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Abstract. Quantifying the uncertainty of flood forecasts

by ensemble methods is becoming increasingly important

for operational purposes. The aim of this paper is to ex-

amine how the ensemble distribution of precipitation fore-

casts propagates in the catchment system, and to interpret

the flood forecast probabilities relative to the forecast errors.

We use the 622 km2 Kamp catchment in Austria as an exam-

ple where a comprehensive data set, including a 500 yr and

a 1000 yr flood, is available. A spatially-distributed contin-

uous rainfall-runoff model is used along with ensemble and

deterministic precipitation forecasts that combine rain gauge

data, radar data and the forecast fields of the ALADIN and

ECMWF numerical weather prediction models. The analy-

ses indicate that, for long lead times, the variability of the

precipitation ensemble is amplified as it propagates through

the catchment system as a result of non-linear catchment re-

sponse. In contrast, for lead times shorter than the catch-

ment lag time (e.g. 12 h and less), the variability of the pre-

cipitation ensemble is decreased as the forecasts are mainly

controlled by observed upstream runoff and observed pre-

cipitation. Assuming that all ensemble members are equally

likely, the statistical analyses for five flood events at the

Kamp showed that the ensemble spread of the flood forecasts

is always narrower than the distribution of the forecast errors.

This is because the ensemble forecasts focus on the uncer-

tainty in forecast precipitation as the dominant source of un-

certainty, and other sources of uncertainty are not accounted

for. However, a number of analyses, including Relative Op-

erating Characteristic diagrams, indicate that the ensemble

spread is a useful indicator to assess potential forecast errors

for lead times larger than 12 h.
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1 Introduction

Quantifying the uncertainty of flood forecasts is becoming

increasingly important for operational purposes. This is due

to a number of reasons. First, the awareness of the value of

uncertainty bounds in flood management has increased. In-

deed, it is the uncertainty bounds that will assist flood man-

agers in the trade-off between alternative decisions as they

provide information on the likelihood of making less than

optimal decisions as a result of forecast errors. Second, flood

forecasts are increasingly used for small catchments where

the forecast uncertainties tend to be larger than in large catch-

ments. Third, there is a tendency for making forecasts over

longer lead times which are associated with larger uncertain-

ties. The most accurate forecasts can be achieved by using

observed runoff along with routing models but the forecast

lead times are limited to the travel times in the streams. For,

say, a 1000 km2 catchment these are on the order of 2 h (Ta-

ble 1). The values in Table 1 are based on simulation results

and hydrograph analyses for various Austrian catchments.

Runoff models that use observed precipitation allow to ex-

tend the lead times but at the cost of increased uncertainty.

Precipitation forecasts allow to further extend the lead times

but the uncertainties are still larger.

As the magnitude of the precipitation forecast uncertainty

can be large it has been the topic of much recent research.

Most of the uncertainty in precipitation forecasts stems from

the propagation of small errors in the initial conditions of the

atmospheric models (Buizza, 2003). The standard method

of estimating this uncertainty is hence to generate an ensem-

ble (or set) of different forecasts of atmospheric processes

that differ by their initial conditions (Taylor and Buizza,

2003) in addition to the main (deterministic) forecast. En-

semble forecasts have been operationally issued by the U.S.

National Center for Environmental Predictions (NCEP) and

the European Centre for Medium Range Weather Forecasts

(ECMWF) for more than a decade. Each of the realisations
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Table 1. Uncertainties and typical forecast lead times for a 1000 km2 catchment.

forecast lead time forecast uncertainty

River routing using observed runoff 2 h small

Runoff model using observed precipitation 6 h medium

Runoff model using precipitation forecasts 48 h large

800

Elevation (m.a.s.l)

10 km

600

700

Zwettl/Kamp

13 E

49 N

Fig. 1. Kamp catchment (622 km2) with telemetered rain gauges

(circles) and stream gauge (triangle) shown. Black lines represent

the subcatchments, blue lines the river network. The figure in the

lower left corner gives reference about the catchment location in

Austria.

(or members) of the ensemble is a possible trajectory of at-

mospheric processes over the lead time. By examining the

distribution of the ensemble one then gets a statistical mea-

sure of the forecast uncertainty. The value of making ensem-

ble forecasts lies in the fact that the forecast error changes

with time. For some meteorological situations, the likeli-

hood of heavy precipitation will be nil while for others it

may be large even though the deterministic forecast does

not predict precipitation. More generally speaking, the more

the ensemble spread deviates from its climatological mean,

the more additional information is provided by the ensemble

(Whitaker and Loughe, 1998). Often, the members of the

ensemble are assumed to be equally likely and the ensemble

spread is assumed to represent the distribution of the forecast

errors. However, the statistical interpretation of the ensem-

ble spread is not straightforward. For example, Schaake et

al. (2004) analysed the statistical properties of NCEP ensem-

ble precipitation forecasts from 1997–1999 and compared

them with measured precipitation. He found that the ensem-

ble forecasts were biased and that the ensemble spread was

much smaller than the spread of the error distribution. He

proposed methods for bias removal and adjusting the ensem-

ble spread.

Calculating flood runoff from predicted precipitation will

modulate the uncertainty of precipitation in two ways. First,

additional sources of uncertainty will come in. These include

uncertainties in estimating catchment precipitation and the

spatial distribution of precipitation (Siccardi et al., 2005), un-

certainties in the soil moisture state of the catchment, as well

as uncertainties in the model structure and in the model pa-

rameters. Krzystofowicz (2001) presented a formal method

of combining the hydrological uncertainties with those of the

precipitation forecasts. Second, even when neglecting the

hydrological uncertainties, the uncertainty in the flood fore-

casts will be different from those of precipitation because of

the non-linearity of the catchment system. Small inaccu-

racies can amplify if the system shows strongly non-linear

behaviour, for example, if threshold processes are present

(Blöschl and Zehe, 2005). However, very little is known on

exactly how the uncertainty of precipitation forecasts propa-

gates in the catchment system. Part of the problem is that op-

erational flood management is interested in large floods that

tend to exhibit different characteristics from smaller floods,

but they are – by definition – rare, so statistical analyses are

notoriously limited by small sample sizes.

Given the current issue with ensemble forecasting meth-

ods, the aim of this paper is (a) to examine how the en-

semble distribution of precipitation forecasts propagates in

the catchment system, and (b) to interpret the flood forecast

probabilities relative to the forecast errors. We use the Kamp

catchment in Austria as an example where an operational

flood forecasting system has recently been implemented and

a comprehensive data set, including two large floods, is avail-

able.

