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Abstract. While the quality of object recognition systems can strongly
benefit from more data, human annotation and labeling can hardly keep
pace. This motivates the usage of autonomous and unsupervised learn-
ing methods. In this paper, we present a simple, yet effective method for
unsupervised image categorization, which relies on discriminative learn-
ers. Since automatically obtaining error-free labeled training data for
the learners is infeasible, we propose the concept of weak training (WT)
set. WT sets have various deficiencies, but still carry useful information.
Training on a single WT set cannot result in good performance, thus
we design a random walk sampling scheme to create a series of diverse
WT sets. This naturally allows our categorization learning to leverage
ensemble learning techniques. In particular, for each WT set, we train
a max-margin classifier to further partition the whole dataset to be cat-
egorized. By doing so, each WT set leads to a base partitioning of the
dataset and all the base partitionings are combined into an ensemble
proximity matrix. The final categorization is completed by feeding this
proximity matrix into a spectral clustering algorithm. Experiments on a
variety of challenging datasets show that our method outperforms com-
peting methods by a considerable margin.

1 Introduction

Image categorization is an intensely studied field with many applications. In the
last decade, advances in representations and supervised learning methods have
led to great progress [1,2,3,4]. However, the explosion of available visual data,
the cost of annotation, and the user-specific bias of annotations have resulted
in an increased focus on learning with less supervision. While powerful methods
for semi-supervised [5] or weakly-supervised learning [6,7] have been proposed,
unsupervised methods have been studied less.

In this paper, we are interested in automatically discovering image categories
from an unordered image collection. This task is hard as objects and scenes
can appear with clutter, large variations in pose and lighting, high intra-class
variances and low inter-class variances. The recent success of discriminative
classifiers in supervised image categorization [1,2,4] suggests that one possible
way to progress in unsupervised image categorization is to construct a simi-
lar scenario, in which the power of discriminative classifiers can be leveraged.
Since obtaining a pure training set automatically is infeasible, in this paper, we
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Fig. 1. The pipeline of our method for an image collection comprised of four categories:
face, car, panda and duck. The pseudolabels in the weak training (WT) sets are as-
signed by our random walk sampling scheme. The image collection is partitioned by the
classifiers learnt from the WT sets and the results are stored into the binary proximity
matrices. All of the binary matrices are then averaged into the ensemble proximity
matrix (EnProx) as input for spectral methods. As expected, the partitionings of the
WT sets contain errors, but their errors differ, which discovers the underlying truth
by ensemble learning techniques.

propose the concept of WT sets (c.f . definition in § 2) that can be exploited
with supervised learning techniques. Since knowledge carried by a single WT set
is limited, we develop a very simple, yet effective random walk (RW) sampling
method to create a set of diverse WT sets. The RW sampling is performed in
the space of pairwise similarities built up by common distance measures. Sam-
ples that are hard to cluster using common distance measures are left out in
the sampling step so that the sampled WT sets are not too noisy. In order to
learn knowledge contained in these WT sets for unsupervised categorization, we
propose the ensemble partitioning framework based on the ensemble learning
principle [8].

The remainder of this paper is structured as follows: § 2 reports on related
work and introduces our method. In § 3 we make observations that inspired
the approach described in § 4. We show improvement over the state-of-the-art
through evaluations in § 5. § 6 concludes the paper.

2 Unsupervised Image Categorization

2.1 Related Work

Several unsupervised image categorization techniques have been proposed.
Fergus et al . [9] modeled objects as constellations of visual parts and esti-
mated parameters using the expectation-maximization algorithm for unsuper-
vised recognition. Sivic et al . [10] proposed using aspect models to discover
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object categories from an unordered image collection. Aspect models were orig-
inally developed for content analysis in textual document collections, but they
perform very well for images as well [10]. Later on, [11] used Hierarchical Latent
Dirichlet Allocation to automatically discover object class hierarchies. For scene
category discovery, Dai et al . [12] proposed to combine information projection
and clustering sampling. All these methods share assumptions about the sample
distribution. Image categories, nevertheless, are arranged in complex and widely
diverging shapes, making the design of explicit models difficult. An alternative
strand, which is more versatile in handling structured data, builds on similarity-
based methods. Frey and Dueck [13] applied the affinity propagation algorithm
[14] for unsupervised image categorization. Grauman and Darrell [15] developed
partially matching image features to compute image similarity and used spectral
methods for image clustering. The main difficulty of this strand is how to mea-
sure image similarity as the semantic level goes up. For a more detailed survey,
we refer readers to [16].

