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ABSTRACT: Oscillatory modes of the climate system are among its most predictable features, especially at intraseasonal

time scales. These oscillations can be predicted well with data-driven methods, often with better skill than dynamical

models. However, since the oscillations only represent a portion of the total variance, a method for beneficially combining

oscillation forecasts with dynamical forecasts of the full system was not previously known. We introduce Ensemble

Oscillation Correction (EnOC), a general method to correct oscillatory modes in ensemble forecasts from dynamical

models.We compute the ensemblemean—or the ensemble probability distribution—with only the best ensemblemembers,

as determined by their discrepancy from a data-driven forecast of the oscillatory modes. We also present an alternate

method that uses ensemble data assimilation to combine the oscillation forecasts with an ensemble of dynamical forecasts of

the system (EnOC-DA). The oscillatory modes are extracted with a time series analysis method called multichannel sin-

gular spectrum analysis (M-SSA), and forecast using an analogmethod.We test these twomethods using chaotic toymodels

with significant oscillatory components and show that they robustly reduce error compared to the uncorrected ensemble.

We discuss the applications of this method to improve prediction of monsoons as well as other parts of the climate system.

We also discuss possible extensions of the method to other data-driven forecasts, including machine learning.

KEYWORDS: Climate prediction; Forecasting techniques; Statistical forecasting; Data assimilation; Nonlinear dynamics;

Machine learning

1. Introduction and motivation

Weather predictability is inherently limited by chaotic

error growth (Lorenz 1963, 1965). However, there are several

physical processes that provide predictability for the atmo-

sphere beyond the weather’s synoptic time scale. Charney and

Shukla (1981) recognized the potential for long-range pre-

dictability from slowly varying boundary conditions, including

sea surface temperatures (SSTs). This predictability is partic-

ularly relevant for the tropical atmosphere, where synoptic-

scale instabilities are less prominent. Recently, Bach et al.

(2019) quantified the predictability provided by SST to the

atmosphere from data. Coupled atmosphere–ocean interac-

tions are also important for predictability beyond the weather

time scale (Penny et al. 2019).

On intraseasonal time scales, in addition to the above

sources of predictability, there is potential predictability due to

climate oscillations. Because of their near-periodicity and low

frequency, oscillations are predictable beyond weather time

scales. The oscillations that are thought to be important for

predictability on intraseasonal time scales include the Madden–

Julian oscillation (MJO), monsoon intraseasonal oscillations

(MISOs), and extratropical oscillations (Ghil and Robertson

2002; Stan and Krishnamurthy 2019; Krishnamurthy 2019). El

Niño–SouthernOscillation (ENSO) also possesses an oscillatory

component that, at times when it is more prominent, makes

ENSO more predictable (Ghil and Jiang 1998). Climate oscil-

lations on longer time scales also present an opportunity for

enhanced prediction; however, there is controversy about

whether robust oscillatory modes—defined as occupying a nar-

row band of frequencies—exist in the climate system on decadal

time scales (Ghil 2001; Mann et al. 2020).

Many studies have shown that oscillatory modes extracted

from data can be effectively forecasted. We will refer to these

forecasts, which rely purely on data or on data combined with a

low-order model, as ‘‘data-driven’’ forecasts; they are also re-

ferred to as empirical or statistical forecasts in the literature.

These data-driven oscillation forecasts often possess com-

parable or higher skill than dynamical forecasts of these os-

cillations. See the literature on data-driven prediction of

extratropical oscillations (Keppenne and Ghil 1993; Strong

et al. 1995; Vautard et al. 1996), the MJO (Kang and Kim

2010; Kondrashov et al. 2013; Chen et al. 2014), and MISOs
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(Krishnamurthy and Sharma 2017; Chen et al. 2018). As an

example of the latter, Krishnamurthy and Sharma (2017)

showed that the leading MISO mode can be predicted for up

to about 80 days using a data-driven method, more skillfully

than MISO forecasts obtained from state-of-the-art models.

This demonstrates the potential for improved intraseasonal

prediction of monsoon rainfall by better prediction of MISO.

However, these methods are limited to improving forecasts

of the oscillation itself, not of the full signal. Although the

oscillations can be predicted fairly well, the magnitude of this

prediction will be small compared with that of the full field,

because the oscillatory components make up only a fraction of

its total variance (Strong et al. 1995; Mo 2001). Data-driven

models are generally not competitive with dynamical models in

predicting the part of the variance comprised of high-frequency

daily weather atmedium range, due to the high dimensionality of

the system necessitating unfeasibly large amounts of training

data (Van denDool 1994; Palmer 2020; Rasp andThuerey 2021).

Our aim, then, is to combine dynamical forecasts with data-

driven oscillation forecasts, in order to improve the former. This

idea was previously suggested in Vautard et al. (1992), Strong

et al. (1995), andGhil et al. (2004); as put by Strong et al. (1995),

the idea is to form a ‘‘combination of [. . .] an empirical model,

to predict the smoothly varying part of the flow, and a dynam-

icalmodel, to predict day-to-day ‘weather,’ superimposed on it’’

(p. 2628). However, a method for doing this has never been

developed heretofore, to the best of our knowledge.

Here, we present a general method, called ensemble oscilla-

tion correction (EnOC), for improving ensemble forecasting of

a chaotic system’s full state by leveraging the predictability of

oscillatory modes. EnOC selects ensemble members whose

oscillation states are closest to a data-driven forecast of a given

oscillatorymode.We also present an alternatemethod, ensemble

oscillation correction with data assimilation (EnOC-DA), which

treats oscillation forecasts as ‘‘observations’’ and uses data as-

similation to combine them with a dynamical model forecast.

The rest of the paper is laid out as follows. Section 2 provides

an overview of the existing methods to extract and forecast

oscillations. Section 3 presents our novel EnOC and EnOC-DA

methods. Section 4 describes the experiments applying EnOC

and EnOC-DA to toy models, while section 5 discusses the re-

sults of these experiments. Finally, section 6 presents conclusions

and future applications. The appendix contains a derivation of a

theoretical error expression for EnOC and EnOC-DA.

