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[1] A new approach to regionalization of conceptual rainfall-runoff models is presented
on the basis of ensemble modeling and model averaging. It is argued that in principle,
this approach represents an improvement on the established procedure of regressing
parameter values against numeric catchment descriptors. Using daily data from 127
catchments in the United Kingdom, alternative schemes for defining prior and posterior
likelihoods of candidate models are tested in terms of accuracy of ungauged catchment
predictions. A probability distributed model structure is used, and alternative
parameter sets are identified using data from each of a number of gauged catchments.
Using the models of the 10 gauged catchments most similar to the ungauged catchment
provides generally the best results and performs significantly better than the regression
method, especially for predicting low flows. The ensemble of candidate models provides
an indication of uncertainty in ungauged catchment predictions, although this is not a
robust estimate of possible flow ranges, and frequently fails to encompass flow
peaks. Options for developing the new method to resolve these problems are
discussed.
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1. Introduction

[2] The range of approaches to continuous time rainfall-
runoff modeling is well known and the merits of alternative
model types are well documented [e.g., Jakeman and
Hornberger, 1993; Wheater et al., 1993; O’Connell and
Todini, 1996; Wheater, 2002]. The most common approach
uses conceptual models, in which the hydrological storages
and associated losses and routing processes are represented
by a series of conceptual stores, which explicitly or implic-
itly represent one or more components of the real hydro-
logical system (e.g., soil water and groundwater storages)
and their interactions. A large number of conceptual models
have been devised, to suit individual catchments and
modelers’ perceptions of important components [e.g., Singh
and Frevert, 2002a, 2002b]. A key aspect of the conceptual
model type is that the model parameters (MPs) do not have
physically based associations with measurable catchment
descriptors (CDs), although inherent correlation between
MPs and CDs is often assumed [Wagener et al., 2004].
Hence, prior to conditioning on observations, there is a
range of parameter sets that might be used to model the
response of a catchment. The uncertainty becomes larger
when it is recognized that a range of conceptual model

structures might be equally considered for any application
[e.g., Neuman, 2003].
[3] If observations of relevant system inputs and outputs

(e.g., precipitation, potential evapotranspiration and stream-
flow) are available, then the MP space is generally con-
strained by calibration. The model structure may then be
adjusted if supported by analysis of model residuals or
parameter uncertainty [e.g., Lee et al., 2004]. However,
unknown errors in input and output data may make it
impossible to distinguish the performance of one model
structure from another, and one MP set from another [Beven
and Binley, 1992; Andreassian et al., 2001; Perrin et al.,
2001; Lee et al., 2005a]. The problem is compounded by
model overparameterization, so that a multitude of signifi-
cantly different MP sets lead to near-equivalent results
(the equifinality problem [Beven and Freer, 2001]). Much
research has been directed toward these issues, through
development of improved model identification procedures
and supporting tools for model optimization and error
analysis (see reviews of Wheater [2002] and Gupta et al.
[2005]). Despite considerable progress in this area, one
major outcome is the recognition that model uncertainty is
inherent and unavoidable, and therefore best practice is to
employ an ensemble of feasible models to give a
corresponding ensemble of predictions [Beven and Freer,
2001; Wheater, 2002].
[4] In the common case that the catchment of interest is

ungauged or poorly gauged (e.g., long periods of data are
Copyright 2005 by the American Geophysical Union.
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missing, or large gauging errors exist), the conceptual
model may be identified through a process of regionaliza-
tion. The regionalization problem is relatively long stand-
ing, with notable early studies by Nash [1960] and, for
continuous time models, by Manley [1978]. Recent
improvements in the availability of spatial data, together
with improved computational resources and new interest in
continuous simulation, have led to new research activity in
this field [Sivapalan, 2003]. One topical research area is
how to best estimate and integrate all sources of uncertainty
into the regional model and the subsequent ungauged
catchment predictions. In this paper, we argue that estab-
lished methods of regionalization may not be well suited to
meet this challenge, and propose an alternative method
founded on ensemble modeling and weighted averaging.
Using a case study of 127 UK catchments, comparisons
between this new method and more established methods are
reported.

2. Regionalization Using Regression

[5] Regression of optimized MPs against observed (or
modeled) numeric catchment descriptors (CDs) is the most
commonly used approach to conceptual rainfall-runoff
model regionalization. The established regression procedure
may be summarized as: selection of a suitable pool of well-
gauged catchments with known (or estimated) CDs, selec-
tion of a model structure deemed suitable for the relevant
catchments, identification of the optimal MP set for each of
the gauged ‘‘donor’’ catchments, multiple regression of
these MP estimates against the CDs (where MPs are usually
but not always treated as independent of each other), and
use of the regression equation to estimate the MP values for
the ungauged ‘‘target’’ catchment. A series of experiments
have been conducted over the past 15 years by various
investigators, with the aims of identifying relationships
between conceptual MPs and CDs, and testing the predic-
tive ability of the estimated ungauged catchment models
(see the reviews and results of Seibert [1999], Young [2000],
Kokkonen et al. [2003], Wagener et al. [2004], and Merz
and Blöschl [2004]).
[6] There are a number of reasons which have limited the

applicability of regression in this context. The significance
of MPs varies from one catchment to the next, depending on
how they are able to compensate for local data and model
structure errors [e.g., Andreassian et al., 2001]. This means
that relationships between CDs and MPs may be weak or
absent, especially when a wide range of catchment types has
been included. For example, using an 11-parameter model
of daily flows applied to 308 Austrian catchments, Merz
and Blöschl [2004] found that for five MPs the strength of
regression relationships with CDs was consistently less than
or equal to R2 = 0.1. Seibert [1999] found that only 6 of
13 MPs were related to CDs, for a conceptual model of
monthly water balance applied to 11 catchments in Sweden.
Using a relatively parsimonious, five-parameter model on a
sample of nine UK catchments, Wagener et al. [2004]
achieved relatively strong CD-MP regression relationships,
with R2 values of up to 0.94, for selected parameters. Using
a wider range of 131 UK catchments and testing alternative
MP data sets, Lee et al. [2005b] found that only the
model’s fast residence time had a strong relationship (i.e.,