The method closest to ours is that of Gomes et al . [17]. They also propose a
framework for learning discriminative classifiers while clustering the data, called
regularized information maximization. Yet, the method still significantly differs
from ours. In particular, [17] finds a partitioning of images that results in a
‘good’ discriminative classifier, which is evaluated by three criteria: class separa-
tion, class balance and classifier complexity. Our method however, more closely
follows the training-test paradigm; that is, sample a series of weak training sets,
learn knowledge from these sets and classify the whole dataset with this learned
knowledge. Our method also shares similarities with the method of Lee and
Grauman [18]. They proposed to use curriculum learning (CL) [19] for unsuper-
vised object discovery. CL imitates the learning process of people; that is, using
a pre-defined learning schedule, it starts from learning the easiest concepts first
and graduately increases the complexity of concepts [19]. Besides technical dif-
ferences, the main benefit of our work compared to [19] is that we do not rely
on pre-selected learning schedules.

As we already stated, our method builds on the ensemble learning principle [8].
Ensemble methods build a committee of (usually weak) base learners that over-
all performs better than its individual parts. Thereby, they benefit from the
strength and diversity of their base learners. Popular ensemble methods that
have been successfully applied in computer vision are boosting [20], bagging [21]
and random forests [22]. There has been previous work using ensemble methods
for clustering e.g. [23,24]. The main difference of our work to [23,24] is that
we focus on high-level categories. [23,24] make basic assumptions about the un-
derlying distributions, which are hard to obtain for our task and, hence, makes
previous methods only applicable in rather low-level clustering tasks. In con-
trast, we propose to learn category distinctions from sampled training data. We
also differ from previous approaches in the way we combine our base learners. In
particular, [24] used a boosting framework and [23] used hierarchical clustering,
while our method is based on spectral techniques.
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2.2 Notation and Overview

In this section, we first give the definition of the weak training set and then give
an overview of our method.

Definition 1. Given a categorization task E, a weak training set is a labeled
dataset B which has severe deficiencies to be a good training set, e.g. some cat-
egories may be absent, some may be impure, and/or some may be with bias,
but training on it can lead to a weak classifier φ(.) which performs better than
random guessing for the task E.

Our dataset D consists of N images, each belonging to one of C categories. The
task is to discover these categories. Each image is represented by a d-dimensional
feature vector fn, n ∈ {1 . . .N}. Assume that the ensemble partitioning learns
knowledge from T WT sets in total. For the tth trial, the WT set Dt = {st, ĉt}
is a set of sampled images st and their pseudolabels ĉt, which imitate the role of
labeled training data in supervised frameworks. The unordered image collection
D is partitioned according to the discriminative classifier φ(.)t learnt from the
WT set Dt. Classification from each trial t creates a unique partitioning of
the data D. Since pseudolabels cannot be mapped into correspondence across
different trials, the classification agreement between image pairs in each trial t is
stored as a binary proximity matrix A

t, where atij = 1 implies that images i, j ∈

{1 . . .N}2 belong to the same class. The final proximity matrix A, is averaged
over all the T binary matrices: A = 1

T

∑

t A
t. The final categorization results

are obtained by feeding A to a spectral clustering algorithm. The whole pipeline
of our method is sketched in Fig. 1. Though simple, our method outperforms
competing methods by a considerable margin on various challenging datasets.

The main contribution of this paper is a novel approach to unsupervised im-
age categorization. In particular, we (i) propose the concept of WT sets for
image categorization, (ii) design a random-walk based sampling scheme to gen-
erate them, and (iii) propose the ensemble partitioning framework to learn the
category distinctions for unsupervised image categorization.

3 Observations

In this section, we share some insights with the reader that help to motivate
our approach and understand why it is working better. We raise two questions:
First, how much does the impurity of the training data in WT sets influence the
convergence of the learning? Second, given a standard distance metric, how does
one approach the problem of getting good WT sets in an unsupervised manner?

