 .005 .000 .006 .010 .092 .001 .092 .001 .004 .096 .094 .005 .018 .009 .008 .096 .144 .039

NN+Cal .056 .293 .012 .034 .009 .207 .261 .017 .094 .111 .004 .033 .243 .188 .114 .020 .129 .003 .183 .195 .110

DFUN+Cal .162 .364 .008 .096 .097 .316 .366 .092 .098 .107 .002 .093 .234 .223 .109 .037 .117 .016 .271 .293 .155

E-SVM+Cal .204 .407 .093 .100 .103 .310 .401 .096 .104 .147 .023 .097 .384 .320 .192 .096 .167 .110 .291 .315 .198

E-SVM+Co-occ .208 .480 .077 .143 .131 .397 .411 .052 .116 .186 .111 .031 .447 .394 .169 .112 .226 .170 .369 .300 .227

CZ [6] .262 .409 – – – .393 .432 – – – – – – .375 – – – – .334 – –

DT [7] .127 .253 .005 .015 .107 .205 .230 .005 .021 .128 .014 .004 .122 .103 .101 .022 .056 .050 .120 .248 .097

LDPM [9] .287 .510 .006 .145 .265 .397 .502 .163 .165 .166 .245 .050 .452 .383 .362 .090 .174 .228 .341 .384 .266

Table 1. PASCAL VOC 2007 object detection results. We compare our full system (ESVM+Co-occ) to four different exemplar based

baselines including NN (Nearest Neighbor), NN+Cal (Nearest Neighbor with calibration), DFUN+Cal (learned distance function with

calibration) and ESVM+Cal (Exemplar-SVM with calibration). We also compare our approach against global methods including our

implementation of Dalal-Triggs (learning a single global template), LDPM [9] (Latent deformable part model), and Chum et al. [6]’s

exemplar-based method. [The NN, NN+Cal and DFUN+Cal results for person category are obtained using 1250 exemplars]

submitted results.

4.2. Association and Metadata transfer
To showcase the high quality correspondences we ob-

tain with our method, we looked at several meta-data

transfer tasks. For the transfer applications we used the

ESVM+Cal method because even though using the exem-

plar co-occurence matrix boosts object detection perfor-

mance, it uses multiple overlapping exemplars to score win-

dows. Calibration produces much higher quality alignments

because associations are scored independently. Once we es-

tablish an association between a detection and an exemplar,

we simply transfer the exemplar-aligned meta-data onto the

detection.

Segmentation and Geometry Estimation: For the task

of segmentation, the goal is to estimate which pixels belong

to a given object and which do not. Figure 7 shows some

qualitative segmentation examples on a wide variety of ob-

ject classes.

For quantitative evaluation, we asked labelers to seg-

ment and geometrically annotate all of the instances in the

“bus” category in the PASCAL VOC 2007 dataset. For

the segmentation task, our method performs at a pixel-

wise accuracy of 90.6%. For geometry estimation, the

goal is to assign labels to pixels indicating membership

to one of 3 “left,” “front,” and “right” dominant orienta-

tion classes [12]. We compare our Exemplar-SVM system

against two baselines: (a) Hoiem’s pre-trained generic ge-

ometric class estimation algorithm [12]; (b) Using [9] to

detect objects followed by simple NN to create associa-

tions. We obtain a 62.3% pixelwise labeling accuracy us-
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Figure 7. Segmentation Transfer. Object segmentations are transferred from the exemplar directly onto the detection window.
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Figure 8. Qualitative Geometry Transfer. We transfer geometric labeling from bus exemplars onto corresponding detections.

ing our Exemplar-SVM approach as compared to the 43.0%
obtained using [12] and 51.0% using [9]+NN. This clearly

shows that while our transfer is simple, it is definitely not

trivial as it relies on obtaining strong alignment between the

exemplar and the detection (see qualitative results in Fig-

ure 8). Global methods fail to generate such alignments,

leading to much lower performance.

3D Model Transfer: We annotated a subset of chair

exemplars with 3D models from Google’s 3D Warehouse

(and aligned with Google Sketch-Up 3D model-to-image

alignment tool). Given a single exemplar, labelers were

asked to find the most visually similar model in the 3D
Warehouse for that instance and perform the alignment.

Due to the high quality of our automatically-generated as-

sociations, we were able to simply transfer the exemplar-

aligned 3D model directly onto the detection window with-

out any additional alignment, see Figure 9.

Related Object Priming: Exemplars often show an in-

terplay of multiple objects, thus any other objects which

sufficiently overlap with the exemplar can be viewed as ad-

ditional meta-data belonging to the exemplar. This suggests

using detectors of one category to help “prime” objects of

another category. We look at the following task: predicting

a bounding box for “person” given a detection of category

X , where X is either a horse, motorbike, or bicycle (see

Figure 10 for qualitative results). We quantitatively eval-

uated the prediction performance and compared against a

baseline which predicts a person presence based on majority

voting. Our method considerably outperforms the baseline

(72.46% as compared to 58.67% for the baseline), suggest-

ing that our exemplar associations provide good alignment

of related objects as well.

5. Conclusion
We presented a simple yet powerful method which

recasts an exemplar-based approach in a discriminative

framework. Our method is based on training a separate clas-

sifier for each exemplar and we show that generalization is

possible from a single positive example and millions of neg-

atives. Our approach performs on par with state-of-the-art

methods for object detection but creates a strong alignment

between the detection and training exemplar. This allows us

to go beyond the detection task and enables a variety of ap-

plications based on meta-data transfer. We believe that our

work opens up the door for many new exciting applications

in object recognition, scene understanding, and computer

graphics.
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shows the automatically transferred 3D model.
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Figure 10. Related Object Priming. A bicycle/motorbike/horse exemplar is used to predict bounding box for “person”.
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