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Abstract

Background: Learning accurate models from ‘omics data is bringing many challenges due to their inherent

high-dimensionality, e.g. the number of gene expression variables, and comparatively lower sample sizes, which leads

to ill-posed inverse problems. Furthermore, the presence of outliers, either experimental errors or interesting abnormal

clinical cases, may severely hamper a correct classification of patients and the identification of reliable biomarkers for a

particular disease. We propose to address this problem through an ensemble classification setting based on distinct

feature selection and modeling strategies, including logistic regression with elastic net regularization, Sparse Partial

Least Squares - Discriminant Analysis (SPLS-DA) and Sparse Generalized PLS (SGPLS), coupled with an evaluation of

the individuals’ outlierness based on the Cook’s distance. The consensus is achieved with the Rank Product statistics

corrected for multiple testing, which gives a final list of sorted observations by their outlierness level.

Results: We applied this strategy for the classification of Triple-Negative Breast Cancer (TNBC) RNA-Seq and clinical

data from the Cancer Genome Atlas (TCGA). The detected 24 outliers were identified as putative mislabeled samples,

corresponding to individuals with discrepant clinical labels for the HER2 receptor, but also individuals with abnormal

expression values of ER, PR and HER2, contradictory with the corresponding clinical labels, which may invalidate the

initial TNBC label. Moreover, the model consensus approach leads to the selection of a set of genes that may be linked

to the disease. These results are robust to a resampling approach, either by selecting a subset of patients or a subset

of genes, with a significant overlap of the outlier patients identified.

Conclusions: The proposed ensemble outlier detection approach constitutes a robust procedure to identify

abnormal cases and consensus covariates, which may improve biomarker selection for precision medicine

applications. The method can also be easily extended to other regression models and datasets.
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Background
The rising of genome sequencing technology has

advanced biomedical science into precision medicine,

under the premise that molecular information improves

the accuracy with which patients are categorized and

treated [1]. This is particularly important for cancer,

with similar histopathology showing differential clinical

outcome, and treatments failing essentially because of
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varying tumor genotype and phenotypic behavior in each

individual [2].

Cancer genomics refers to the study of tumor genomes

using various profiling strategies including (but not lim-

ited to) DNA copy number, DNA methylation, and tran-

scriptome and whole-genome sequencing - technologies

that may collectively be defined as omics [3]. The resulting

omics’ data allows not only a more in-depth knowledge

on the cancer biology, but also the identification of diag-

nostic, prognostic, and therapeutic markers that will ulti-

mately improve patient outcomes [3]. Cancer genomics

therefore holds the promise of playing an important role

towards precision cancer management.
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However, this flood of ’omics data also brings many

challenges when learning regression models: first,

genomic datasets are high-dimensional, corresponding

to measurements of thousands genes (the p covariates)

for each individual, often highly correlated and outnum-

bering the cases enrolled for the study, N. In fact, this

crucial N ≪ p or high-dimensional problem, which

occurs very frequently in patientomics data, may cause

instability in the selected driver genes and poor per-

formance of predictive models [4]; second, genomic

data usually contain abnormal variable measurements

arriving from many sources (e.g., experiment errors),

which might be regarded as potential outliers that

may end-up in a incorrect labeling/classification of

the patients and, consequently, precipitate failure in

the cancer treatment. On the other hand, abnormal

observations that are not wrongly classified, might

represent interesting clinical cases that can potentially

disclose crucial information on the biology of cancer. In

both cases, outlier patients must be identified, so that

further investigation on these patients is undertaken.

Variable selection and outlier detection are therefore

key steps when fitting regression models to cancer

genomic data.

We will address these problems through an ensem-

ble or consensus outlier detection approach, focusing on

the classification of high-dimensional patientomics data.

Ensemble analysis has been widely explored for clas-

sification (e.g. by boosting, bagging or random forests),

but rather limited in the outlier detection context [5].

For instance, Lazarevic and Kumar [6] developed a

feature bagging outlier ensemble to detect outliers in

high-dimensional and noisy datasets, based on randomly

selected feature subsets from original feature sets. Moti-

vated by random forests, Liu et al. [7] proposed isolation

forest for anomaly detection.

Since multiple classification and dimensionality reduc-

tion strategies exist, ranging from variable selection by

regularized optimization, to feature extraction e.g. by

Partial Least Squares (PLS) regression, and also many

outlier detection methods have been proposed, based

on distinct residual measures, our approach will be to

gather these different results into a unique ranking for

the most outlier observations. This is achieved with the

application of the rank product (RP) test, a well-known

statistical technique previously used in detecting differ-

entially regulated genes in replicated microarray exper-

iments [8] and outlying patients in survival data [9]. It

has also shown to support meta-analysis of independent

studies ([10]).

The proposed model-based outlier detection proce-

dure provides a structured framework to separate abnor-

mal cases, i.e., those significantly deviating from what is

expected given a specific model. The definition of outlier

becomes, therefore, highly coupled with the model sta-

tistical learning process, with the obvious interpretability

advantage: an outlier is a case that deviates from what

would be expected given the corresponding covariates,

across several modeling selection strategies. As deviances

are dependent on the model chosen, with an observation

deviating from a given model not deviating from another,

our ensemble approach is expected to correct for the spe-

cific uncertainty each model brings. The rationale is that

if a given observation is systematically classified as an

outlier independently of the chosen model, there is evi-

dence for being a true discrepant observation given its

covariates.

To illustrate the application of the proposed procedure,

the Breast Invasive Carcinoma (BRCA) dataset publicly

available from the Cancer Genome Atlas (TCGA) Data

Portal (https://cancergenome.nih.gov/) was used. From

the BRCA dataset, we focused on a specific type of breast

cancer, the Triple-Negative Breast Cancer (TNBC), which

is the most heterogeneous group of breast cancers, pre-

senting a significantly shorter survival following the first

metastatic event when compared with those with non-

basal-like/non-triple-negative controls [11]. It is charac-

terized by lack of expression of estrogen receptor (ER),

progesterone receptor (PR), and human epidermal growth

factor receptor type 2 (HER2) [12]. Endocrine and HER2-

targeted therapies are therefore not successful, which

fosters the identification of new biomarkers and poten-

tial druggable targets for effective clinical management of

TNBC.

Classifying patients into ‘positive’ or ‘negative’ for the

presence of these receptors is a key step in therapy decision.

It has been reported that up to 20% of immunohistochem-

ical (IHC) ER and PR determinations worldwide might

be inaccurate (false negative or false positive), mainly

due to variation in preanalytic variables, thresholds for

positivity, and interpretation criteria [13]. The obvious

consequences are false negatives being not eligible for

endocrine therapy, thus not benefiting from it, and fail-

ure of hormonal therapy in false positives. Regarding

HER2, while a false positive HER2 assessment, either by

IHC or fluorescence in-situ hybridization (FISH) testing,

leads to the administration of potentially toxic, costly

and ineffective HER2-targeted therapy, a false negative

HER2 assessment results in denial of anti-HER2 targeted

therapy for a patient who could benefit from it [14].

