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ENSEMBLE SAMPLERS WITH AFFINE INVARIANCE

JONATHAN GOODMAN AND JONATHAN WEARE

We propose a family of Markov chain Monte Carlo methods whose performance
is unaffected by affine tranformations of space. These algorithms are easy to
construct and require little or no additional computational overhead. They should
be particularly useful for sampling badly scaled distributions. Computational tests
show that the affine invariant methods can be significantly faster than standard
MCMC methods on highly skewed distributions.

1. Introduction

Markov chain Monte Carlo (MCMC) sampling methods typically have parameters
that need to be adjusted for a specific problem of interest [9; 10; 1]. For example,
a trial step-size that works well for a probability density π(x), with x ∈ Rn , may
work poorly for the scaled density

πλ(x) = λ−n π (λx) , (1)

if λ is very large or very small. Christen [2] has recently suggested a simple
method whose performance sampling the density πλ is independent of the value of
λ. Inspired by this idea we suggest a family of many particle (ensemble) MCMC
samplers with the more general affine invariance property. Affine invariance implies
that the performance of our method is independent of the aspect ratio in highly
anisotropic distributions such as the one depicted in Figure 1.

An affine transformation is an invertible mapping from Rn to Rn of the form
y = Ax + b. If X has probability density π(x), then Y = AX + b has density

πA,b(y) = πA,b(Ax + b) ∝ π(x). (2)

Consider, for example, the skewed probability density on R2 pictured in Figure 1:

π(x) ∝ exp
(
−(x1− x2)

2

2ε
−
(x1+ x2)

2

2

)
. (3)
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Figure 1. Contours of the Gaussian density defined in expression (3).

Single-variable MCMC strategies such as Metropolis or heat bath (Gibbs sampler)
[13; 10] would be forced to make perturbations of order

√
ε and would have slow

equilibration. A better MCMC sampler would use perturbations of order
√
ε in the

(1,−1) direction and perturbations of order one in the (1, 1) direction.
On the other hand, the affine transformation

y1 =
x1− x2
√
ε
, y2 = x1+ x2,

turns the challenging sampling problem (3) into the easier problem

πA(y) ∝ e−(y2
1 + y2

2)/2. (4)

Sampling the well scaled transformed density (4) does not require detailed cus-
tomization. An affine invariant sampler views the two densities as equally difficult.
In particular, the performance of an affine invariant scheme on the skewed density
(3) is independent of ε. More generally, if an affine invariant sampler is applied to a
nondegenerate multivariate normal π(x)∝e−x t H x/2, the performance is independent
of H .

We consider general MCMC samplers of the form X (t + 1)= R(X (t), ξ(t), π),
where X (t) is the sample after t iterations, ξ(t) is a sequence of iid (independent
identically distributed) random variables1, and π is a probability density. General

1The probability space for ξ is not important. A Monte Carlo code would typically take ξ(t) to be
an infinite sequence of independent uniform [0, 1] random variables.
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purpose samplers such as Gibbs samplers have this form. We call such an MCMC
algorithm affine invariant if, for any affine transformation Ax + b,

R(Ax + b, ξ(t), πA,b) = AR(x(t), ξ(t), π) + b,

for every x and almost all ξ(t).
Less formally, suppose we make two Monte Carlo runs using the same random

number generator and seed so that the ξ(t) will be identical for both runs. Suppose
one of the runs uses probability density π and starting point X (0). Suppose the
other uses πA,b and initial point Y (0) = AX (0) + b. If the algorithm is affine
invariant, the sequences will satisfy Y (t) = AX (t)+ b. We are not aware of a
practical sampler that has this affine invariance property for any general class of
densities.

In this paper we propose a family of affine invariant ensemble samplers. An
ensemble, EX , consists of L walkers2 Xk ∈ Rn . Since each walker is in Rn , we may
think of the ensemble EX = (X1, . . . , X L) as being in RnL . The target probability
density for the ensemble is the one in which the walkers are independent and drawn
from π , that is,

5(Ex) = 5(x1, . . . , xL) = π(x1) π(x2) · · ·π(xL). (5)

An ensemble MCMC algorithm is a Markov chain on the state space of ensembles.
Starting with EX(1), it produces a sequence EX(t). The ensemble Markov chain can
preserve the product density (5) without the individual walker sequences Xk(t)
(as functions of t) being independent, or even being Markov. This is because the
distribution of Xk(t + 1) can depend on X j (t) for j 6= k.