2. Methods

We aim to use data-driven oscillation forecasts to improve

prediction of systems that possess oscillatorymodes. This requires

three successive methods: 1) extraction of the oscillations from

data, which we do here using multichannel singular spectrum

analysis (section 2a), 2) mapping from a state in the full phase

space to the corresponding state in the oscillations’ subspace

(section 2b), and 3) forecasting in this subspace (section 2c).

a. Multichannel singular spectrum analysis

Multichannel singular spectrum analysis (M-SSA), also known

as extended empirical orthogonal functions (extended EOFs;

Weare and Nasstrom 1982), is a method used to extract spatio-

temporal modes from multidimensional time series (Broomhead

andKing 1986; Plaut andVautard 1994;Ghil et al. 2002).M-SSA

helps separate such time series into a nonlinear trend, oscillatory

modes, noise, and chaotic components (Ghil and Vautard 1991;

Watari 1996). M-SSA has been applied in many climatic and

other contexts; for instance, it has identified MISOs in Indian

rainfall (Krishnamurthy and Shukla 2007; Moron et al. 2012)

and been applied to Chinese rainfall (Wang et al. 1996), the

MJO (Lau 2012), space weather (Sharma et al. 1993), and

macroeconomic data (Groth and Ghil 2017), among others.

Vautard et al. (1996) have demonstrated that the low-frequency

modes extracted by M-SSA better correspond to the predict-

able modes of the atmosphere than those extracted by regular

spatial EOFs.

We provide here a brief introduction to M-SSA; see Ghil

et al. (2002), Alessio (2016, chapter 12), andGolyandina (2020)

for a more detailed exposition. M-SSA is a form of principal

component analysis (PCA), a widely used statistical method

(Jolliffe 2002). InM-SSA, PCA is applied to sliding windows of

lengthM along a time series in order to identify the orthogonal

modes that capture the most variance in the time series. Here,

we use the Broomhead–King variant of SSA, as opposed to the

Toeplitz variant (see Ghil et al. 2002).

Consider a D-dimensional time series of length N, x 5

{xd(n)jd5 1, . . . ,D; n5 1, . . . ,N}. After choosing a window of

length M based on the time scales of interest (see Vautard et al.

1992),we create lagged copies of the time series xd(n)5 [xd(n), . . . ,

xd(n 1 M 2 1)] for each dimension d, where n 5 1, . . . , N 2

M 1 1. We combine these into the (N 2 M 1 1) 3 (DM)

trajectory matrix X 5 (x1, . . . , xD), and form the covariance

matrix C 5 X
T
X/(N 2 M 1 1).

The eigendecomposition ofC yields the eigenvalues {lk} and

eigenvectors {ek} (Plaut and Vautard 1994; Groth and Ghil

2011).1 By analogy with the EOFs used in meteorology and

oceanography (Preisendorfer and Mobley 1988), these eigen-

vectors are called space–time EOFs (ST-EOFs); see Ghil et al.

(2002). The trace of the matrix C equals the total variance in

the time series. It is also equal to the sum of the eigenvalues of

C, that is, tr(C)5�jlj. Thus the ratio lk/tr(C) is the fraction of

the total variance captured by mode k.

Due to the orthogonality of sinusoids that are in quadra-

ture, oscillatory modes appear as pairs of eigenvectors with

nearly identical eigenvalues, generalizing the sine–cosine pair

of Fourier analysis (Vautard and Ghil 1989; Ghil et al. 2002;

Alessio 2016). Since M-SSA may falsely detect such oscillatory

modes in noise, statistical significance tests have been developed

to distinguish oscillations from colored noise (Allen and Smith

1996; Ghil et al. 2002; Groth and Ghil 2015). Groth and Ghil

(2011) developed a varimax algorithm to reduce mixture effects

between physically distinct modes and better isolate them.

After choosing a mode of interest k from the set of eigen-

modes distinguished by M-SSA, the original time series is

projected onto the eigenvector ek to obtain a principal

1WhenDM.N2M1 1, using thePCA ‘‘transpose trick’’ will be

more computationally efficient; see Ghil et al. (2002, section A2).

5674 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 08/09/22 07:56 AM UTC



component (PC). However, the PC combines the behavior of

all the D variables and does not possess the same phase as the

original time series. The reconstruction procedure then ex-

tracts the portion of the time series corresponding to mode k

for each variable and with correct phase. The resulting time

series are called the reconstructed components (RCs); see Ghil

and Vautard (1991), Ghil et al. (2002), and Groth and

Ghil (2011).

The reconstruction at time n for the single mode k and di-

mension d can be written as the following operation on the

original time series:2

r
dk
(n)5

1

M
n

�
Un

m5Ln

�

�
D

d051
�
M

m051

x
d0(n2m1m0)e

d0k(m
0)

�

e
dk
(m) ;

(1)

here Mn 5 M, Ln 5 1, and Un 5 M, except near the endpoints

of the time series, for which the appropriate expressions are

given in Vautard et al. (1992). Summing over all rk yields the

time series itself; x(n)5�
DM

k51rk(n). Summing over a partial set

K 5 fk0
1, . . . , k

0
Kg, with K , DM, yields a partial reconstruc-

tion; for example, if lk* ’ lk*11 and the other statistical sig-

nificance tests are satisfied, rK (n) is the reconstruction of an

oscillatory pair, with K 5 fk*, k*1 1g (Ghil et al. 2002). The

RCs can be considered as the result of forward and reverse

filtering of the original data (Harris and Yuan 2010).

We refer to the D-dimensional Euclidean space X[R
D, with

x 2 X, as the full phase space. The DM-dimensional space R
DM,

in which the xd(n) reside, is the embedding space. Any partial

reconstruction with K components, K , DM, corresponds to a

reduced subspace XK spanned by the K vectors fek jk 2 K g,
which we refer to as the reconstructed subspace. When the setK

corresponds to one or several oscillatory pairs (i.e.,K 5O ), we

refer to such a subspace as the oscillation subspace.

It can be seen from Eq. (1) that the reconstructed time series

at time n is computed using the time n in the original time

series, as well as M 2 1 points from the immediate future and

M 2 1 points from the immediate past, except near the end-

points where increasingly fewer points are available.

These successively fewer points to average over present a

problem near the endpoints, where reconstruction becomes less

accurate. Methods for more accurate reconstruction near the

endpoints have been developed, including the recent SSA with

conditional predictions (Ogrosky et al. 2019; other methods for

reconstruction near the endpoints are referenced therein).