Accurate test performance following the published guide-

lines [13, 14] is thus crucial, as it will determine the

success of the applied therapy. To overcome uncertainty

in variables assessment, appropriate outlier detection

methods stand as invaluable tools in personalized can-

cer management. Whenever an observation is detected

as influential, a careful inspection on its gene expres-

sion profile should be conducted and, if appropriate,

https://cancergenome.nih.gov/
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further re-testing for the critical variables under studied is

warrant.

In this work we measure the outlierness (the degree

of deviation) of breast cancer patients (TNBC and non-

TNBC) in either selected subsets of covariates or pro-

jections of data into subspaces of reduced dimension.

The goal is to identify the observations that are system-

atically classified as influential (thus potential outliers),

independently of the model chosen. Three strategies for

data dimension reduction were considered and will be

described below: i) variable selection by sparse logis-

tic regression using elastic net (EN) regularization; ii)

variable selection and feature extraction by Sparse PLS

Discriminant Analysis (SPLS-DA); and iii) variable selec-

tion and feature extraction by Sparse Generalized PLS

(SGPLS). For each method the ranks of influential obser-

vations detected were obtained and combined for a con-

sensus outlier detection by the RP test.

In conclusion, the goals of the ensemble method pro-

posed are two-fold: i) the detection of outlier observations

that deviate from the classification model learnt can pin-

point to potential mislabeling of the original TCGA clin-

ical data; and ii) the identification of a consensus set of

genes that may play a role in TNBC management.

Methods

Classification and dimensionality reduction

When the goal is to build a predictive model based on

high-throughput genomic data for assessing a clinical

binary outcome of a patient, e.g., ‘cancer’ vs. ‘normal’

status, or different types of cancer, logistic regression is

a common choice. Binary logistic regression is a popu-

lar classification method that describes the relationship

between one or more independent variables and a binary

outcome variable, which is given by the logistic function

pi = Prob (Yi = 1) =
exp

(

xTi β
)

1 + exp
(

xTi β
) , (1)

where X is the n × p design matrix (n is the number of

observations and p is the number of covariates or fea-

tures), pi is the probability of success (i.e., Yi = 1) for

observation i and β =
(

β1,β2, . . . ,βp

)

are the regression

coefficients associated to the p independent variables.

This is equivalent to fitting a linear model in which the

dependent variable (clinical outcome) is replaced by the

logarithm of the odds ratio (defined as the ratio of

the probability of success, pi, and the probability of failure,

1 − pi), through the logit transformation given by

log

(

pi

1 − pi

)

= xTi β . (2)

It is therefore assumed that the logit transformation of

the outcome variable has a linear relationship with the

predictor variables. The parameters of the logistic model

are estimated by maximizing the log likelihood function

of the logistic model given by

l (β) =
n

∑

i=1

{

yix
T
i β − log

(

1 + ex
T
i β

)}

. (3)

Variable selection is extremely important in cancer

genomics, owing to the identification of biomarkers asso-

ciated to the disease or its subcategories. The inherent

high-dimensionality and multi-collinearity of patien-

tomics data, with variables very often outnumbering the

cases enrolled, constitutes a challenge to identify an inter-

pretable model since it usually leads to ill-posed inverse

problems. In this context, regularized optimization is a

promising strategy to cope with this problem, promoting

the selection of a subset of variables while learning the

model.

Several regularization methods have been proposed for

variable selection in high-dimensional data, namely, the

least absolute shrinkage and selection operator (LASSO)

[15], using a l1 regularizer, Ridge regression, which shrinks

the estimated coefficients towards zero by using a l2 −
norm penalty, and the elastic net (EN) [16], where the

regularizer is a linear combination of l1 and l2 penalties.

The EN penalty is controlled by α, as follows

β̂ = argmin
β

‖Y−Xβ‖2+λ
{

(1 − α)‖β‖22/2 + α‖β‖1
}

,

(4)

with α = 1 corresponding to LASSO and α = 0 to

ridge, and the tuning parameter λ controlling the strength

of the penalty. While in the presence of highly corre-

lated variables the LASSO tends to arbitrarily select one

of those variables, EN encourages βi to be close to βj for

highly correlated variables, therefore inducing variables

group formation. Feature grouping is particularly impor-

tant in the context of modeling gene expression data, as

highly correlated genes shall be kept as a group and not

arbitrarily discarded.

The problem of multicollinearity can be approached

by feature extraction methods like partial least squares

(PLS) regression [17, 18]. In PLS regression an orthogo-

nal basis of latent variables (LV) – not directly observed

or measured – is constructed in such a way that they

are maximally correlated with the response variable. The

basic assumptions of PLS regression is that the relation-

ship between X and Y is linear and that this linearity

assumption still holds for the relationship between the

latent variables.
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Formally, PLS expresses X (n × p) and Y (n × m) as

X = TPT + E and Y = UQT + F , where T and U are the

(n × L) matrices of the L extracted score (latent) vectors

(L ≪ p), whereas P (p × L) and Q (m × L) are the matri-

ces of orthogonal loadings, and E (n × p) and F (n × m)

are matrices of residuals. The latent components T are

defined as T = XW, whereW(p × L) are L direction vec-

tors (1 ≤ L ≤ min{n, p}). Given T andU, the PLS estimate

of the regression coefficients vector β =
(

β1, . . . ,βp

)

is

β̂ = XTU
(

TTXXTU
)−1

TTY. (5)

The l-th direction vector ŵl is obtained by solving:

max
w

{

wTMw
}

, (6)

subject to wTw = 1 and wTSXXŵl = 0 (s = 1, . . . , l − 1),

where M = XTYYTX and SXX represents the sample

covariance matrix of the predictors.

The projection of the observed data onto a subspace

of orthogonal LVs, typically of small number, has been

shown to be a powerful technique when the observed vari-

ables are highly correlated, noisy, and the ratio between

the number of observations and variables is small, which

justifies its use for the analysis of genomic data [19].

Modern genomic data analysis involves a high number

of irrelevant variables, yielding inconsistency of coeffi-

cient estimates in the linear regression. Chun and Keles

[20] proposed sparse partial least squares (SPLS) regres-

sion, which imposes sparsity when constructing the direc-

tion vectors, thereby the resulting LVs only dependent on

a subset of the original set of predictors. SPLS incorpo-

rates variable selection into PLS by solving the following

minimization problem instead of the original PLS formu-

lation in Eq. 6

min
w,c

{

− lwTMw + (1 − l) (c − w)T

× M (c − w) + λ1‖c‖1 + λ2‖c‖2
}

,
(7)

subject to wTw = 1, where M = XTYYTX. This for-

mulation promotes sparsity by imposing l1 penalty onto

a surrogate of direction vector (c) instead of the original

direction vector (w), while keeping w and c close to each

other. The l2 penalty takes care of the potential singularity

ofM [21].