with R2 > 0.4) with the CDs, and that the slow residence
time was statistically independent of CDs in more perme-
able catchment types.
[7] Some investigators have attempted to propagate the

uncertainty in the regional relationships to ungauged catch-
ment predictions. Yeh et al. [1997] applied Rosenblueth’s
and Harr’s methods to propagate MP uncertainty through a
unit hydrograph. In the continuous simulation context,
McIntyre et al. [2004], Lamb and Kay [2004] and Wagener
and Wheater [2005] propagated the standard errors in the
regression model to uncertainty using Monte Carlo simula-
tion. Wagener and Wheater [2005] used weighted regres-
sion to propagate the calibrated MP uncertainty into the
regression equations. Merz and Blöschl [2004] obtained two
estimates of the optimum MP sets by splitting the calibra-
tion period, and tested the sensitivity of the regression to
this uncertainty.
[8] Implicit to almost all this research is the assumption

that errors in MP data are normally distributed, and that the
MPs are independent of each other, so that standard multiple
univariate regression techniques may be reasonably applied.
However, it is well known that conceptual MPs tend to
interact with each other during calibration and produce
complex response surfaces that are not well described
by either independent or correlated normal distributions
[Sorooshian and Gupta, 1995]. Although multivariate re-
gression methods were employed with some success by
Tung et al. [1997] for a two-parameter event-based model,
these procedures would become complex if applied to a
model with several parameters. Kokkonen et al. [2003]
tested a simpler approach, in which a strong correlation
between two MPs was used to estimate the value of one of
them, having first regionalized the other, and found this to
work better than univariate regression. Canonical correla-
tion analysis [e.g., Young, 2000] uses linear combinations of
the each catchment’s CDs as the independent variables and
linear combinations of the corresponding MP sets as the
dependent variables, thus allowing for the linear interde-
pendencies within and between both. However, both mul-
tivariate regression and canonical correlation analysis only
account for the linear elements of the MP interdependency.
Lamb and Kay [2004] handled the MP interdependencies
using sequential regression, where univariate regression is
applied to the optimum estimates of the most influential MP,
its values are fixed for all the donor catchments using the
regressed estimates, then all the other MPs are recalibrated.
This continues sequentially through all the MPs, removing
the issue of interdependency by making MP estimates
conditional on regionalized values of more influential
MPs. Wagener et al. [2004] found this approach difficult
to apply without introducing bias into the regionalized
parameters.
[9] The structural form of the regression equation is a

further issue. Various transforms of the CDs and MPs have
been made to introduce nonlinearities; however these trans-
forms are either based on previous reports or on a limited
amount of trial and error. Subjective decisions may also be
used to decide which CDs to include as independent
variables, for example based on prior expectations of
important CDs and/or to avoid inclusion of strongly inter-
correlated CDs [e.g., Wagener et al., 2004; Merz and
Blöschl, 2005]. More objective alternatives to selecting
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CDs are principal component analysis [e.g., Sefton and
Howarth, 1998] or stepwise regression [e.g., Wagener et
al., 2004; Lee et al., 2005b]. Another issue, which is
intuitively important, but which apparently has received
no investigation in this context, is the errors in the CD
estimates. MPs estimated via a regression model are condi-
tional on the accuracy of the CDs. While we might assume
that CDs based on topography and easily surveyed surface
features have little error, CDs which describe the subsurface
are generally themselves the output of a model linking them
to land cover or to point observations, for example of soil
properties (e.g., the HOST classification of Boorman et al.
[1995]).
[10] There has been mixed success in making predictions

of flow in ungauged catchments, using regression
approaches. For example, Kokkonen et al. [2003] applied
a regression scheme to the six-parameter IHACRES model
on thirteen Australian catchments, and reported an average
loss in performance (Nash-Sutcliffe efficiency (NSE)) of
only 0.06 when using a regionalized MP set instead of a
locally optimized MP set. They also note that using a single,
similar gauged catchment may be preferable if such a
catchment exists. Lee et al. [2005b] applied a five-parameter
probability distributed model to 66 low-permeability non-
urban UK catchments, and reported a loss in NSE of less
than 0.04 in 90% of catchments when using regressed MP
values instead of a locally optimized MP set. However loss
in performance was generally larger for a low-flow objec-
tive function and for more permeable catchments. Merz
and Blöschl [2004] found that the average loss in NSE
performance moving from a locally calibrated model to a
regionalized model was 0.1, twice the loss associated with
moving from the calibration to validation period, applying
an 11-parameter model to 308 Austrian catchments. They
also found that methods based on spatial proximity (kriging
and using MPs from nearby gauged catchments) were
generally able to produce more reliable predictions in these
catchments. This result is, however, in contrast to the
results of Vandewiele and Elias [1995], who found geo-
graphical proximity of little use in predicting ungauged
flows. Calver et al. [1999] regionalized a probability
distributed model using hourly data from 36 UK catch-
ments, to estimate floods over a range of return periods.
Moving from locally calibrated model parameters to those
derived using univariate regression caused the average
error in flood quantiles to increase from 9 to 39%, although
this reduced to 24% when sequential regression was used.
[11] It may easily be argued that regression has proven to

be a useful tool for making predictions of runoff in
ungauged catchments. However, the fundamental limita-
tions of regression analysis mentioned above, especially
the need to neglect or greatly simplify the interdependencies
between MPs and the neglect of errors in the CD values,
leads to the view that further effort at refining the applica-
tion of regression techniques may not be the optimum way
forward.