Note that Eq. (1) is a linear transformation, which can be

written as a (2M2 1)D3Dmatrix except near the endpoints.

Since this operation is linear and rank-deficient, there is no

unique sequence of (2M 2 1) D-dimensional full phase space

states corresponding to each D-dimensional reconstructed

phase space state.3However, the dynamics generating the time

series will put additional constraints on possible sequences of

full phase space states that are not captured by the linear

reconstruction.

Because the reconstruction operation is not invertible, we

cannot go directly from a point in the reconstructed phase

space to the full space. Therefore, in order to use the forecast of

the oscillatory modes to inform the forecast of the full state, we

must do so indirectly. This is achieved using the EnOC and

EnOC-DA algorithms described in section 3.

b. Projecting onto the oscillation subspace

For the EnOC algorithm that we introduce in section 3, we

need a method to approximately map points from the full

phase space to the reconstructed subspace; this projection is

shown as the curved arrow from the full phase space to the

oscillation subspace in Fig. 1.

FIG. 1. Schematic diagram of projection to and forecasting in the oscillation subspace. We first project from the

full phase space onto the oscillation subspace, as described in section 2b. Next, we forecast in the oscillation

subspace, as described in section 2c. Note that for a pure sinusoidal oscillation—which would result, for example,

from sampling a sinusoidal plane wave regularly in time at discrete points in space—the trajectories in the oscil-

lation subspace will lie on an ellipse. We see that, in this example, the shape traced out by trajectories in the

oscillation subspace deviates from an exact ellipse due to the oscillation’s nonlinearity.

2Note that this formula is not a computationally efficient way to

implement reconstruction, as work can be saved by precomputing

the PCs.

3A linear transformation is one-to-one if and only if it is of

full rank.
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Assuming the time series to be produced by a deterministic,

autonomous dynamical system, it can be seen that any point in

the full phase space corresponds to a single point in the recon-

structed space. This is because the operation which maps from

the full space to the reconstructed space is a function of the

present, as well as M 2 1 past and M 2 1 future points. Since

trajectories cannot cross in phase space due to uniqueness, a full

phase space state will always have the same future and past, and

thus the same corresponding reconstructed subspace state. Thus,

if we were able to integrate the system forward and backward in

time forM2 1 steps in each direction, we could exactly map the

full phase space to the reconstructed subspace. Since an exact

mapping is often not feasible, we construct an approximate

mapping instead. In particular, we need an approximation of

the mapping that does not require future information, since this

is not available in the real-time forecasting context.

One suchmethod relies on using the endpoint version ofEq. (1),

which makes use of the present and the immediateM2 1 past or

future points (Vautard et al. 1992). This was used inmapping from

the full to the reconstructed phase space in Lynch (2019). Ogrosky

et al. (2019) provided amore accurate expression for the endpoints.

Alternatively, one can use an analog method, which we use

in the present paper. This method requires only the system

state at the current time. We assume that we have access to a

historical time series {x(ti)} of the system, as well as the cor-

responding time series {r(ti)} of the RCs. Then, to project a full

state x(t) into the reconstructed subspace, we first find its kf
closest analogs, also referred to as nearest neighbors (Abarbanel

et al. 1993), in the historical record of the full phase space, which

occur at times that we denote by t1*, . . . , tkf*.

After finding the closest analogs in the full phase space

x(t1*), . . . , x(tkf* ), we average over their corresponding points in

the historical record of theRCs, r(t1*), . . . , r(tkf* ), weighted by the

inverse distance of the analogs in the full phase space. In other

words, we estimate the state in the reconstructed subspace as

~r[x(t)]5

�

kf

i51

r(t
i
*)

kx(t)2 x(t
i
*)k

�

kf

i51

jjx(t)2 x(t
i
*)jj21

. (2)

Although here we only use the present state x(t) to search for

analogs, it may be advantageous to find analogs using a window

that also includes the immediate past. Such an approach is taken

in Farmer and Sidorowich (1987, 1988), Ukhorskiy et al. (2004),

Chen and Sharma (2006), and Xavier and Goswami (2007).

Although the analog-based projection method works well

for the low-dimensional systems considered here, it may be

inaccurate for high-dimensional systems. We have found that

lasso regression, where the predictors are states at multiple

consecutive times, works better in high dimensions.

c. Forecasting in the oscillation subspace

We want to take a state r in the reconstructed subspace and

forecast it from time ti into a future time ti11; such a forecast is

shown by the red arrow labeled ‘‘Oscillation forecast’’ on the

right side of Fig. 1. We denote this operation by Rti/ti11
[r(ti)].

Several forecast methods based on M-SSA exist; they in-

clude fitting an autoregressive model to the RCs (Ghil and

Jiang 1998;Ghil et al. 2002), SSAwith conditional prediction to

yield an (M2 1)-step forecast (Ogrosky et al. 2019), and neural

networks (Lisi et al. 1995). We use an analog method here as in

Krishnamurthy and Sharma (2017): we search for similar states

to the present one in the historical record, and forecast based

on the trajectory of these past states.

We again assume that we have a historical record {r(ti)} of the

RCs. Given the state r from which we want to start forecasting,

we find its kr closest analogs in the record. The trajectories

of nearby points are expected to remain close before starting

to diverge (Farmer and Sidorowich 1987; Krishnamurthy and

Sharma 2017). Therefore, we follow the trajectory of these

analogs until the end of the forecast window and average over

their final states.

This method is similar to the analog method of Lorenz

(1969), applied here to forecasting in the reconstructed sub-

space instead of the full phase space; see also the references in

Farmer and Sidorowich (1988) for other early work on analog

forecasting.

In this paper we use the Euclidean distance to define the

closest analogs. Othermetrics can also be used, such as distance

in a reduced-dimensional space. For instance, Krishnamurthy

and Sharma (2017) reduced the dimensionD by projecting onto

the leading spatial EOFs of the RCs. For a better algorithmic

time complexity than a sequential search, the record can be

stored in a k-dimensional (k-d) tree (Bentley 1975).