2 Data and methods

2.1 Study area and data

The Kamp catchment is located in northern Austria, approxi-

mately 120 km north-west of Vienna. At the Zwettl stream

gauge the catchment size is 622 km2 and elevations range

from 500 to 1000 m a.s.l. (Fig. 1). The higher parts of the

catchment in the Southwest are hilly with deeply incised

channels. Towards the catchment outlet in the Northeast the

terrain is flatter and swampy areas exist along the streams.

The geology of the catchment is mainly granite and gneiss.

Weathering has produced sandy soils with a large storage

capacity throughout the catchment. 50% of the catchment
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is forested. Mean annual precipitation is about 900 mm of

which about 300 mm become runoff (Parajka et al., 2005).

To illustrate the nature of hydrologic response of the Kamp

catchment the largest flood events on record and the as-

sociated rain events have been analysed using the teleme-

tered rain gauges shown in Fig. 1 and a number of addi-

tional rain gauges. Figure 2 shows the event precipitation of

these events along with the direct runoff depths. The direct

runoff depths were estimated by subtracting baseflow from

the event hydrographs that was assumed constant during each

event. The events have been ranked according to precipita-

tion. There are two interesting findings. First, for the small-

est events only around 10% of rainfall become runoff while

the percentage can be much higher for the larger events. Dur-

ing the dry summer months large precipitation depths are

necessary to exceed the soil capacity and produce any size-

able runoff as was the case for the extreme event of 8 August

2002 (August 2002a). Clearly, runoff generation is a non-

linear process and as the magnitude of the event increases so

does the proportion of runoff that is generated. Second, for

the same precipitation depth, runoff can vary significantly.

As a result of prior snow melt, antecedent soil moisture of

the May 1996 event was high which produced a large propor-

tion of runoff. On the other hand, the two July 1997 events

had almost the same rainfall as the May 1996 event but much

less runoff. There was significant rainfall prior to the 13 Au-

gust 2002 (August 2002b) event (namely the extreme August

2002a event) which produced more than twice the runoff of

the July 1999 event that had similar precipitation but very lit-

tle antecedent rainfall. It is clear that soil moisture exerts a

strong control on runoff response in the Kamp catchment.

In this paper, the analyses of the ensemble forecasts are

based on five flood events for which complete data sets of

precipitation forecasts were available. These are marked by

asterisks in Fig. 2. Details of these events are given in Ta-

ble 2. The initial moisture state was assessed by examin-

ing antecedent rainfall. Both August 2002 events were in-

deed extraordinary. More details of these events are given in

Gutknecht et al. (2002).

2.2 Hydrological model

The model used in this paper is a spatially-distributed con-

tinuous rainfall-runoff model (Reszler et al., 2006). The

model runs on a 15 min time step and consists of a snow

routine, a soil moisture routine and a flow routing routine.

The snow routine represents snow accumulation and melt by

the degree-day concept. The soil moisture routine represents

runoff generation and changes in the soil moisture state of

the catchment and involves three parameters: the maximum

soil moisture storage FC, a parameter representing the soil

moisture state above which evaporation is at its potential rate,

termed the limit for potential evaporation LP, and a param-

eter in the non-linear function relating runoff generation to

the soil moisture state, termed the non-linearity parameter

0 25 50 75 100 125 150 175 200

Aug. 19, 1977

Aug. 22, 1992

Jun. 13, 1992

Aug. 2, 1996

Jun. 27, 1983

Aug. 18, 1985

Aug. 7, 2000

May 19, 1991

Oct. 22, 1996

Sep. 17, 1984

Sep. 15, 1995

* Aug. 22, 2005

Jun. 13, 1998

Jun. 4, 1988

* Aug. 16, 2005

Aug. 3, 1991

Aug. 7, 1985

Jul. 19, 1997

May 14, 1996

Jul. 6, 1997

* Jul. 11, 2005

* Aug. 13, 2002

Jul. 10, 1999

* Aug. 8, 2002

precipitation (mm)

runoff (mm)

Fig. 2. Event precipitation and direct runoff depths for the largest

events on record. Kamp at Zwettl, 622 km2. Events marked by

asterisks are analysed in this paper.

β. The details of the soil moisture routine are given in Ap-

pendix A. Runoff routing on the hillslopes is represented by

an upper and two lower soil reservoirs. Excess rainfall en-

ters the upper zone reservoir and leaves this reservoir through

three paths, outflow from the reservoir based on a fast storage

coefficient K1; percolation to the lower zone with a percola-

tion rate CP ; and, if a threshold of the storage state LSUZ is

exceeded, through an additional outlet based on a very fast

storage coefficient K0. Water leaves the lower zones based

on the slow storage coefficients K2 and K3. Bypass flow

dQby is accounted for by recharging the lower zone reser-

voir directly by a fraction of the excess rainfall. K1 andK2

as well as CP have been related to the soil moisture state

in a linear way. The outflow from the reservoirs represents

the total runoff Qg on the hillslope scale. These processes

are represented on a 1 km×1 km grid. The model structure

and the model parameters have been identified by a five step

procedure using field data, comprehensive hydrographic data

as well as qualitative evidence during floods (Reszler et al.,

2006).

Runoff routing in the stream network is represented by

cascades of linear reservoirs with parameters n (number of

reservoirs) and k (storage coefficient) that are a function of

runoff. Decreasing travel times with increasing flood levels

are represented by linearly decreasing k with runoff over a

certain range but as the flood water exceeds bank full dis-

charge, k is decreased to represent flood attenuation on the

flood plains. The parameters have been found by calibration

against observed hydrographs and results of hydro-dynamic

simulation models. In the context of this study it is important

that the model represents the catchment non-linearities well.

Comprehensive tests have shown that this is indeed the case

(Blöschl et al., 2006). Of particular value have been the ex-

treme flood events in August 2002 as they allowed to test the
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Table 2. Characteristics of the events for which flood forecasts are analysed in this paper. Kamp at Zwettl, 622 km2.

Aug 2002a Aug 2002b July 2005 Aug 2005a Aug 2005b

Precipitation (mm) 212 114 88 70 50

Direct runoff depth (mm) 82 56 27 13 13

Runoff coefficient (–) 0.39 0.49 0.30 0.18 0.26

Initial moisture state Dry Very wet Wet Dry Wet

Peak discharge (m3/s) 459 367 95 68 65

Return period (yrs) ∼1000 ∼500 5 3 3

Beginning of event 6 Aug 00:00 h 11 Aug 00:00 h 5 July 00:00 h 14 Aug 00:00 h 20 Aug 00:00 h

End of event 10 Aug 21:00 h 15 Aug 21:00 h 15 July 00:00 h 19 Aug 21:00 h 26 Aug 21:00 h

Beginning of rising limb 6 Aug 12:00 h 11 Aug 12:00 h 10 July 12:00 h 16 Aug 00:00 h 21 Aug 12:00 h

End of rising limb 8 Aug 06:00 h 13 Aug 18:00 h 11 July 06:00 h 17 Aug 21:00 h 22 Aug 12:00 h

Time to peak (h) 36 48 30 18 24

model over a wide range of event magnitudes, from small to

extreme, along with the smaller events on record (Fig. 2).