PLS can also be applied to classification problems,

when the response variable is categorical and expresses

a class membership. Chung and Keles [21] proposed two

methods extending SPLS to classification. The first, SPLS

Discriminant Analysis (SPLS-DA), is a two-stage proce-

dure. In a first step, SPLS regression is used to construct

LVs by treating the categorical response as a continuous

variable (for a binary response a dummy {0,1} code is

used). In the second step, given the number of LVs, L,

is usually much smaller than the sample size n, a linear

classifier such as linear discriminant analysis (LDA) and

logistic regression is applied. The second method extends

SPLS to the Generalized framework, herein called SGPLS.

The minimization problem in Eq. 3 can be solved with

the Newton-Raphson algorithm which results in the iter-

atively re-weighted least squares (IRLS) [21]. SPLS can

be incorporated into the GLM framework by solving this

weighted least squares problem

min
β

n
∑

i=1

vi

(

zi − xTi β
)2

, (8)

where vi = pi(1 − pi) and zi = xTi β + (yi − pi) /vi (the

working response). The direction vectors of SGPLS are

obtained by solving Eq. 7 subject to wTw = 1, where

M = XTVzzTVX, with V the diagonal matrix with entries

vi, and z = (z1, . . . , zn) the vector of working responses.

Dimensionality reduction is a critical step before out-

lier detection, as working on the full space hampers the

disclosure of outliers hidden in subspace projections. Out-

lier inspection can be firstly approached via graphical

examination of the residuals. Residuals are the differences

between the predicted and actual values. There are sev-

eral types of residuals, e.g., Pearson and deviance, along

with their standardized versions. An outlier is an observa-

tion with a large residual, whose dependent variable value

is unusual given its value on the predictor variables; an

outlier may indicate a sample peculiarity or a data entry

error. A leverage observation, on the other hand, is an

observation with an extreme value on a predictor vari-

able. Leverage is a measure of how far an independent

variable deviates from its mean. High leverage observa-

tions can have a great amount of effect on the estimate

of the regression coefficients. Influence can be thought of

as the product of leverage and outlierness. In this context,

the Cook’s distance, D [22, 23], is a measure of influence

widely used in outlier detection that combines the infor-

mation of leverage and residual. For each observation i,

Di measures the change in Ŷ for all observations with and

without observation i, so that we know how much the

observation i impacted the fitted values:

Di = r2i hii

1 − hii
, (9)

with ri denoting the standardized Pearson residual given by

ri = yi − ŷi
√

pi (1 − pi)
√
1 − hii

, (10)
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and hii the ith diagonal element of the matrix H, defined

for logistic regression as

H = V1/2X
(

XTVX
)−1

XTV1/2 (11)

where V is a n × n diagonal matrix with general element

pi (1 − pi) [24, 25], as described above.

Variables disclose outlying observations independently.

Depending on the data dimension reduction strategy

used, different outlier sets might emerge, as an individual

deviating in a particular subspace of variables may look

fairly normal in the other subspaces evaluated. Given a

number of outlierness rankings based on an influential

measure (e.g., the Cook’s distance) obtained from different

modelling strategies, a consensus ranking of observations

is thus desired.

The performance of model-based outlier detection tools

can be significantly improved if combined into an outlier

ensemble. The rationale behind ensemble learning is to

combine different predictions by multiple learning pro-

cesses into a more accurate prediction, which becomes

particularly useful in the presence of multiple models

yielding different sets of outliers. The RP test has been

used in the context of outlier ensemble analysis, provid-

ing a consensus ranking of all observations ranked by their

level of outlierness, given a set of models or influence

measures.

The rank product (RP) test

The Rank Product (RP) is a non-parametric statistical

technique that allows the statistical assessment of con-

sensus rankings obtained in distinct experiments. Given

different modeling strategies lead to different sets of influ-

ential observations based on a given measure of outlier-

ness, the application of RP tests in the present work aims

at identifying the observations that are consistently clas-

sified as influential, irrespectively of the specific model

chosen. This procedure thus constitutes a consensus

approach to outlier detection.

Given Dij the Cook’s distance (the measure of outlier-

ness used in this work) of the ith observation (i = 1, . . . , n)

obtained by the jth model, the deviance rank for Dij con-

sideringmodel j (j = 1, . . . , k) is defined by Rij = rank(Dij),

with 1 ≤ Rij ≤ n. The lower the rank, the larger

the deviance, i.e., the more outlying the observation is.

The RP is defined as RPi =
∏k

j=1 Rij. After ranking the

observations by their RP, their corresponding p-values,

under the null hypothesis that each individual ranking is

uniformly distributed, are obtained. The statistical signif-

icance of RPi under the null hypothesis of random rank-

ings was obtained following Heskes et al. [26], based on

the geometric mean of upper and lower bounds, defined

recursively.

When many observations are tested, type-I errors (false

positives) increase. The False Discovery Rate (FDR) [27],

which is the expected proportion of false positives among

all tests that are significant, is an example of a correction

method dealing with the multiple testing problem. FDR

sorts in an ascendant order the p-values and divides them

by their percentile rank. The measure used to determine

the FDR is the q-value. For the p-value, an α level of 0.05

implies that 5% of all tests will result in false positives

under the null hypothesis, instead, for the q-value, 0.05

implies that 5% of significant tests will result in false pos-

itives. The q-value is therefore able to control the number

of false discoveries in those tests.

Triple-negative breast cancer (TNBC) data

The BRCA RNA-Seq Fragments Per Kilobase per Mil-

lion (FPKM) dataset was imported using the ‘brca.data’

R package (https://github.com/averissimo/brca.data/

releases/download/1.0/brca.data_1.0.tar.gz). The BRCA

gene expression data is composed of 57251 variables for a

total of 1222 samples from 1097 individuals. From those

individuals, 1102 presented with a primary solid tumor,

7 with metastases, and for 113 normal breast tissue was

obtained. Only samples from primary solid tumor were

considered for analysis. A subset of 19,688 variables,

including the three TNBC-associated key variables ER

(ENSG00000091831), PR (ENSG00000082175) and HER2

(ENSG00000141736), was considered for further analysis,

corresponding to the protein coding genes reported from

the Ensembl genome browser [28] and the Consensus

CDS [29] project.

The TNBC data was built from the BRCA dataset. The

TNBC binary response vector Y was created, with ‘1’ cor-

responding to TNBC individuals (with ER, PR and HER2

‘negative’), and non-TNBC (‘0’) to non-TNBC patients,

whenever at least one of the three genes is positive.

The individuals’ status regarding ER, PR and HER2,

needed for building Y, were obtained from the clinical

data, composed of 114 variables. However, for HER2,

three possible variable sources were available, corre-

sponding to the HER2 (IHC) level, HER2 (IHC) status and

HER2 (FISH), often providing distinct HER2 labels. For

instance, an inspection on the classification of individuals

into HER2 (IHC) levels and HER2 (IHC) status (Table 1)

revealed non-concordance for HER2 classification (‘posi-

tive’ vs. ‘negative’) for 13 individuals (highlighted in bold).

Also, 15 individuals showed non-concordance between

HER2 (IHC) status and HER2 (FISH).