We apply an affine transformation to an ensemble by applying it separately to
each walker:

EX = (X1, . . . , X L)
A,b
−→ (AX1+ b, . . . , AX L + b) = (Y1, . . . , YL) = EY . (6)

Suppose that EX(1)
A,b
−→ EY (1) and that EY (t) is the sequence produced using πA,b in

place of π in (5) and the same initial random number generator seed. The ensemble
MCMC method is affine invariant if EX(t)

A,b
−→ EY (t). We will describe the details of

the algorithms in Section 2.
Our ensemble methods are motivated in part by the Nelder–Mead [11] simplex

algorithm for solving deterministic optimization problems. Many in the optimization
community attribute its robust convergence to the fact that it is affine invariant.
Applying the Nelder–Mead algorithm to the ill conditioned optimization problem for

2Here xk is walker k in an ensemble of L walkers. This is inconsistent with (3) and (4), where x1
was the first component of x ∈ R2.
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the function (3) in Figure 1 is exactly equivalent to applying it to the easier problem
of optimizing the well scaled function (4). This is not the case for noninvariant
methods such as gradient descent [6].

The Nelder–Mead simplex optimization scheme evolves many copies of the
system toward a local minimum (in our terminology: many walkers in an ensemble).
A new position for any one copy is suggested by an affine invariant transformation
which is constructed using the current positions of the other copies of the system.
Similarly, our Monte Carlo method moves one walker using a proposal generated
with the help of other walkers in the ensemble. The details of the construction of
our ensemble MCMC schemes are given in the next section.

An additional illustration of the power of affine invariance was pointed out to
us by our colleague Jeff Cheeger. Suppose we wish to sample X uniformly in a
convex body, K (a bounded convex set with nonempty interior). A theorem of
Fritz John [8] states that there is a number r depending only on the dimension such
that for any convex body K there is an affine transformation Ax + B that makes
K̃ = AK+b well conditioned in the sense that B1⊆ K̃ and K̃ ⊆ Br , where Br is the
ball of radius r centered at the origin. An affine invariant sampling method should,
therefore, be uniformly effective over all the convex bodies of a given dimension
regardless of their shape.

After a discussion of the integrated autocorrelation time as a means of comparing
our ensemble methods with single-particle methods in Section 3 we present the
results of several numerical tests in Section 4. The first of our test distributions is a
difficult two-dimensional problem that illustrates the advantages and disadvantages
of our scheme. In the second example we use our schemes to sample from a 101-
dimensional approximation to the invariant measure of stochastic partial differential
equation. In both cases the affine invariant methods significantly outperform the
single site Metropolis scheme. Finally, in Section 5 we give a very brief discussion
of the method used to compute the integrated autocorrelation times of the algorithms.

2. Construction

As mentioned in the introduction, our ensemble Markov chain is evolved by mov-
ing one walker at time. We consider one step of the ensemble Markov chain
EX(t)→ EX(t + 1) to consist of one cycle through all L walkers in the ensemble.

This is expressed in pseudo-code as

for k = 1, . . . , L
{

update: Xk(t)→ Xk(t + 1)
}
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Each walker Xk is updated using the current positions of all of the other walkers in
the ensemble. The other walkers (besides Xk) form the complementary ensemble

EX[k](t)= {X1(t + 1), . . . , Xk−1(t + 1), Xk+1(t), . . . , X L(t)} .

Let µ(dx̃k, xk | Ex[k]) be the transition kernel for moving walker Xk . The notation
means that for each xk ∈ Rn and Ex[k] ∈ R(L−1)n , the measure µ(·, xk | Ex[k]) is the
probability measure for Xk(t + 1), if Xk(t)= xk and EX[k](t)= Ex[k].

Our single walker moves are based on partial resampling [13; 10]. This states
that the transformation EX(t)→ EX(t + 1) preserves the joint distribution 5 if the
single walker moves Xk(t)→ Xk(t + 1) preserve the conditional distribution of
xk given X[k]. For our 5 (which makes walkers independent), this is the same as
saying that µ(·, · | Ex[k]) preserves π for all Ex[k], or (somewhat informally)

π(x̃k) dx̃k =

∫
Rn
µ(dx̃k, xk | Ex[k])π(xk) dxk .

As usual, this condition is achieved using detailed balance. We use a trial
distribution to propose a new value of Xk and then accept or reject this move
using the appropriate Metropolis Hastings rule [13; 10]. Our motivation is that the
distribution of the walkers in the complementary ensemble carries useful information
about the density π . This gives an automatic way to adapt the trial move to the
target density. Christen [2] uses an ensemble of 2 walkers to generate scale invariant
trial moves using the relative positions of the walkers.