To increase forecast accuracy, two real-time updating pro-

cedures are used in the Kamp flood forecasting system. The

first procedure assimilates runoff data to update the catch-

ment soil moisture state based on Ensemble Kalman filtering

(EnKF) (Evensen, 1994). The strength of the EnKF is that

it can accommodate model non-linearity. The model vari-

ance represents the errors in the precipitation and evapora-

tion inputs that control the soil moisture state of the catch-

ments and was set to a constant value of 0.005 (mm/15 min)2

based on sensitivity analyses. The model update is performed

for every timestep and the updating is uniform within each

gauged catchment. The observation variance represents the

discharge measurement errors and is assumed to increase

with runoff. The observation variance of runoff was set to

ξ ·Q2
i where ξ=0.0025 was obtained from sensitivity analy-

ses and Qi denotes the observed runoff at timestep i. The

soil moisture state of the catchment estimated by the EnKF

is used as the initial condition of all forecast runs. The second

procedure consists of an additive error model (termed MOS

or model output statistics) that updates runoff directly. This

error model exploits the autocorrelation of the forecast error

and involves an exponential decay of the correction. The au-

tocorrelation lag was found from error analyses of events as

4 h.

2.3 Generating ensemble forecasts

At each time step, precipitation observed at the telemetered

rain gauges (Fig. 1) over the past 15 min is interpolated on

the 1 km grid using climatologically scaled radar information

(Haiden et al., 2007). The climatological scaling is derived

from a comparison of monthly totals of the radar and rain-

gauge data at the station locations and varies with location

and season. The scaled radar field is linearly combined with

the field derived by station interpolation, the weights of this

combination depending on the climatological scaling factor.

In regions where this factor is large (i.e., the visibility by the

radar network is low), most of the weight is with the station

interpolation. Where the factor is close to unity, the scaled

radar field dominates the final estimate. The final precipita-

tion analysis reproduces the observed values at the raingauge

locations.

Additionally, at each time step, deterministic precipita-

tion forecasts are made at 15 min temporal resolution over

a lead time of 48 h. The forecasts consist of two compo-

nents. The first component is an observation-based extrapo-

lation or nowcast of the interpolated precipitation field using

motion vectors. They are determined from consecutive anal-

yses by searching for the spatial shift which gives the best

match (lowest root mean square difference) of precipitation

patterns (Haiden and Steinheimer, 2007). The second com-

ponent is a weighted mean of the forecast fields of the AL-

ADIN (Wang et al., 2006) and ECMWF numerical weather

prediction (NWP) models. The weighting function to esti-

mate the optimised precipitation forecast Popt can be written

as

Popt = wALA · PALA + wECM · PECM (1)

were wALA and wECM are the weights for the ALADIN and

the ECMWF precipitation forecasts PALA and PECM, respec-

tively. The weights wALA and wECM have been derived from

several years of comparisons of ALADIN and ECMWF fore-

casts with observed precipitation by minimising

e∗
= eM + 0.5 · eB (2)

where eM is the mean absolute error and eB is the absolute

value of the bias. This optimisation has been performed sepa-

rately for moderate (>5 mm/24 h) and heavy (>10 mm/24 h)

precipitation events. The sum of the optimized weights wALA

and wECM can differ from unity to account for biases. The

mean error of the combined precipitation forecasts in that

period was 20–25% smaller than that of the individual AL-

ADIN and ECMWF forecasts (Haiden et al., 2007) and the

biases were negligible.
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Another weighting function is used for a smooth transition

between the two components (nowcast and NWP forecast)

(Golding, 1998). Analyses of the forecast performance indi-

cated that, in most cases, over the first 2–6 h of the forecast

the nowcast had smaller errors than the NWP forecast com-

bination. A weighting function was hence chosen that gives

full weight to the nowcast during the first 2 h, decreases lin-

early to zero at 6 h, and remains at zero for larger lead times.

It should be noted that beyond the nowcasting range, the

15 min temporal resolution of the precipitation forecast does

not reflect the actual information content of the meteorolog-

ical models. ALADIN provides output for every hour, and

ECMWF provides 6-hourly totals, both of which are lin-

early interpolated to a uniform 15 min resolution. Similarly,

the spatial grid scale of ALADIN (9.6 km) and ECMWF

(∼25 km) is much larger than the 1 km grid of the hydro-

logical model. Although the scales of the meteorological

models and the hydrological model do not match, sensitiv-

ity analyses indicated that the first order effect of precipita-

tion uncertainty on runoff is related to (average) catchment

precipitation, while the uncertainty resulting from a lack of

knowledge of the spatial detail of precipitation is a second

order effect.

In order to quantify the uncertainty of the precipitation

forecasts, ensemble forecasts are generated. They are con-

structed, in a similar way as the deterministic forecasts. The

ECMWF model provides, at each run, a set of 50 ensemble

forecasts in addition to the main (deterministic) run. The AL-

ADIN model currently does not produce ensemble forecasts

operationally, so a set of 25 pseudo-ensembles is generated

by spatially shifting the ALADIN forecast in both the x and

y directions by a random space lag of up to 40 km. This spa-

tial lag has been introduced to account for some of the small-

scale uncertainty in the position of the precipitation forecasts.

Each of the ECMWF members is then randomly combined

with one of the ALADIN pseudo-ensemble members, and

with the nowcast. No uncertainty has been assigned to the

nowcasts. This means that, up to 2 h lead time, all ensemble

members are identical (zero spread) and the spread increases

at longer lead times. We use the pseudo-ensembles of the

ALADIN model in the construction of the ensembles because

they provide small-scale variance and spread not present in

the ECMWF forecasts.

In the case of air temperature, station data are interpolated.

The forecasts are based on a combination of the station data

with the ALADIN forecasts. No temperature ensembles are

computed as their effect on the flood forecasting uncertainty

is deemed to be small.

The interpolated precipitation and air temperature fields

are used to estimate the state variables of the runoff model

such as soil moisture, reservoir storages and snow water

equivalent at each time step allowing for EnKF updating.

These state variables are used as the initial conditions for the

flood forecasts. All members of the ensemble forecasts use

the same initial conditions as the deterministic forecast with-

out any perturbation.