Table 2 shows the gene expression of three TNBC-

associated variables for individuals with discordant HER2

(IHC) status and HER2 (IHC) level classifications. This is

particularly important for individuals with both ER and

PR ‘negative’ based on the clinical variables (highlighted

in bold), as the HER2 labeling will determine the final

https://github.com/averissimo/brca.data/releases/download/1.0/brca.data_1.0.tar.gz
https://github.com/averissimo/brca.data/releases/download/1.0/brca.data_1.0.tar.gz
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Table 1 Correspondence (number of cases) between the HER2 classification of individuals by IHC level and status, and FISH, obtained

from the BRCA clinical data (individuals with non-concordance for HER2 classification by different testing (‘positive’ vs. ‘negative’) are

highlighted in bold)

HER2 (IHC) status

‘’ Equivocal Indeterminate Negative Positive Total

HER2 (IHC) level ‘’ 176 7 6 241 41 471

0 (negative) 0 0 0 60 0 60

1+ (negative) 0 4 1 255 11 271

2+ (indeterminate) 0 166 4 1 27 198

3+ (positive) 1 1 1 2 85 90

Total 177 178 12 559 164 1090

HER2 (FISH) ‘’ 115 18 4 432 104 673

equivocal 0 3 0 0 2 5

indeterminate 0 0 0 3 1 4

negative 53 138 6 121 12 330

positive 9 19 2 3 45 78

Total 177 178 12 559 164 1090

classification of patients into TNBC vs. non-TNBC, which

will be distinct (potential outlier), depending on the HER2

label chosen.

Individuals with discrepant labels regarding the HER2

(IHC) status and HER2 (FISH) can be found in Table 3.

For those not expressing ER and PR, based on the clin-

ical variables, and with different HER2 status and FISH

(highlighted in bold), a distinct response value (‘1’ or ‘0’,

i.e, TNBC and non-TNBC, respectively) can be produced,

depending on the HER2 method chosen. Therefore, when

building the response vector Y, care must be taken as

discrepant individual classifications between the different

methods for HER2 determination occur, and the variable

chosen will determine the final TNBC individual classi-

fication. Individuals with non-concordant HER2 testing

results might be regarded as possibly mislabeled samples,

herein called suspect individuals, which are potential out-

liers. Special attention to these individuals with discrepant

classification will be taken during discussion, by assess-

ing if they are influential observations detected by the

procedure and by analysing their covariates in detail.

Given the larger number of individuals with available

HER2 (IHC) status (n = 913) compared to the avail-

able HER2 (IHC) level (n = 619), the HER2 classification

Table 2 Individuals with discordant HER2 (IHC) status and level, not measured by FISH (individuals not expressing ER and PR, and

without a FISH classification are highlighted in bold)

Individual ER PR HER2 HER2 level (IHC) HER2 status (IHC) Type

TCGA-AC-A8OS 94.72(+) 1.14(+) 23.55 1+ + non-TNBC

TCGA-LL-A73Y 0.22(-) 0.18(-) 19.00 3+ - TNBC

∗TCGA-AN-A0FL 0.09 (-) 1.7(-) 15.07 1+ + non-TNBC

∗TCGA-AN-A0FX 1.13(-) 0.64(-) 24.02 1+ + non-TNBC

TCGA-AN-A0FK 128.26(+) 31.59(+) 25.62 1+ + non-TNBC

TCGA-E9-A295 17.36(+) 6.80(+) 34.83 1+ + non-TNBC

∗TCGA-AC-A3YI 5.65(+) 0.76(+) 60.87 1+ + non-TNBC

TCGA-JL-A3YW 0.35(+) 0.09(+) 31.47 1+ + non-TNBC

TCGA-AN-A0FS 91.87(+) 1.16(-) 43.92 1+ + non-TNBC

TCGA-AN-A0FN 21.34(+) 1.14(+) 17.50 1+ + non-TNBC

∗TCGA-AN-A0FJ 0.08(+) 0.04(-) 14.28 1+ + non-TNBC

TCGA-AC-A3W6 28.89(+) 0.26(+) 19.24 3+ - non-TNBC

TCGA-AN-A03X 0.75(+) 12.28(+) 38.03 1+ + non-TNBC

Individuals marked with asterisks show no concordance regarding HER2 labeling by different testing and are misclassified by logistic regression based on the 3 variables

clinically used to classify breast cancer patients into TNBC
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Table 3 Individuals with discordant HER2 (IHC) status and HER2 (FISH) classification (individuals not expressing ER and PR are

highlighted in bold)

Individual ER PR HER2 HER2 level HER2 status HER2 HER2 status Type

(IHC) (IHC) (FISH) (IHC + FISH)

∗TCGA-LL-A5YP 0.16(+) 0.05(-) 15.10 1+ - + + non-TNBC

∗TCGA-A2-A0EQ 2.13(-) 0.04(-) 30.5 3+ + - - TNBC

TCGA-BH-A18T 0.61(-) 0.04(-) 29.35 2+ + - - TNBC

∗TCGA-AO-A0JL 0.63(-) 0.08(-) 63.60 1+ - + + non-TNBC

TCGA-AN-A0XV 110.33(+) 3.50(+) 22.17 2+ + - - non-TNBC

TCGA-AO-A12C 18.88(+) 3.60(+) 95.67 3+ + - - non-TNBC

∗TCGA-BH-A18Q 2.83(-) 1.10(-) 20.93 + - - TNBC

TCGA-LL-A5YL 9.84(+) 0.52(-) 55.32 3+ + - - non-TNBC

TCGA-E2-A10A 59.40(+) 9.89(+) 32.99 2+ + - - non-TNBC

TCGA-AO-A03L 14.71(+) 1.35(+) 58.72 2+ + - - non-TNBC

TCGA-AO-A12G 40.39(+) 1.80(+) 45.03 2+ + - - non-TNBC

TCGA-BH-A1EX 5.50(+) 0.28(+) 41.46 + - - non-TNBC

TCGA-BH-A0AU 37.14(+) 16.19(+) 51.79 + - - non-TNBC

∗TCGA-A2-A04U 0.02(-) 0.02(-) 9.64 1+ - + + non-TNBC

TCGA-AN-A0XW 13.96(+) 5.32(+) 22.04 2+ + - - non-TNBC

Individuals marked with asterisks show no concordance regarding HER2 labeling by different testing and are misclassified by logistic regression based on the 3 variables

clinically used to classify breast cancer patients into TNBC

provided by IHC status was considered. As mentioned

before, a second HER2 classification of individuals can be

obtained by the FISH method. Given that FISH provides

as a more accurate test for classifying individuals into

HER2 ‘positive’ or ‘negative’, the HER2 classification of the

417 individuals measured by FISH was taken to replace

the classification based on the IHC status of the same indi-

viduals (IHC + FISH; Tables 2 and 3). This constitutes the

baseline classification of the patients that will be further

used throughout this study.

Having built the final TNBC dataset, a summary of the

expression of ER, PR and HER2 (based on IHC or FISH,

whenever available) can be found in Table 4, where it

is clear the down-regulation of these TNBC-associated

genes in TNBC individuals (class ‘1’). FPKM normalized

gene expression data were log-transformed prior to data

analysis.