Observation 1: Ensemble learning can learn the essence of categories from a
series of diverse WT sets. We examined this idea in supervised image cate-
gorization. Given the ground truth data divided as training and test sets: D =
{Dtrain,Dtest}, (i) we artificially synthesized a set ofWT sets Dtrain

t , t = 1, . . . , T
from training data Dtrain, and (ii) ensemble learning was then performed on these
sets and its performance on test data classification was measured.
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Fig. 2. Classification accura-
cies of ensemble learning on
the 15-Scene dataset [1], for
varying training label noise R
and number of WT sets T .
High precision can be learnt
for noise percentage as high
as 80% given enough WT sets
(Best viewed in color).

In order to guarantee the diversity of the training sets (for ensemble learning),
each WT set Dtrain

t is formed by randomly taking 30% of the images from Dtrain,
and randomly re-assigning labels of a fixed percentage R of these. Hence, R = 0
corresponds to the upper performance bound as every sample is assigned its
true label. A classifier is trained for each of these WT sets. At test time, each of
these classifiers returns the category label of each image in Dtest. The winning
label is the mode of the results returned by all the classifiers. Fig. 2 evaluates
this for the 15-Scene dataset [1]. Linear SVMs are used as the classifiers with a
concatenation of GIST [25], PHOG [2] and LBP [26] as input. When the label
noise percentage R is low, the classification precision starts out high and levels
quickly with T , as one would expect. But interestingly, for R even as high as
80%, the classification precision, which starts low, converges to a similarly high
precision given more WT sets T (≈ 500). This shows that it is possible to learn
the essence of image categories even from very weak (extremely mislabelled)
training sets, given a sufficient number with diverse deficiencies. This is crucial
for our task, because WT sets are much easier to get than pure training data in
unsupervised settings.

Observation 2: Given a standard distance metric, how does one approach the
problem of getting good (precise and diverse) WT sets without supervision?
An ideal image representation along with a powerful metric should ensure that
all images of the same category are more similar to each other than to those
of other categories. In order to examine it, we tabulate how often an image is
from the same category as its kth-nearest neighbor. We refer to the frequency as
label co-occurrence probability p(k). p(k) is averaged across images and labels in
the dataset. Various features and distance metrics were tested: GIST [25] with
Euclidean distance, PHOG [2] and LBP [26] with the χ2 distance.

Fig. 3 shows the results on the 15-Scene dataset [1]. The results reveal that
using the distance metric in conventional ways (e.g. clustering by K-means and
spectral methods) will result in very noisy training sets, because the label co-
occurrence probability p(k) drops very quickly with k. However, sampling in the
very close neighborhood of a given image is likely to generate more instances of
the same category, whereas sampling in very far-away space can gather samples of
new categories. This suggests that samples along with a few very close neighbors,
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Fig. 3. The label co-
occurrence probability p(k)
calculated on the 15-Scene
dataset (4485 images in total)
using GIST [25] with Eu-
clidean distance, and PHOG
[2] and LBP [26] with the
χ2 distance (Best viewed in
color).

namely “compact” image clusters, can form a training set for a single class, and
a set of such image clusters which scatter far away from each other in feature
space can serve as a good WT set for our task. Furthermore, sampling in this
way provides the chance of creating a large number of diverse WT sets, due to
the small size of the sampled WT set. This will be further examined in § 4.1.

4 Our Approach

In this section, we introduce our approach for unsupervised image category dis-
covery. It has two interleaved parts: 1) the creation of the weak training (WT)
sets by random walk (RW) sampling, and 2) learning the ensemble proximity
matrix A for categorization.

4.1 Creating WT Sets via Random Walk Sampling

A WT set Dt = {st, ĉt} consists of a set of st ∈ {1 . . .N}Q images of size Q
sampled from D, where Q = CK and K is the ideal number of training images

for each of the C classes. ĉt ∈
{

1 . . . Ĉt

}Q

are pseudo labels, assigned during the

creation of WT set Dt. Note that Ĉt refers to the number of empirical categories
estimated in the tth trial and does not necessarily have to reflect the true C.

Recall that as an insight from § 3, in the creation process of WT sets and with
respect to a standard distance measure, images that get assigned the same pseudo
labels ĉ should be very close to each other and images with different pseudo la-
bels far away, respectively. Additionally, ensemble learning theory teaches us
that weak learners should have low bias but high variance to form a power-
ful combined classifier [8]. We use strong discriminative learners (see below) to
achieve the first requirement and we incorporate randomness into the sampling
process to ensure the second one [21,22].