The deterministic forecast fields (both precipitation and

temperature) are used as an input to the runoff model to com-

pute deterministic flood forecasts. The 50 members of the

ensemble forecasts of precipitation along with the determin-

istic temperature forecasts are used to compute the ensemble

flood forecasts, i.e., 50 realisations of runoff over a lead time

of 48 h. These are analysed in this paper. Each member of

the ensemble forecasts is updated by the additive error model

in the same way which means that the error model does not

affect the ensemble spread.

3 Results and discussion

3.1 Model performance and deterministic forecasts

To get an appreciation of the performance of the components

of the flood forecasting system, the forecast errors ej were

examined for the five flood events of Table 2:

ej =
1

i2 − i1

i2
∑

i=i1

∣

∣

∣
Q̂ij − Qi

∣

∣

∣

Qi

(3)

where ej is the mean absolute normalized error in percent for

lead time j , Q̂ij is runoff at time step i that is forecast with a

lead time of j , Qi is the observed runoff at time step i, and i1
and i2 are the beginning and the end of the analysis interval,

respectively. The error analyses were performed separately

for the entire flood events (i.e. between the beginning and the

end of the flood event as in Table 2) and the rising limbs only

(as in Table 2). The rising limb of a flood hydrograph is the

period that is of most interest for the users of real-time flood

prediction system. For a given lead time j , the errors of the

five events were averaged and are shown in Fig. 3. Four cases

were considered.

In the first case (blue lines in Fig. 3) we assumed that fu-

ture precipitation and temperature were known and used their

observed interpolated fields as inputs to the runoff model

without any updating. Figure 3 indicates that, for this case,

the errors do not depend on the forecast lead time. This

would be expected as this is the simulation mode. The model

errors for the entire flood events are about 15% (Fig. 3, left)

while they are about 30% if the rising limb alone is analysed

(Fig. 3, right). The better model accuracy for the entire flood

events results from including the time periods with no rain-

fall, i.e. the recession. In these periods the errors are small

as no uncertainties about the amount and the spatial distri-

bution of the input rainfall fields are propagated through the

rainfall-runoff model. In contrast, the rising limbs are more

difficult to simulate.

In the second case we ran the model in a similar way as in

case 1, however, allowed for the EnKF updating to estimate

the initial conditions of the forecasts (termed updated initial

www.nat-hazards-earth-syst-sci.net/7/431/2007/ Nat. Hazards Earth Syst. Sci., 7, 431–444, 2007
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Fig. 3. Average forecast errors ej of the five flood events of Table 2.

Entire flood event (left), rising limb only (right). Kamp at Zwettl,

622 km2.

conditions, red lines in Fig. 3). Updating the initial condi-

tions reduces the errors for both analysis periods. During the

rising limbs the updating reduces the errors from about 30%

to about 20%. For the entire events the updating reduces the

errors from about 15% to about 12%. There is a slight de-

pendence of the error on the lead time with smaller errors for

short lead times. This dependence is related to the memory

of the hydrological system which is taken advantage of by

the updating.

The third case was as case 2 but, in addition, allowed for

updating by the additive error model (termed updated initial

conditions – MOS, green lines in Fig. 3). The benefit of the

additive error model is limited to the first eight hours of the

forecasts which is the interval over which the errors are cor-

related. For larger lead times the additive error model has no

effect on the forecasts, so the errors are identical with those

of case 2. The fourth case was as case 3 but used forecast

precipitation and temperatures rather than the observations

(termed forecast – updated initial conditions MOS, purple

lines in Fig. 3). The fourth case represents the operational

real time configuration, where both updating procedures are

used along with the deterministic precipitation and tempera-

ture forecasts. In this case, the forecast performance shows

a clear dependence on the forecast lead time. In the first 8 h

the forecast, errors are less than 30% (rising limb alone) and

about 18% (entire flood events). For lead times of 48 h the er-

rors are 75% (rising limb alone) and about 50% (entire flood

events). This is much larger than the errors of case 3 where

observed precipitation has been used as an input. This clearly

demonstrates that the main error source for lead times larger

than the travel times is the uncertainty in the precipitation

forecasts. The difference between the errors of the two anal-

ysis periods is particularly large in case 4, as would be ex-

pected, as the precipitation forecasts will be most significant

in the rising limb where the rainfall occurs.

3.2 Ensemble forecasting and propagation of non linearity

Depending on the soil moisture state, a change in precipi-

tation input can be amplified (wet conditions) or dampened

(dry conditions) by the catchment system. In the Kamp

catchment the occurrence of big floods is associated with wet

catchment conditions or very large rainfall depths that wet up

the catchment during the event. In the case of the flood events

examined here, one would hence expect that the precipita-

tion forecast errors will be amplified as they are propagated

through the hydrological model. To illustrate the propagation

characteristics ensemble forecasts for the flood event of July

2005 are shown in Figs. 4, 5 and 6. The plotted time window

ranges from 9 July 2005 00:00 h to 12 July 2005 00:00 h in all

three figures. The thick red lines represent observed runoff,

the black lines represent the deterministic forecasts and the

thin blue lines represent the 50 ensemble members. The light

blue shading represents the confidence interval between the

10% and 90% quantiles of the ensemble forecasts.

Figure 4 shows the forecasts on 9 July 2005 00:00 h. In the

first 24 h of the forecast lead time only 5 mm of precipitation

have been observed. The deterministic precipitation forecast

is very accurate but most of the ensemble members predict

more than that. In the second 24 h of the forecast lead time

about 50 mm of precipitation have been observed. Again,

the deterministic forecast is accurate. However, most of

the ensemble forecasts underestimate precipitation slightly.

The deterministic flood forecast matches the observed hy-

drograph closely. During the first 12 h of the forecast lead

time, the ensemble members are very similar to each other.

This is because the forecasts are controlled by observed up-

stream runoff and observed precipitation through the routing

and runoff model components, respectively. In both model

components no uncertainty was introduced, i.e. the same data

and parameters were used for all members of the ensemble.

For lead times of 30 h and more, some of the ensemble mem-

bers indicate a sudden increase in discharge with a maximum

flood peak of 100 m3/s. As compared to precipitation, the

ensemble spread for these lead times is much larger. This is

where the uncertainty in forecast precipitation becomes im-

portant.