Model selection

With the goal of assessing the significance of the gene

expression variables used to classify patients into TNBC

and non-TNBC, i.e. ER, PR and HER2, a first logistic

regression model based on the 3 variables was built.

From the TNBC dataset created, three quarters of ran-

domly selected individuals were assigned to training sam-

ples (ntrain = 764; 121 TNBC and 643 non-TNBC),

whereas the remaining individuals were assigned to

test samples (ntest = 255; 39 TNBC and 216 non-

TNBC). The significance of the three TNBC-associated

variables in the outcome variable (TNBC vs. non-

TNBC), along with the number of misclassifications, were

evaluated.

Univariate logistic models accounting for possible con-

founding effects on the gene expression data were also

evaluated. The variables tested for significance were: gen-

der, race, menopause status, age at initial pathologic diag-

nosis, history of neoadjuvant treatment, person neoplasm

cancer status and event pathologic stage. The significance

of the categorical variables was also determined by the

Fisher’s exact test. The variables found to be significant

on the outcome (TNBC vs. non-TNBC) were taken for

further analysis.

Table 4 Summary of FPKM values obtained for ER, PR and HER2 for the individuals under study

Class Min. 1st Qu. Median Mean 3rd Qu. Max

ER
0 0.016 16.144 36.667 47.881 69.649 272.203

1 0.019 0.160 0.351 1.530 0.828 29.979

PR
0 0.008 0.600 4.228 12.012 15.326 327.913

1 0.001 0.040 0.079 0.712 0.186 22.978

HER2
0 0.605 26.580 38.732 99.741 58.801 1668.353

1 1.561 13.964 19.776 21.991 26.058 103.68
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Three model selection strategies were chosen for the

application of the RP test for outlier detection based

on TNBC gene expression data plus the significant

clinical variables identified above: i) variable selec-

tion by sparse logistic regression using EN regular-

ization, herein called LOGIT-EN; ii) variable selection

and feature extraction by SPLS-DA; and iii) variable

selection and feature extraction by SGPLS. The opti-

mization of the model parameters based on the mean

squared error (MSE) was performed by 10-fold cross-

validation (CV) on the full dataset. For LOGIT-EN,

varying α values (1 > α > 0) were tested; for

SPLS-DA and SGPLS, both varying values for α and

L (l = 1, . . . , 5) were evaluated in the CV pro-

cedure. The optimized parameters were used in the

final three models. The Cook’s distance was calcu-

lated for each observation i in each model j. The

RP test was then applied, as described in the next

section.

As the estimated models and, consequently, the out-

liers detected, are data-dependent, a sampling strategy

was designed to determine whether resampling the data

using a subset of observations or features (i.e, feature

bagging) would identify the same outlier observations

when compared to using the original data. A TNBC

dataset composed of 80% observations randomly selected

without replacement was thus created. Model classifi-

cation was performed by logistic regression with EN

regularization (α = 0.7), as shown to provide the low-

est MSE among the three models evaluated (later in

the “Results and discussion” section). The model predic-

tions and the Cook’s distance for all observations were

then obtained. These procedure was repeated 100 times,

resulting in 100 models to be accounted for in the RP

test.

Following the recent finding that most random gene

expression signatures are significantly associated with

breast cancer outcome [30], another resampling strat-

egy was adopted. A TNBC dataset composed of all

individuals and 1000 randomly selected variables (with-

out replacement) was fit to a logistic regression with

EN regularization (α = 0.7). The procedure was

repeated 100 times, resulting in 100 models to feed the

RP test.

In both resampling procedures, the goal was to iden-

tify the observations consistently classified as influential,

independently of the subset of randomly selected sam-

ples used for model building or the subset of randomly

selected genes. This approach confers robustness to the

overall procedure and constitutes an ensemble strategy to

deal with the variability and estimation problems.

The models were built using the following R packages:

‘glmnet’ for regularized logistic regression; and ‘spls’ for

SPLS-DA and SGPLS.

Results and discussion

TNBC data

Exploratory analysis

A first logistic regression model based on the 3 variables

clinically used to classify patients yielded significance only

for variables ER and HER2. A total of 45 and 12 mis-

classifications were obtained for the train and test sets,

respectively, from which 9 are suspect regarding their

HER2 label identified above (Tables 2 and 3; marked with

asterisks), with 6 corresponding to individuals ER- and

PR-, and discordant HER2 label.

When looking for potential confounding variables

before getting into outlier detection based on gene expres-

sion data, univariate logistic regression and the Fisher’s

exact test identified race and age as significant (p < 0.05)

for the outcome (TNBC vs. non-TNBC). These variables

were combined to the gene expression dataset for ensem-

ble outlier detection, as described next.

Ensemble outlier detection

Three modeling strategies for dimensionality reduction

in the original TNBC dataset were evaluated for inde-

pendently estimating the individuals’ outlierness based

on the Cook’s distance. From the 19690 initial variables,

LOGIT-EN, SPLS-DA and SGPLS selected 107, 2945 and

551 variables, respectively, with 26 variables in common

(Table 5).

SPLS-DA and SGPLS models accounted for 4 LVs

extracted, based on α values of 0.8 and 0.7, respec-

tively. LOGIT-EN, with optimum α = 0.9, yielded better

accuracy regarding the MSE obtained, compared to the

PLS-based models (Table 5). LOGIT-EN also produced a

lower number of misclassifications, i.e., 16, compared to

SPLS-DA and SGPLS (29 and 23, respectively).

PLS modeling allows graphically displaying observa-

tions in the space of the LVs explaining the largest vari-

ance in the data. Such representation in the space of the

LVs extracted by SPLS-DA (providing the smallest MSE

among PLS-based approaches) can be found in Fig. 1.

An overall good separation of TNBC from non-TNBC

individuals can be observed.

The individuals’ outlierness ranks by the three mod-

eling strategies were then combined for ensemble out-

lier detection by the RP test. A total of 24 observations

(Table 5) were identified as influential (10 TNBC and 14

non-TNBC), from which 2 correspond to suspect indi-

viduals regarding their label (‘TCGA-A2-A0EQ’, TNBC;

and ‘TCGA-LL-A5YP’, non-TNBC), as described above

(Table 6; Fig. 1). These 2 suspect individuals were pre-

viously misclassified by the logistic model based on the

three TNBC-associated variables (ER, PR and HER2). By

the inspection of Fig. 1 obtained by SPLS-DA, it is inter-

esting to note that all influential observations identified

by our ensemble method are placed in the opposite class
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Table 5 Ensemble outlier detection results for the TNBC dataset (mean values for the number of variables selected, MSE and

misclassifications for the random strategies are presented)

TNBC original data Random patients Random variables

LOGIT-EN SPLS-DA SGPLS LOGIT-EN

Variables selected 107 2945 551 82 65

MSE 0.020 0.025 0.084 0.032 0.035

Misclassifications 16 29 23 35 41

Parameter (α) 0.9 0.8 0.7 0.7 0.7

Parameter (L) - 4 4 - -

Resampling number - 100 100

Influential observations 24 40 37

Suspect (influential) observations 2 6 6

data cloud, with the exception of 2 non-TNBC (TCGA-

E2-A1LB and TCGA-A2-A3XV), corresponding to two

non-TNBC samples (blue marks) in the middle of the

non-TNBC data cloud, being classified as the actual class

by SPLS-DA. Although apparently well classified regard-

ing the measures for three TNBC-associated genes, these

individuals might have some abnormal behaviour the the

covariate space that make them deviating from the model

and, therefore, being highly ranked for outlierness.