3. Ensemble Modeling and Weighted Averaging

[12] The starting principle for the ensemble modeling and
our similarity weighted averaging (SWA) method is that the
CD-MP relationship should be treated as a response surface

of likelihood. This response surface might be integrated
across a representative range of CDs (i.e., representative of
the uncertainty in the properties of the target ungauged
catchment) to produce a continuous joint distribution func-
tion of MPs, which would then be applied to the relevant
rainfall time series to generate a distribution function of
runoff time series. In practice, defining a continuous CD-
MP distribution function would be problematic due mainly
to the issues of the complex parameter interdependencies
and response surface discontinuities [Duan et al., 1992].
Instead, we would hope to have a large enough number of
CD-MP samples within the relevant CD range so that they
could all be applied individually to the ungauged catchment
rainfall, providing an ensemble time series of flow forecasts
and allowing a weighted average best estimate of flow to be
calculated.
[13] Developing the idea further, each donor gauged

catchment can be described by a number of candidate
models with corresponding prior likelihoods (i.e., prior to
considering the properties of the target ungauged catch-
ment). This allows prior uncertainty in calibrated models,
for example that associated with equifinality, to be repre-
sented. The prior likelihoods may reflect knowledge about
model performance on the gauged catchment data so that
the influence of models that have performed relatively badly
(due to model structural error, data errors or suboptimal
approximations of MPs) will be weighted down. These prior
likelihoods may then be conditioned using a measure of the
similarity (of the donor catchment with the target catch-
ment) into a posterior likelihood, and all models with
nonzero posterior likelihood would be applied. The main
theoretical advantage of this method over regression is that
the MP sets are neither averaged or interpolated; instead, the
full information content of the locally calibrated MP sets is
retained at all stages.
[14] Ensemble modeling and using multiple weighted

models are central to the generalized likelihood uncer-
tainty estimation (GLUE) framework of Beven and Binley
[1992], which has been widely applied to estimating
uncertainty in gauged catchment predictions [Beven and
Freer, 2001]. GLUE involves updating model likelihoods
by relating likelihood to a fit statistic. The approach
outlined above can be viewed as an extension of GLUE
to the ungauged catchment problem, where candidate
models and associated likelihoods are drawn from all
gauged catchments, and are subject to a further stage of
conditioning based on similarity to the target ungauged
catchment. Unless the fit statistic used within GLUE is a
formal likelihood function then the derived likelihoods are
not frequential probabilities, but are subjective weights
used to distinguish between the relative believability of
models. This subjective element is a major criticism of
GLUE; however because the subjectivities are expressed
mathematically (as objective functions) they can be
audited and revised, and alternatives can be compared
and integrated together. The same can be said in defense
of the subjectivities which will inevitably arise in select-
ing catchment similarity measures. Potentially, the vari-
ables used to define similarity may be optimized against
predictive performance within a particular set of gauged
catchments. Another anticipated problem is the outcome
of a posterior likelihood equal to zero for all models. If
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this were the case, it would be an indication of a paucity
of gauged catchments to support the approach and that
another approach (e.g., regression, or a more physically
based approach) might be better in that case. The
proposed regionalization method also has the potential
to generate prior distributions of MP sets for input to a
conventional application of GLUE to a gauged catchment.
[15] Although ensemble modeling and weighted aver-

aging have been widely used to represent MP uncertainty
within the GLUE framework, and also for propagating
climate change uncertainty to hydrological forecasts [e.g.,
Anderson et al., 2001; Wetherald and Manabe, 2002;
Christensen et al., 2004], representation of alternative
rainfall-runoff model structures is rare. Neuman [2003]
argues that integrating the results of a number of candi-
date model structures will reduce the prediction bias;
however a potential problem is the difficulty in assigning
prior likelihoods, particularly when the candidate struc-
tures are structurally similar. In practice, choice of model
structures may be limited to those easily available to the
modelers, and which use a common set of available input
data, and this will limit the degree to which structural
bias can be averaged out. In the context of lumped
conceptual rainfall-runoff modeling, this is seen in the
model structure intercomparisons of Perrin et al. [2001]
and Lee et al. [2005a], where optimized results of
candidate model structures were often indistinguishable.
Shamseldin et al. [1997] also noted the limitation of
using a restricted range of model structures, when aver-
aging storm runoff predictions from five rainfall-runoff
model structures. Georgakakos et al. [2004] used a wide
range of lumped and distributed model structures, for
constructing flow ensembles in six catchments in central
USA, focusing on reliability of flood forecasts. They
found that generally more reliable results were achieved
when using the ensembles rather than single models, with
or without prior model calibration. In cases, model
calibration reduced the ability of the ensemble to encom-
pass flood peaks.
[16] Previous application of SWA to prediction in unga-

uged catchments is very limited. The statistical approach to
flood estimation used by Institute of Hydrology [1999] is
comparable. For a target catchment, similar well-gauged
donor catchments are identified and their annual maxima
flood (AMF) data are integrated, to provide an estimate of
the AMF statistics in the target catchment. This method has
also been applied to estimation of low-flow statistics
[Holmes et al., 2002]. Young [2000] extended the method
to continuous time modeling. He calibrated a model on data
from donor catchments within a threshold of similarity and
applied each donor MP set to generate a realization of
flow in the ungauged catchment. The flow time series
were averaged (without weighting) over all realizations.

However, this was found to perform generally worse than
using a regression-based method.