The results of the forecast run on 10 July 2005 00:00 h

are plotted in Fig. 5. The total observed precipitation dur-

ing the forecast lead time is about 75 mm while the deter-

ministic forecast predicts about 60 mm. This relatively mod-

erate underestimation of 15% translates into a larger under-

estimation of runoff with an estimated peak of 57 m3/s as

compared to an observed peak of 95 m3/s, i.e., an underes-

timation of 40%, and the rising limb is almost completely

missed. The main reason is the missing precipitation block

at time 36 h. Most ensemble members underestimate precipi-

tation and the ensemble spread is very small up to a lead time

of 24 h. Similarly, the spread of the runoff forecasts is small

during the first 24 h but in the last 24 h of the forecasts the

spread increases significantly. Clearly, this increase is related
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Fig. 4. Ensemble forecasts (top: cumulative catchment precipita-

tion, bottom: runoff) on 9 July 2005 at 00:00 h (time 0 in the figure).

Kamp at Zwettl, 622 km2.

to the non-linearity of the catchment system that translates

the somewhat larger spread of precipitation at the end of the

forecast period in a much larger spread in runoff. While the

observed hydrograph is never within the confidence interval,

at the end of the forecast some of the ensemble members do

indicate the possibility of a flood on the order of 100 m3/s.

Twelve hours later, the forecasts are much more accurate

(Fig. 6). The deterministic precipitation forecast estimates

the observed precipitation very well over the entire lead time.

The runoff forecasts are very good for the first 12 h but do

underestimate runoff for larger lead times. In this case, the

underestimation is not a result of precipitation errors but is

related to the initial conditions of the hydrologic model that

are somewhat too dry.

To illustrate how the spread of the precipitation ensem-

ble, representing the uncertainties in the precipitation fore-

casts, is propagated through the hydrologic model we anal-

ysed the probability distributions of the precipitation ensem-

bles (model input) and the runoff ensemble (model output).

In both cases it was assumed that all ensemble members are

equally likely. As an example, Fig. 7 shows the probability

distributions of the forecast on 10 July 2005 at 00:00 h as in

Fig. 5. For a lead time of 24 h the distributions of the pre-

cipitation and runoff ensemble are similar. They exhibit a

narrow spread and are symmetric. For a lead time of 36 h the

two distributions are somewhat different. While the precip-

itation ensemble spread remains small, the runoff ensemble

spread is larger and skewed to the right. This effect is even

stronger for a lead time of 48 h and the largest 20% of the

runoff ensemble members have increased their spread dra-

matically. The total range of the precipitation uncertainty
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Fig. 5. Ensemble forecasts (top: cumulative catchment precipita-

tion, bottom: runoff) on 10 July 2005 at 00:00 h (time 24 in the

figure). Kamp at Zwettl, 622 km2.
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Fig. 6. Ensemble forecasts (top: cumulative catchment precipita-

tion, bottom: runoff) on 10 July 2005 at 12:00 h (time 36 in the

figure). Kamp at Zwettl, 622 km2.

at 48 h is 40 mm or 70% of the median precipitation while

the total range of the runoff uncertainty at 48 h is 90 m3/s

or 200% of the median runoff. Small errors in rainfall may

translate into larger errors in runoff. The example of Fig. 7

has been extended to all the 232 forecasts examined in this

paper. For each of these forecasts, the coefficient of vari-

ation of the ensemble members of precipitation and runoff

has been calculated. The results for a lead time of 48 h are
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Fig. 7. Mapping of the precipitation uncertainties to runoff uncer-

tainties for forecast lead times of 24, 36 and 48 h. cdf is the cu-

mulative distribution functions assuming all ensemble members are

equally likely. Forecast on 10 July 2005 at 00:00 h as in Fig. 5.

Kamp at Zwettl, 622 km2.

shown in Fig. 8, stratified by the mean cumulative precip-

itation. The largest dots in Fig. 8 relate to forecasts with

mean cumulative precipitation P̄>50 mm, and the medium

and smallest dots relate to forecasts with 50>P̄>30 mm and

30>P̄>10 mm, respectively. For small precipitation depths,

the uncertainty in precipitation may or may not matter for

runoff. Indeed, if precipitation is very small, runoff will be

controlled by groundwater response, so any uncertainty in

precipitation will not appear in the runoff forecasts. In con-

trast, for the instances when the forecasted precipitation was

large (largest dots in Fig. 8), the coefficients of variations

may more than double when moving from precipitation to

runoff. In the example of Fig. 7, the coefficient of variation

increases from 0.16 to 0.34 when moving from precipitation

to runoff (arrow in Fig. 8).

Clearly, this kind of mapping of precipitation uncertainties

to runoff uncertainties for large forecast lead times is related

to the non-linear nature of catchment response. Non-linearity

in runoff response has been observed at all space time scales.

Often, the non-linearity is more pronounced in dry climates

than in wet ones (Chiew et al., 2006). With 300 mm of annual

runoff the Kamp is a rather dry catchment in an Austrian

context.

3.3 Ensemble spread and forecast error

Ideally, the ensemble spread should be an estimator of the

distribution of the forecast errors. However, in the present
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Fig. 8. Mapping of the precipitation uncertainties to runoff un-

certainties for forecast lead times of 48 h in terms of the coeffi-

cient of variation of the ensemble spread of cumulative precipita-

tion CVP and runoff CVQ. Five flood events of Table 2, Kamp

at Zwettl, 622 km2. Arrow indicates 48 h forecasts of Fig. 7.

Largest dots relate to forecasts with mean cumulative precipitation

P̄>50 mm, and the medium and smallest dots relate to forecasts

with 50>P̄>30 mm and 30>P̄>10 mm, respectively.

study not all sources of uncertainty have been represented in

the ensembles. Rain gauge measurement errors, small scale

precipitation variability between the raingauges, uncertainty

in the routing and runoff models as well as uncertainties in

initial soil moisture have not been represented in the ensem-

bles. Also, it is unclear whether the ECMWF ensemble fore-

casts and the ALADIN pseudo-ensembles are equally prob-

able forecasts in the study region. The obvious method of

examining to what degree the ensemble spread actually cap-

tures the distribution of the forecast errors is a comparison

of the two, based on an analysis of observed flood events.

However, the forecast error distribution changes with time.

Typically, the forecast errors are large during the rising limbs

of floods and small during the recession and low flow peri-

ods. Most importantly, one is interested in the forecast er-

rors of large flood events but large events are always rare,

so statistical analyses are limited by small sample sizes. As

a simplification we assumed here that the forecast errors of

all 232 time steps of the five flood events of Table 2 can be

combined into a single distribution function for each forecast

lead time. It should be noted, however, that not all of the 232

forecasts are completely independent from each other. We

calculated the forecast errors as the difference between the

deterministic forecast and the observed runoff (positive error

for overestimation) from which we derived the distribution

function. In a similar vein, we calculated the deviations be-

tween the ensemble forecasts and the deterministic forecast

(positive deviation if ensemble forecast is larger than the de-

terministic forecast), and calculated the distribution function

for the same time steps as in the case of the errors, assuming

that all ensemble members are equally probable.
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Fig. 9. Comparison of the distribution functions of the average ensemble spread around the deterministic forecast (solid red lines) and

forecast errors of the deterministic forecasts (dotted blue lines) for lead times of 6, 12, 24 and 48 h for the five flood events of Table 2. Kamp

at Zwettl, 622 km2.