A careful inspection on outlier individuals detected

might help disclosing their outlierness nature, as inconsis-

tencies regarding the HER2 (both IHC and FISH) labels

of the influential individuals can be observed (Table 6).

Fig. 1 Individuals’ distributions in the space spanned by the first two

SPLS-DA latent vectors. Circles, non-TNBC individuals; triangles, TNBC

individuals; blue data points are influential observations; red data

points are influential observations which are suspect regarding their

HER2 label

For instance, individual ‘TCGA-LL-A5Y’, a suspect indi-

vidual identified as influential, was labeled as HER2+,

when its HER2 value most probably indicates negativ-

ity for the gene. This individual was classified as HER2-

by IHC testing. Moreover, it may happen that its ER+

label is incorrect, given the corresponding ER expres-

sion value. Therefore, individual ‘TCGA-LL-A5Y’ might

indeed be a TNBC patient. The opposite situation can

be observed for patient ‘TCGA-A2-A0EQ’, showing ER

and HER2 expression values indicating positivity for the

genes (as determined by IHC), as opposed to their nega-

tive labels. If properly labeled, this individual would have

been initially classified as non-TNBC. Abnormal HER2

expression values regarding their corresponding nega-

tive labels were observed for individuals ‘TCGA-A2-A0YJ’

(240.2), ‘TCGA-LL-A740’ (68.6) and ‘TCGA-C8-A26X’

(60.1). This is particularly important for the last two

patients, as a correct HER2 label would have result in a

classification of non-TNBC instead of TNBC.

Although suspect individuals are only related to the

HER2 labels, the ensemble outlier also disclosed potential

outliers for ER and PR labels, as seen for the influential,

suspect individuals described above. From the influential

individuals identified (Table 6), several show ER and PR

FPKM values that should correspond to the opposite gene

receptor label (‘positive’ or ‘negative’), thus compromis-

ing the final TNBC patients’ classification based on the

ER, PG and HER2 labels. Besides ‘TCGA-LL-A5Y’ and

‘TCGA-A2-A0EQ’, this is also clear e.g. for individuals

‘TCGA-EW-A1P1’, ‘TCGA-C8-A3M7’, ‘TCGA-BH-A42U’,

‘TCGA-A2-A1G6’ and ‘TCGA-OL-A97C’.

It is noteworthy that our proposed ensemble approach

is robust to individual model or specific method inconsis-

tencies. In fact, if only one method is taken into account,

some outliers can fail to be identified, whereas by creat-

ing and testing a unique ensemble ranking that problem

is partially mitigated. For example, patient TCGA-C8-

A3M7 is ranked in position 1 using LOGIT-EN, but

not identified as an outlier when using SGPLS (rank
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position 153). There is strong evidence that this patient

is an outlier, based on the ER expression value that indi-

cates positivity for the gene, but was labeled as nega-

tive in the clinical data. If labeled correctly, this patient

would have been originally labeled as non-TNBC (with

at least one gene positive). On the other hand, patient

TCGA-BH-A42U is identified as an outlier when applying

LOGIT-EN and SPLS-DA (rank positions 7 and 3, respec-

tively), but not for SGPLS (rank position 223). Again, the

non-concordant ER label with respect to the ER expres-

sion might explain the outlierness of this patient. As a

final example, patient TCGA-LL-A740 is the most deviat-

ing observation for SGPLS (rank position 1), but ranked

in positions 47 and 125 for LOGIT-EN and SPLS-DA,

respectively. The outlierness of this patient might be due

to a wrong HER2 label regarding the HER2 expression.

These examples illustrate the fact that each particular

method may not be adequate to correctly identify these

observations and only an ensemble approach can detect

these cases. We hypothesize that adding more methods

or criteria may even improve the results, as the bootstrap

strategy conducted showed.

The resampling strategies, either applied to the obser-

vations (‘Random patients’) or to the variables (‘Random

variables’), were able to classify TNBC data with no loss of

accuracy regarding the mean MSE (Table 5). The number

of misclassifications increased, as expected, as by resam-

pling patients with replacement or with resampling 1000

variables out of the 20,000, some valuable information

might be lost. The mean number of variables selected

with EN regularization (α = 0.7) was 82 for the ‘Random

patients’ strategy, with 23 selected inmore than 75% of the

runs, from which 15 were in common with the consen-

sus set of 26 variables selected by the modeling strategies

evaluated applied to the original TNBC data (Table 5). For

the ‘Random variables’ strategy, the mean number of vari-

ables selected was 65, out of the 1000 randomly selected

in each run.

A total of 40 and 37 observations were found as

influential based on the ‘Random patients’ and ‘Ran-

dom variables’ strategies, respectively (Table 5). From

the influential individuals identified, 6 (the same indi-

viduals in both strategies) matched suspect individuals

identified above, i.e., individuals with discordant HER2

testing results, including the 2 suspect individuals identi-

fied as outliers based on the original TNBC data (Tables 5

and 6). More influential observations were detected upon

resampling, which might be due to the fact that the

same model, i.e., LOGIT-EN, was being used in the

100 bootstrap runs, therefore achieving more concor-

dant results, as opposed to using three different models

in the previous, not resample-based, approach. Conse-

quently, with this increase in the number of influen-

tial observations identified, a higher number of suspect

individuals identified as outliers is also expected to be

obtained.

Overall, from the application of the ensemble outlier

detection method, either to the original TNBC dataset

or to two TNBC datasets resulting from resampling indi-

viduals or gene expression variables, a consensus set of

18 outlier patients was obtained (Table 6; marked with

asterisks).

Given the difficulty in validating the outlierness of

the influential individuals identified, as no benchmark

classification for this dataset was available, six synthetic

datasets were created to evaluate the performance of

the ensemble method in controlled scenarios. The new

datasets were simulated with dimension N = 1000 (500

observations for each class, ‘1’ and ‘0’) and considering

two variable dimensional spaces of normally distributed

random variables, of p = 19688 (full dimensionality of

the TNBC dataset) and a subset of randomly selected

p = 5000, both N ≪ p scenarios. The mean and covari-

ance matrices from the TNBC and non-TNBC classes

were taken for data simulation, in order to simulate a com-

plex, more realistic and less separable scenario. A varying

percentage of simulated outliers, i.e., 2.5%, 5% and 10%,

was also considered, by randomly changing the label for

25 (2.5%), 50 (5%) and 100(10%) data points, to deter-

mine the adequacy of the RP test for identifying true

outliers. The three methods previously considered, i.e.,

LOGIT-EN, SPLS-DA and SGPLS, were used to build

the ensemble. The performance of the methods and the

ensemble was evaluated based on the number of false pos-

itives and false negatives in the top 25, 50 and 100 ranked

individuals for outlierness, based on the Cook’s distance

and the RP statistic. The selection of the top 25, 50 and

100, respectively, aimed at using the exact (known) val-

ues of the outliers. This optimal scenario avoids the use of

further selection parameters and prevents the favoring of

any of the methods analyzed. In realistic scenarios where

the number of outliers is unknown, other strategies could

be used, e.g., based on Cook’s distance distribution, with

the disadvantage that threshold values would have to be

chosen.