The simplest (and best on the Rosenbrock test problem in Section 4) move of this
kind that we have found is the stretch move. In a stretch move, we move walker Xk

using one complementary walker X j ∈ EX[k](t) (that is, j 6= k). The move consists
of a proposal of the form (see Figure 2)

Xk(t)→ Y = X j + Z(Xk(t)− X j ). (7)

The stretch move defined in expression (7) is similar to what is referred to as the
“walk move” in [2] though the stretch move is affine invariant while the walk move
of [2] is not. As pointed out in [2], if the density g of the scaling variable Z satisfies
the symmetry condition

g
(1

z

)
= z g(z), (8)

then the move (7) is symmetric in the sense that (in the usual informal way Metrop-
olis is discussed)

Pr (Xk(t)→ Y )= Pr (Y → Xk(t)) .
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X j

Xk

Y

Figure 2. A stretch move. The light dots represent the walkers not
participating in this move. The proposal is generated by stretching
along the straight line connecting X j to Xk .

The particular distribution we use is the one suggested in [2]:

g(z) ∝


1
√

z
if z ∈

[1
a
, a
]
,

0 otherwise.
(9)

where the parameter a > 1 can be adjusted to improve performance.
To find the appropriate acceptance probability for this move we again appeal to

partial resampling. Notice that the proposal value Y lies on the ray{
y ∈ Rn

: y− X j = λ (Xk(t)− X j ), λ > 0
}
.

The conditional density of π along this ray is proportional to

‖y− X j‖
n−1 π(y).

Since the proposal in (7) is symmetric, partial resampling then implies that if we
accept the move Xk(t + 1)= Y with probability

min
{

1,
‖Y − X j‖

n−1 π(Y )
‖Xk(t)− X j‖

n−1 π(Xk(t))

}
=min

{
1, Zn−1 π(Y )

π(Xk(t))

}
,

and set Xk(t + 1)= Xk(t) otherwise, the resulting Markov chain satisfies detailed
balance.

The stretch move, and the walk and replacement moves below, define irreducible
Markov chains on the space of general ensembles. An ensemble is general if there
is no lower-dimensional hyperplane (dim< n) that contains all the walkers in the
ensemble. The space of general ensembles is G⊂ RnL . For L ≥ n+ 1, a condition
we always assume, almost every ensemble (with respect to 5) is general. Therefore,
sampling 5 restricted to G is (almost) the same as sampling 5 on all of RnL . It is
clear that if EX(1) ∈ G, then almost surely EX(t) ∈ G for t = 2, 3, . . . . We assume
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that EX(1) is general. It is clear that any general ensemble can be transformed to
any other general ensemble by a finite sequence of stretch moves.

The operation EX(t)→ EX(t + 1) using one stretch move per walker is given by

for k = 1, . . . , L
{

choose X j ∈ EX[k](t) at random
generate Y = X j + Z(Xk(t)− X j ), all Z choices independent
accept, set Xk(t + 1)= Y , with probability (7)
otherwise reject, set Xk(t + 1)= Xk(t)
}

We offer two alternative affine invariant methods. The first, which we call the
walk move, is illustrated in Figure 3. A walk move begins by choosing a subset S
of the walkers in EX[k](t). It is necessary that |S| ≥ 2, and that the choice of S is
independent of Xk(t). The walk move offers a proposal Xk→ Xk +W , where W
is normal with mean zero and the same covariance as the walkers X j ∈ S.

More formally, let

πS(x)= (1/ |S|)
∑
X j∈S

δ(x − X j )

be the empirical distribution of the walkers in S. Given S, the mean of a random
variable X ∼ πS is

X S =
1
|S|

∑
X j∈S

X j .

Xk

Y

X S

Figure 3. A walk move. The dots represent the ensemble of par-
ticles. The dark ones represent the walkers in EX S . The diamond
inside the triangle represents the sample mean X S . The proposed
perturbation has covariance equal to the sample covariance of the
three dark dots. The perturbation is generated by summing random
multiples of the arrows from X S to the vertices of the triangle.
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The covariance is

CS =
1
|S|

∑
X j∈S

(X j − X S)(X j − X S)
t . (10)

It is easy to check that if the Z j are univariate standard normals then, conditioned
on S,

W =
∑
X j∈S

Z j (X j − X S) (11)

is normal with mean zero and covariance (10). The proposed trial move is

Xk(t)→ Xk(t)+W.