4. Model and Data

[17] While the proposed application of SWA to predicting
runoff in ungauged catchments clearly has the potential to
integrate the results of more than one model structure, we
limit the current investigation to a single conceptual model
structure and focus on representing effects of MP uncer-
tainty. The chosen model structure is a version of the
probability distribution model (PDM) of Moore [1985],
which represents the spatial variability of the catchment’s
storage capacity by a Pareto distribution. The soil moisture
accounting model has two parameters. cmax is the maximum
storage capacity in the catchment, and b is a Pareto
distribution parameter which controls the spatial variability
of c (for example b = 1 gives a very variable degree of
saturation, while b close to 0 gives a relatively little spatial
variation). Runoff Q(t) is equal to the saturation excess
integrated over the area of the catchment. The evapotrans-
piration rate is assumed equal to the potential evapotrans-
piration multiplied by the relative moisture state of the
model. The routing component of the models is formed of
two linear reservoirs in parallel, one representing a relatively
quick catchment response (residence time Tq) and the other
for a slower response (Ts). All the runoff is split between
these two reservoirs, defined by parameter f (proportion of
the total effective rainfall going to the quick response
reservoir). The two components of outflow are aggregated
into total streamflow. This five-parameter model structure
has previously been shown to be at least as good as
alternative lumped models of similar complexity over a
wide range of UK catchment types, when using daily data
[Lee et al., 2005a]. The ranges in Table 1 are used to define
plausible precalibration values of the five MPs.
[18] The data set is composed of daily precipitation,

streamflow and potential evaporation, and a set of 17 CDs
for 127 UK catchments. The CDs which we refer to in this
paper are listed in Table 2. The 127 catchments are
hydrologically quite varied, ranging from wet catchments
with high annual rainfall (e.g., 2860 mm/year) in Scotland
to dry catchments with small annual rainfall (e.g., 602 mm/
year) in southeast England. Catchment average elevations
range from 557.2 m to 37.1 m (above UK ordnance datum).
The area of the catchments ranges from 1 km2 to 1700 km2

with a mean of 248 km2. All catchments may be considered
nonurbanized (URB_EXT < 0.0125). Full details of the data

Table 1. Prior Ranges of Model Parameters

Parameter Description Range

cmax maximum storage capacity (mm) 0–500
b shape of Pareto distribution 0–2
Tq time constant for quick flow reservoir (days) 0–50
Ts time constant for slow flow reservoir (days) 50–500
f fraction of flow through quick flow reservoir 0–1

Table 2. A Sample of the Available Catchment Characteristicsa

Abbreviations Definitions

BFIHOST base flow index derived using the HOST
classification [0–1]

AREA catchment drainage area (km2)
SAAR 1941–1970 standard- period average

annual rainfall (mm)
ALTBAR mean catchment altitude (m above sea level)
URB_EXT index of fractional urban extent in 1990
SPRHOST SPR (standard percentage runoff) derived

using the host classification

aDefinitions from Institute of Hydrology [1999].
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sources and quality control are given by Young [2000]. The
period 1 October 1986 to 30 September 1996 is used for
model calibration except in 12 catchments where there was
more than 30 days of missing flow data in that period; in
these cases another continuous 10-year period was selected.
Independent 5-year validation periods were used to test the
ability of the models to make local predictions, except in six
catchments where the period was less than 5 years. When
measuring model performance in the calibration and vali-
dation periods, the first 20% of the data time series was
neglected, to reduce sensitivity to initial conditions.

5. Method Description

[19] The general equation describing the averaging of
simulations of a runoff time series Q(t) at an ungauged
catchment is

Q tð Þ ¼
XS
j¼1

XN
i¼1

Qi;j tð Þ�Wi;j ð1Þ

where Wi,j is the posterior likelihood given to the ith
candidate model originating from the jth gauged donor
catchment, normalized so that all W sum to unity; N is the
number of candidate models from each gauged donor
catchment (here constant for all j); S is the number of donor
catchments; and Qi,j(t) is the runoff obtained by applying
the respective model to the ungauged catchment’s rainfall
and other time series inputs. In the present application, W is
defined by the product of a prior likelihood of a model (P)
and the relative likelihood of that model being applicable to
the target gauged catchment (B). Various experiments are
done here to assess alternative definitions of P and B in
terms of the accuracy of the predicted Q(t).

5.1. Prior Likelihoods

[20] The prior likelihoods P aim to represent the relative
applicability of the candidate model prior to considering the
nature (i.e., the CDs) of the target ungauged catchment. An
objective approach is to define P by the success with which
the model has previously simulated runoff at gauged catch-
ments, based on a fit statistic. Then, P is linked to the
quality of the model, and the quality of the data set upon
which the model has been tested.
[21] This was applied using the Nash-Sutcliffe efficiency

(NSE) as the fit statistic. For each catchment, 10,000 sets of
MPs were randomly sampled from within the uniform
distributions defined by the ranges in Table 1, and using
each sample the PDM model was run giving 10,000
realizations of Q. Corresponding NSE values were calcu-
lated in the calibration periods. A fraction of the 10,000
sampled models for each gauged catchment were then
considered as good enough, based on the NSE values, to
take forward as ‘‘prior’’ candidate models. This fraction

might be decided by using a threshold in the NSE value, as
is the normal GLUE procedure. Here, however, the N
parameter sets with the best (highest) NSE values for each

catchment were retained, and we investigated the perfor-
mance for different values of N. The NSE values were
rescaled to P values as defined below.

Pi;j ¼
NSEi;j � NSEmin;j

� �
= 1� NSEmin;j

� �
XN
i¼1

NSEi;j � NSEmin;j

� �
1� NSEmin;j

� � ð2Þ

where subscript i represents the ith of the N parameter sets,
subscript j indexes the donor catchment, and NSEmin,j is the
lowest of the N corresponding Nash-Sutcliffe efficiency
values from that gauged catchment. Rather than defining P
as directly proportional to NSE, this formula accentuates the
difference in performance between the best and worst of the
N parameter sets.
[22] The same procedure was repeated but using a low-

flow fit statistic, FSBM, as it is known that NSE is less
suitable for low-flow applications [Legates and McCabe,
1999].

FSBM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
t¼1

Qot � Qtð Þ2
s

1

n

Xn
t¼1

Qot

ð3Þ

where here subscript t represents the time step, Q and Qo
are the calculated and observed flows for all t for which Qo
is less than 75% of average Qo, during hydrograph
recession periods (i.e., reducing flow), and n is the total
number of time steps within such periods. FSBM values are
then rescaled into P values in a similar manner as applied to
NSE. The NSE and FSBM fit statistics are used here to
represent all around model performance and to illustrate the
possible significance of the performance measure. Alter-
native fit statistics, or other measures of operational
performance of the model may be appropriate for specific
applications of the method [Wagener and McIntyre, 2005].