Figure 9 shows the results of this comparison. The solid

red lines represent the average ensemble spread around the

deterministic forecasts and the dotted blue lines show the er-

ror distributions of the deterministic forecasts. For a forecast

lead time of 6 h, about 90% of the ensemble members hardly

differ from the deterministic discharge forecast (upper left

panel). The remaining members show a slight tendency of

being smaller than the deterministic forecast. The forecast

errors for this lead time exhibit a slightly wider distribution

than that of the ensemble members. For a forecast lead time

of 12 h, the spread of the ensemble members increases as

would be expected but the forecast errors increase even more.

In particular, there are a number of time steps where runoff

was significantly underestimated (i.e. negative errors). This

tendency continues as one moves to 24 and 48 h lead times.

For 48 h, the ensemble spread is larger than that of the other

lead times and so are the forecast errors. In about half the

time steps, the deterministic forecasts underestimate runoff

by more than 30 m3/s while less than 10% of the ensemble

forecasts indicate deviations of less than −30 m3/s.

The median forecast errors of the 6, 12 and 24 h lead times

are close to zero but the large negative errors are more fre-

quent than the large positive errors, i.e., there exists a neg-

ative skew. This is even more the case for a lead time of

48 h. This means that the deterministic forecasts underesti-

mate runoff more often than they overestimate runoff in the

case of the five flood events. This effect can be potentially re-

lated to the tendency of the deterministic precipitation fore-

cast to underestimate extremely high amounts of precipita-

tion during the five flood events. Although a bias correction

is used in preparing the forecasts (see Sect. 2.3) it is based on

the analysis of moderate (>5 mm/24 h, >10 mm/24 h) pre-

cipitation events. What is of most interest in a flood fore-

casting context are the very large precipitation events but

such extreme events are rare, so sample size is very small.

It is likely that the forecast errors and biases of the extreme

events will differ from those of the moderate events as one

would assume that the error characteristics are heteroscedas-

tic. However, accounting for such biases in practice is very

difficult.

The ensemble forecasts are almost symmetric although the

48 h lead times do indicate a slight negative skew. Also, the

ensemble spread is always narrower than the distribution of

the forecast errors. This would be expected as not all error

sources have been represented in the ensembles. However,

the ensemble spread increases with lead time in a similar way

as the forecast errors. This means that the ensemble spread

does provide an indicator to assess potential forecast errors

over a range of lead times. Also, one would expect that the

most significant changes in the forecast errors as a function

of time are captured in the ensembles as they are related to

precipitation.

As another possibility of assessing the ability of the en-

semble flood forecasts to capture the forecast errors we anal-

ysed what we term “range hit rates”. A range hit is counted

when the observed discharge value is within the range of a

certain number of discharge ensemble members. How many

of the 50 ensemble members are used to define the upper

and lower range is described by the quantile. For the en-

tire forecast ensemble the quantile is 100%. A quantile of

60% means that the highest 20% and the lowest 20% of the

ensemble forecast values are not taken into account, i.e., a
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Fig. 10. Range hit rates for lead times of 6, 12, 24 and 48 h for the

five flood events of Table 2. Kamp at Zwettl, 622 km2. The range

hit rate indicates in how many cases, relative to the total number of

forecasts, the observed discharge value lies within the range of the

ensemble quantiles.

range hit is counted if the observed runoff is within the range

covered by the remaining 60% of the ensemble. A quantile

of 0% relates here to the deterministic forecast alone, i.e., a

range hit is counted if the observed runoff is identical with

the deterministic forecast within the numerical accuracy of 2

digits used here. With this definition, the range hit rate in-

dicates in how many cases, relative to the total number of

forecasts, the observed discharge value lies within the range

of the ensemble quantiles. The range hit rates were calcu-

lated for the same forecasts as used for Fig. 9.

Figure 10 shows the results of this analysis for different

forecast lead times. For all lead times, the range hit rate in-

creases with the quantiles. Clearly, the wider the uncertainty

range the easier it is to capture the observed runoff. For

quantiles larger than 60% the range hit rate increases more

strongly which is related to the influence of the hydrologic

non-linearity combined with the growing deviation from the

ensemble mean for the peripheral ensemble members. For

a lead time of 3 h, the range hit rates are always very small.

This is because most of the forecast error is due to the rout-

ing model and the discharge measurements and both error

sources have not been included in the ensemble forecasts.

However, as the lead time increases, the precipitation fore-

cast error becomes more important and the range hit rates

increase. The range hit rates are still much smaller than the

quantiles. In fact, if the ensemble forecasts captured all the

forecast errors one would expect the range hit rates to lie on

the 1:1 line. Clearly, this is not the case as the ensemble

forecasts focus on the dominant source of uncertainty, i.e.,

uncertainty in forecast precipitation. The range hit rates are

similar for the 12 h and the 48 h lead times (as well as for 24

and 36 h not shown here) which suggests, again, that the en-

semble spread does provide an indicator to assess potential

forecast errors over a range of lead times, provided the lead

times are 12 h or larger.

3.4 Relative operating characteristics

Flood management decisions are often based on discharge

thresholds, i.e., if a threshold will be exceeded some kind of

alarm is triggered. Depending on the context, the warning

may result in an alert as is usually the case in early warning,

or it may result in flood mitigation action for shorter lead

times. When ensemble forecasts are available, any of the en-

semble quantiles could be used to trigger an alarm. There

is a tradeoff between the ensemble quantile that is used and

the usefulness of the alarm. Ensemble members at the up-

per end (100% quantile) will more likely trigger an alarm

but there will also be more false alarms. The opposite is

true of the ensemble members at the lower end (0% quan-

tiles). In meteorology, the method of ROC (Relative Oper-

ating Characteristic) – diagrams based on threshold analysis

are a common method for assessing this tradeoff and hence

the performance of probabilistic forecasting systems (Mason

and Graham, 1999; Buizza et al., 1999). In analogy, ROC-

diagrams are used here to illustrate the alert characteristic of

the ensemble flood forecasts for predefined discharge thresh-

olds.

As a first step, hit rates and false alarm rates are defined.

The hit rate HR is the ratio of the number of correct alarms H

and the total number of observed events defined by the sum

of correct alarms H and missed alarms M , i.e.

