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troyer@comp-phys.org

Matthias Troyer

S. Trebst and M. Troyer: Ensemble Optimization Techniques for Classical and Quantum Sys-

tems, Lect. Notes Phys. 703, 591–640 (2006)
DOI 10.1007/3-540-35273-2 17 c© Springer-Verlag Berlin Heidelberg 2006



592 S. Trebst and M. Troyer

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

2 The Monte Carlo Method for Classical Lattice Models . . . . 594

2.1 The Metropolis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
2.2 The Local Update Metropolis Algorithm for the Ising Model . . . . . . 596
2.3 Critical Slowing Down and Cluster Update Algorithms . . . . . . . . . . . 597

3 Extended Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

3.1 First Order Phase Transitions
and the Multicanonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

3.2 The Wang-Landau Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
3.3 Markov Chains and Random Walks in Energy Space . . . . . . . . . . . . . 601
3.4 Optimized Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
3.5 Simulation of Dense Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
3.6 Parallel Tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
3.7 Optimized Parallel Tempering Simulations of Proteins . . . . . . . . . . . 611
3.8 Simulation of Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

4 Quantum Monte Carlo World Line Algorithms . . . . . . . . . . . . 613

4.1 The S = 1/2 Quantum XXZ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
4.2 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
4.3 Local Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
4.4 Cluster Updates and the Loop Algorithm . . . . . . . . . . . . . . . . . . . . . . . 620
4.5 Worm and Directed Loop Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
4.6 Open Source Implementations: the ALPS Project . . . . . . . . . . . . . . . . 623
4.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

5 Extended Ensemble Methods for Quantum Systems . . . . . . . 624

5.1 Generalizing Extended Ensembles to Quantum Systems . . . . . . . . . . 626
5.2 Histogram Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
5.3 Parallel Tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
5.4 Wang-Landau Sampling and Optimized Ensembles . . . . . . . . . . . . . . 631

6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636



Classical and Quantum Ensemble Optimization Techniques 593

We present a review of extended ensemble methods and ensemble optimization
techniques. Extended ensemble methods, such as multicanonical sampling,
broad histograms, or parallel tempering aim to accelerate the simulation of
systems with large energy barriers, as they occur in the vicinity of first or-
der phase transitions or in complex systems with rough energy landscapes,
such as spin glasses or proteins. We present a recently developed feedback
algorithm to iteratively achieve an optimal ensemble, with the fastest equi-
libration and shortest autocorrelation times. In the second part we review
time-discretization free world line representations for quantum systems, and
show how any algorithm developed for classical systems, such as local updates,
cluster updates or the extended and optimized ensemble methods can also be
applied to quantum systems. An overview over the methods is followed by a
selection of typical applications.

1 Introduction

In this chapter we will review recent developments in the simulation of lattice
(and continuum) models by classical and quantum Monte Carlo simulations.
Unbiased numerical methods are required to obtain reliable results for classi-
cal and quantum lattice model when interactions or fluctuations are strong,
especially in the vicinity of phase transitions, in frustrated models and in sys-
tems where quantum effects are important. For classical systems, molecular
dynamics or the Monte Carlo method are the methods of choice since they
can treat large systems.

Both Monte Carlo and molecular dynamics simulations slow down in the
vicinity of phase transitions or in disordered systems with rough energy land-
scapes, since the time scales to tunnel through energy barriers can become
prohibitively long. Here Monte Carlo simulations have an advantage over
molecular dynamics, since in Monte Carlo simulations both the dynamics
and the ensemble can be changed to achieve faster tunneling through the
energy barriers. Using modern sampling algorithms, such as cluster updates,
extended ensemble methods or parallel tempering strategies most classical
magnets can be efficiently simulated, with the computational effort scaling
with a low power of the system size, and usually linear in system size. The no-
table exceptions are spin glasses, known to be nondeterministic-polynomially
(NP) hard in more than two space dimensions [1] and where most likely no
polynomial-time algorithm can exist [2].

In the first part of this chapter we will give a short overview of Monte
Carlo simulations for classical lattice models in Sect. 2.1 and will then review
the extended and optimized ensemble methods in Sect. 3. We will focus the
discussion on a recently developed algorithm to iteratively achieve an optimal

ensemble, with the fastest equilibration and shortest autocorrelation times.
For quantum magnets, quantum Monte Carlo (QMC) methods are also

the method of choice whenever they are applicable. Over the last decade
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efficient algorithms for classical Monte Carlo simulations have been general-
ized to quantum systems and systems with millions of quantum spins have
been simulated [3]. In Sect. 4 we will present modern time-discretization free
world line representations for quantum lattice models. They faithfully map
the quantum system to an equivalent classical system with one more dimen-
sion. Efficient Monte Carlo algorithms developed for classical systems can also
be applied to quantum systems, using these world line representations, as we
will show in Sect. 5.

Unfortunately, in contrast to classical magnets, QMC methods are efficient
only for non-frustrated magnets and for bosonic systems. Fermionic degrees
of freedom or frustration in quantum systems usually lead to the “negative
sign problem”, when the weights of some configurations become negative [4].
These negative weights cannot be directly interpreted as probabilities in the
Monte Carlo process and lead to cancellation effects in the sampling. As a
consequence the statistical errors grow exponentially with inverse temperature
and system size and the QMC methods are restricted to small systems and
not too low temperatures.

2 The Monte Carlo Method for Classical Lattice Models

2.1 The Metropolis Algorithm

We start with a short review of the Monte Carlo method for calculating inte-
grals of the form

〈O〉 =

∫

Ω
dxW (x)O(x)
∫

Ω
dxW (x)

, (1)

where Ω is a discrete or continuous configuration space and W (x) a not neces-
sarily normalized weight function. We want to sample this integral in a Monte
Carlo process by creating a sequence {xi} of N configurations, where each
configuration is drawn according to the normalized probability distribution
function

P (x) =
W (x)

∫

Ω
dxW (x)

. (2)

Under the assumption of uncorrelated samples xi we can then estimate the
expectation value (1) by the sample mean

〈O〉 ≈ 1

N

N
∑

i=1

O(xi) , (3)

within a statistical error

∆ =

√

VarO

N
=

√

〈O2〉 − 〈O〉2
N

. (4)
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Since we will, in general, not have a direct algorithm to create samples
xi according to the distribution P (xi) we will use a Markov process in which
starting from an initial configuration x0 a Markov chain of configuration is
generated:

x0 → x1 → x2 → . . . → xn → xn+1 → . . . . (5)

A transition matrix Txy gives the transition probabilities of going from config-
uration x to configuration y in one step of the Markov process. As the sum of
probabilities of going from configuration x to any other configuration is one,
the columns of the matrix T are normalized:

∑

y

Txy = 1 . (6)

A consequence is that the Markov process conserves the total probability.
Another consequence is that the largest eigenvalue of the transition matrix
T is 1 and the corresponding eigenvector with only positive entries is the
equilibrium distribution which is reached after a large number of Markov
steps.

We want to determine the transition matrix T so that we asymptotically
reach the desired probability P (x) for a configuration i. A set of sufficient
conditions is:

1. Ergodicity: It has to be possible to reach any configuration x from any
other configuration y in a finite number of Markov steps. This means that
for all x and y there exists a positive integer n < ∞ such that (Tn)xy �= 0.

2. Detailed balance: The probability distribution p
(n)
x changes at each step

of the Markov process:

∑

x

p(n)
x Txy = p(n+1)

y , (7)

but converges to the equilibrium distribution px. This equilibrium dis-
tribution px is an eigenvector with left eigenvalue 1 and the equilibrium
condition

∑

x

pxTxy = py (8)

must be fulfilled. It is easy to see that the detailed balance condition

Wxy

Wyx

=
py

px

(9)

is sufficient.

The simplest Monte Carlo algorithm is the Metropolis algorithm [5] which
can be outlined as follows:

• Starting with a configuration x = xi propose a new configuration y with
an a-priori probability Axy.
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• Calculate the acceptance ratio

Pxy = min

(

1,
AyxW (y)

AxyW (x)

)

(10)

and accept the proposed configuration with probability Pxy. To do so we
draw a uniform random number u in the interval [0, 1[ and choose xi+1 = y
if u < Pxy and xi+1 = x otherwise.

• Measure the quantity O for the new configuration xi+1 no matter whether
the proposed configuration was accepted or not.

Since the samples created in this Markov chain are correlated (we only do
small changes at each step), equation (4) for the statistical error needs to be
modified to

∆ =

√

VarO

N
(1 + 2τO) (11)

where τO is the integrated autocorrelation time of O(xi) in the Markov chain.

2.2 The Local Update Metropolis Algorithm for the Ising Model

We will next apply this Metropolis algorithm to simulations of the Ising fer-
romagnet with Hamilton function

H = −J
∑

〈i,j〉

σiσj − gµBh

N
∑

i=1

σi , (12)

where J is the exchange constant, h the magnetic field, g the Landé g-factor,
µB the Bohr magneton, and N the total number of spins. The sum runs over
all pairs of nearest neighbors i and j and σi = ±1 is the value of the Ising
spin at site i.

To calculate the value of an observable, such as the mean magnetization
at an inverse temperature β = 1/kBT with T being the temperature and kB

the Boltzmann constant, we need to evaluate

〈m〉 =
∑

c

m(c) exp(−βE(c))/Z, (13)

where

m(c) =
1

N

N
∑

i=1

σi (14)

is the magnetization of the configuration c, E(c) the energy of the configura-
tion,

P (c) = exp(−βE(c)) (15)

the Boltzmann weight and



Classical and Quantum Ensemble Optimization Techniques 597

Z =
∑

c

P (c) (16)

the partition function, normalizing the weights.
As discussed above, Monte Carlo sampling can be performed on this sum

using the Metropolis method. The simplest types of updates are local spin
flips:

1. Pick a random site i. The a-priori probabilites Axy are all just 1/Nsites

for a system with Nsites spins.
2. Calculate the energy cost ∆E for flipping the spin at site i: σi → −σi

3. Flip the spin with the Metropolis probability min[1, exp(−β∆E)]. If re-
jected, keep the original spin value.

4. Perform a measurement independent of whether the spin flip was accepted
or rejected.

The same local update algorithm can be applied to systems with longer-
range interactions and with coupling constants that vary from bond to bond.
For more complex classical models, such as Heisenberg models, local updates
will no longer consist of simple spin flips, but of arbitrary rotations of the
local spin vectors.

2.3 Critical Slowing Down and Cluster Update Algorithms

Local update algorithms are easy to implement and work well away from phase
transitions. Problems arise in the vicinity of continuous (second order) phase
transitions, where these algorithms suffer from “critical slowing down” [6] and
at first order phase transitions where there is a tunneling problem through
free energy barriers.