5.2. Posterior Likelihoods

[23] The likelihood of a model of a donor catchment
being applicable to a target catchment is defined by the
similarity of the two catchments. The chosen measure of
catchment similarity is that used by Institute of Hydrology
[1999] which considers catchment area (AREA), standard-
ized annual average rainfall (SAAR) and estimated base flow
index (BFIHOST). These three CDs are considered to be the
primary factors categorizing nonurban UK catchment types.
Other potentially important CDs are well correlated with
one of these [Young, 2000; Wagener et al., 2004] hence
need to be omitted from a similarity measure. For a target
catchment with CD values AREA0, SAAR0 and BFIHOST0;

Ej ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

lnAREAj � lnAREA0

s lnAREAð Þ

� �2

þ ln SAARj � ln SAAR0

s ln SAARð Þ

� �2

þ BFIHOSTj � BFIHOST 0

s BFIHOSTð Þ

� �2
s

ð4Þ

where Ej is the dissimilarity of the jth candidate donor
catchment to the target catchment; AREAj, SAARj and
BFIHOSTj are the donor catchment CDs; and AREA,
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SAAR and BFIHOST are the sets of CD values from the
donor catchments, and s indicates standard deviation within
each set. The natural logarithms of AREA and SAAR are
used to avoid highly skewed distributions, i.e., to moderate
the dissimilarity of the largest and wettest catchments.
Donor catchments with E above a specified value (=ET) are
given zero posterior likelihood, B = 0. The other E values
are rescaled into B values as defined below.

Bj ¼
1� Ej=Emax

� �
XS
j¼1

1� Ej=Emax

� � for Ej � ET ð5Þ

where E is the measure of catchment dissimilarity, Emax is
the maximum value of E � ET for the target catchment, and
S is the number of catchments for which E � ET. The
posterior likelihood of the ith prior model from the jth donor
catchment is then,

Wi;j ¼
Pi;jBjPS

j¼1

PN
i¼1

Pi;jBj

ð6Þ

Equation (6) provides the W values for use in equation (1).
For comparison with the similarity measure, the spatial
proximity of catchments was also used to define posterior
likelihood,

Dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NORTH 0 � NORTHj

� �2þ EAST 0 � EASTj
� �2q

ð7Þ

where NORTHj, and EASTj are the national grid coordinates
of the outlet of the jth gauged catchment, and NORTH0, and
EAST0 are the same for the target gauged catchment. D then
replaces E in equation (5).

5.3. Assessment

[24] Each of the 127 catchments in turn was considered to
be ungauged, with the N best MP sets from the remaining
126 catchments used to define the prior candidate donor
models. For each catchment’s calibration period, this pro-
vided a locally calibrated model result (i.e., the best fit out
of the 10,000 samples) and a regionalized result (i.e., using
SWA). A comparison of the two fits using the NSE and
FSBM values in each of the catchments provided a general
assessment of the SWA scheme. As a truer test of the
relative predictive power of the locally calibrated and
regionalized models, the fits in the validation periods were
also compared. Further to this assessment, the general
ability of the ensemble of regionalized results to represent
prediction uncertainty was assessed in each catchment; the
percentage of observed data points outlying the ensemble
and associated 90% confidence intervals is reported.
Results are reported separately for more permeable catch-
ments (BFIHOST > 0.5) and less permeable catchments
(BFIHOST � 0.5) so that the success of the regionalization
in these different types of catchments can be reviewed. This
categorization according to BFIHOST follows the analysis
of Lee et al. [2005b], who found that catchments above the
0.5 threshold were generally more difficult to model using
the regression approach to regionalization. The assessments
based on NSE and FSBM are supported by illustrating

the modeled and observed time series data for selected
catchments.

6. Results

[25] Figure 1 plots the NSE values (represented as 1-NSE
for minimization) achieved using locally calibrated MP sets,
against the values achieved using the regionalized (SWA)
model. Figures 1a–1d are all based on using S = 1 (i.e., only
the most similar catchment based on equation (4) is used as
a donor), and N = 10 (i.e., the 10 MP sets with the best NSE
values from the donor catchment). Figures 1a and 1b show
results in the 10-year calibration period for the less and
more permeable catchments respectively, while Figures 1c
and 1d show the same in the shorter validation period.
Figures 1e–1h are the same format, but with S = 10.
Figures 1i–1l are the same format as Figure 1a–1d, but
the single nearest catchment (minimum D as defined by
equation (7)) is used instead of the most similar.
Figures 1m–1p show the same but where results are the
weighted average of the results of all models with D <
30 km. On the basis of this latter criterion, Figure 2a is a
histogram showing the number of ungauged catchments
associated with different values of S for the less permeable
catchments; Figure 2b is the same for the more permeable
catchments. The 22 ungauged catchments with zero donor
catchments have been omitted from Figures 1m–1p. In all
plots in Figure 1 the line of equivalent performance is
marked as a solid 45� line, while the dotted line is the 90
percentile, above which only 10% of results lie. Therefore
the closeness of this dotted diagonal to the solid diagonal
indicates the general success of using regionalization rela-
tive to using local calibration. Various arbitrary decisions
have been made to define values of N, S, and ET in this
analysis; sensitivity to these will be examined later.
[26] Using N = 10 and S = 10, with similarity measure E,