HR =
H

H + M
(4)

where a correct alarm is counted if both the observed and

forecast hydrograph exceed the threshold within the forecast

lead time, and an observed event is counted if the observed

hydrograph exceeds the threshold within the forecast lead

time. In analogy, the false alarm rate FAR is the ratio of the

number of false alarms F and the total number of no-events

defined by the sum of false alarms F and correct rejections

C(neither the observed hydrograph nor the forecast exceeds

the threshold), i.e.

FAR =
F

F + C
(5)

where a false alarm is counted if the forecast hydrograph ex-

ceeds the threshold within the forecast lead time but the ob-

served hydrograph does not, and a no-event is counted if the

observed hydrograph does not exceed the threshold within

the forecast lead time. H+M+F+C is 232 in this paper

as this is the total number of time steps for which forecasts

have been analysed. The hit rate and the false alarm rate of

the deterministic forecasts can be plotted as a single point on

a hit/false alarm rate graph. The same procedure is then re-

peated for each quantile of the ensemble forecasts separately
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which gives a set of points in the hit/false alarm rate graph

known as relative operating characteristic (ROC). A perfect

forecasting system gives a hit rate of 100% and a false alarm

rate of 0%, i.e. the point plots in the top left corner of the

ROC diagram. Systems with no skill result in a ROC curve

on the 1:1 line.

The relative operation characteristics were calculated for

the same forecasts as used for Fig. 9 with a forecast lead

time of 48 h and are shown in Fig. 11. Four thresholds were

selected. The discharge thresholds of 50 and 100 m3/s are

relevant values for flood warning at the Kamp (see Table 2),

the smaller thresholds of 10 and 30 m3/s were examined for

illustrative purposes. The dots represent the ensemble fore-

casts at intervals of 5%, the crosses represent the determinis-

tic forecasts. A hit rate of 100% is reached for a threshold of

10 m3/s and the 100% quantile of the ensemble forecast (i.e.

the largest of the ensemble members). This perfect hit rate

is associated with a false alarm rate of more than 80%. With

decreasing ensemble quantiles the false alarm rate decreases

to less than 20% while the hit rate is greater than 50% for

all ensemble quantiles. For a threshold of 30 m3/s, the hit

rate ranges from about 80% (100% quantile) to 15%, while

the false alarm rate ranges from 20% to nil. The false alarm

rates are even smaller for the 50 and 100 m3/s thresholds with

similar hit rates. For the 100 m3/s threshold the forecasts of

the 100% quantile produce only 10% false alarms with a hit

rate of about 80%.

For all discharge thresholds, the hit rates of the 100%

quantiles of the ensemble forecasts are larger than those of

the deterministic forecasts as would be expected. This is the

main reason of using ensemble forecasts in flood manage-

ment. In general, the ROC curves show that the determin-

istic and probabilistic forecasts at the Kamp produce only

few false alarms and the percentage of false alarms decreases

with the magnitude of the discharge threshold. The hit rate is

limited to about 80% for the 50 and 100 m3/s thresholds. The

tendency of very small false alarm rates and maximum hit

rates below 100% in the ROC curves indicate that the flood

forecasts tend to underestimate the observed discharges, par-

ticularly for the 50 and 100 m3/s thresholds. This tendency

is consistent with results of meteorological analyses, which

have shown that meteorological model forecasts tend to over-

estimate small precipitation values and underestimate large

precipitation values (Buizza, 1999). The analysis in this pa-

per is based on five big flood events with heavy precipitation,

so some underestimation of precipitation would be expected.

The tendency towards underestimating precipitation during

the floods is amplified through the non-linearity of the hy-

drologic response at the Kamp. Therefore, the flood quantile

of choice for flood alarm purposes would be a high ensemble

quantile, for example the 90% quantile. There is another ar-

gument for using a large quantile which are the relative costs

of false alarms and missed alarms. If false alarms are in-

expensive it may pay to choose higher flood quantiles as if

false alarms were as expensive as missed alarms. However,
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Fig. 11. Relative Operating Characteristic (ROC) curves for the

probabilistic (dots) and deterministic (crosses) 48 h flood forecasts

for discharge thresholds of 10, 30, 50 and 100 m3/s for the five flood

events of Table 2. Kamp at Zwettl, 622 km2. 5% quantile (upward

pointing triangle), 50% quantile (square) and 100% quantile (down-

ward pointing triangle).

decisions on alarms are often made based on maximising the

credibility of the forecasts rather than cost arguments.

The area under the ROC curve is sometimes used as a mea-

sure for the forecast skill (Stanski et al., 1989). The area un-

der the curve decreases from 1 for a perfect prediction system

to 0.5 for a prediction system with no skill. Fitting a cubic

spline to the ROC curves in Fig. 11 gives areas of 0.90, 0.85,

0.85 and 0.90 for the 10, 30, 50 and 100 m3/s thresholds,

respectively. As compared to precipitation forecasts in the

literature, this is a favourable skill. For example, Buizza et

al. (1999) found skills in the range of 0.70 and 0.83, depend-

ing on precipitation thresholds and for a maximum forecast

lead time of 3 days.

4 Conclusions

The real-time flood forecasting system of the Kamp catch-

ment in Austria has been operational since January 2006. It

is used in this paper to examine how the ensemble distribu-

tion of precipitation forecasts propagates in the catchment

system, and to interpret the flood forecast probabilities rela-

tive to the forecast errors. The model was tested on five large

flood events including a 500 yr flood and a 1000 yr flood.

The analyses indicated that, for long lead times (e.g. 48 h),

the variability of the precipitation ensemble is amplified as it

propagates through the catchment system. For the example
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examined, the total range of the precipitation uncertainty is

70% of the median precipitation while the total range of the

runoff uncertainty is 200% of the median runoff. Small er-

rors in rainfall may translate into larger errors in runoff. An

analysis of the coefficients of variation of the ensemble mem-

bers of precipitation and runoff suggests that, for small pre-

cipitation depths, the uncertainty in precipitation may or may

not matter for runoff. In contrast, for the instances when fu-

ture precipitation is large, the coefficients of variations may

more than double when moving from precipitation to runoff.

Also, the ensemble distribution of precipitation is symmet-

ric while that of the flood forecasts is skewed to the right.

Clearly, this kind of mapping of precipitation uncertainties to

runoff uncertainties for large forecast lead times is related to

the non-linear nature of catchment response. In contrast, for

short lead times (e.g. 12 h and less), the variability of the pre-

cipitation ensemble is decreased as it propagates through the

catchment system. This is because the forecasts are mainly

controlled by observed upstream runoff and observed pre-

cipitation through the routing and runoff model components,

as the forecasting system is operated in a real-time mode.