At second order phase transitions the correlation length ξ diverges upon
approaching the phase transition, and this causes the autocorrelation times
τO to also diverge as

τO ∝ min(L, ξ)z (17)

with a dynamical critical exponent of z ≈ 2. L is the linear extent of the
system. The origin of critical slowing down is the fact that close to the critical
temperature large ordered domains of linear extent ξ are formed and the sin-
gle spin updates are not effective in changing these large domains. The value
z ≈ 2 can be understood considering that the time for a domain wall to move
a distance ξ by a random walk scales as ξ2. The solution to critical slowing
down are cluster updates, flipping carefully selected clusters of spins instead of
single spins. Cluster update algorithms were originally invented by Swendsen
and Wang for the Ising model [6] and soon generalized to O(N) models, such
as the Heisenberg model [7]. These cluster update algorithms are discussed in
text books on classical Monte Carlo simulations and in computational physics
text books. While most cluster algorithms require spin-inversion invariance
and thus do not allow for external magnetic fields, extensions to spin models
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in magnetic fields have been proposed [8,9]. An open source implementation of
local and cluster updates for Ising, Potts, XY and Heisenberg models is avail-
able through the ALPS (Applications and Libraries for Physics Simulations)
project [10] at the web page http://alps.comp-phys.org/.

The tunneling problem at first order phase transitions and for disordered
systems, where tunneling times often diverge exponentially can be overcome
using extended ensemble methods, which are the main topic of the next
chapter.

3 Extended Ensemble Methods

3.1 First Order Phase Transitions

and the Multicanonical Ensemble

While cluster updates can solve critical slowing down at second order phase
transitions they are usually inefficient at first order phase transitions and in
frustrated systems. Let us consider a first order phase transition, such as in a
two-dimensional q-state Potts model with Hamilton function

H = −J
∑

〈i,j〉

δσiσj
, (18)

where the spins σi can now take the integer values 1, . . . , q. For q > 4 this
model exhibits a first order phase transition, accompanied by exponential
slowing down of conventional local update algorithms. The exponential slow-
down is caused by the free energy barrier between the two coexisting meta-
stable states at the first order phase transition.

This barrier can be quantified by considering the energy histogram

Hcanonical(E) ∝ g(E)PBoltzmann(E) = g(E) exp(−βE) , (19)

which is the probability of encountering a configuration with energy E during
the Monte Carlo simulation. Here

g(E) =
∑

c

δE,E(c) (20)

is the density of states. Away from first order phase transitions, Hcanonical(E)
has approximately Gaussian shape, centered around the mean energy. At first
order phase transitions, where the energy jumps discontinuously the histogram
Hcanonical(E) develops a double-peak structure. The minimum of Hcanonical(E)
between these two peaks, which the simulation has to cross in order to go
from one phase to the other, becomes exponentially small upon increasing the
system size. This leads to exponentially large autocorrelation times.
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This tunneling problem at first-order phase transitions can be relieved
by extended ensemble techniques which aim at broadening the sampled en-
ergy space. Instead of weighting a configuration c with energy E = E(c) us-
ing the Boltzmann weight PBoltzmann(E) = exp(−βE) more general weights
Pextended(E) are introduced which define the extended ensemble. The config-
uration space is explored by generating a Markov chain of configurations

c1 → c2 → . . . → ci → ci+1 → . . . , (21)

where a move from configuration c1 to c2 is accepted with probability

Pacc(c1 → c2) = min

(

1,
P (c2)

P (c1)

)

= min

(

1,
Wextended(E2)

Wextended(E1)

)

. (22)

In general, the extended weights are defined in a single coordinate, such as
the energy, thereby projecting the random walk in configuration space to a
random walk in energy space

E1 = E(c1) → E2 → . . . → Ei → Ei+1 → . . . . (23)

For this random walk in energy space a histogram can be recorded which has
the characteristic form

Hextended(E) ∝ g(E)Wextended(E) , (24)

where the density of states g(E) is fixed for the simulated system.
One choice of generalized weights is the multicanonical ensemble [11, 12]

where the weight of a configuration c is defined as Wmulticanonical(c) ∝
1/g(E(c)). The multicanonical ensemble then leads to a flat histogram in
energy space

Hmulticanonical(E) ∝ g(E)Wmulticanonical(E) = g(E)
1

g(E)
= const., (25)

removing the exponentially small minimum in the canonical distribution. Af-
ter performing a simulation, measurements in the multicanonical ensemble are
reweighted by a factor WBoltzmann(E)/Wmulticanonical(E) to obtain averages in
the canonical ensemble.

3.2 The Wang-Landau Algorithm

Since the density of states and thus the multicanonical weights are not known
initially, a scalable algorithm to estimate these quantities is needed. The
Wang-Landau algorithm [13, 14] is a simple but efficient iterative method
to obtain good approximations of the density of states g(E) and the multi-
canonical weights Wmulticanonical(E) ∝ 1/g(E).

The algorithm starts with a (very bad) estimate of the density of states
g(E) = 1 for all energies which is iteratively improved by a modification factor
f in the following loop:
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• Start with g(E) = 1 and a modification factor f ≈ exp(1).
• Repeat

– Reset a histogram of energies H(E) = 0.
– Perform simulations until the histogram of energies H(E) is “flat”:

• Pick a random site and propose a local update, e.g. by flipping the
spin at the site, which changes the current configuration c to a new
configuration c′, and the energy from E = E(c) to E′ = E(c′).

• Approximating multicanoncal weights with the current estimate
of the density of states the update is accepted with probability
min[1, g(E)/g(E′)].

• Increase the histogram at the current value of E: H(E) ← H(E)+1
• Increase the estimate g(E) at the current value of E: g(E) ← fg(E).

– Once H(E) is “flat” and has “sufficient statistics”, reduce f ←
√

f .
• Stop once f is sufficiently small, e.g. f ≈ exp(10−6).

Only a few lines of code need to be changed in the local update algorithm
for the Ising model, but a few remarks are helpful:

1. The initial value for f needs to be carefully chosen, f = exp(1) is only a
rough guide. A good choice is picking the initial f such that fNsweeps is
approximately the total number of states

∑

E g(E) (e.g. 2N for an Ising
model with N sites).

2. Checking for flatness of the histogram (e.g. the minimum is at least 80%
of the mean) should be done only after a reasonable number of sweeps
Nsweeps. One sweep is defined as one attempted update per site.

3. The flatness criterion is quite arbitrary. In order to ensure convergence of
the estimated g(E) it should be extended to enforce sufficient statistics,
e.g. by requiring that each histogram entry is at least of the order of
1/
√

ln f as pointed out in Refs. [15, 16].
4. The density of states g(E) can become very large and easily exceed 1010000.

In order to obtain such large numbers the multiplicative increase g(E) ←
fg(E) is essential. A naive additive guess g(E) ← g(E) + f would never
be able to reach the large numbers needed.

5. Since g(E) is so large, we only store its logarithm. The update step is thus
ln g(E) ← ln g(E) + ln f .

At the end, the density of states g(E) needs to be normalized. Either a
known ground state degeneracy (e.g. g(EGS) = 2 in the Ising ferromagnet) or
a known total number of states (e.g.

∑

E g(E) = 2N in the Ising model with
N spins) or a combination of the two (e.g. g(EGS) · ∑E g(E) = 2N+1 for the
Ising ferromagnet) can be used to normalize g(E).

Besides overcoming the exponentially suppressed tunneling problem at
first order phase transitions, the Wang-Landau algorithm calculates the gen-
eralized density of states g(E) in an iterative procedure. The knowledge of
the density of states g(E) then allows the direct calculation of the free energy
from the partition function (16). The internal energy, entropy, specific heat
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and other thermal properties are easily obtained as well, by differentiating the
free energy. By additionally measuring the averages A(E) of other observables
A as a function of the energy E, thermal expectation values can be obtained
at arbitrary inverse temperatures β by performing just a single simulation:

〈A(β)〉 =

∑

E A(E)g(E)e−βE

∑

E g(E)e−βE
. (26)

3.3 Markov Chains and Random Walks in Energy Space

The multicanonical ensemble and Wang-Landau algorithm both project a ran-
dom walk in high-dimensional configuration space onto a one-dimensional ran-
dom walk in energy space where all energy levels are sampled equally often.
It is important to note that the random walk in configuration space, (21), is
a biased Markovian random walk, while the projected random walk in energy
space, (23), is non-Markovian, as memory is stored in the configuration. This
becomes evident as the system approaches a phase transition in the random
walk: While the energy no longer reflects from which side the phase transition
is approached, the current configuration may still reflect the actual phase the
system has visited most recently. In the case of the two-dimensional ferro-
magnetic Ising model, the order parameter for a given configuration at the
critical energy Ec ∼ −1.41N will reveal whether the system is approaching
the transition from the magnetically ordered (lower energies) or disordered
side (higher energies).

This loss of information in the projection of the random walk in configura-
tion space has important consequences for the random walk in energy space.
Most strikingly, the local diffusivity of a random walker in energy space, which
for a diffusion time tD can be defined as

D(E, tD) = 〈(E(t) − E(t + tD))2〉/tD (27)

is not independent of the location in energy space. This is illustrated in Fig. 1
for the Ising ferromagnet. Below the phase transition around E ∼ −1.41N
a clear minimum evolves in the local diffusivity. In this region large ordered
domains are formed and by moving the domain boundaries through local spin
flips only small energy changes are induced resulting in a suppressed local
diffusivity in energy space.