3. EnOC forecasting using oscillatory modes

a. EnOC algorithm

Here we introduce EnOC as a method for improving the

ensemble forecasts by averaging solely over the ensemble

members whose oscillation state is close to the data-driven os-

cillation forecast. We assume that we have access to a historical

time series of noisy observations or an analysis4 of the real sys-

tem. This time series is used to perform the M-SSA, to map the

full phase space X into the reconstructed subspace XK , and to

forecast the oscillation, as in Krishnamurthy and Sharma (2017).

EnOC relies on using an ensemble of dynamicalmodel forecasts

of the full state {xi}, such as from an operational weather forecast

model.Denote theprojectionofX intoXK by~r(x), as per section 2b

above, and the operation that forecasts the reconstructed subspace

state r(ti) to time ti11 asRti/ti11
[r(ti)], as per section 2c above. The

EnOC algorithm is given by the following steps:

1) Using the best current estimate x̂(t0) of the full system state

at time t0—based, for instance, on an analysis combining

the ensemble forecasts with observations—find the corre-

sponding point ~r[x̂(t0)]5~r(t0) in the reconstructed sub-

space. Carry out an oscillatory-subspace forecast into the

future from time t0 to t1, and call it r(t1)5Rt0/t1[~r(t0)].

4Objective analysis, or just analysis for short, refers to model

estimates of the system that are corrected by observations using

data assimilation (Bengtsson et al. 1981; Kalnay 2002).
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2) Evolve each ensemble member {xiji 5 1, . . . , m} forward

from time t0 until the next forecast time t1, using the

dynamical model.

3) Find the points ~ri(t1)5~r[xi(t1)] in the oscillatory subspace

that correspond to each ensemble member at time t1. Then,

select the m0
# m ensemble members with the smallest

distances di 5 k~ri(t1)2 r(t1)k at time t1, and compute the

new ensemble mean x(m
0)(t1) using only these m0 members.

4) Repeat steps 1–3 for the next forecast time t1.

These steps are illustrated schematically in Fig. 2.

Note that we may be interested in the oscillations in only

some of the variables, like rainfall in the case of the monsoon.

If so, only the variables of interest need be used in the M-SSA,

and subsequently in steps 1 and 3 above.

b. Optimal number m0 of ensemble members to

average over

In step 3 above, we did not specify the number m0 of ‘‘best’’
ensemble members to average over. This will differ depending

on the system, the forecast lead time, the total number of

ensemble members m, and the ensemble spread, among other

factors. Generally, the choice ofm0 will be a trade-off between
1) the improvement due to using a larger m0 in the ensemble

mean (Christiansen 2018; Wilks 2019), in the smaller error

variance around the mean (Kalnay 2019), and in the ability to

characterize the forecast uncertainty (Wilks 2019), versus 2)

the inclusion of ensemble members that are far from the os-

cillation forecast. Here, we only optimizem0 with respect to the
root-mean-square error (RMSE) in the ensemble mean.

For a given setup—and assuming we have access to a his-

torical record of ensembles, oscillation forecasts, and a good

estimate of the system state x̂(t) at those times—we can esti-

mate m0 by checking which one would have resulted in the

smallest error. In other words,

m0
5 argmin

m�
t

jjx(m)(t)2 x̂(t)jj2 , (3)

where t is the time in the historical record, x̂(t) is the estimate of

the true state at that time, and x(m)(t) is the average over the

m ensemble members with the smallest distances di from

FIG. 2. Schematic diagram of EnOC for two ensemble members. (top) The dynamical

model is integrated in time for each member. At the beginning of the forecast window (thin

gray bar), the best estimate of the system state is mapped into the oscillation subspace, and an

oscillation forecast is started (red curve). At the end of the forecast window (thick gray bar),

themodel forecasts are mapped into the oscillation subspace, and compared to the oscillation

forecast. In this case, we see that the oscillation of ensemble member 1 is closer to the os-

cillation forecast than ensemble member 2. (bottom) A time window is shown for the oscil-

lation of each ensemble member for visualization purposes, but in reality the method uses

only the single state at the end of the forecast window.
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the oscillation forecast. The norm can be chosen to optimize

the desired features of the forecast.

Note also that in this paper we pick a single m0 for all the
variables. However, in cases where an oscillation comprises

significantly more variance in some variables than others—or in

some regions in the case of a spatiotemporal oscillation—

assigning different values ofm0 could improve the performance.

c. Data assimilation of oscillatory modes (EnOC-DA)

We present an alternate EnOC method, which we call en-

semble oscillation correction with data assimilation (EnOC-

DA). Instead of selecting ensemble members that have better

oscillation forecasts, we use an ensemble data assimilation sys-

tem to assimilate oscillation forecasts as pseudo-observations

of the system. We are thereby combining the model forecast—

treated as the first guess or background in the data assimilation

(DA)—with the data-driven forecast of the oscillation, treated

as an observation in DA.

EnOC-DA does not provide a significant advantage over

regular EnOC in our toy model experiments in section 5, but it

may do so for operational weather and climate prediction. For

introductions to DA, see any number of books and review

papers (e.g., Bengtsson et al. 1981; Ghil andMalanotte-Rizzoli

1991; Kalnay 2002; Asch et al. 2016; Carrassi et al. 2018).

In EnOC-DA, we assimilate the oscillation forecasts using

the same forecast window that we would normally apply in

EnOC. This choice differs from conventional DA in that we

perform the assimilation at a point in time in the future, prior to

having real observations at that time.

We use the ensemble transform Kalman filter (ETKF:

Bishop et al. 2001), which allows for a nonlinear observation

operator, which in this case is the projection of the full phase space

onto the reconstructed subspace~r[x(t)], as discussed in section 2b.

We estimate the observation error covariance matrix R empiri-

cally from the error statistics of the oscillation forecast. Thus,

given oscillation forecasts r(ti) at points {tiji 5 1, . . . , N} in time,

R̂5
1

N2 1
�
N

i51

[̂r(t
i
)2 r(t

i
)][̂r(t

i
)2 r(t

i
)]T , (4)

where r̂(ti) is the true value of the oscillation at time ti.

d. Notes

If the system contains anticorrelated large-amplitude modes

that are not included in the reconstruction then the error re-

duction may be small, since an improvement in the included

modes will be partially offset by the missing ones that make

up a large portion of the variance. Thus, the correlations be-

tween the RCs need to be inspected and all correlated and

anticorrelated modes should be included.