To this end, we adopt a random walk [27] based sampling method. In detail,
each image is taken as a node and the weight of the edge between nodes i and
j is defined as

wi,j =

{

0 if i = j

exp{−dist(fi,fj)
2

σ2 } otherwise
(1)
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Fig. 4. A toy example of random walk
sampling in an image collection com-
prised of images from three categories.
Solid lines indicate the process of ex-
ploiting neighborhoods. Dash lines in-
dicate the process of exploring the
space for new categories. The isolated
red samples indicate the ‘far’ samples
explored. The numerical numbers de-
notes the pseudolabels. (Best viewed in
color).

where dist(·, ·) denotes a common distance measure and σ is a scale parameter.
Besides the N nodes from individual images, we take the current WT set Dt

as the (N + 1)th node in order to provide the possibility of jumping to a far-
away node from all visited nodes. Its weight to node j ∈ {1, ..., N} is defined
as wN+1,j = argmax∀i∈st

wi,j and to itself it is 0. The maximization is used
to guarantee that nodes far away from node (N + 1) are far away from all the
visited nodes. Note that node N + 1 and its weights need to be updated when
a new node is visited: a new image is added into Dt. When Dt = ∅, its weights
are uniformly distributed over all images. Having all the weights, we define the
transition matrix to be

P = [pi,j ](N+1)×(N+1) =
[

wi,j∑
k
wi,k

]

(N+1)×(N+1)
. (2)

Obtaining each WT set Dt involves sampling for Q images (visiting Q nodes)
and assigning pseudolabels ĉt to them. Starting with Dt = {}, it is built up
using the following scheme: at each instant either jump to a neighboring node i
of the previously visited node j to exploit the regions already explored, or jump
to a node i that is far away from all the visited nodes, to explore the space of
new categories. The corresponding image is added to st. The pseudolabels are
generated as follows: every time a ‘far’ node is explored, a new class label is
assigned to it. If a node i neighboring node j is selected, the class label of image
j is assigned to it. The above scheme is formally described in Algo. 1 and a toy
example is illustrated in Fig. 4. For the handling of node N + 1, the reader is
referred to Algo. 1.

4.2 Ensemble Partitioning

We now explore the use of theWT sets acquired in § 4.1 for image categorization.

In particular, we train a discriminative classifier for each trial t: φt(·) ∈
{

1 . . . Ĉt

}

for each WT set Dt. The full data D is then classified by φt to obtain a binary
proximity matrix A

t, where atij = 1, if φt(fi) = φt(fj), and 0 otherwise. The
binary proximity matrices over multiple trials are combined into an ensemble
proximity matrix A = (1/T )

∑

t A
t. We employ an SVM-based Ĉt-class classifier



490 D. Dai et al.

Algorithm 1. RW Sampling in tth trial

Input:
– Image data D, feature representation matrix F

– Initialize training set st = {any(1 . . . N)} and ĉt = {1}
– Initialize transition matrix P

for m = 1 → Q− 1 do

1. With probability (Q−C)/Q exploit the neighborhood:
Jump to a neighboring node i∗ ∈ {1, ...N}\st with probability

P(stm,i∗)∑
j∈{1,...N}\st

P(stm ,j)
, c∗ = ĉtm OR

2. With probability C/Q explore new space:

Jump to a ‘far’ node i∗ ∈ {1, ..., N}\st with probability 1−P(N+1,i∗)∑
j∈{1,...N}\st

1−P(N+1,j)
,

assign a new category label to c∗.
Add sample i∗ to st and pseudolabel c∗ to ĉt.
Update transition matrix P.

end for

Algorithm 2. Ensemble Partitioning
Input:
– the image dataset D, feature representation F.
– Initialize proximity matrix A = 0.
for t = 1 → T do

0. Initialize the current proximity matrix At = 0.
1. Sample Dt = {st, ĉt} using Algo. 1.

3. Train classifier φt(·) ∈
{

1 . . . Ĉt

}

on Dt.

4. Partitioning the entire data D according to:
at
ij = ∆(φt(fi), φt(fj)),∀ {i, j} ∈ {1 . . . N}2,

end for

A = 1
T

∑

t
At.

Obtain object categorization by spectral clustering on A.

φt in each trial as they usually work well for most features types. Additionally,
they have also been shown to generalize well even when trained only on a few
training samples [28], which is an important characteristic as we keep the size
of the individual WT sets relatively small. Given a collection of WT sets, the
ensemble partitioning is summarized in Algo. 2. Final categorization can be
completed by feeding A to any similarity-based clustering algorithm. In this
work, we choose spectral clustering due to its simplicity and popularity. The
whole pipeline of Fig. 1 has now been explained.