Because of the strong energy dependence of the local diffusivity the sim-
ulation of a multicanonical ensemble sampling all energy levels equally often
turns out to be suboptimal [17]. The performance of flat-histogram algorithms
can be quantified for classical spin models such as the ferromagnet where the
number of energy levels is given by [−2N, +2N ] and thereby scales with the
number of spins N in the system. When measuring the typical round-trip
time between the two extremal energies for multicanonical simulations, these
round-trip times τ are found to scale like
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Fig. 1. Local diffusivity D(E, tD) = 〈(E(t) − E(t + tD))2〉/tD of a random walk
sampling a flat histogram in energy space for the two-dimensional ferromagnetic
Ising model. The local diffusivity strongly depends on the energy with a strong
suppression below the critical energy Ec ≈ −1.41 N

τ ∼ N2Lz , (28)

showing a power-law deviation from the N2-scaling behavior of a completely
unbiased random walk. Here z is a critical exponent describing the slowdown of
a multicanonical simulation in the proximity of a phase transition [17,18]. The
value of z strongly depends on the simulated model and the dimensionality of
the problem. In two dimensions the exponent increases from z = 0.74 for the
ferromagnet as one introduces competing interactions leading to frustration
and disorder. The exponent becomes z = 1.73 for the fully frustrated Ising
model which is defined by a Hamilton

H =
∑

〈i,j〉

Jijσiσj , (29)

where the spins around any given plaquette of four spins are frustrated, e.g.
by choosing the couplings along three bonds to be Jij = −1 (ferromagnetic)
and Jij = +1 (antiferromagnetic) for the remaining bond. For the spin glass
where the couplings Jij are randomly chosen to be +1 or −1 exponential
scaling (z = ∞) is found [17, 19]. Increasing the spatial dimension for the
ferromagnet the exponent is found to decrease as z ≈ 1.81, 0.74 and 0.44 for
dimension d = 1, 2 and 3 and z vanishes for the mean-field model in the limit
of infinite dimensions [18].
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3.4 Optimized Ensembles

The observed polynomial slowdown for the multicanonical ensemble poses the
question whether for a given model there is an optimal choice of sampling en-
ergies, Hoptimal(E) and corresponding weights Woptimal(E), which eliminates
the slowdown. To address this question an adaptive feedback algorithm has
recently been introduced that iteratively improves the weights in an extended
ensemble simulationt leading to further improvements in the efficiency of the
algorithm by several orders of magnitude [20]. The scaling for the optimized
ensemble is found to scale like O([N lnN ]2) thereby reproducing the behavior
of an unbiased Markovian random walk up to a logarithmic correction.

At the heart of the algorithm is the idea to maximize a current j of walk-
ers that move from the lowest energy level, E−, to the highest energy level,
E+, or vice versa, in an extended ensemble simulation by varying the weights
Wextended(E). To measure the current a label is added to the walker that
indicates which of the two extremal energies the walker has visited most re-
cently. The two extrema act as “reflecting” and “absorbing” boundaries for
the labeled walker: e.g., if the label is plus, a visit to E+ does not change the
label, so this is a “reflecting” boundary. However, a visit to E− does change
the label, so the plus walker is absorbed at that boundary. The behavior of
the labeled walker is not affected by its label except when it visits one of the
extrema and the label changes.

For the random walk in energy space, two histograms are recorded, H+(E)
and H−(E), which for sufficiently long simulations converge to steady-state
distributions which satisfy H+(E) + H−(E) = H(E) = W (E)g(E). For each
energy level the fraction of random walkers which have label “plus” is then
given by f(E) = H+(E)/H(E). The above-discussed boundary conditions
dictate f(E−) = 0 and f(E+) = 1.

The steady-state current to first order in the derivative is

j = D(E)H(E)
df

dE
, (30)

where D(E) is the walker’s diffusivity at energy E. There is no current if f(E)
is constant, since this is equilibrium. Therefore the current is to leading order
proportional to df/dE. Rearranging the above equation and integrating on
both sides, noting that j is a constant and f runs from 0 to 1, one obtains

1

j
=

∫ E+

E−

dE

D(E)H(E)
. (31)

To maximize the current and thus the round-trip rate, this integral must be
minimized. However, there is a constraint: H(E) is a probability distribution
and must remain normalized which can be enforced with a Lagrange multi-
plier:

∫ E+

E−

dE

(

1

D(E)H(E)
+ λH(E)

)

. (32)



604 S. Trebst and M. Troyer

To minimize this integrand, the ensemble, that is the weights W (E) and
thus the histogram H(E) are varied. At this point it is assumed that the
dependence of D(E) on the weights can be neglected.

The optimal histogram, Hoptimal(E), which minimizes the above integrand
and thereby maximizes the current j is then found to be

Hoptimal(E) ∝ 1
√

D(E)
. (33)

Thus for the optimal ensemble, the probability distribution of sampled energy
levels is simply inversely proportional to the square root of the local diffusivity.

The optimal histogram can be approximated in a feedback loop of the
form

• Start with some trial weights W (E), e.g. W (E) = 1/g(E).
• Repeat

– Reset the histograms H(E) = H+(E) = H−(E) = 0.
– Simulate the system with the current weights for N sweeps:

• Updates are accepted with probablity min[1,W (E′)/W (E)].
• Record the histograms H+(E) and H−(E).

– From the recorded histogram an estimate of the local diffusivity is
obtained as

D(E) ∝ 1

H(E) df
dE

, f(E) =
H+(E)

H(E)
, H(E) = H+(E)+H−(E) .

– Define new weights as

Woptimized(E) = W (E)

√

1

H(E)
· df

dE
.

– Increase the number of sweeps for the next iteration N ← 2N .
• Stop once the histogram H(E) has converged.

Again the implementation of this feedback algorithm requires to change
only a few lines of code in the original local update algorithm for the Ising
model. Some additional remarks are useful:

1. In contrast to the Wang-Landau algorithm the weights W (E) are modified
only after a batch of N sweeps, thereby ensuring detailed balance between
successive moves at all times.

2. The initial value of sweeps N should be chosen large enough that a couple
of round trips are recorded, thereby ensuring that steady state data for
H+(E) and H−(E) are measured.

3. The derivative df/dE can be determined by a linear regression, where the
number of regression points is flexible. Initial batches with the limited sta-
tistics of only a few round trips may require a larger number of regression
points than subsequent batches with smaller round-trip times and better
statistics.
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4. Similar to the multicanonical ensemble the weights W (E) can become very
large, and storing the logarithms may be advantageous. The reweighting
then becomes ln Woptimized(E) = lnW (E) + (ln df

dE
− lnH(E))/2 .

At the end of the simulation, the density of states can be estimated from
the recorded histogram as g(E) = Hoptimized(E)/Woptimized(E) and normal-
ized as described above.

Figure 2 shows the optimized histogram for the two-dimensional ferro-
magnetic Ising model. The optimized histogram is no longer flat, but a peak
evolves at the critical region around Ec ≈ −1.41 N of the transition. The
feedback of the local diffusivity reallocates resources towards the bottlenecks
of the simulation which have been identified by a suppressed local diffusivity.

The scaling of round-trip times is shown in Fig. 3 for the two-dimensional
fully frustrated Ising model. The power-law slowdown of round-trip times for
the flat-histogram ensemble O(N2L1.73) is reduced to a logarithmic correction
O([N lnN ]2) for the optimized ensemble in comparison to a completely unbi-
ased random walk with O(N2)-scaling. This scaling improvement results in a
speedup by a nearly two orders of magnitude already for a system with some
128 × 128 spins.
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Fig. 2. Optimized histograms for the two-dimensional ferromagnetic Ising model.
After the feedback of the local diffusivity a peak evolves near the critical energy
of the transition Ec ≈ −1.41 N . The feedback thereby shifts additional resources
towards the bottleneck of the simulation which were identified by a suppressed local
diffusivity
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Fig. 3. Scaling of round-trip times for a random walk in energy space sampling a
flat histogram (open squares) and the optimized histogram (solid circles) for the two-
dimensional fully frustrated Ising model. While for the multicanonical simulation a
power-law slowdown of the round-trip times O(N2Lz) is observed, the round-trip
times for the optimized ensemble scale like O([N ln N ]2) thereby approaching the
ideal O(N2)-scaling of an unbiased Markovian random walk up to a logarithmic
correction

3.5 Simulation of Dense Fluids

Extended ensembles cannot only be defined as a function of energy, but in
arbitrary reaction coordinates R onto which a random walk in configuration
space can be projected. The generalized weights in these reaction coordinates
Wextended(R) are then used to bias the random walk along the reaction coor-
dinate by accepting moves from a configuration c1 with reaction coordinate
R1 to a configuration c2 with reaction coordinate R2 with probability

pacc(c1 → c2) = pacc(R1 → R2) = min

(

1,
Wextended(R2)

Wextended(R1)

)

. (34)

The generalized weights Wextended(R) can again be chosen in such a way that
similar to a multicanonical simulation a flat histogram is sampled along the
reaction coordinate by setting the weights to be inversely proportional to the
density of states defined in the reaction coordinates, that is Wextended(R) ∝
1/g(R).

An optimal choice of weights can be found by measuring the local dif-
fusivity of a random walk along the reaction coordinates and applying the
feedback method to shift weight towards the bottlenecks in the simulation.
This generalized ensemble optimization approach has recently been illustrated
for the simulation of dense Lennard-Jones fluids close to the vapor-liquid equi-
librium [21]. The interaction between particles in the fluid is described by a
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pairwise Lennard-Jones potential of the form

ΦLJ(R) = 4ǫ

[

( σ

R

)12

−
( σ

R

)6
]

, (35)

where ǫ is the interaction strength, σ a length parameter, and R the distance
between two particles. It is this distance R between two arbitrarily chosen par-
ticles in the fluid that one can use as a new reaction coordinate for a projected
random walk. Defining an extended ensemble with weights Wextended(R) and
recording a histogram H(R) during a simulation will then allow to calculate
the pair distribution function g(R) = H(R)/Wextended(R). The pair distribu-
tion function g(R) is closely related to the potential of mean force (PMF)

ΦPMF(R) = − 1

β
ln g(R) , (36)

which describes the average interaction between two particles in the fluid in
the presence of many surrounding particles.

For high particle densities and low enough temperatures shell structures
will form in the fluid which are reminiscent of the hexagonal lattice of the solid
structure at very low temperatures. These shell structures are revealed by a
sinusoidal modulation in the PMF as illustrated in the lower panel of Fig. 4 for
the case of a two-dimensional fluid. Thermal equilibration between the shells is
suppressed by entropic barriers which form between the shells. Again, one can
ask what probability distribution, or histogram, should be sampled along the
reaction coordinate, in this case the radial distance R, so that equilibration
between the shells is improved. Measuring the local diffusivity for a random
walk along the radial distance R in an interval [Rmin, Rmax] and subsequently
applying the feedback algorithm described above optimized histograms H(R)
are found which are plotted in Fig. 4 for varying temperatures [21]. The feed-
back algorithm again shifts additional weight in the histogram towards the
bottleneck of the simulation, in this case towards the barriers between the
shells. Interestingly, additional peaks emerge in the optimized histogram as
the temperature is lowered towards the vapor-liquid equilibrium. The minima
between these peaks points to additional meta-stable configurations which oc-
cur at these low temperatures, namely interstitial states which occur as the
shells around two particles merge as detailed in [21].