This is related to the problem of separability in the SSA

literature, and the correlations between the RCs—slightly

modified to account for the endpoint effects—are referred to as

w correlations (Golyandina et al. 2001). Since our EnOC al-

gorithm reduces the ensemble spread in the oscillatory modes,

having them be uncorrelated from the rest of the modes also

helps the ensemble maintain a sufficient spread in these

other modes.

Assuming that the RCs are uncorrelated, we derive in the

appendix a rough estimate for the ‘‘best-case’’ ratio of theRMSE

of the EnOC-corrected forecast to the RMSE of the uncorrected

forecast:

RMSE0

RMSE
5

 

12
�j2O lj

�j2P lj

!1/2

; (5)

here O is the set of indices of the oscillatory modes, and P is

the set of indices of all modes excluding a mean mode, if it

exists; see the appendix for further details. The two major

MISOs make up about 14% of the variance in the daily rainfall

anomalies (Krishnamurthy and Shukla 2007). Other oscilla-

tions in the large-scale atmospheric flow are estimated to

comprise 20%–30% of the variance (Ghil and Robertson 2002;

Stan and Krishnamurthy 2019).

The derivation assumes that EnOC results in a perfect predic-

tion of the oscillation, so the real error improvement will gen-

erally be smaller than suggested by this equation.Unsurprisingly,

we see that the larger the portion of the variance comprised by

the oscillatory modes, the more the potential error reduction.

Note that EnOC is not restricted to oscillatory modes and is

potentially useful given anymodes that are predictedwell using a

data-driven forecasting method. However, we consider oscilla-

tory modes the most likely to have useful data-driven forecasts

for high-dimensional geophysical systems, as already demon-

strated by several authors and reviewed here in section 1. We

discuss the possible extension of the method to nonoscillatory

modes in section 6a.

For the method to work, it is important to have ensemble

members that yield oscillations approximating the correct one.

This condition may not be satisfied for models that miss im-

portant physics (Ghil and Robertson 2000), or if the ensemble

spread is too small. Such ‘‘underdispersion’’ occurs when the

ensemble underestimates the uncertainty in the forecast, and it

may then be beneficial to increase the ensemble spread.

Both EnOC and EnOC-DA are a correction performed after

the ensemble forecast, so they can be considered a form of en-

semble postprocessing (Vannitsem et al. 2018). EnOC is similar

to the ensemble subsetting methods in Dong and Zhang (2016)

and Ancell (2016) in that it picks a subset of ensemble members

whose mean outperforms the ensemble mean. However, these

methods fundamentally differ from EnOC in that they verify

against real-time observations instead of a data-driven forecast,

and in that they pick a subset and uses it for future lead times

instead of a possibly different subset at every lead time.

e. Software implementation

In section 4, EnOC and EnOC-DA are applied to three non-

linear, chaotic systems of ordinary differential equations (ODEs).

The experiments were performed using open-source Julia code

that is available onGitHub.5To efficiently search for analogs, the

k-d tree data structure was used from the NearestNeighbors.jl

library (Carlsson 2020). The Lyapunov exponents of the systems

5 https://github.com/eviatarbach/ensemble_oscillation_correction.jl.
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were computed using the DynamicalSystems.jl library (Datseris

2018). The continuous ranked probability score (CRPS) was

computed with the properscoring library (Climate Corporation

2015). The time integrations used the fourth-order Runge–Kutta

scheme. We used the parasweep library for Python of Bach

(2021) to facilitate the running in parallel ofmultiple experiments

at different lead times and with different parameters.

4. Experiments applying EnOC to toy models

We test EnOC and EnOC-DA on three ODE systems: two

coupled Colpitts oscillators (e.g., Kennedy 1994), a Chua os-

cillator (Chua et al. 1986), and a periodically forced Lorenz

(1963) model. These three systems exhibit oscillatory behavior

and are all chaotic, with maximal Lyapunov exponents lmax

greater than zero. Lyapunov exponents characterize the rate of

exponential error growth (Ott 2002). The Lyapunov time l21
max

is the characteristic time scale of chaotic error growth.

We apply parametric model errors to each model in order to

test a scenario as in Krishnamurthy and Sharma (2017), in

which the oscillatory modes are poorly predicted by the dy-

namical model. For each system, we list its parameters,

Lyapunov exponents, peak oscillation frequency, experiment

configuration, and oscillation properties in Table 1.

Our system of coupled Colpitts oscillators follows Rey

et al. (2014):

_x
(i)
1 (t)5p

1
x
(i)
2 (t)1 c

(i11,i)
[x

(i11)
1 (t)2 x

(i)
1 (t)] , (6a)

_x
(i)
2 (t)52p

2
[x

(i)
1 (t)1 x

(i)
3 (t)]2p

(i)
3 x

(i)
2 (t) , (6b)

_x
(i)
3 (t)5p

4
fx(i)2 (t)1 12 exp[2x

(i)
1 (t)]g . (6c)

Here _x5dx/dt, the indices are cyclical, and we use two oscil-

lators. For the values of the parameters in Table 1, the two

oscillators do not synchronize.

The dimensionless Chua oscillator describes the so-called

double-scroll family, and it is governed by the following

equations (Chua et al. 1986):

_x5a[y2 x2 f (x)] , (7a)

_y5 x2 y1 z , (7b)

_z52by , (7c)

f (x)5m
1
x1

1

2
(m

0
2m

1
)(jx1 1j2jx2 1j) . (7d)

For this system, due to mixture of low-frequency variability in

the oscillatory modes, we follow Groth and Ghil (2011) and

perform varimax rotation.