The random variable (11) is symmetric in that

Pr(X→ X +W = Y )= Pr(Y → Y −W = X).

Therefore, we insure detailed balance by accepting the move Xk(t)→ Xk(t)+W
with the Metropolis acceptance probability

min
{

1,
π ((Xk(t)+W )

π ((Xk(t))

}
.

The walk move ensemble Monte Carlo method just described clearly is affine
invariant in the sense discussed above. In the invariant density 5(Ex) given by (5),
the covariance matrix for W satisfies (an easy check)

cov [W ] ∝ covπ [X ].

The constant of proportionality depends on σ 2 and |S|. If π is highly skewed in the
fashion of Figure 1, then the distribution of the proposed moves will have the same
skewness.

Finally, we propose a variant of the walk move called the replacement move.
Suppose πS(x | S) is an estimate of π(x) using the subensemble S ⊂ X[k](t). A
replacement move seeks to replace Xk(t)with an independent sample from πS(x | S).
The probability of an x → y proposal is π(x)πS(y | S), and the probability of a
y→ x proposal is π(y)πS(x | S). It is crucial here, as always, that S is the same
in both expressions. If Px→y is the probability of accepting an x → y proposal,
detailed balance is the formula

π(x)πS(y | S)Px→y = π(y)πS(x | S)Py→x .

The usual reasoning suggests that we accept an x→ y proposal with probability

Px→y =min
{

1,
π(y)

πS(y | S)
·
πS(x | S)
π(x)

}
. (12)
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In the case of a Gaussian π , one can easily modify the proposal used in the walk
move to define a density πS(x | S) that is an accurate approximation to π if L and
|S| are large. This is harder if π is not Gaussian. We have not done computational
tests of this method yet.

3. Evaluating ensemble sampling methods

We need criteria that will allow us to compare the ensemble methods above to
standard single-particle methods. Most Monte Carlo is done for the purpose of
estimating the expected value of something:

A = Eπ [ f (X)]=
∫

Rn
f (x)π(x) dx, (13)

where π is the target density and f is some function of interest.3 Suppose X (t),
for t = 1, 2, . . . , Ts , are the successive states of a single-particle MCMC sampler
for π . The standard single-particle MCMC estimator for A is

Âs =
1
Ts

Ts∑
t=1

f (X (t)). (14)

An ensemble method generates a random path of the ensemble Markov chain
EX(t) = (X1(t), . . . , X L(t)) with invariant distribution 5 given by (5). Let Te be
the length of the ensemble chain. The natural ensemble estimator for A is

Âe =
1
Te

Te∑
t=1

(
1
L

L∑
k=1

f (Xk(t)
)
. (15)

When Ts = LTe, the two methods do about the same amount of work, depending
on the complexity of the individual samplers.

For practical Monte Carlo, the accuracy of an estimator is given by the asymptotic
behavior of its variance in the limit of long chains [13; 10]. For large Ts we have

var
[
Âs
]
≈

varπ [ f (X)]
Ts/τs

, (16)

where τs is the integrated autocorrelation time given by

τs =

∞∑
t=−∞

Cs(t)
Cs(0)

, (17)

3Kalos and Whitlock [9] make a persuasive case for making this the definition: Monte Carlo
means using random numbers to estimate some number that itself is not random. Generating random
samples for their own sakes is simulation.
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and the lag t autocovariance function is

Cs(t)= lim
t ′→∞

cov
[

f (X (t ′+ t)) , f (X (t ′))
]
. (18)

We estimate τs from the time series f (X (t)) using a shareware procedure called
Acor that uses a variant (described below) of the self consistent window method of
[7].

Define the ensemble average as F(Ex)= 1
L

L∑
k=1

f (xk). Then (15) is

Âe =
1
Te

Te∑
t=1

F( EX(t)).

The analogous definitions of the autocovariance and integrated autocorrelation time
for the ensemble MCMC method are

τe =

∞∑
t=−∞

Ce(t)
Ce(0)

,

with
Ce(t)= lim

t ′→∞
cov

[
F( EX(t ′+ t)) , F( EX(t ′))

]
.

Given the obvious relation (5 in (5) makes the walkers in the ensemble indepen-
dent)

var5 [F( EX)] =
1
L

varπ [ f (X)],

the ensemble analogue of (16) is

var[ Âe] ≈
varπ [ f (X)]

LTe/τe
.