This example illustrates that for some simulations the local diffusivity and
optimized histogram itself are very sensitive measures that can reveal interest-
ing phenomena which are otherwise hard to detect in a numerical simulation.
In general, a strong modulation of the local diffusivity for the random walk
along a given reaction coordinate is a good indicator that the reaction co-
ordinate itself is a good choice that captures some interesting physics of the
problem.
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Fig. 4. Optimized histograms for the simulation of dense Lennard-Jones fluids

3.6 Parallel Tempering

The simulation of frustrated systems suffers from a similar tunneling problem
as the simulation of first order phase transitions: local minima in energy space
are separated by barriers that grow with system size. While the multicanonical
or optimized ensembles do not help with the NP-hard problems faced by spin
glasses, they are efficient in speeding up simulations of frustrated magnets
without disorder.

An alternative to these extended ensembles for the simulation of frus-
trated magnets is the “parallel tempering” or “replica exchange” Monte Carlo
method [22–25]. Instead of performing a single simulation at a fixed tem-
perature, simulations are performed for M replicas at a set of temperatures
T1, T2, . . . , TM . In addition to standard Monte Carlo updates at a fixed tem-
perature, exchange moves are proposed to swap two replicas between adjacent
temperatures. These swaps are accepted with a probability

min[1, exp(∆β∆E)], (37)

where ∆β is the difference in inverse temperatures and ∆E the difference in
energy between the two replicas.

The effect of these exchange moves is that a replica can drift from a local
free energy minimum at low temperatures to higher temperatures, where it
is easier to cross energy barriers and equilibration is fast. Upon cooling (by
another sequence of exchanges) it can end up in a different local minimum on
time scales that are much shorter compared to a single simulation at a fixed
low temperature. This random walk of a single replica in temperature space
is the analog of the random walk in energy space discussed for the extended
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ensemble techniques. The complement of the statistical ensemble, defined by
the weights Wextended(E), is the particular choice of temperature points in the
temperature set {T1, T2, . . . , TM} for the parallel tempering simulation. The
probability of sampling any given temperature T in an interval Ti < T < Ti+1

can then be approximated by H(T ) ∝ 1/∆T , where ∆T = Ti+1 − Ti is the
length of the temperature interval around the temperature T . This probability
distribution H(T ) is the equivalent to the histogram H(E) in the extended
ensemble simulations. The ensemble optimization technique introduced above
can thus be reformulated to optimize the temperature set in a parallel tem-
pering simulation in such a way that the rate of round-trips between the two
extremal temperatures, T1 and TM respectively, is maximized [26,27].

Starting with an initial temperature set {T1, T2, . . . , TM} a parallel tem-
pering simulation is performed where each replica is labeled either “plus” or
“minus” indicating which of the two extremal temperatures the respective
replica has visited most recently. This allows to measure a current of replicas
diffusing from the highest to the lowest temperature by recording two his-
tograms, h+(T ) and h−(T ) for each temperature point. The current j is then
given by

j = D(T )H(T )
df

dT
, (38)

where D(T ) is the local diffusivity for the random walk in temperature space,
and f(T ) = h+(T )/(h+(T ) + h−(T )) is the fraction of random walkers which
have visited the highest temperature TM most recently. The probability dis-
tribution H(T ) is normalized, that is

∫ TM

T1

H(T ) dT = C

∫ TM

T1

dT

∆T
= 1 , (39)

where C is a normalization constant. Rearranging (38) the local diffusivity
D(T ) of the random walk in temperature space can be estimated as

D(T ) ∝ ∆T

df/dT
. (40)

Analog to the argument for the extended ensemble in energy space the current
j is maximized by choosing a probability distribution

Hoptimal(T ) ∝ 1
√

D(T )
∝

√

1

∆T

df

dT
(41)

which is inversely proportional to the square root of the local diffusivity. The
optimized temperature set {T ′

1, T
′
2, . . . , T

′
M} is then found by choosing the

n-th temperature point T ′
n such that

∫ T ′

n

T ′

1

Hoptimal(T ) dT =
n

M
, (42)
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where M is the number of temperature points in the original temperature set,
and the two extremal temperatures T ′

1 = T1 and T ′
M = TM remain unchanged.

Similarly to the algorithm for the ensemble optimization this feedback of the
local diffusivity should be iterated until the temperature set is converged.

Figure 5 illustrates the optimized temperature sets for the Ising ferromag-
net obtained by several iterations of the above feedback loop. After feedback
of the local diffusivity temperature points accumulate near the critical tem-
perature Tc = 2.269 of the transition. This is in analogy to the optimized his-
tograms for the extended ensemble simulations where resources where shifted
towards the critical energy of the transition, see Fig. 2.

It is interesting to note that for the optimized temperature set the accep-
tance rates for swap moves are not independent of the temperature. Around
the critical temperature, where temperature points are accumulated by the
feedback algorithm, the acceptance rates are higher as at higher/lower temper-
atures, where the density of temperature points becomes considerably smaller
after feedback. The almost Markovian scaling behavior for the optimized
random walks in either energy or temperature space is thus generated by
a problem-specific statistical ensemble which is characterized neither by a flat
histogram nor flat acceptance rates for exchange moves, but by a characteristic
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Fig. 5. Optimized temperature sets for the two-dimensional Ising ferromagnet. The
initial temperature set with 20 temperature points is determined by a geometric pro-
gression for the temperature interval [0.1, 10]. After feedback of the local diffusivity
the temperature points accumulate near the critical temperature Tc = 2.269 of the
phase transition (dashed line). Similar to the ensemble optimization in energy space
the feedback of the local diffusivity relocates resources towards the bottleneck of the
simulation
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Fig. 6. Low-energy structure of the 36-residue chicken villin headpiece sub-domain
HP-36. On the left the structure determined in NMR experiments is shown. The
right panel shows the lowest-energy configuration found in a feedback-optimized all-
atom parallel tempering simulation using the ECEPP/2 force field and an implicit
solvent model. The root-mean square deviation of this structure to the structure on
the left is RRMSD = 3.8 Å

probability distribution which concentrates resources at the minima of the
measured local diffusivity.

3.7 Optimized Parallel Tempering Simulations of Proteins

The feedback-optimized parallel tempering technique [26] outlined in the pre-
vious section has recently been applied to study the folding of the 36-residue
chicken villin headpiece sub-domain HP-36 [27]. Since HP-36 is one of the
smallest proteins with well-defined secondary and tertiary structure [28] and
at the same time with 596 atoms still accessible to numerical simulations, it
has recently attracted considerable interest as an example to test novel numer-
ical techniques, including molecular dynamics [29,30] and Monte Carlo [31,32]
methods. The experimentally determined structure [28] which is deposited in
the Protein Data Bank (PDB code 1vii) is illustrated in the left panel of Fig. 6.

Applying an all-atom parallel tempering simulation of the protein HP-36
in the ECEPP/2 force field [33] using an implicit solvent model [34] the au-
thors of [27] have measured the diffusion of labeled replicas in temperature
space. The simulated temperature interval is chosen such that at the lowest
temperature Tmin = 250 K the protein is in a folded state and the highest
temperature Tmax = 1000 K ensures that the protein can fully unfold for
the simulated force field. The measured local diffusivity for the random walk
between these two extremal temperatures is shown in Fig. 7. A very strong
modulation of the local diffusivity is found along the temperature. Note the
logarithmic scale of the ordinate. The pronounced minimum of the local diffu-
sivity around T ≈ 500 K points to a severe bottleneck in the simulation which
by measurements of the specific heat has been identified as the helix-coil
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Fig. 7. Local diffusivity (solid circles) of the random walk in temperature space
for a parallel tempering simulation of the 36-residue villin headpiece sub-domain
HP-36. The diffusivity shows a strong modulation along the temperature, note the
logarithmic scale of the ordinate. Slightly below the helix-coil transition around
T ≈ 500 K which is identified by a maximum in the specific heat (crosses, right
ordinate) there is a strong suppression of the diffusivity

transition [31]. Above this transition the protein is in an extended unordered
configuration, while below the helix-coil transition the protein is character-
ized by high helical content [31]. The shoulder in the local diffusivity in the
temperature region 350 K ≤ T ≤ 490 K points to a second bottleneck in the
simulation, possibly caused by competing low-energy configurations with high
helical content.

An optimized temperature set for the parallel tempering simulation of HP-
36 in the ECEPP/2 force field can then be found by feeding back the local dif-
fusivity applying the algorithm outlined above. Results for a temperature set
with 20 temperature points are illustrated in Fig. 8 for an initial temperature
set which similar to a geometric progression concentrates temperature points
at low temperatures [27]. After the feedback temperature points concentrate
around the bottleneck of the simulation, primarily around the helix-coil tran-
sition at T ≈ 500 K and in the temperature regime 350 K ≤ T ≤ 490 K below
the transition where a shoulder in the local diffusivity was found.

In [27] it was demonstrated that by using the optimized temperature set in
the simulations the low-energy configurations equilibrated considerably faster
than in previous parallel tempering simulations [31]. As a consequence, the
low energy structures are more compact and the configuration with lowest
energy illustrated in Fig. 6 shows a root-mean square deviation to the exper-
imentally determined structure of RRMSD = 3.7 Å. This deviation from the
native structure is similar to results found by large-scale molecular dynamics
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Fig. 8. Optimized temperature sets with 20 temperature points for the parallel
tempering simulation of the 36-residue protein HP-36. The initial temperature set
covers a temperature range 250 K ≤ T ≤ 1000 K and concentrates temperature
points at low temperatures similar to a geometric progression. After the feedback of
the local diffusivity temperature points accumulate around the helix-coil transition
at T ≈ 500 K where the strong suppression of the local diffusivity points to a severe
bottleneck

simulations [30] with a different force field. However, employing the optimized
temperature set the Monte Carlo simulations consumed only a fraction of one
percent of the computing time used for the molecular dynamics simulations.
A detailed discussion of the application of the feedback method in the study
of proteins is given in [27].

3.8 Simulation of Quantum Systems

Extended ensemble methods, such as the multicanonical ensemble, Wang-
Landau sampling or parallel tempering can also be generalized to quantum
systems [35,36], as we will show in the next two sections.

4 Quantum Monte Carlo World Line Algorithms

4.1 The S = 1/2 Quantum XXZ Model

In this section we will generalize the Monte Carlo methods described in section
2 for classical spin systems to quantum spin systems. As an example we will
use the spin-1/2 quantum Heisenberg or XXZ models with Hamiltonian



614 S. Trebst and M. Troyer

H =
∑

〈i,j〉

[

JzS
z
i Sz

j + Jxy

(

Sx
i Sx

j + Sy
i Sy

j

)]

− h

N
∑

i=1

Sz
i (43)

=
∑

〈i,j〉

[

JzS
z
i Sz

j +
Jxy

2

(

S+
i S−

j + S−
i S+

j

)

]

− h

N
∑

i=1

Sz
i

where Sα
i are spin S = 1/2 operators fulfilling the standard commutation

relations and in the second line we have replaced Sx
i and Sy

i by the spin
raising and lowering operators S+

i and S−
i .