Mani et al. (2009) estimated the largest Lyapunov exponent

for the Indian monsoon rainfall in the years 1979–2004 to be

lmax ’ 0.36 day21, corresponding to a Lyapunov time l21
max ’

2:8 days. The Lyapunov time is thus significantly smaller than

the leadingMISO period of about 45 days (Krishnamurthy and

Shukla 2007). To study a toy system with a Lyapunov time

much smaller than the oscillation period, we use the following

modified Lorenz (1963) system, with the addition of sinusoidal

forcing in the x component:

_x5s(y2 x)1 cu , (8a)

_y5 x(r2 z)2 y , (8b)

_z5 xy2bz , (8c)

_u5 y, _y52V
2u . (8d)

Ghil and Jiang (1998) used a similar system to illustrate the

effectiveness of single-channel SSA in real-time ENSO pre-

diction. Here, the periodic forcing given by Eq. (8d) represents

the MISO cycle rather than the previous authors’ seasonal

cycle. It should be noted that the maximum Lyapunov expo-

nent for this sinusoidally driven Lorenz system is less than the

value of 0.906 for the same parameters but with no driving. For

this Lorenz system we use only the x and y variables in EnOC

andEnOC-DA, since the oscillation is most prominent in these

variables of the forced subsystem.

To create the ‘‘historical data’’ used in the EnOC algorithm

of section 3a in order to carry out the M-SSA analysis of the

dataset, project from the full phase space to the oscillation

subspace, and forecast the oscillatorymodes, we run a transient

of 3000Dt, followed by a record of 22 000Dt, where Dt is the

sampling time. A Gaussian error with variance of 10% of the

standard deviation of each variable is then added to that

variable.

TABLE 1. Parameters, properties, and configuration for the ODE systems used in the experiments; nondimensional time units.

Colpitts, Eq. (6) Chua, Eq. (7) Forced Lorenz (1963), Eq. (8)

Parameters p1 5 5, p2 5 0.0797, p
(1)
3 5 9,

p
(2)
3 5 10:5,

p4 5 0:6898, c(2,1) 5 0:05

a 5 15.6, b 5 25.58,

m0 5 28/7,

m1 5 25/7

s 5 10, b 5 8/3, r 5 28, c 5 5,

V 5 0.3, u(0) 5 0, y(0) 5 3

Maximum Lyapunov exponent

(Lyapunov time)

0.097 (10.3) 0.48 (2.1) 0.36 (2.8)

Peak oscillation frequency (period) 0.18 (5.6) 0.63 (1.6) 0.048 (20.9)

Perturbed parameters p0
1 5 5:1, p0

2 5 0:0897 a0
5 15:7, b0

5 24:58 V
0
5 0:32, c0 5 5:1

Embedding dimension used 30 60 100

Sampling time used 0.4 0.1 0.5

Oscillation eigenvalue indices 2, 3 3, 4 1, 2

Portion of variance due to oscillations 29% 18% 51%
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To generate the ensembles, we draw from a Gaussian dis-

tribution around the true state, with standard deviations of

20% of the standard deviation of each variable. For the Chua

system, randomly perturbed states are often outside the strange

attractor’s basin of attraction and the trajectory becomes

unbounded; we thus verify that each perturbed state is on a

bounded trajectory, and discard it if it is not. We use m 5 20

ensemble members.

In each case, we present the results after finding the optimal

m0 based on 1000 forecast cycles. We then run 10 000 forecast

cycles to compare the error of the corrected versus uncorrected

ensemble using this m0.
For the nearest-neighbor analog mapping from the full

phase space to the oscillation subspace, as well as the oscilla-

tion forecast, we use kf 5 kr 5 30 neighbors. In applying

EnOC-DA, for each system and lead time, we run experiments

with multiplicative inflation factor l (corresponding to inflat-

ing the background covariance matrix by l
2), between 1.0 and

1.45 at increments of 0.05, and choose the one that results in the

lowest error.

5. Results

a. Oscillation forecasts

Before showing the results of EnOC and EnOC-DA,

we first consider the error growth with lead time of the

oscillation forecasts themselves. This is shown in Fig. 3.

The RMSE is computed as kr(t)2 r̂(t)k2/
ffiffiffiffiffiffi

D0
p

, where r(t) is

the oscillation forecast, r̂(t) is the true state of the oscil-

lation, and D 0 is the number of variables used in the os-

cillation forecasts. The error obtained by predicting the

climatological mean value of the oscillation is also

included.

When the error of the oscillation forecast reaches the error

obtained by predicting the climatological mean of the oscilla-

tion, the oscillation forecast no longer offers any useful skill.

Whereas for the Colpitts and Chua systems the error grows

with time, we see that for the forced Lorenz system the error

instead oscillates without growing. This is because the oscilla-

tion in x and y for the forced Lorenz system is close to being

purely harmonic, rather than broad-peaked, and it can thus be

predicted well at long lead times; see Ghil and Childress (1987,

section 12.6).

b. EnOC and EnOC-DA applied to ensemble mean

Figure 4 shows the RMSE as a function of lead time in

forecasting the Colpitts system given by Eq. (6), comparing the

ensembles corrected with EnOC and EnOC-DA to the un-

corrected forecasts. We also plot the error as theoretically es-

timated from Eq. (5). Note that the RMSE here refers to

kx(t)2 x̂(t)k2/
ffiffiffiffi

D
p

—where x(t) is the forecast and x̂(t) is the

true state—averaged over all the forecast cycles.

Up until a lead time of about 7, the error reductions of

EnOC are close to the predictions of Eq. (5). However, there

are significant improvements at even the largest lead times past

25. At longer lead times, the oscillation forecast loses skill and

EnOC can contribute less, but is still providing predictability.

We see that EnOC-DA performs worse than EnOC except at

the longest lead times.

Figure 5 displays the results of applying EnOC and EnOC-

DA to the Chua system of Eq. (7). The error reductions closely

track the estimates of Eq. (5), and EnOC and EnOC-DA

perform similarly, with EnOC slightly better. The error re-

ductions continue to the longest lead times shown on the plot,

when the errors reach the level attained by predicting the

climatological mean.

FIG. 3. The root-mean-square error (RMSE) error of the oscillation forecasts at a given lead time (blue), along with the error obtained by

predicting the climatological mean value of the oscillation (red). This error is computed on a test set of 2200Dt.

FIG. 4. The RMSE for the forecasts of the Colpitts system of

Eq. (6) at a given lead time, comparing the uncorrected forecast,

the EnOC forecast, the EnOC-DA forecast, and the estimate from

Eq. (5). The error bars are the standard error in the mean over

10 000 forecast cycles for EnOC and 1000 cycles for EnOC-DA.

We include, for reference, the error obtained by predicting the

climatological mean as the dark yellow line.