For all synthetic scenarios evaluated, the performance of

the ensemble method (Additional file 1) was comparable

to that of LOGIT-EN (the one identifying more outliers

considering the top ranked invididuals), either similar,

slightly lower, and in one case better (for p = 19688 and

10% simulated outliers). It is expected that accounting for

less accurate models compromises the RP performance,

so it is desired that many models are included in the

ensemble, so that less accurate models do not deterio-

rate the RP results. Even with sub-optimal solutions or

as good solutions compared to those obtained by a given

method, the use of the ensemble method proposed is

highly encourage as a way to evaluating several methods
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in a fast, automated way, instead of individually optimiz-

ing several methods (computational time consuming) and

evaluating different cut-off values for the Cook’s distances

or any other measure for outlierness chosen. Instead, it

provides a statistical assessment of the outlierness of each

individual.

In order to compare the proposed ensemble model-

based method with non-supervised approaches, we fur-

ther conducted conducted Principal Component Analysis

(PCA). Figure 2a displays the observations in the space

of principal components (PC1 and PC2), with influen-

tial observations highlighted, and where we can observe

that these individuals do not exhibit any abnormal covari-

ate patterns. When superimposing the labels, most out-

liers previously identified seem to be in the incorrect

class, however, the full identification seems to be much

more subtle, with some outliers identified placed in the

correct class and many other, not identified as outliers,

placed in the incorrect class. With no clear-cut measure

for outlierness, PCA cannot identify outliers, unless such

observations clearly stand out from the data cloud in the

covariate space of reduced dimension. The Expectation-

Maximization (EM) algorithm was then applied to the

first 2 PCs obtained with the goal of obtaining a class

membership for each observation. In a graphical repre-

sentation in the space of the first 2 PCs of the class

assigned to each individual (Fig. 2b), even without a clear

visual separation of clusters, the clusters obtained are now

homogeneous, with no individuals from the wrong pre-

dicted class. However, when compared to the actual class

labels, a total of 65 observations were clustered in the

wrong class. For those individuals, and focusing on the

class ‘1’ (TNBC) predicted individuals, for a total of 16

(Fig. 2b; coloured symbols) at least one of the 3 TNBC-

associated genes has an arguably high expression value,

thus indicating that the corresponding assignment to the

TNBC class is wrong. Therefore, our results stand as more

meaningful compared to the non-supervised methods

evaluated, which reinforces our choice of using supervised

model-based classification for outlier detection. More-

over, our ensemble method provides a statistical assess-

ment of individuals’ outlierness, not relying on either

subjective visual cut structures, definition of the number

of components extracted and clusters created, or prede-

fined cut-off measures of outlierness. In fact, for the PCA

strategy one has to choose the number of principal com-

ponents to use, then decide the clustering algorithm to be

applied (with the corresponding associated parameters)

and finally thresholds to classify the points.

The proposed ensemble outlier detection approach

therefore stands as a very promising tool for outlier detec-

tion in high-dimensional ‘omics data, being robust to

resampling strategies on both samples and variables. The

method can also be easily extended to other modeling

strategies and outlierness measures applied to different

data structures.

Genes selected

From the variables selected by LOGIT-EN, SPLS-DA and

SGPLS, 26 genes were selected in common (Table 7). Both

race and age were not selected by these dimensionality

reduction strategies. Regarding the three TNBC biomark-

ers, ER was selected as relevant by the three methods, PR

only selected by SPLS-DA, and HER2 by SPLS-DA and

SGPLS. From the 26 selected variables, 15 (out of 23) were

also selected by LOGIT-EN in more than 75% of the runs

Fig. 2 Individuals’ distributions in the space spanned by the first two Principal Components. a symbols correspond to actual labels: circles, non-TNBC

individuals; triangles, TNBC individuals; blue data points are influential observations; red data points are influential observations which are suspect

regarding their HER2 label. b symbols correspond to predicted labels by the EM algorithm: circles, non-TNBC individuals; triangles, TNBC individuals;

red data points are actual non-TNBC observations, for which at least one of the 3 TNBC-associated genes has an arguably high expression value
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Table 7 List of up and down-regulated genes in TNBC selected in common by the modeling strategies evaluated on the original TNBC

data (variables selected in common with the ‘random patients’ strategy are highlighted in bold)

Up-regulated ACE2 BPI CLDN10 DMRTA2 FTDC HAPLN3 KCNS1

KIR2DL4 KLK6 LYPD1 MFGE8 NRG4 PDX1 PIF1

POM121L2 PPP1R14C SRSF12 TAF7L UBASH3B VSNL1 ZIC1

Down-regulated ASPN CA12 CXXC5 ESR1 PGAP3

(Table 7; highlighted in bold), under the ‘Random patients’

ensemble strategy.

In order to evaluate the strength of each variable (gene)

within eachmethod, the ranks based on the absolute value

of the estimated coefficients were computed, with the

lowest rank corresponding to the largest value. The rank

levels of the variables selected in common by eachmethod

is expected to vary across methods, specially because the

number of variables selected is highly different. How-

ever, some variables were consistently highly ranked

(Additional file 1), e.g., LYPD1, and KCNS1 and PGAP3.

LYPD1 was indeed previously reported as up-regulated in

TNBC [31].

Next, we interrogated if the genes found as relevant

have been already described as differentially expressed

in TNBC versus non-TNBC. The majority of genes

(21) were up-regulated and 5 down-regulated in TNBC

(Table 7). Among the up-regulated genes, only HAPLN3

[32], MFGE8 [33], LYPD1 [31], and UBASH3B [34] were

already reported as being up-regulated in TNBC, with

LYPD1 the most consensually relevant variable by the

three models, as seen above. There were no discrepan-

cies between our data and previously published results.

The 5 down-regulated genes in TNBC corresponded to

the estrogen receptor (ESR1), as expected, and also CA12,

ASPN, PGAP3 and CXXC5. Only CA12 and ASPN were

previously reported as being strongly down-regulated in

TNBC [35, 36].