The case Jxy = 0 corresponds to the classical Ising model (12) up to a
change in sign: while in classical Monte Carlo simulations (where there is no
difference in the thermodynamics of the ferromagnet and the antiferromagnet)
a positive exchange constant J denotes the ferromagnet, the convention for
quantum systems is usually opposite with a positive exchange constant denot-
ing the antiferromagnet. The other limit Jz = 0 corresponds to the quantum
XY -model, while Jz = Jxy is the Heisenberg model.

4.2 Representations

The basic problem for Monte Carlo simulations of quantum systems is that
the partition function is no longer a simple sum over classical configurations
as in (16) but an operator expression

Z = Tr exp(−βH) , (44)

where H is the Hamilton operator and the trace Tr goes over all states in the
Hilbert space. Similarly the expression for an observable like the magnetization
is an operator expression:

〈m〉 =
1

Z
Tr [m exp(−βH)] , (45)

and the Monte Carlo method cannot directly be applied except in the classical
case where the Hamilton operator H is diagonal and the trace reduces to a
sum over all basis states. The first step of any QMC algorithm is thus the
mapping of the quantum system to an equivalent classical system

〈m〉 =
1

Z
Tr [m exp(−βH)] =

∑

c

m(c)W (C) , (46)

where the sum goes over configurations c in an artificial classical system (e.g. a
system of world lines), m(c) will be the value of the magnetization or another
observable as measured in this classical system and W (C) the weight of the
classical configuration. We will now present two different but related methods
for this mapping, namely continuous time path integrals and the stochastic
series expansion.
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The Path-Integral Representation

The path-integral formulation of a quantum systems goes back to [37], and
forms the basis of most QMC algorithms. Instead of following the historical
route and discussing the Trotter-Suzuki (checkerboard) decomposition [38,39]
for path integrals with discrete time steps ∆τ we will directly describe the
continuous-time formulation used in modern codes.

The starting point is a time-dependent perturbation expansion in imagi-
nary time to evaluate the density matrix operator exp(−βH). Using a basis in
which the Sz operators are diagonal we follow [40] and split the Hamiltonian
H = H0 +V into a diagonal term H0, containing the Sz term and an offdiag-
onal perturbation V , containing the exchange terms (Jxy/2)(S+

i S−
j +S−

i S+
j ).

In the interaction representation the time-dependent perturbation is V (τ) =
exp(τH0)V exp(−τH0) and the partition function can be represented as:

Z = Tr exp(−βH) = Tr

[

exp(−βH0)T exp

∫ β

0

dτV (τ)

]

,

= Tr

[

exp(−βH0)

(

1 −
∫ β

0

dτ1V (τ1) +
1

2

∫ β

0

dτ1

∫ β

τ1

dτ2V (τ1)V (τ2) + . . .

)]

=
∑

i

〈i|
[

exp(−βH0)

(

1−
∫ β

0

dτ1V (τ1)+
1

2

∫ β

0

dτ1

∫ β

τ1

dτ2V (τ1)V (τ2) + . . .

)]

|i〉,

(47)

where the symbol T denotes time-ordering of the exponential and in the last
line we have replaced the trace by a sum over a complete set of basis states
|i〉, that are eigenstates of the local Sz operators. Note that, in contrast to a
real time path integral, the imaginary time path integral always converges on
finite systems of N spins at finite temperatures β, and the expansion can be
truncated at orders n ≫ βJxyN .

Equation (47) is now just a classical sum of integrals and can be evaluated
by Monte Carlo sampling in the intitial states |i〉, the order of the perturbation
n and the times τi (i = 1, . . . , n). This is best done by considering a graphical
world line representation of the partition function (47) shown in Fig. 9. The
zero-th order terms in the sum

∑

i〈i| exp(−βH0)|i〉 are given by straight world
lines shown in Fig. 9a. First order terms do not appear since the matrix
elements 〈i|V |i〉 are zero for the XXZ model. The first non-trivial terms
appear in second order with two exchanges, as shown in Fig. 9b. A general
configuration of higher order is depicted in Fig. 10a.

Since the XXZ Hamiltonian commutes with the z-component of total spin
∑

i Sz
i , the total magnetization is conserved and all valid configurations are

represented by closed world lines as shown in Figs. 9 and 10. Models that
break this conservation of magnetization, such as general XY Z models with
different couplings in all directions, models with transverse fields coupling to
Sx

i or higher spin models with single ion anisotropies (Sx
i )2 or (Sy

i )2 will in
addition contain configurations with broken world line segments.
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Fig. 9. Examples of simple world line configurations in imaginary time for a quan-
tum spin model. Up-spins are shown by bold lines and down spins by thin lines. (a)
a configuration in 0-th order perturbation theory where the spins evolve according
to the diagonal term exp(−βH0) and the weight is given by the classical Boltz-
mann weight of H0. (b) a configuration in second order perturbation theory with
two exchanges at times τ1 and τ2. Its weight is given by the matrix elements of the
exchange processes and the classical Boltzmann weight of H0 of the spins

a)

space direction

in
te

g
er

 i
n
d
ex

b)

1

n

space direction

im
ag

in
ar

y
 t

im
e

0

β

Fig. 10. Examples of world line configurations in (a) a path-integral representation
where the time direction is continuous and (b) the stochastic series expansion (SSE)
representation where the “time” direction is discrete. Since the SSE representation
perturbs not only in offdiagonal terms but also in diagonal terms, additional diagonal
terms are present in the representation, indicated by dashed lines
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The Stochastic Series Expansion Representation

An alternative representation is the stochastic series expansion (SSE) [41],
a generalization of Handscomb’s algorithm [42] for the Heisenberg model. It
starts from a Taylor expansion of the partition function in orders of β:

Z = Tr exp(−βH) =

∞
∑

n=0

βn

n!
Tr(−H)n (48)

=
∞
∑

n=0

βn

n!

∑

{i1,...in}

∑

{b1,...bn}

〈i1| − Hb1 |i2〉〈i2| − Hb2 |i3〉 · · · 〈in| − Hbn
|i1〉 ,

where in the second line we decomposed the Hamiltonian H into a sum of
single-bond terms H =

∑

b Hb, and again inserted complete sets of basis
states. We end up with a similar representation as (47) and a related world-
line picture shown in Fig. 10b.

The key difference is that the SSE representation is a perturbation expan-
sion in all terms of the Hamiltonian, while the path-integral representation
perturbs only in the off-diagonal terms. Although the SSE method thus needs
higher expansion orders for a given system, this disadvantage is compensated
by a simplification in the algorithms: only integer indices of the operators need
to be stored instead of continuous time variables τi. Except in strong magnetic
fields or for dissipative quantum spin systems [43,44] the SSE representation
is thus the preferred representation for the simulation of quantum magnets.

The Negative Sign Problem

While the mapping from the quantum average to a classical average in (46) can
be performed for any quantum system, it can happen in frustrated quantum
magnets, that some of the weights W (C) in the quantum system are negative,
as is shown in Fig. 11.

Since Monte Carlo sampling requires positive weights W (C) > 0 the stan-
dard way of dealing with the negative weights of the frustrated quantum
magnets is to sample with respect to the unfrustrated system by using the
absolute values of the weights |W (C)| and to assign the sign, s(c) ≡ sign W (C)
to the quantity being sampled:

〈m〉 =

∑

c m(c)W (C)
∑

c W (C)
=

∑

c m(c)s(c)|W (C)| /∑

c |W (C)|
∑

c s(c)|W (C)| /∑

c |W (C)| ≡ 〈ms〉′
〈s〉′ . (49)

While this allows Monte Carlo simulations to be performed, the errors in-
crease exponentially with the particle number N and the inverse temperature
β. To see this, consider the mean value of the sign 〈s〉 = Z/Z ′, which is just
the ratio of the partition functions of the frustrated system Z =

∑

c W (C)
with weights W (C) and the unfrustrated system used for sampling with
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-Jxy/2

-Jxy/2

-Jxy/2

Fig. 11. Example of a frustrated world line configuration in a Heisenberg quantum
antiferromagnet on a triangle. The closed world line configuration contains three
exchange processes, each contributing a weight proportional to −Jxy/2. The overall
is proportional to (−Jxy/2)3 and is negative, causing a negative sign problem for
the antiferromagnet with Jxy > 0

Z ′ =
∑

c |W (C)|. As the partition functions are exponentials of the corre-
sponding free energies, this ratio is an exponential of the differences ∆f in
the free energy densities:〈s〉 = Z/Z ′ = exp(−βN∆f). As a consequence, the
relative error ∆s/〈s〉 increases exponentially with increasing particle number
and inverse temperature:

∆s

〈s〉 =

√

(〈s2〉 − 〈s〉2) /M

〈s〉 =

√

1 − 〈s〉2√
M〈s〉

∼ exp(βN∆f)√
M

. (50)

Here M is the number of uncorrelated Monte Carlo samples. Similarly the
error for the numerator increases exponentially and the time needed to achieve
a given relative error scales exponentially in N and β.

It was recently shown that the negative sign problem is NP-hard, im-
plying that almost certainly no solution for this exponential scaling problem
exists [4]. Given this exponential scaling of quantum Monte Carlo simulations
for frustrated quantum magnets, the QMC method is best suited for nonfrus-
trated magnets and we will restrict ourselves to these sign problem free cases
in the following.

Measurements

Physical observables that can be measured in both the path-integral represen-
tation and the SSE representation include, next to the energy and the specific
heat, any expectation value or correlation function that is diagonal in the
basis set {|i〉}. This includes the uniform or staggered magnetization in the
z direction, the equal time correlation functions and structure factor of the
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z-spin components and the z-component uniform and momentum-dependent
susceptibilites.

Offdiagonal operators, such as the magnetization in the x- or y-direction,
or the corresponding correlation functions, structure factors and susceptibili-
ties require an extension of the sampling to include configurations with broken
world line segments. These are hard to measure in local update schemes (de-
scribed in Sect. 4.3) unless open world line segments are already present when
the Hamiltonian does not conserve magnetization, but are easily measured
when non-local updates are used (see Sects. 4.4 and 4.5).

The spin stiffness ρs can be obtained from fluctuations of the winding
numbers of the world lines [45], a measurement which obviously requires non-
local moves that can change these winding numbers.