The ensemble forecasts focus on the dominant source of un-

certainty, i.e., uncertainty in forecast precipitation. For lead

times of 12 h and less the ensemble spread is very narrow

as other sources uncertainty such as rain gauge measurement

errors, small scale precipitation variability between the rain-

gauges, uncertainty in the routing and runoff models as well

as uncertainties in the initial soil moisture have not been rep-

resented in the ensembles. More generally speaking, it can be

expected that the lead time where the uncertainty of the pre-

cipitation forecasts starts to amplify will depend on the catch-

ment response characteristics, such as travel times in the river

reaches and runoff concentration. In small and flashy catch-

ments this will be a short lead time while for large catchments

it will be longer.

The paper also examined the ability of the probabilistic

forecasts to capture the distribution of the flood forecast er-

rors. Assuming that all ensemble members are equally likely,

the statistical analyses of the ensemble forecasts for five flood

events at the Kamp showed that the ensemble spread is al-

ways narrower than the distribution of the forecast errors.

This would be expected as not all error sources have been

represented in the ensembles. Although two updating proce-

dures based on observed runoff have been used to improve

the flood forecasts over the simulation mode, there always

remains a certain amount of hydrologic uncertainty in the

forecasting system. It is also likely, that the precipitation en-

sembles do not fully represent the precipitation forecast er-

rors Schaake et al. (2004). However, the ensemble spread

increases with lead time in a similar way as the forecast er-

rors. This means that the ensemble spread does provide an

indicator to assess potential forecast errors over a range of

lead times. Also, one would expect that the most significant

changes in the forecast errors as a function of time are cap-

tured in the ensembles as they are related to precipitation. A

“range hit rate” was defined as the number of cases, relative

to the total number of forecasts, in which the observed dis-

charge value lies within the range of the ensemble quantiles.

Analyses of the range hit rates indicate that they are small

for short lead times but increase with lead time. The range

hit rates are similar for lead time of 12 h and more which

suggests, again, that the ensemble spread does provide an

indicator to assess potential forecast errors over a range of

lead times, provided the lead times are 12 h or larger. Fi-

nally, the forecast skill of the 48 h ensemble forecasts was

tested by ROC (Relative Operating Characteristic) diagrams

based on threshold analyses. For all discharge thresholds,

the hit rates of the 100% quantiles of the ensemble forecasts

are larger than those of the deterministic forecasts. This is

the main reason of using ensemble forecasts in flood man-

agement. For the largest discharge threshold examined here

(100 m3/s) the forecasts of the 100% quantile produce only

10% false alarms with a hit rate of about 80%. The flood

quantile of choice for flood alarm purposes would be a high

ensemble quantile, for example the 90% quantile.

Even though the ensemble characteristics do not exactly

match the forecast errors, they do provide information about

the expected forecast errors. The comparisons indicated that,

for lead times larger than 12 h in the case of the 622 km2

Kamp catchment, the ensemble spread is a useful indicator

to the forecast errors. While additional error sources could

be included in estimating the flood ensembles it may not be

necessary for operational flood forecasting purposes as the

uncertainty in forecast precipitation is the dominant source

of flood forecast uncertainty for lead times of more than 12 h

in catchments such as the Kamp.

Appendix A

Structure of the soil moisture model

A conceptual soil moisture accounting scheme is used at the

model grid scale. The sum of rain and melt, Pr+M , is split

into a component dS that increases soil moisture of a top

layer, Ss , and a component Qp that contributes to runoff.

The components are split as a function of Ss :

Qp =

(

Ss

Ls

)β

· (Pr + M) (A1)

Ls is the maximum soil moisture storage. β controls the

characteristics of runoff generation and is termed the non-

linearity parameter. If the top soil layer is saturated, i.e.,

Ss=Ls , all rainfall and snowmelt contributes to runoff and

dS is 0. If the top soil layer is not saturated, i.e., Ss<Ls ,

rainfall and snowmelt contribute to runoff as well as to in-

creasing Ss through dS>0:

dS = Pr + M − Qp − Qby

if Pr + M − Qp − Qby > 0

dS = 0 otherwise

(A2)
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where, additionally, bypass flow Qby is accounted for. Anal-

ysis of the runoff data at the Kamp indicated that flow that by-

passes the soil matrix and directly contributes to the storage

of the lower soil zone is important for intermediate soil mois-

ture states Ss . For ξ1·Ls<Ss<ξ2·Ls (with ξ1=0.4, ξ2=0.9)

bypass flow was assumed to occur as

Qby = αby · (Pr + M) if αby · (Pr + M) < Lby

Qby = Lby otherwise
(A3)

while no by pass flow was assumed to occur for dry and very

wet soils. Changes in the soil moisture of the top soil layer

Ss from time step i–1 to i are accounted for by

Ss,i = Ss,i−1 + (dS − EA) · 1t (A4)

The only process that decreases Ss is evaporation EA which

is calculated from potential evaporation, EP , by a piecewise

linear function of the soil moisture of the top layer:

EA = EP ·
Ss

LP
if Ss < Lp

EA = EP otherwise
(A5)

where Lp is a parameter termed the limit for potential evap-

oration. Potential evaporation was estimated by the modi-

fied Blaney-Criddle method (DVWK, 1996) as a function of

air temperature. This representation of potential evaporation

was compared to other methods in Parajka et al. (2003) sug-

gesting that it gives plausible results in Austria.
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hochwasser vom 7. August 2002 am Kamp – eine erste Ein-

schätzung (The August 7, 2002 – flood of the Kamp – a first

assessment), Elektrotechnik und Informationstechnik, 119(12),

411–413, 2002.

Haiden, T., Kann, A., Stadlbacher, K., Steinheimer, M., and

Wittmann, C.: Integrated Nowcasting through Comprehen-

sive Analysis (INCA) – System overview. ZAMG report,

49p, http://www.zamg.ac.at/fix/INCA system.doc, accessed 26

March 2007.

Haiden, T. and Steinheimer, M.: Improved nowcasting of precipita-

tion based on convective analysis fields, Adv. Geosci., 10, 125–

131, 2007,

http://www.adv-geosci.net/10/125/2007/.

Kann, A. and Haiden, T.: The August 2002 flood in Austria: sen-

sitivity of precipitation forecast skill to area size and duration,

Meteorol. Z., 14, 369–377, 2005.

Krzysztofowicz, R.: Integrator of uncertainties for probabilistic

river stage forecasting: precipitation-dependent model, J. Hy-

drol., 249, 69–85, 2001.

Mason, S. J. and Graham, N. E.: Conditional Probabilities, Rel-

ative Operating Characteristics, and Relative Operating Levels,

Weather and Forecasting, 14(5), 713–725, 1999.
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