5 Experiments

In this section, we elaborate upon the datasets, evaluation criteria and experi-
mental settings for the evaluation of the proposed approach.

Evaluation Datasets: We tested our method on three datasets: 15-Scene [1],
Caltech-101 [29], and a 35-Compound dataset. The 15-Scene dataset contains 15
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scene categories in both indoor and outdoor environments. Each category has 200
to 400 images, and they are of size 300× 250 pixels on average. The Caltech-101
dataset [29] contains 101 object categories and is one of the most popular datasets
for supervised object recognition. The large number of categories, combined with
the uneven category distribution (from 31 to 800 images per category), poses a
real challenge for unsupervised categorization. In order to evaluate our method
on a more general image dataset, we composed a 35-Compound data set by
mixing up the 15 scene categories [1] with the 20 object categories selected from
Caltech 256. The 20 object categories are: American flag, fern, French horn,
leopards 101, pci card, tombstone, airplanes 101, diamond ring, fire extinguisher,
ketch 101, mandolin, rotary phone, Pisa tower, face easy 101, dice, fireworks,
killer whale, motorbikes 101, roulette wheel, and zebra.

Features: The following features are considered in our experiments: f1 =SIFT
[30], f2 = GIST [25], f3 =PHOG [2], f4 = LBP [26], f5 = GIST + PHOG,
f6 = GIST + LBP, f7 = PHOG + LBP, and f8 = GIST + PHOG + LBP,
where + means a simple concatenation. GIST features are computed on resized
images of 256 × 256 pixels and other features are computed on the original
images. For PHOG, we computed the derivatives in 8 directions and used a two-
layer pyramid. For LBP, the uniform LBP was used. For SIFT, we used Hessian
detectors and k-means to get 300 centroids for the bag-of-feature representation.

5.1 Experimental Setup

Our Method: We evaluated our approach against competing methods for the
datasets and features described above. The number of categories C is assumed
to be known. Although the transition matrix P of § 4.1, Algo. 1, the classifier
φt of § 4.2 and Algo. 2 use the same notation for their features, speed-accuracy
tradeoffs may cause different features to be optimal at each stage. Since GIST
features have proven very effective for holistic image categorization with the
Euclidean distance [25], we adopted them for building P of Algo. 1, where dist(·, ·)
in Eq. 1 is the Euclidean distance between features. For training the classifiers,
f2 − f8 were considered 1. For the evaluation and comparison across all the
datasets and features, we used the same set of parameters: T = 1000 and K = 9.
The influence of these two parameters on the performance of our method was
also tested on the three datasets, where a set of T ’s in the range of [1, 1000]
and a set of K’s in the range of [3, 30] were evaluated. The σ in Eq. 1 is set
automatically by using a self-tuning method proposed in [31], which has already
shown promising performance for similarity scaling.

Competing Methods: We compared our method to well-known clustering meth-
ods: k-means and spectral clustering. For k-means, four features f2 − f4 and
f8 were tried. For spectral clustering, the same features are tried: f2 with the
Euclidean distance measure, f3 and f4 with the χ2 distance measure, and f8

1 The reason why we did not consider f1 is to avoid severe over-fitting, given the small
size of the WT sets and the high dimension of f1.
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with the Mahalanobis distance measure with diagonal covariances (the off di-
agonal elements were set to 0). We selected these combinations just because
the χ2 distance measure is superior for histogram-based features, and the Maha-
lanobis distance measure with diagonal covariances is capable of learning feature
weights. We also compared our method to the PLSA-based method of [10], the
affinity propagation method (AP) of [14], and the regularized information max-
imization method (RIM) of [17]. f1 is used as the input for the PLSA-based
method. Spatial pyramid matching (SPM) [1] is used as the input for the RIM
as it was used in [17]. The AP used the same input as the spectral clustering. For
the implementation, we used the authors’ code directly 2 3 4. Since the number
of categories cannot be set directly in the RIM and the AP – the input param-
eters are searched to yield the right number of categories – we only tested these
two methods on the 15-Scene dataset.