Dynamical quantities are harder to obtain, since the QMC representations
only give access to imaginary-time correlation function. With the exception of
measurements of spin gaps, which can be obtained from an exponential decay
of the spin-spin correlation function in imaginary time, the measurement of
real-time or real-frequency correlation functions requires an ill-posed analyti-
cal continuation of noisy Monte Carlo data, for example using the Maximum
Entropy Method [46–48].

Thermodynamic quantities that cannot be expressed as the expectation
value of an operator, such as the free energy or entropy cannot be directly
measured but require an extended ensemble simulation, discussed in Sect. 5.

4.3 Local Updates

To perform a quantum Monte Carlo simulation on the world line representa-
tion, update moves that are ergodic and fulfill detailed balance are required.
The simplest types of moves are again local updates. Since magnetization
conservation prohibits the breaking of world lines, the local updates need to
move world lines instead of just changing local states as in a classical model.

A set of local moves for a one-dimensional spin-1/2 model is shown in
Fig. 12 [49, 50]. The two required moves are the insertion and removal of a
pair of exchange processes (Fig. 12(a)) and the shift in time of an exchange
process (Fig. 12(b)). Slightly more complicated local moves are needed for
higher-dimensional models, for example to allow world lines to wind around
elementary squares in a square lattice [51]. Since these local updates cannot

a) b)

Fig. 12. Examples of local updates of world lines: (a) a pair of exchange processes
can be inserted or removed; (b) an exchange process is moved in imaginary time



620 S. Trebst and M. Troyer

change global properties, such as the number of world lines (the magneti-
zation) or their spatial winding, they need to be complemented with global
updates [51].

While the local update world line and SSE algorithms enable the simu-
lation of quantum systems they suffer from critical slowing down at second
order phase transitions. Even worse, changing the spatial and temporal wind-
ing numbers usually has an exponentially small acceptance rate. While the
restriction to zero spatial winding can be viewed as a boundary effect, chang-
ing the temporal winding number and thus the magnetization is essential for
simulations at fixed magnetic fields.

4.4 Cluster Updates and the Loop Algorithm

The ergodicity problems of purely local updates and the critical slowing down
observed also in quantum systems require the use of cluster updates. The loop
algorithm [52] and its continuous time version [53], are generalizations of the
classical cluster algorithms [6, 7] to quantum systems. They not only solve
the problem of critical slowing down, but can also change the magnetization
and winding numbers efficiently, avoiding the ergodicity problem of local up-
dates. While the loop algorithm was initially developed for the path-integral
representation it can also be applied to simulations in the SSE representation.

Since there exist extensive recent reviews of the loop algorithm [54,55], we
will only outline the loop algorithm here. It constructs clusters of spins, similar
to the Swendsen-Wang [6] clusters of the classical Ising model (Sect. 2.3). Upon
applying the cluster algorithms to world lines in QMC we have to take into
account that – in systems with conserved magnetization – the world lines may
not be broken. This implies that a single spin cannot be flipped by itself, but,
as shown in Fig. 13, connected world line segments of spins must be flipped
together. These world line segments form a closed loop, hence the name “loop
algorithm”.

While the loop algorithm was originally developed only for spin-1/2 mod-
els it has been generalized to higher spin models [56–59] and anisotropic spin

a) b) c)

Fig. 13. A loop cluster update: (a) world line configuration before the update,
where the world line of an up-spin is drawn as a thick line and that of a down-spin
as a thin line; (b) world line configuration and a loop cluster (grey line); (c) the
world line configurations after all spins along the loop have been flipped
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models [60]. Since an efficient open-source implementation of the loop algo-
rithm is available (see Sect. 4.6) we will not discuss further algorithmic details
but refer interested readers to the reviews [54,55].

4.5 Worm and Directed Loop Updates

The Loop Algorithm in a Magnetic Field

As successful as the loop algorithm is, it is restricted – as most classical
cluster algorithms – to models with spin inversion symmetry. Terms in the
Hamiltonian which break this spin-inversion symmetry, such as a magnetic
field, are not taken into account during loop construction. Instead they enter
through the acceptance rate of the loop flip, which can be exponentially small
at low temperatures.

As an example consider two S = 1/2 quantum spins in a magnetic field:

H = JS1S2 − gµBh(Sz
1 + Sz

2 ) (51)

In a field gµBh = J the singlet state 1/
√

2(| ↑↓〉 − | ↓↑〉) with energy −3/4J
is degenerate with the triplet state | ↑↑〉 with energy 1/4J − h = −3/4J . As
illustrated in Fig. 14a), we start from the triplet state | ↑↑〉 and propose a loop
shown in Fig. 14b). The loop construction rules, which ignore the magnetic
field, propose to flip one of the spins and go to the intermediate configuration
| ↑↓〉 with energy −1/4J shown in Fig. 14c). This move costs potential energy
J/2 and thus has an exponentially small acceptance rate exp(−βJ/2). Once
we accept this move, immediately many small loops are built, exchanging
the spins on the two sites, and gaining exchange energy J/2 by going to the
spin singlet state. A typical world line configuration for the singlet is shown
in Fig. 14d). The reverse move has the same exponentially small probability,
since the probability to reach a world line configuration without any exchange
term [Fig. 14c)] from a spin singlet configuration [Fig. 14d)] is exponentially
small.

This example clearly illustrates the reason for the exponential slowdown:
in a first step we lose all potential energy, before gaining it back in exchange

energy. A faster algorithm could thus be built if, instead of doing the trade in
one big step, we could trade potential with exchange energy in small pieces,
which is exactly what the worm algorithm does.

The Worm Algorithm

The worm algorithm [40] works in an extended configuration space, where
in addition to closed world line configurations one open world line fragment
(the “worm”) is allowed. Formally this is done by adding a source term to the
Hamiltonian which for a spin model is
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a) b) c) d)

Fig. 14. A loop update for two antiferromagnetically coupled spins in a magnetic
field with J = gµBh. (a) Starting from the triplet configuration | ↑↑〉, (b) a loop
is constructed, proposing to go to (c), the intermediate configuration | ↑↓〉, which
has an exponentially small acceptance rate, and finally into configurations like (d)
which represent the singlet state 1/

√
2(| ↑↓〉 − | ↓↑〉). As in the previous figure a

thick line denotes an up-spin and a thin line a down-spin

Hworm = H − η
∑

i

(S+
i + S−

i ) . (52)

This source term allows world lines to be broken with a matrix element pro-
portional to η. The worm algorithm now proceeds as follows: a worm (i.e. a
world line fragment) is created by inserting a pair (S+

i , S−
i ) of operators at

nearby times, as shown in Fig. 15a,b). The ends of this worm are then moved
randomly in space and time [Fig. 15c)], using local Metropolis or heat bath
updates until the two ends of the worm meet again as in Fig. 15d). Then an
update which removes the worm is proposed, and if accepted we are back in
a configuration with closed world lines only, as shown in Fig. 15e). This al-
gorithm is straightforward, consisting just of local updates of the worm ends
in the extended configuration space but it can perform nonlocal changes. A
worm end can wind around the lattice in the temporal or spatial direction
and that way change the magnetization and winding number.

In contrast to the loop algorithm in a magnetic field, where the trade be-
tween potential and exchange energy is done by first losing all of the potential
energy, before gaining back the exchange energy, the worm algorithm per-
forms this trade in small pieces, never suffering from an exponentially small
acceptance probability. While it is not as efficient as the loop algorithm in
zero magnetic field (the worm movement follows a random walk while the
loop algorithm can be interpreted as a self-avoiding random walk), the big
advantage of the worm algorithm is that it remains efficient in the presence
of a magnetic field.
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a) b) c) d)

S+

S–

S+

S –

e)

S+

S –

Fig. 15. A worm update for two antiferromagnetically coupled spins in a magnetic
field with J = gµBh. (a) starting from the triplet configuration | ↑↑〉 a worm is
constructed in (b) by inserting a pair of S+ and S− operators. (c) these “worm
end” operators are then moved by local updates until (d) they meet again, when a
move to remove them is proposed, which leads to the closed world line configuration
(e). As in the two previous figures a thick line denotes an up-spin and a thin line a
down-spin

The Directed Loop Algorithm

Algorithms with a similar basic idea as the worm algorithm in the path-
integral representations are the operator-loop update [61,62] and the directed-
loop algorithms [63] which can be formulated in both an SSE and a world-
line representation. Like the worm algorithm, these algorithms create two
world line discontinuities, and move them around by local updates. The main
difference to the worm algorithm is that here these movements do not follow
an unbiased random walk but have a preferred direction, always trying to
move away from the last change, which further speeds up the simulations.

4.6 Open Source Implementations: the ALPS Project

The loop, worm and directed loop algorithms can be used for the simulation
of a wide class of quantum magnets. They are of interest not only to theo-
retical physicists, but also to experimentalists who want to fit experimental
measurements to theoretical models. The wide applicability of these methods
has led to the publication of open-source versions of these algorithms as part
of the ALPS project (Algorithms and Libraries for Physics Simulations) [10]
on the web page http://alps.comp-phys.org/.

4.7 Applications

We will finally present typical applications of the above algorithms by review-
ing a small and necessarily biased selection.

The loop algorithm has been applied to a wide range of problems, ranging
from purely theoretical questions to experimental data fitting. Below we list a
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selection of applications that provide an overview over the possibilities of the
loop algorithm. The first simulation using the loop algorithm was an accu-
rate determination of the ground state properties (staggered magnetization,
spin stiffness and spin wave velocity) of the square-lattice spin-1/2 quantum
Heisenberg antiferromagnet [64]. In a similar spirit the uniform susceptibility,
correlation length and spin gap of spin ladder models [65,66] and integer spin
chains [59] was calculated, confirming the presence of a spin gapped ground
state in even-leg spin ladders and integer spin chains.

As the loop algorithm is efficient also at critical points, it has been used
in the first high accuracy simulations of the critical properties of quantum
phase transitions by studying the Néel to quantum paramagnet transition in
two-dimensional quantum spin systems [67], for a determination of the low-
temperature asymptotic scaling of two-dimensional quantum Heisenberg anti-
ferromagnets [3,58,68], and for accurate calculations of the Néel temperature
of anisotropic quasi-one and quasi-two dimensional antiferromagnets [69].

The loop algorithm is not only restricted to toy models, but can be ap-
plied to realistic models of quantum magnets. Comparisons to experimental
measurements are done by fitting simulation data to experimental measure-
ments, as for alternating chain compounds [70], spin ladder materials [71] or
frustrated square lattice antiferromagnets [72]. In the latter material the sign
problem due to frustration limits the accuracy. As an example we show in
Fig. 16 the good quality of a fit of QMC data to experimental measurements
on the spin ladder compound SrCu2O3.