As variable selection might be influenced by the pres-

ence of outliers, LOGIT-EN, SPLS-DA and SGPLS were

applied again to the TNBC dataset, after changing the

label of the influential individuals identified by the ensem-

ble method, as described in Section Methods. To evaluate

the effect of changing the labels of the most influential

observations, we have switched the label of 12 out of the

24 influential observations corresponding to the patients

that were misclassified at least by two models out of three

models built. Sixteen variables were selected in common

by the three models, with eleven (ESR1, TAF7L, ACE2,

CLDN10, HAPLN3, DMRTA2, LYPD1, SRSF12, PGAP3,

CXXC5 and PPP1R14C) shared with the variables selected

when accounting for all patients with the original labels.

Some of these variables have been previously reported

as TNBC-related, namely, ESR1, HAPLN3 and LYPD1, as

seen above. An increase in model accuracy in terms of

MSE for the three new models was also observed (0.012,

0.010 and 0.078 for LOGIT-EN, SPLS-DA and SGPLS,

respectively). From the set of new variables selected,

i.e., NOTO, CT83, SLCO1B1, VSX2 and TTLL4 (all up-

regulated in TNBC), only SNPs of SLCO1B1 showed sig-

nificant associations with postmenopausal breast cancer

risk, no specific sub-type.[37]

Overall, the biological and pathological role of these

genes, previously related to breast cancer, support our

method, regarding variable selection. It will be interest-

ing to address the putative role of the remaining genes in

breast cancer, in particular TNBC.

Conclusions
High-dimensional cancer genomic and clinical profiles

require appropriate modeling strategies to reduce the

complexity of the data while keeping the relevant infor-

mation to accurately classify patients into their cancer

type. In the context of outlier detection, the use of dif-

ferent data reduction and modeling techniques often

lead to the identification of different sets of outlier

observations, as some of them might be disregarded

depending on the model chosen. Here we have shown

the potential of ensemble model-based outlier detection

for identifying outlier individuals based on their gene

expression and clinical variables. The proposed method

proved to be robust to resampling strategies, either in

patients or variables, providing a consensus set of out-

lier observations in the framework of high-dimensional

omics data and robustly coping with the inherent esti-

mation challenges. The present results represent a valu-

able tool to significantly improve patient classification

regarding their type of cancer and determining which

patients should be re-evaluated before any therapeu-

tic decision. Moreover, the model consensus approach

leads to the selection of a set of covariates/genes that

may be linked to the disease and potentially disclose

new therapeutical targets for clinical management of

TNBC.

Additional file

Additional file 1: Ensemble outlier detection and gene selection in

triple-negative breast cancer data. (XLSX 4010 kb)

https://doi.org/10.1186/s12859-018-2149-7
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21. Chung D, Keleş S. Sparse partial least squares classification for high

dimensional data. Stat Appl Genet Mol Biol. 2010;9(1):17.

22. Cook RD. Detection of influential observations in linear regression.

Technometrics. 1977;19:15–18.

23. Cook RD. Influential observations in linear regression. J Am Stat Assoc.

1979;74:169–74.

24. Hosmer DW, Lemeshow S, Sturdivant RX. Sturdivant RX. Applied Logistic

Regression. 3rd ed. Wiley; 2013.

25. Pregibon D. Logistic regression diagnostics. Ann Stat. 2013;9:705–724.

26. Heskes T, Eisinga R, Breitling R. A fast algorithm for determining bounds

and accurate approximate p-values of the rank product statistic for

replicate experiments. BMC Bioinformatics. 2014;15:367.

27. Storey JD. A direct approach to false discovery rates. J R Stat Soc B.

2002;13(2):216–25.

28. The Ensembl genome browser. http://www.ensembl.org/index.html.

Accessed May 2017.

29. The Consensus CDS (CCDS) project. https://www.ncbi.nlm.nih.gov/

projects/CCDS/CcdsBrowse.cgi. Accessed 20 May 2017.

30. Venet D, Dumont JE, Detour V. Most random gene expression signatures

are significantly associated with breast cancer outcome. PLOS Comput

Biol. 2011;7(10):1002240.

http://web.tecnico.ulisboa.pt/susanavinga/TNBC/
http://www.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi
https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi


Lopes et al. BMC Bioinformatics  (2018) 19:168 Page 15 of 15

31. Burnett RM, Craven KE, Krishnamurthy P, Goswami CP, Badve S,

Crooks P, Mathews WP, Bhat-Nakshatri P, Nakshatri H. Organ-specific

adaptive signaling pathway activation in metastatic breast cancer cells.

Oncotarget. 2015;6(14):12682–96.

32. Santuario-Facio SK, Trevino V, Uscanga-Perales G, Martinez-Rodriguez JL,

Martinez-Jacobo L, Padilla-Rivas G, noz-Maldonado GM, Gonzalez-Guerrero JF,

Valero-Gomez J, Vazquez-Guerrero AL, Martinez-Rodriguez HG,

Barboza-Quintana A, Barboza-Quintana O, Garza-Guajardo R,

Ortiz-Lopez R. A new gene expression signature for triple negative breast

cancer using frozen fresh tissue before neoadjuvant chemotherapy.

Mol Med. 2017;23:101–11.

33. Yang C, Hayashida T, Forster N, Li C, Shen D, Maheswaran S, Chen L,

Anderson KS, Ellisen LW, Sgroi D, Schmidt EV. The integrin

alpha(v)beta(3-5) ligand mfg-e8 is a p63/p73 target gene in

triple-negative breast cancers but exhibits suppressive functions in er(+)

and erbb2(+) breast cancers. Cancer Res. 2011;71(4):937–45.

34. Lee ST, Feng M, Wei Y, Li Z, Qiao Y, Guan P, Jiang X, Wong CH,

Huynh K, Wang J, Li J, Karuturi KM, Hoon DS, Kang Y, Yu Q, Tan EY.

Proc Nat Acad Sci USA. 2013;110(27):11121–6.

35. Maris P, Blomme A, Palacios AP, Costanza B, Bellahcène A, Bianchi E,

Gofflot S, Drion P, Trombino GE, Valentin ED, Cusumano PG, Maweja S,

Jerusalem G, Delvenne P, Lifrange E, Castronovo V, Turtoi A. Asporin is a

fibroblast-derived tgf-beta1 inhibitor and a tumor suppressor associated

with good prognosis in breast cancer. PLoS Med. 2015;12(9):1001871.

36. Lei B, Zhang XY, Zhou JP, Mu GN, Li YW, Zhang YX, Pang D.

Transcriptome sequencing of her2-positive breast cancer stem cells

identifies potential prognostic marker. Tumour Biol. 2016;37(11):

14757–64.

37. Reimer T, Kempert S, Gerber B, Thiesen H-J, Hartmann S, Koczan D.

Slco1b1*5 polymorphism (rs4149056) is associated with

chemotherapy-induced amenorrhea in premenopausal women with

breast cancer: a prospective cohort study. BMC Cancer. 2016;16:337.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Classification and dimensionality reduction
	The rank product (RP) test
	Triple-negative breast cancer (TNBC) data
	Model selection

	Results and discussion
	TNBC data
	Exploratory analysis
	Ensemble outlier detection
	Genes selected


	Conclusions
	Additional file
	Additional file 1

	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References