Baselines for Sampling: To investigate the performance of our random walk
sampling scheme, we create two baselines for obtaining the WT sets. Everything
else in Algo. 2 remains as before. GIST features are also used for the baselines.

1. Baseline 1: In the tth trial, run k-means on the whole dataset to cluster
images into C groups. The WT set Dt was created by adding all images and
their labels to st and ct, resp.

2. Baseline 2: In the tth trial, we run k-means on a bootstrap subset of the
whole dataset. For a fair comparison to the WT sampling, CK images were
randomly selected for each subset with K = 9. Again, the WT set Dt was
created by adding all images and their labels to st and ct, resp.

5.2 Results and Discussion

We follow [12,16] to use the purity (the bigger the better) for performance evalu-
ation. First, let us compare our method to existing methods. Table 1 lists the av-
erage and variance of the purity over 10 runnings of all the methods on 15-Scene,
Caltech-101 and the 35-Compound dataset. The table shows that our method
outperforms all the competing methods by a substantial margin on all the three
datasets while having comparable variance. The superiority of our method can
be attributed to its discriminative learning ability, which gives more weight to
relevant variables and rejects the irrelevant ones. This can be proven by simply
examining how the performance of our method improves when providing more
features to the classifier. This learning ability is crucial for image and object
categorization, as so far no single feature can describe all image categories very
well. The classifier trained on each individual WT set may yield over-fitting,
but this can be offset by the classifiers trained on other WT sets as the sets are
mutually diverse.

2 http://www.robots.ox.ac.uk/~vgg/software
3 http://vision.caltech.edu/~gomes/software.html
4 http://www.psi.toronto.edu/index.php?q=affinity%20propagation

http://www.robots.ox.ac.uk/~vgg/software
http://vision.caltech.edu/~gomes/software.html
http://www.psi.toronto.edu/index.php?q=affinity%20propagation
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Table 1. Categorization results on 15-Scene, Caltech-101 and the 35-Compound
dataset. SClustering, EnPar, G, P, L are the shorthands of spectral clustering, en-
semble partitioning, GIST, PHOG, and LBP respectively. A(f) means that feature f
is used for training the classifier of our method. A1 and A2 indicate that the WT sets
are obtained by the baseline 1 and baseline 2 respectively.

Methods Input

K-means G
K-means P
K-means L
K-means G+P+L
Sclustering Euclidean(G)
Sclustering χ2(P)
Sclustering χ2(L)
Sclustering Mahalanobis(G+P+L)

PLSA [10] SIFT
RIM [17] SPM[1]
AP [14] Euclidean(G)
AP [14] χ2(P)
AP [14] χ2(L)
AP [14] Mahalanobis(G+P+L)

EnPar A(G)
EnPar A(P)
EnPar A(L)
EnPar A(G+P)
EnPar A(G+L)
EnPar A(P+L)
EnPar A(G+P+L)

EnPar A1(G+P+L)
EnPar A2(G+P+L)

15-Scene

Purity (%)

39.44 (1.01)
29.99 (0.72)
29.01 (0.66)
31.50 (1.08)
43.48 (1.04)
29.32 (0.89)
34.09 (0.96)
42.05 (1.60)

29.34 (1.21)
38.40 (1.04)
40.71 (0.98)
32.14 (0.73)
35.23 (0.82)
44.24 (1.01)

46.31 (0.88)
44.31 (0.81)
46.44 (0.91)
56.27 (0.98)
55.41 (0.95)
56.10 (1.01)
61.49 (1.08)

47.52 (0.84)
55.43 (0.98)

Caltech-101

Purity (%)

28.71 (0.30)
30.35 (0.26)
29.66 (0.31)
35.51 (0.35)
33.48 (0.52)
35.77 (0.82)
34.71 (0.71)
37.72 (0.64)

26.57 (0.81)
–
–
–
–
–

35.79 (0.60)
36.20 (0.58)
37.16 (0.64)
39.37 (0.79)
39.60 (0.78)
40.40 (0.83)
42.31 (0.88)

35.76 (0.55)
39.90 (0.82)

35-Compound

Purity (%)

34.32 (0.39)
26.71 (0.47)
33.06 (0.34)
35.28 (0.67)
41.12 (0.32)
33.16 (0.73)
44.49 (0.60)
48.51 (0.85)

28.21 (0.79)
–
–
–
–
–

45.14 (0.66)
41.78 (0.59)
53.18 (0.71)
53.17 (0.68)
55.01 (0.72)
56.60 (0.81)
58.34 (0.76)