Another interesting application is to simulate realistic models for quantum
magnets, using exchange constants calculated by ab-initio methods. Compar-
ing these ab-initio QMC data to experimental measurements, as done for a
series of vanadates [73] and for ladder compounds [71] allows to quantitatively
check the ab-initio calculations.

The worm and directed loop algorithms are applied when magnetic fields
are present. Typical examples include the calculation of magnetization curves
of quantum magnets [74], the determination of the first order nature of the spin
flop transition in two dimensions [75] and the calculation of phase diagrams
of dimerized quantum magnets in a magnetic field [76].

5 Extended Ensemble Methods for Quantum Systems

In this section we will present generalizations of extended ensemble simula-
tions to world line quantum Monte Carlo simulations, in particular:

• histogram reweighting,
• parallel tempering,
• extended ensemble methods.

Histogram reweighting allows to extract information at a temperature dif-
ferent than (but close to) the temperature at which the simulation is per-
formed. This is especially useful when studying critical phenomena, where a
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Fig. 16. Fits of experimental measurements of the uniform susceptibility of SrCu2O3

to the results of QMC simulations, determining a coupling J ≈ 1904 K along the
chains of the ladder and a ratio J ′/J ≈ 0.488 for the inter-chain to intra-chain
coupling

single simulation can provide information for the whole critical region around
the phase transition.

Parallel tempering and the extended ensemble methods (such as multi-
canonical simulations and Wang-Landau sampling) speed up simulations at
and below phase transitions and are especially useful at first order phase tran-
sitions or for frustrated systems. Note, however, that frustrated quantum spin
systems generally suffer from the negative sign problem. Since the negative
sign problem arises as a property of the representation and does not depend
on the ensemble or the updates, the scaling will remain exponential even when
using improved sampling algorithms, in contrast to classical simulations where
extended ensemble algorithms and parallel tempering can dramatically speed
up the simulations.

Another advantage of extended ensemble simulations is the ability to di-
rectly calculate the density of states and from it thermodynamic properties
such as the entropy or the free energy that are not directly accessible in
canonical simulations. In the following we will again use quantum magnets
as concrete examples. A generalization to bosonic and fermionic models will
always be straightforward.
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5.1 Generalizing Extended Ensembles to Quantum Systems

Since simulations of quantum systems suffer from the same problems as classi-
cal simulations, the extension of these generalized sampling schemes to quan-
tum systems is highly desired. The extension is not immediately obvious since
the partition function of a quantum system cannot be cast in the classical form

Z =
∑

E

g(E)e−βE (53)

unless the complete spectrum of the Hamilton operator H is known.
Instead of a representation like (53) we will aim for a generalized repre-

sentation of the form

Z =
∑

c

W (c) =
∑

λ

g(λ)p(µ,λ) , (54)

where λ describes values of properties Λ of the configuration that are sampled,
µ are external parameters such as temperature or coupling constants, and
p(µ,λ) is the weight of that configuration. The generalized density of states
g(λ) is a sum over all configurations c with the property Λ(c) = λ

g(λ) =
∑

c

δΛ(c),λW̃ (c) , (55)

where the reduced weight W̃ (c) = W (c)/p(µ,λ) of a configuration c shall not
depend on the parameters µ. By defining as

A(λ) =
1

g(λ)

∑

c

δΛ(c),λA(c)W̃ (c) (56)

the “microcanonical” average of A for configurations with Λ(c) = λ we can
obtain thermal averages 〈A(µ)〉 at arbitrary parameters µ:

〈A(µ)〉 =

∑

λ
A(λ)g(λ)p(µ,λ)

∑

λ
g(λ)p(µ,λ)

. (57)

In a classical simulation we might choose the desired property as the
energy: λ = E, the external parameter the inverse temperature: µ = β,
the weight the Boltzmann weight p(β,E) = exp(−βE). The reduced weight
W̃ (c) = 1 and, hence, g(E) the standard density of states.

The generalized notation makes sense even for a classical system. Consider,
for example, an Ising antiferromagnet in a magnetic field:

H = J
∑

〈i,j〉

σiσj − h
∑

i

σi . (58)

If we are interested in properties at a fixed inverse temperature β as a function
of the magnetization we can choose as external parameter the magnetic field
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µ = h and as property of the system the magnetization λ = M =
∑

i σi,
giving a representation:

Z =
∑

M

g(M)eβhM . (59)

If we are interested in properties as a function of both temperature and mag-
netization we might pick a two-dimensional representation. As external para-
meters we choose the inverse temperature and magnetic field µ = (β, h). The
corresponding properties of the system are λ = (EJ ,M), where the magnetic
energy EJ is defined as

EJ = J
∑

〈i,j〉

σiσj . (60)

This gives a representation

Z =
∑

EJ ,M

g(EJ ,M)e−βEJ+βhM . (61)

Continuous Time Path Integrals

To apply generalized sampling schemes to quantum systems in the path inte-
gral representation we cast (47) into the form

Z =

∫

dE0

∞
∑

n=0

g(E0, n)βne−βE0 , (62)

where the diagonal energy contribution E0 is the value of the diagonal part
of the Hamiltonian H0 in each configuration.

Comparing to (54) we have as control parameter the inverse temperature
µ = β and need two properties of the configuration λ = (E0, n).

As in classical systems we might be interested in the dependence on a
magnetic field h instead of the temperature, and rewrite (47) in a form very
similar to the classical one as

Z =

∫

dMg(M)eβhM , (63)

where the magnetization M of a configuration is defined as

M =
1

β

[

(τ1 + β − τn)

〈

i1|
∑

r

Sz
r |i1

〉

+

n
∑

i=2

(τi − τi−1)

〈

ii|
∑

r

Sz
r |ii

〉]

.

(64)
Like in the classical systems, similar expression, can be derived for the

dependency on any parameters of interest.
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Stochastic Series Expansion

In the stochastic series expansion a one-dimensional representation is sufficient
to calculate properties as a function of the temperature:

Z =

∞
∑

n=0

g(n)βn, (65)

which is just the high temperature expansion of the partition function.

5.2 Histogram Reweighting

In a classsical system the thermal average of a quantity A at an inverse
termperature β

〈A(β)〉 =
1

Z

∑

c

Ace
−βEc , (66)

where Ac is the measurement of the observable A in the configuration c and
Ec the energy of that configuration is usually estimated by the sample mean
in a Monte Carlo simulation

〈A(β)〉 ≈ A =
1

M

∑

i

Aci
. (67)

This sampling scheme gives results only for the inverse temperature β, but
actually there is much more information available than just the simple average
(67). For example, in the search for a phase transition a range of temperatures
needs to be explored and information at a nearby inverse temperature β′ ≈ β
can be obtained from a simulation performed at β. This is done by reweighting
the configurations sampled with the Boltzmann weight pc = exp(−βEc) to
obtain averages for the Boltzmann weight p′c = exp(−β′Ec):

〈A(β′)〉 ≈
∑

i Aci
p′ci

/pci
∑

i p′ci
/pci

=

∑

i Aci
e−∆βEci

∑

i e−∆βEci

, (68)

where ∆β = β′ − β.
Instead of storing the full time series of measurements {Aci

} and energies
{Eci

}, it is sufficient to store a histogram H(E), counting how often the
energy level E occurs in the time series {Eci

}, and the average A(E) of all
the measurements performed on configurations with energy E [77, 78]. Since
the histogram H(E) is a statistical estimator for the product g(E)p(E), the
average 〈A(β′)〉 can be calculated from (57) as a sum over all energies

〈A(β′)〉 ≈
∑

E H(E)A(E)e−∆βE

∑

E H(E)e−∆βE
. (69)
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In a model with continuous energy spectrum, such as the Heisenberg
model, the energy range is divided into discrete bins of width ∆E and the
histograms are constructed for these bins.

Histogram reweighting works well only if the configurations sampled at
the inverse temperature β are also relevant at β′, requiring that ∆β is small.
Otherwise the errors become too large since there will not be sufficient entries
in H(E) for the energies E important at β′.

Multiple histograms obtained at different temperatures can be used to
broaden the accessible temperature range [77,78].

Generalized Histogram Reweighting

Histogram reweighting can not only be performed in the temperature, but
also in any of the coupling constants. Using the generalized representation
(54), we can calculate expectation values at coupling constant µ′ ≈ µ from
simulation performed for coupling constants µ by reweighting as

〈A(µ′)〉 ≈
∑

λ
H(λ)A(λ)p(µ′,λ)/p(µ,λ)

∑

λ
H(λ)p(µ′,λ/p(µ,λ)

, (70)

since the recorded histogram H(λ) is an estimator for g(λ)p(µ,λ).
For example, to investigate a phase transition as a function of the magnetic

field h in an Ising antiferromagnet with Hamilton function (58) one would
construct a histogram H(M) of the magnetization M =

∑

i σi, and store
the averages of the energy E(M) and any observable A(M) as a function of
magnetization. Reweighting to a new field strength h′ = h+∆h is then easily
done:

〈A(h′)〉 ≈
∑

M H(M)A(M)eβ∆hM

∑

M H(M)eβ∆hM
. (71)

Similar expressions are readily derived for quantum systems. Here we only
give the expressions for temperature reweighting in the path integral repre-
sentation:

〈A(β′)〉 ≈
∫

dE0

∑∞
n=0 H(n,E0)A(n,E0)e

−∆βE0(β′/β)n

∫

dE0

∑∞
n=0 H(n,E0)e−∆βE0(β′/β)n

, (72)

and the SSE representation:

〈A(β′)〉 ≈
∑Λ

n=0 H(n)A(n)(β′/β)n

∑Λ
n=0 H(n)(β′/β)n

. (73)

The integral in the path integral equation is again replaced by a sum over
entries in a binned energy histogram.

Since the histogram H(λ) is strongly peaked around the thermal expec-
tation values for the observable Λ at a given set of parameters µ, the density
of states g(λ) = H(λ)/p(µ,λ) can be accurately estimated only in a small
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region of phase space. Consequently, histogram reweighting can only be used
to estimate averages at nearby parameters µ′ ≈ µ, where the same states are
relevant. In order to explore larger parameter regions, parallel tempering or
generalized ensembles with “flat” histograms can be used.