gives generally more accurate predictions in terms of NSE
than the other weighting schemes. For example, Figures 1e
and 1f show 90 percentile losses in performance of 0.06 and
0.21 respectively, compared, for example, to 0.10 and 0.36
for Figures 1a and 1b (where only the most similar
catchment is used as a donor rather than S = 10), and
0.12 and 0.23 for Figures 1m and 1n (where a number of
nearby catchments are used). Using the single nearest
catchment gives a significantly worse performance overall,
reflecting UK geology which often changes markedly
between neighboring catchments. The especially poor per-
formance of the regionalized models shown in Figures 1j
and 1l implies that the NSE measure is especially sensitive
to using an inappropriate MP set in more permeable catch-
ments, and/or that the similarity measure is more likely to be
inappropriate for more permeable catchments. Comparing,
for example, Figures 1e and 1f illustrates the general
difficulty in predicting flow in more permeable ungauged
catchments; while their locally calibrated NSE values are
generally better than in the less permeable catchments, the
values achieved using the best regionalization scheme are
generally worse. The validation period results show that in a
significant proportion of the catchments, the regionalized
models achieve more accurate predictions than the locally
calibrated models (e.g., in Figures 1g and 1h, 33 and 26% of
the data are below the solid diagonal). The regionalized
NSE values in the validation periods are, overall, slightly
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worse than the equivalent values in the calibration periods.
This loss in performance may be due to the reduced length
of period used for the validation which causes the result to
be slightly more sensitive to errors in the model’s initial
conditions. There was limited evidence to suggest that
higher similarity between the target and donor catchments
led to improved ungauged catchment predictions; the cor-
relation between average E (i.e., the measure of dissimilarity
averaged over the 10 donor catchments) and NSE was
�0.13.
[27] Various other values of S and N were tested, as were

alternative measures of catchment similarity. Using only
one MP set (N = 1) rather than 10 did not make a large
difference; for example, the 90% loss in performances in
Figures 1e–1h dropped from (0.06, 0.21, 0.05, 0.20) to
(0.05, 0.22, 0.05, 0.26). Raising N to 100 (1% of the total
number of samples) showed a similar lack of sensitivity.
This implies that averaging the results of the best 1% of the
sampled MP sets is equivalent to using the single best set,

i.e., MP equifinality in local calibrations is not relevant to
the single best flow prediction, insofar as can be measured
by NSE and FSBM. However, we did not test sensitivity to
values of N > 100. The sensitivity to the definition of S was
tested; rather than fixing S = 10, S was defined by the
number of catchments within a threshold value of E (ET in
equation (5)). Figures 2c and 2d are histograms showing the
number of target catchments associated with different val-
ues of S using ET = 0.5; Figures 2e and 2f show the same for
ET = 1. Both these schemes resulted in generally poorer
ungauged catchment predictions than fixing S = 10. The
similarity measure was also changed to one defined by
SPRHOST and ALTBAR (see Table 2 for definitions), which
were identified to be the two most consistently important
CDs in the UK by Lee et al. [2005b] as covariants of SAAR,
BFIHOST and AREA. Results were comparable with, or
slightly worse than, those in Figures 1a–1h; for example,
the 90% loss in performances in Figures 1e–1h changed
from (0.06, 0.21, 0.05, 0.20) to (0.08, 0.38, 0.08, 0.39).

Figure 1. (a–p) Performance (1-NSE) achieved using a locally calibrated model (x axes) plotted against
performance achieved using the regionalized model (y axes, showing four alternative SWA schemes that
are described in text), in calibration (Cal) and validation (Val) periods, for lower-permeability (L) and
higher-permeability (H) catchments. Note that all axes are curtailed at (1-NSE) = 1. Outliers not plotted
have (x,y) coordinates of [0.27, 1.5] (Figure 1b); [15.2, 11.2], [0.29, 1.5], [0.23, 2.1] (Figure 1d); [0.27,
1.7] (Figure 1f); [15.2, 15.3], [0.29, 1.1], [0.23, 2.5] (Figure 1h); [0.13, 1.5], [0.27, 9.1], [0.08, 1.1],
[0.26, 1.8], [0.10, 7.5] (Figure 1i); [15.2, 22.2], [0.23, 13.8], [0.18, 1.5], [0.16, 6.7] (Figure 1l); [0.27, 1.7]
(Figure 1n); and [15.2, 22.2], [0.32, 1.9] (Figure 1p). In the catchment with an x coordinate of 15.2, only
1 year was available for the validation period, and the poor performance is due to errors in initial
conditions.
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Using N = 1 and all the catchments as equally weighted
donors (S = 126, B = 1/S), the corresponding statistics were
(0.14, 1.02, 0.14, 1.24), which illustrates the importance of
conditioning the models on catchment similarity.
[28] Figure 3 shows the same results as Figure 1 but

where prior likelihoods and performances have been quan-
tified using the low-flow objective function, FSBM (equa-
tion (3)). This experiment allows assessment of whether a
different regionalization scheme is warranted for low-flow
studies. However, results reinforce the conclusion that using
S = 10 with E defined by equation (4) is the best of all the
tested schemes. Compared to NSE, there was slightly more
evidence that higher similarity between the target and donor
catchments led to improved ungauged catchment predic-
tions; the correlation between average E (i.e., averaged over
the 10 donor catchments) and FSBM was 0.27.
[29] The NSE and FSBM performances using SWA were

also compared with the performances achieved by Lee et al.
[2005b], who tested various MP-CD regression models as a
basis for predicting flows in ungauged UK catchments,
using the same data set as is used here, but excluded one
catchment which produced an outlying MP set. They began
with a set of 17 CDs plus their log transforms and applied
univariate stepwise regression to identify the CDs signifi-
cantly related to each of the MPs. Each of the 126 catch-
ments in turn was considered to be ungauged and left out of

the regression data, so that the regionalized MP values were
truly independent of the local flow data. They also tested
various options for prespecifying the significant CDs based
on previous studies and experience. The comparisons of
their best regression-based NSE values and the current SWA
results are in Figures 4a–4d separately for low and high
BFIHOST catchments and for the defined ‘‘calibration’’ and
‘‘validation’’ periods. In these four plots respectively, 62,
59, 62, and 66% of the results lie below the diagonal, i.e.,
SWA was better than regression in these percentages of
catchments. Figures 4e–4h show the FSBM results in the
same format, for which the corresponding statistics are 85,
67, 83, and 66%. The degree of improvement evident from
Figure 4 is arguably marginal in the case of NSE, but is
clearly substantial for FSBM.
[30] Figure 5 illustrates the time series of validation

results for the Irvine River catchment (coordinates {0.18,
0.21} in Figure 1g, BFIHOST = 0.4, AREA = 75km2,
SAAR = 1352 mm) based on N = 10 (using NSE as prior
likelihood criterion), S = 10 (using the E similarity mea-
sure). Figure 5a shows the ensemble of time series obtained
using the optimum MP sets from all 126 prior candidate
models, representing the uncertainty prior to considering the
nature of the Irvine catchment. The high uncertainty is
particularly notable in the base flow periods. However,
the upper limit of the prior ensemble gives quite a robust