5680 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 08/09/22 07:56 AM UTC



Finally, Fig. 6 shows the error for the periodically forced

Lorenz system. The results here are qualitatively quite differ-

ent from those of the Colpitts and Chua systems in Figs. 4 and

5, since the oscillation period is significantly longer than the

Lyapunov time. We can see only insignificant error reductions

until around time 1, and the reductions keep increasing in

magnitude with increasing lead time.

The larger reductions at longer lead times can be explained

by the long oscillation period: at small lead times, the oscilla-

tion has only completed a small fraction of its period, and

therefore does not provide significant predictability for the

system. Moreover, as discussed in section 5a, the oscillation of

this system can be predicted at long lead times without growing

error. Here, the error reductions are much smaller than the

‘‘best case’’ predicted by Eq. (5) at all lead times.

For the above EnOC results of Figs. 4–6, we have picked the

optimal number m0 of ensemble members to average over as

described in section 3b. Note that this is not done for EnOC-

DA, which uses all the ensemble members.

Figure 7 shows an example of an RMSE vs.m0 curve for the
Chua system. We can clearly see the trade-off between two

factors: too small an ensemble leads to a larger RMSE, while

including too many ensemble members that are not close

enough to the oscillation forecast also leads to a larger RMSE.

This convex shape of the RMSE vs. m0 curve was common in

our experiments.

In the case at hand, the optimal m0 is 11. In cases where the

oscillation forecast is very informative about the system state,

the optimal m0 will be small. If the oscillation forecast is use-

less, the error will generally be monotonically decreasing with

increasing m0, and m0
5 m (the total number of ensemble

members) will be optimal.

For comparison, we also try picking random subsets of

ensemble members. As we see in Fig. 7, the error generally

decreases monotonically with increasing ensemble size, dem-

onstrating that the subsets of ensemble members chosen by

EnOC are better than chance.

c. EnOC for probabilistic forecasts

Thus far, we have only considered the error in the ensemble

mean.Often in ensemble forecasting, however, the distribution

of the ensemble members is also of interest. Here we evaluate

the performance of EnOC in terms of its impact on the forecast

probability distribution.

A common error score for probabilistic forecasts is the

continuous ranked probability score (CRPS: Hersbach 2000).

Although defined for continuous probability distributions, a

version called the ensemble CRPS can be computed by as-

suming that each ensemble member is a sample from a forecast

probability distribution. A lower score of CRPS indicates a

better forecast (Wilks 2019).

Here, instead of using EnOC to compute the ensemble

mean, we instead use it to pick the best m0 ensemble members

to characterize the forecast distribution. We then compare the

CRPS computed by considering only those members to the

CRPS computed by considering all the members.

Figure 8 displays the CRPS for the Chua, periodically forced

Lorenz (1963), and Colpitts systems, for both the uncorrected

and EnOC forecasts. We see that EnOC results in a significant

reduction in the CRPS for the Chua and forced Lorenz sys-

tems. For the Colpitts system the reduction in CRPS is very

small, and stops at lead times beyond 15.

FIG. 5. As in Fig. 4, but for the Chua system of Eq. (7). FIG. 6. As in Fig. 4, but for the periodically forced Lorenz (1963)

system of Eq. (8). The error obtained by predicting the climato-

logical mean is not shown since it is outside of the range of the y

axis, at around 15.8.

FIG. 7. The RMSE of the ensemble mean x(m
0) vsm0 for the Chua

system at a lead time of 3.0 time units (blue), along with the RMSE

when choosing a random subset of ensemble members of length

m0 (red).
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These results demonstrate that EnOC can improve proba-

bilistic forecasts. However, the results for the Colpitts system

show that it is possible for EnOC to improve the ensemble

mean forecast without significantly improving the probabilistic

forecast. These results may be improved if CRPS is chosen to

optimize m0 instead of RMSE (see section 3b). Moreover, we

have found that EnOC-DA can reduce the CRPS more than

EnOC in some cases.

6. Concluding remarks

a. Summary

Oscillatory modes are prevalent in the climate system, and

tend to be more predictable than the overall signal (Ghil and

Childress 1987; Ghil and Robertson 2002; Ghil et al. 2019;

Krishnamurthy 2019). Previous studies have focused on the

prediction of these modes, but did not use this information

systematically to improve the prediction of the overall system.

Here, we presented a general method, which we term en-

semble oscillation correction (EnOC), to improve ensemble

forecasts of systems with oscillatory modes. We demonstrate a

robust error reduction over uncorrected forecasts. Equation

(5) provides a rough ‘‘best case’’ error reduction for this

method based only on the percentage of the variance com-

prised by the oscillation.

We also introduced an alternate method that uses data assim-

ilation, EnOC with Data Assimilation (EnOC-DA). EnOC-DA

generally results in similar but slightly smaller error reductions

compared to EnOC for the chaotic toy models we tested. This

may be because spinup is important for the performance of

ensemble Kalman filters (Kalnay and Yang 2010), and the filter

was not spun up here. A hybrid method that incorporates a

climatological background error covariance matrix could miti-

gate this problem (Penny 2017).

In this paperwe usedM-SSAdue to the extensive literature on

its use for extraction and prediction of climate oscillations, as

described in section 2a. As an extension of this work, the EnOC

ideas could be tested using a number of other methods of ex-

tracting oscillatory modes frommultivariate time series data; see

von Storch and Zwiers (1999), Jolliffe (2002), and Ghil et al.

(2002) for an overview. These include multitaper frequency

domain-singular value decomposition (MTM-SVD: Mann and

Park 1999), Hilbert EOFs (Rasmusson et al. 1981), principal

oscillation patterns (Hasselmann 1988), predictive oscillation

patterns (Kooperberg and O’Sullivan 1996), or the recent data-

adaptive harmonic (DAH)–multilayer Stuart–Landau model

(MSLM) methodology (Kondrashov et al. 2018).