5.3 Parallel Tempering

Parallel tempering, introduced in Sect. 3.6 can be generalized in the same
way. Using the generalized representation (54) we can write the combined
weights of two configurations ci and ci+1 with properties Λ(ci) = λi and
Λ(ci+1) = λi+1 simulated at parameters µi and µi+1 as

W̃ (ci)W̃ (ci+1)p(µi,λi)p(µi+1,λi+1) (74)

before the swap and

W̃ (ci+1)W̃ (ci)p(µi,λi+1)p(µi+1,λi) (75)

after the swap. Since the reduced weights W̃ (c) do not depend on the para-
meters µ, the Metropolis acceptance probability for the swap is

min

[

1,
p(µi,λi+1)p(µi+1,λi)

p(µi,λi)p(µi+1,λi+1)

]

, (76)

which reduces to (37) for the usual parallel tempering in temperature.
Applying parallel tempering to the magnetic field h in a classical Monte

Carlo simulation and choosing a set of magnetic field strengths {hi}, a swap
between configurations at neighboring field strengths is then accepted with
probability

min
[

1, e−β(hi+1−hi)(M(ci+1)−M(ci))
]

, (77)

where M(c) is the magnetization of the configuration c.
For a quantum system a parallel tempering swap in temperature is ac-

cepted with a probability

min

[

1, e(βi+1−βi)(E0(ci+1)−E0(ci))

(

βi+1

βi

)ni−ni+1

]

(78)

for continuous time path integrals and

min

[

1,

(

βi+1

βi

)ni−ni+1

]

(79)

in the SSE representation, where ni and ni+1 refer to the order of the respec-
tive configuration.

The expressions for parallel tempering in coupling constants instead of
temperatures can be derived in a similar fashion.



Classical and Quantum Ensemble Optimization Techniques 631

Optimal Temperature Sets

The algorithm to determine optimized temperature sets presented for classical
systems in Sect. 3.6 can now be applied without modifications to the quantum
case.

5.4 Wang-Landau Sampling and Optimized Ensembles

Just like histogram reweighting or parallel tempering, the multicanonical en-
semble, Wang-Landau sampling and the optimized ensemble algorithms can
not only be applied to the energy but to arbitrary observables Λ, by choosing
the generalized multicanonical weight of a configuration c with Λ(c) = λ:

p(c) =
W̃ (c)

g(λ)
=

W (c)

p(µ,λ)g(λ)
. (80)

The Wang-Landau algorithm can again be used to iteratively determine the
generalized density of states g(λ), and a flat histogram H(λ) will be obtained.
After the simulation, thermal averages 〈A(µ)〉 at arbitrary parameters µ can
be obtained using (57).

For example, to perform a multicanonical ensemble simulation in the
magnetization M instead of the energy E, in an Ising model (58) we con-
sider the density of states for the magnetization g(M) of the magnetization
λ = M =

∑

i σi and use a mixed weight

p(EJ ,M) = e−βEJ
1

g(M)
(81)

where the exchange energy is defined as

EJ = J
∑

〈i,j〉

σiσj . (82)

After the simulation, magnetic field dependent expectation values can be ob-
tained at arbitrary values of the magnetic field µ = h:

〈A(h)〉 =

∑

M A(M)g(M)eβhM

∑

M g(M)eβhM
(83)

Wang-Landau Sampling for Quantum Systems – High

Temperature Expansion

It should now be obvious that Wang-Landau sampling and similar algorithms
can be applied to quantum systems, by using the generalized density of states
for quantum systems introduced in Sect. 5.1.

For thermal representations as a function of inverse temperature β, SSE
offers a generalized density of states g(n) in just the expansion order n, while
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the path integral representation requires a two-dimensional density of states
g(E0, n) as a function of the non-interacting energy E0 and the expansion
order n. Since it is our experience that one-dimensional histograms perform,
in general, better than higher dimensional histograms, we will focus only on
the stochastic series expansion representation, for which the quantum version
of Wang-Landau sampling was first introduced [35,36].

In the following we discuss Wang-Landau sampling in the order n of a
configuration, which is the equivalent of Wang-Landau sampling in energy
space for classical systems. Following the generalized Wang-Landau algorithm,
we replace the weight W (c) of a configuration by the new weight (80) which
here is

W (c)

βng(n)
. (84)

Normalization of g(n) is simple, since g(0) is just the total number of basis
states (e.g. (2 + 1)N in a quantum spin model with N spins of size S.).

After the simulation, the partition function can easily be calculated as

Z =
∞
∑

n=0

g(n)βn , (85)

and observables at arbitrary temperatures are calculated using (57), which
here reads:

〈A(β)〉 =
1

Z

∞
∑

n=0

A(n)g(n)βn . (86)

In any simulation the sums
∑∞

n=0 have to be truncated at some order
K. What is the effect of this truncation? For canonical simulations we chose
K > O(Nβ), such that contributions from orders n > K were negligibly small,
and orders n > K were never reached in the simulation. We could then ignore
the cutoff. Using Wang-Landau sampling, the cutoff similarly restricts the
validity of the results to temperatures where g(K)βK , and hence contributions
from terms n > K are small. The cutoff K thus sets an upper bound for the
accessible inverse temperatures β. In Fig. 17 results of calculations for the free
energy F , entropy S and specific heat C of an N = 10 site antiferromagnetic
Heisenberg chain, and compare to exact results. Using 108 sweeps, which can
be performed in a few hours on a PC, the errors can be reduced down to
the order of 10−4. The cutoff was set to K = 250, restricting the accessible
temperatures to T � 0.05J . The sudden departure of the Monte Carlo data
from the exact values below this temperature clearly shows this limit, which
can be pushed lower by increasing K. The sudden deviation becomes even
more pronounced in larger systems and provides a reliable indication for the
range of validity of the results.

To illustrate the efficiency of the algorithm close to a thermal second order
phase transition, we consider in our second example the Heisenberg antiferro-
magnet on a simple cubic lattice. From simulations of systems with L3 sites,
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Fig. 17. Free energy (F), entropy (S) and specific heat (C) of an N = 10 site
antiferromagnetic Heisenberg chain. Solid line correspond to the MC results, indis-
tinguishable from the dotted lines for the exact results. Also shown is the relative
error ε(F ) of F compared to the exact result

L = 4, 6, 8, 12, 16, we can calculate the staggered structure factor S(π, π) for
any value of the temperature using the measured histograms. Figure 18 shows
the scaling plot of S(π, π)/L2−η with η = 0.034. The estimate for the critical
temperature Tc = 0.947J , obtained in less than a day on a PC, compares well
with earlier estimates [79].

Wang-Landau Sampling

for Quantum Systems – Perturbation Expansion

Instead of performing a high temperature expansion, which is well suited
to the investigation of finite temperature phase transitions, we can also ap-
ply Wang-Landau sampling to a perturbation expansion, better suited for
quantum phase transitions. Instead of scanning a temperature range we vary
one of the interactions at fixed temperature. Defining the Hamiltonian as
H = H0 + λV we can write the partition function equation as

Z =

∞
∑

n=0

βn

n!
Tr(−H0 − λV )n ≡

∞
∑

nλ=0

g(nλ)λnλ , (87)

where nλ counts the powers of λ in the weight of a configuration. In this
formulation of the algorithm, the cutoff K restricts the value of coupling
parameter λ up to which the perturbation expansion is reliable.

The simplest case is when the parameter λ multiplies all terms on a subset
of the bonds. An example is the bilayer Heisenberg quantum antiferromagnet
with Hamiltonian
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Fig. 18. Scaling plot of the staggered structure factor of a cubic antiferromagnet
as a function of temperature, obtained from simulations at a fixed temperature for
various lattice sizes. The inset shows the specific heat as a function of temperature.
The cutoff K = 500(L/4)3 restricts the accessible temperature range to T � 0.4J

Hbilayer = J

2
∑

l=1

∑

〈i,j〉

Si,lSj,l + J ′
∑

〈i,j〉

Si,1Sj,2 , (88)

where Si,l is the spin operator on site i in layer l. This model consists of two
square lattices with coupling J between nearest neighbors inside each square
lattice layer, and a coupling J ′ between adjacent spins in different layers, and
we set λ = J/J ′. For such models the algorithm remains very simple, and
again only a few acceptance rates need to be changed in the code.

To normalize g(nλ) there are two options. If H0 can be solved exactly, g(0)
can be determined directly. Otherwise, the normalization can be fixed using
the high temperature expansion version of the algorithm to calculate Z(β) at
any fixed value of λ. Even without normalization we can still obtain entropy
and energy differences.

We consider as an example the quantum phase transition in the bilayer
Heisenberg antiferromagnet. Its ground state changes from quantum disor-
dered to Néel ordered as the ratio λ = J/J ′ of intra-plane (J) to inter-plane
(J ′) coupling is increased [80]. From the histograms generated within one sim-
ulation we can calculate the staggered structure factor S(π, π) of the system
at any value of λ. In Fig. 19 we show a scaling plot of S(π, π)/L2−z−η as a
function of λ. In short simulations, taking only a few days on a PC, we find the
quantum critical point at λ = 0.396, which again compares well with earlier
results.
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Fig. 19. Scaling plot of the staggered structure factor of a Heisenberg bilayer as a
function of the coupling ratio λ = J/J ′. Results are shown for various linear system
sizes L. The temperature was chosen βJ ′ = 2L, low enough to be in the scaling
regime. The cutoff K = 8L3 was chosen large enough to cover the coupling range
J/J ′ � 1. The dynamical critical exponent of this model is z = 1 and η = 0.034

Optimized Ensembles for Quantum Systems

As in classical Monte Carlo simulations it turns out that a flat histogram H(n)
of the expansion orders n is not optimal, and again an optimized ensemble
can be derived.

6 Summary

In this chapter we have reviewed two recent developments in the field of
classical and quantum Monte Carlo simulations. In the first part we have
presented a short review of extended ensemble techniques, including multi-
canonical and parallel tempering simulations. Counter widespread assump-
tions “flat-histogram” multicanonical ensembles, or parallel tempering with
constant, “flat” acceptance rates are not optimal. We have reviewed a recently
developed iterative feedback algorithm to obtain an optimal multicanonical
ensemble or an optimal choice of temperature set respectively that for a given
model will maximize equilibration. We have shown examples ranging from
classical spin systems, over dense liquids to protein folding.

In the second part we have given a short introduction and review of mod-
ern world line quantum Monte Carlo algorithms for quantum systems, which
are free of any time discretization errors. We have highlighted the fact that
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the various world line representations map the quantum system to an effec-
tive classical system, and shown how efficient sampling schemes developed
for classical simulations, such as histogram reweighting, parallel tempering,
extended and optimized ensembles, can be applied also to quantum systems.

With examples ranging from quantum magnets to protein folding the en-
semble optimization techniques have already been demonstrated to be useful
for a wide range of models and scales, and will certainly help with the simu-
lation of many other complex systems in the future.
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