Figure 2. Histograms showing the number of ungauged catchments having different numbers of donor
catchments (S). Lower-permeability (L) and higher-permeability (H) catchments are shown separately.
(a, b) S defined by D < 30 km, (c, d) S defined by E < 0.5, and (e, f) S defined by criteria E < 1.
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representation of the flood peaks; few peaks are significantly
overestimated and only isolated peaks are underestimated
(this, presumably, being due to input rainfall error and/or
model structural error). This indicates that the MP sets from
only the flashiest catchments in the data set provide simu-
lations which encompass the observed flood peaks in the
Irvine catchment (suggesting a problem of flood peak
underestimation in these flashiest catchments). Figure 5b
shows the posterior ensemble using the 10 best MP sets
from 10 most ‘‘similar’’ catchments. This maintains the
robust representation of the flood peaks, and provides a
much better ensemble of the overall flow regime. Figure 5c
shows the 90% confidence limits derived from the posterior
ensemble, showing that in this case the use of the percen-
tiles (and hence the consideration of different likelihoods
for candidate models) may not be desirable because the
more extreme results in the ensemble, beyond the upper
90 percentile, are needed to encompass the flood peaks.
Arguably, there may not be enough significantly different
candidate models in this study to support meaningful

calculation of 90% confidence limits. Figure 5d shows the
weighted average of the posterior ensemble, and Figure 5e
is the result obtained by Lee et al. [2005b] using their best
regression scheme. Visual comparison shows that SWA is
only marginally better than regression in this case.
[31] Figure 6 repeats the format of Figure 5 for the more

permeable Evenlode catchment (coordinates {0.18, 0.25} in
Figure 1h, BFIHOST = 0.7, AREA = 427 km2, SAAR =
730 mm). In this case, the value of conditioning on similar
catchments is emphatic for both low and high flows, and the
use of 90 percentiles to remove the influence of the most
extreme realizations has improved the visual representation
of the data. Comparing Figures 6d and 6e shows that the
SWA has significantly improved on the regression method,
but high flows continue to be a challenge.
[32] Wider review of the time series fits leads to the

conclusion that there is a general problem in fitting flow
peaks, with the highest peaks almost always being under-
estimated by SWA’s best estimate (i.e., the weighted aver-
age) prediction. However, this is also true for the locally

Figure 3. (a–p) Low-flow performance (FSBM) achieved using a locally calibrated model (x axes)
plotted against performance achieved using the regionalized model (y axes, showing four alternative
SWA schemes that are described in text), in calibration (Cal) and validation (Val) periods, for lower-
permeability (L) and higher-permeability (H) catchments. Note that all axes are curtailed at FSBM = 3.
Outliers not plotted have (x,y) coordinates of [2.1, 4.9] (Figure 3a); [0.7, 3.2] (Figure 3c); [5.0, 6.0]
(Figure 3d); [2.1, 6.5], [1.1, 3.3] (Figure 3e); [1.9, 3.4], [1.8, 3.4] (Figure 3g); [5.0, 4.2] (Figure 3h); [1.5,
3.3], [2.9, 14.1], [0.90, 3.6], [1.6, 3.9] (Figure 3i); [1.7, 3.1], [1.9, 8.4], [1.8,3.6], [0.81, 3.3], [2.0, 3.6]
(Figure 3k); [5.0, 3.9] (Figure 3l); [2.1,13.6], [1.1,3.4] (Figure 3m); [1.9, 8.1], [1.8, 3.6] (Figure 3o); and
[5.0, 3.9] (Figure 3p).
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calibrated model and is thought to be a fundamental
limitation of using daily rainfall data (because peak rainfalls
are averaged out), and neglecting the infiltration excess
process, as well as due to rainfall errors. The SWA does
generally very well at simulating low flows, frequently
better than the locally calibrated model (evident on
Figures 3g and 3h). The worst FSBM values relative to
the locally calibrated model results arise from problems in
fitting the hydrograph recessions; some simulated reces-
sions are too smooth, others include flow variations which
they should not, while others have poor recession response
time. We speculate that this is due to effects of CDs not
included in the employed measure of catchment similarity,
for example land use, and due to local geology which may
not be well represented by the BFIHOST values.
[33] The percentage of observed flow data within the

ensemble limits indicates how successfully the prediction
error is represented. Figures 7a–7d shows the number of
target catchments for which different values of this percent-
age have been achieved, based on N = 10 (based on NSE),
S = 10 (based on similarity E) calculated for the validation
period. The more permeable and less permeable catchment
groups are shown separately. Figures 7e–7h are the same
format but for the 90% confidence limits. The general
conclusion from Figure 7 is that the ensemble limits and
associated percentiles are not effective at representing the
possible errors in ungauged catchment predictions. Using
just one model structure and only one realization of input
rainfall in each calibration, it is arguably inevitable that the
employed ensemble of MP sets will fail to encompass the
actual prediction bias. Although using a larger number of
prior candidate MP sets (e.g., N = 10% of the available
sample), or changing the definition of weights P and B, may

be used to increase the estimated prediction uncertainty, this
seems unlikely to solve the flow peak estimation problem;
instead, we may need to integrate input rainfall error and a
wider range of model structures, potentially including
distributed models [e.g., Carpenter and Georgakakos,
2004; Georgakakos et al., 2004].