Even more broadly, the idea of EnOC and EnOC-DA of

optimally combining dynamical and data-driven forecasts could

be extended to use machine learning forecasts, or other low-

order, robust forecasts, instead of the oscillatory-mode forecasts

on which the full-space forecast builds herein. As one example of

many, the reduced-subspace forecast could rely on empirical

model reduction (EMR: Kravtsov et al. 2010) that has been

widely applied in the climate sciences and beyond (Kondrashov

et al. 2015).EMR forecasts have participated for over a decade in

theENSO forecast plume of the InternationalResearch Institute

for Climate and Society and have been found still in 2012 to be

highly competitive with ENSO forecasts of high-end climate

models (Barnston et al. 2012).

b. Discussion: Application to real-time predictions

Motivated by the poor forecasts of the monsoon intra-

seasonal oscillations (MISOs) with state-of-the-art climate

models (e.g., Krishnamurthy and Sharma 2017), we intend to

apply this method to the South Asian monsoon region (see

Pentakota et al. 2020).

The error reduction will vary in space according to the

percentage of the variance represented by MISOs at that lo-

cation. Rainfall reflects latent heating and thus the patterns of

potential vorticity, which in turn are a key determinant in the

atmospheric flow. Therefore, if EnOC ensemble members are

chosen with EnOC based on their predicted rainfall, it is likely

that their error in forecasts of other variables could also be

improved.

This idea is supported by Lien et al. (2013), who found that

data assimilation of observed precipitation reduced the fore-

cast error in other fields. They attributed this improvement to

the increased weight placed on ensemble members with more

correct potential vorticity, which is done implicitly with the

ensemble transform Kalman filter.

Acknowledgments. We would like to express our deep grati-

tude for the Monsoon Mission II funding for this work (Grant

IITMMMIIUNIVMARYLANDUSA2018INT1) provided by

the Ministry of Earth Science, Government of India. We thank

FIG. 8. CRPS for the three systems at a given lead time, comparing the uncorrected and EnOC forecasts.

5682 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 08/09/22 07:56 AM UTC



Takemasa Miyoshi for the suggestion of an ensemble method.

We also thank Chu-Chun Chang, Jagadish Shukla, and Takuma

Yoshida for helpful discussions. Two anonymous reviewers pro-

vided insightful feedback that improved the manuscript. E.B.

was supported by theUniversity ofMarylandFlagshipFellowship

and Ann G. Wylie Fellowship, and Monsoon Mission II funding.

V.K. was supported by the National Science Foundation (Grant

1338427), the National Oceanic andAtmospheric Administration

(Grant NA140OAR4310160), and theNationalAeronautics and

Space Administration (Grant NNX14AM19G) of the United

States. M.G.’s work on this paper was supported by the EIT

Climate-KIC; EIT Climate-KIC is supported by the European

Institute of Innovation and Technology (EIT), a body of the

European Union, under Grant Agreement 190733. The present

paper is TiPES contribution number 81; this project has received

funding from the European Union’s Horizon 2020 research

and innovation programme under Grant Agreement 820970.

The authors acknowledge the University of Maryland super-

computing resources (http://hpcc.umd.edu) made available for

conducting the research reported in this paper.

APPENDIX

Derivation of an A Priori Error Reduction Estimate

We derive a rough estimate of a ‘‘best case’’ expected error

reduction of EnOC given some reasonable assumptions.

We start, for simplicity, with the squared prediction error of the

forecast ŷ(t) of the one-dimensional time series y(t) at a particular

time step t; the same results hold for multiple dimensions and

multiple time steps. We assume that both the real and predicted

time series have the same set of SSA eigenvectors, such that both

can be decomposed into the same set of modes J , that is,

y5 �
j2J

r
j

and ŷ5 �
j2J

r̂
j
,

where we drop the dependence on t. This assumption will hold

if and only if the two corresponding covariance matrices

commute with each other.

We regard each j as a single mode, although the derivation

also works if each j is a subset of modes. In particular, each

oscillatory mode will generally correspond to a pair of eigen-

vectors in quadrature; see section 2a. We then obtain

(ŷ2 y)
2
5

�

�
j

r̂
j
2�

j

r
j

�2

5

�

�
j

(r̂
j
2 r

j
)

�2

5�
j

(r̂
j
2 r

j
)
2
1 �

k 6¼ ‘

(r̂
k
2 r

k
)(r̂

‘
2 r

‘
)

5�
j

(r̂
j
2 r

j
)2

1 �
k 6¼ ‘

[(r̂
k
2 r

k
)2 (r

k
2 r

k
)][(r̂

‘
2 r

‘
)2 (r

‘
2 r

‘
)] ,

where ri is themean of the ith RC andwe assume that themean

is the same for the real and predicted RCs.

Next, we assume that the different groups of RCs are un-

correlated, as discussed in section 2d, so that the second term

above vanishes and

(ŷ2 y)2 5�
j

(r̂
j
2 r

j
)2 .

Assume further that EnOC corrects mode j0 ‘‘perfectly,’’ so that

(r̂j0 2 rj0 )
2
5 0. Then, the ratio of the uncorrected mean-square

error MSE to the corrected mean-square error MSE0 will be

MSE

MSE0 5

�
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.

Now, we assume that the prediction error of each mode is

proportional to the variance captured by that mode [i.e.,

(r̂j 2 rj)
2
5 cjVarj]. Then,

MSE

MSE0 5 11
c
j0Var

j0

�
j 6¼ j0

c
j
Var

j

.

Often the highest-variance mode corresponds simply to the

long-termmean of the time series; unless, that is, y(t) is already

an anomaly time series with mean zero. Assuming that the

model estimates this mean well, cj will be small for this mode,

and we assume that its cj 5 0.

We expect that the noise modes will have large cj, due to

their unpredictability, andmodes that are well predicted by the

model will have small cj. Here we make the simplifying as-

sumption that, except for the mode corresponding to themean,

all the othermodes are predicted equally well by themodel and

thus their cj terms are the same. One thus obtains

MSE

MSE0 5 11
Var

j0

Var
tot

2Var
j0
,

where Vartot is the total variance of all the modes, excluding

the mean mode.

Expressing now the ratio of the corrected to uncorrected

error in terms of the RMSE, we get

RMSE0

RMSE
5 12

Var
j0

Var
tot

 !1/2

5 12

�
j2O

l
j

�
j2P

l
j

0

B

B

@

1

C

C

A

1/2

,

where lj is the eigenvalue corresponding to mode j, O is the set

of indices of the oscillatory modes, and P is the set of indices of

all modes excluding a mean mode. The last equality follows

from the discussion in section 2a.
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