42.70 (0.65)
52.12 (0.74)

Secondly, let us compare the three ways of creating the WT sets. From Ta-
ble 1, we can see that the RW sampling outperforms the two baselines substan-
tially. This superiority can be attributed to the good diversity and accuracy of
theWT sets generated by the RW sampling, obviously fulfilling the requirements
of successful ensemble learning [8]. The accuracy comes from the underlying prin-
ciple of the RW sampling: with a high probability choosing the most separable
images and leaving out the ambiguous images, which will be handled after ab-
stracting knowledge by the max-margin learning. The great diversity comes from
the random jumping by the RW sampling. The possibility that two WT sets are
the same or very similar is very low. The superiority of baseline 2 over baseline
1 results from the higher diversity of the WT sets that baseline 2 generated.
Using the bootstrap technique to increase the diversity of training sets and in
turn boost overall performance, has been widely accepted for supervised learn-
ing. Our experimental results confirm that this diversity is also very important
for unsupervised scenarios like ours.
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Fig. 5. The purity of discovered categories as a function of T and K

One may argue that the WT sets generated by the RW sampling are not
precise and the precision of some individual sets may be affected by the outliers
in the dataset. This is true, but our method demands far less from a WT set
than a supervised categorization method does from its training set – the label
assignment of the WT sets only needs to be better than random guessing. The
imprecision of one WT set can be offset by other WT sets since their deficiencies
are different. This is analogous to the weak learner of ensemble learning methods
such as bagging and boosting – each weak learner could be imprecise, but the
ensemble is precise and with good generality. Also, our categorization framework
is very flexible and not tied to the way theWT sets are created. Any method that
can generate good WT sets can be used in this framework. The RW sampling
is a case in point. An interesting thing is that even using the WT set created
by the two casual baselines, the ensemble partitioning framework can generate
more precise results than competing methods.

Furthermore, let us examine the influence of the parameters T and K on the
performance of our method. Fig. 5 shows the evaluation results over a variety
of values for T and K. From the curves of T in Fig. 5, it is evident that the
purity increases pretty fast with T but then also stabilizes quickly to a good
performance. That is, our method benefits from adding more WT sets and can
provide accurate results when a fairly large number of WT sets are provided.
This is quite similar to how bagging [21] and random forests [22] behave with
different numbers of training sets. For parameter K = Q/C, we find that very
small and very large values (e.g. 3 and 30 in our case) degrade the performance.
A very small K leads to insufficient training samples per category and a very
largeK results in very noisy training sets. But as Fig. 5 shows, our method is not
overly sensitive to the choice of K: there are large ranges to select appropriate
values from. Its choice can be based on the experience of choosing training data
for supervised categorization.

Finally, though additional time is needed for training (most unsupervised
categorization methods need no training), our method is still quite efficient. The
efficiency comes from two factors: 1) Training linear SVMs is very efficient by
using the optimized package5; and 2) the performance of our method stabilizes

5 www.csie.ntu.edu.tw/~cjlin/liblinear

www.csie.ntu.edu.tw/~cjlin/liblinear
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quickly with respect to T as Fig. 5 shows. The training time on a Core i5 2.80
GHz desktop PC are: 3.67 minutes for 15-Scene (4485 images in total), 66.18
minutes for Caltech-101 (8251 images in total), and 12.33 minutes for the 35-
Compound dateset (8671 images in total). Furthermore, our method is inherently
parallelizable and can take advantage of multi-core processors.

6 Conclusion

This paper has tackled the hard task of unsupervised image categorization. To
this end, we leveraged the power of discriminative learning and ensemble meth-
ods. We presented the concept of weak training sets and proposed a new yet
simple sampling scheme, denoted as RW sampling, to generate them. For each
weak training set, a discriminative classifier is trained to get a base partitioning of
the unordered image collection and then all the base partitionings are combined
to a strong ensemble proximity matrix that can be incorporated into spectral
clustering. In the experiments on several challenging datasets, we showed that
our method is able to consistently outperform the state-of-the-art methods. The
study poses multiple interesting questions for future research: Is it possible to
design more sophisticated methods for the creation of the WT sets, rather than
relying on the common distance metric as we do? What is the way of extend-
ing the method to handle noisy web data? How could we apply the method to
weakly-supervised image categorization?
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