7. Concluding Discussion

[34] This paper has argued that a similarity weighted
averaging (SWA) may be a constructive way forward
toward improved flow prediction in ungauged catchments.
The proposed procedure builds upon established Bayesian
methods [Beven and Freer, 2001; Neuman, 2003] and pre-
liminary applications of model averaging to the ungauged
catchment problem [Young, 2000]. A large sample of
models of gauged donor catchments are taken, and the prior
likelihoods of these models are updated based on the
similarity of the respective donor catchment to the target
ungauged catchment. All models with nonzero posterior
likelihood are applied, allowing a weighted average of the
ensemble to be calculated as the best estimate, and confi-
dence limits to be estimated. The main theoretical advantage
of this method, as opposed to more traditionally applied
methods based on univariate regression of MPs against
CDs [e.g., Sefton and Howarth, 1998; Seibert, 1999;
Kokkonen et al., 2003; Merz and Blöschl, 2004; Wagener
et al., 2004], is that MP sets are maintained as sets, so that
the MP interdependencies are not neglected or linearized to
facilitate regression. The method has been applied to a
database of observed daily rainfall-runoff from 127 UK
catchments, which are all nonurban but otherwise widely
varied in nature (in the UK context). Using a similarity

Figure 4. (a–h) Performances achieved using SWA (y axes) plotted against the best performances
achieved by Lee et al. [2005b] using regression models on the same data set (x axes). NSE and FSBM
performances are shown in calibration (Cal) and validation (Val) periods for lower-permeability (L) and
higher-permeability (H) catchments separately. Note that outliers not plotted have (x,y) coordinates of
[1.5, 1.7] (Figure 4b); [13.7, 15.3], [0.9, 1.1], [2.3, 2.5] (Figure 4d); [8.6,6.5], [4.2, 3.3] (Figure 4e); [4.1,
3.4], [4.6, 3.4] (Figure 4g); and [7.3, 4.2] (Figure 4h). In the catchment with an x coordinate of 13.57,
only 1 year was available for the validation period, and the poor performance is due to errors in initial
conditions.
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measure based on catchment size, permeability and rainfall,
SWA generally out performed models based on regression,
most notably within the low-flow part of the hydrograph. A
persistent problem is underestimation of flow peaks; in many
cases, even the full ensemble of prior models (i.e., models
of all catchment types) failed to encompass the observed
flow peaks, although to some extent, this is an expected
consequence of the daily time step used in the modeling.
[35] Although the results achieved within this research

are very promising, a number of issues remain for discus-
sion and future attention. It may be argued that the primary
source of prediction bias comes from model structure error
(the limited NSE performance of the locally calibrated
models is notable in Figures 1a–1d, for example). Although
SWA is well suited to integrating more than one model
structure, we have chosen to not do so here. This choice was
based on previous research which showed that there was
very little difference between the optimized results of
various alternative lumped conceptual models of similar
complexity [Lee et al., 2004, 2005a]. Therefore a priority
for further work is to integrate the results of a wider range of
model types [Neuman, 2003; Georgakakos et al., 2004;
Butts et al., 2004]. The method is also well suited to
allowing for different realizations of input-output errors

during the calibration process, which would result in a more
objective, and potentially more useful, set of prior MPs for
each gauged catchment. In this paper, the chosen similarity
measures are based on previous reports, and they do not
explicitly account for CD uncertainty. Further research
might reveal, for example, that individual CDs should be
given less weight than others due to their high uncertainty,
although objective estimation of this uncertainty may be a
problem in itself. Furthermore, while arbitrary values of S or
ET (see equation (5)) have been used here and subject to
limited sensitivity analysis, it may in future be possible to
use more objectively founded values, or to empirically
optimize their values for a given set of catchments.
[36] Behind the SWA method is the premise that enough

models of nonzero posterior likelihood can be sampled to
sufficiently represent the continuous MP-CD response sur-
face. The sample numbers actually used were relatively
small (several hundred at most), giving a sparse sample
from the eight-dimensional MP-CD space. As results were
not sensitive to the number of equifinal models derived
from each donor catchment, it seems that the limitation in
the number of similar gauged catchments is likely to be
more important, at least within the case study used here. It is
reasonable to speculate that a larger database of gauged

Figure 5. Time series results for River Irvine in the validation period. (a) Outline of the ensemble using
optimum MP sets from all 126 prior candidate models. (b) Outline of the posterior ensemble using the
10 best MP sets from the 10 most similar catchments. (c) The 90% confidence limits derived from the
posterior ensemble. (d) Weighted average of the posterior ensemble. (e) Best result obtained by Lee et al.
[2005b] using MP-CD regression.
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Figure 6. Time series results for Evenlode River in the validation period. (a) Outline of the ensemble
using optimum MP sets from all 126 prior candidate models. (b) Outline of the posterior ensemble using
the 10 best MP sets from the 10 most ‘‘similar’’ catchments. (c) The 90% confidence limits derived from
the posterior ensemble. (d) Weighted average of the posterior ensemble. (e) Best result obtained by Lee
et al. [2005b] using MP-CD regression.
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catchments would lead to higher similarities between target
and donor catchments, and better ungauged catchment
predictions. There was some evidence of this, especially
when looking at low-flow performance, FSBM. It might be
the case that regression-based methods of MP estimation, or
more physically based alternatives would be preferred only
when a large degree of interpolation between catchments is
required. However, this has not yet been investigated and in
general more research is needed to support informed selec-
tion of suitable regionalization schemes.

Notation

c moisture storage capacity.
Q modeled runoff.
W posterior likelihood.
P prior likelihood.
B conditioning likelihood.
E catchment similarity measure.
D catchment outlet proximity.
S number of donor catchments.
N number of candidate models per donor catchment.

Qo observed runoff.
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