The conclusion of this discussion is that, in our view, a sensible way to compare
single-particle and ensemble Monte Carlo is to compare τs to τe. This compares the
variance of two estimators that use a similar amount of work. Comparing variances
is preferred to other possibilities such as comparing the mixing times of the two
chains [4] for two reasons. First, the autocorrelation time may be estimated directly
from Monte Carlo data. It seems to be a serious challenge to measure other mixing
rates from Monte Carlo data (see, however, [5] for estimating the spectral gap).
Second, the autocorrelation time, not the mixing rate, determines the large time
error of the Monte Carlo estimator. Practical Monte Carlo calculations that are not
in this large time regime have no accuracy.

Of course, we could take as our ensemble method one in which each Xk(t) is
an independent copy of a single Markov chain sampling π . The reader can easily
convince herself or himself that in this case τe = τs exactly. Thus such an ensemble
method with Te = LTs would have exactly the same large time variance as the
single-particle method. Furthermore with Te = LTs the two chains would require
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exactly the same computation effort to generate. The two methods would therefore
be indistinguishable in the long time limit.

4. Computational tests

In this section we present and discuss the results of computational experiments to
determine the effectiveness of our ensemble methods relative to a standard single-
particle Markov chain Monte Carlo method. The MCMC method that we choose
for comparison is the single site Metropolis scheme in which one cycles through
the coordinates of X (t) perturbing a single coordinate at a time and accepting or
rejecting that perturbation with the appropriate Metropolis acceptance probability
before moving on to the next coordinate. For the perturbations in the Metropolis
scheme we choose Gaussian random variables. All user defined parameters are
chosen (by trial and error) to optimize performance (in terms of the integrated
autocorrelation times). In all cases this results in an acceptance rate close to 30%.
For the purpose of discussion, we first present results from tests on a difficult
two-dimensional example. The second example is a 101-dimensional, badly scaled
distribution that highlights the advantages of our scheme.

4.1. The Rosenbrock density. In this subsection we present numerical tests on the
Rosenbrock density, which is given by4

π(x1, x2)∝ exp
(
−

100(x2− x1
2)2+ (1− x1)

2

20

)
. (19)

Here are some contours of the Rosenbrock density:

4 To avoid confusion with earlier notation, in the rest of this section (x1, x2) represents an arbitrary
point in R2.
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f (x1, x2)= x1 f (x1, x2)= x2

method↓
ensemble

size→ 1 10 100 ∞ 1 10 100 ∞

Metropolis 163 – – – 322 – – –
stretch moves – 19.4 8.06 8.71 – 67.0 18.4 23.5
walk moves, |S| = 3 – 46.4 19.8 18.6 – 68.0 44.2 47.1

Table 1. Autocorrelation times (multiplied by 10−3) with the
functionals f (x1, x2) = x1 and f (x1, x2) = x2 for single-particle
isotropic Metropolis and the chains generated by the two ensemble
methods. The ensemble methods with ensemble size L =∞ gener-
ate complementary walkers by exact sampling of the Rosenbrock
density. The per-step cost of the methods are roughly equivalent
on this problem.

Though only two-dimensional, this is a difficult density to sample efficiently as it
exhibits the scaling and degeneracy issues that we have discussed throughout the
paper. Further the Rosenbrock density has the feature that there is not a single affine
transformation that can remove these problems. Thus in some sense this density
is designed to cause difficulties for our affine invariant estimators. Of course its
degeneracy will cause problems for the single-particle estimator and we will see
that the affine invariant schemes are still superior.

Table 1 presents results for the functionals f (x1, x2)= x1 and f (x1, x2)= x2. The
values given should be multiplied by 1000 because we subsampled every Markov
chain by 1000. In both cases, the best ensemble sampler has an autocorrelation time
about ten times smaller than that of isotropic Metropolis. The walk move method
with |S| = 3 has autocorrelation times a little more than twice as long as the stretch
move method. All estimates come from runs of length Ts = 1011 and Te = Ts/L .
In all cases we estimate the autocorrelation time using the Acor procedure.

To simulate the effect of L = ∞ (infinite ensemble size), we generate the
complementary X j used to move Xk by independent sampling of the Rosenbrock
density (19). For a single step, this is exactly the same as the finite L ensemble
method. The difference comes in possible correlations between steps. With finite L ,
it is possible that at time t = 1 we take j = 4 for k = 5 (that is, use X4(1) to help
move X5(1)), and then use j = 4 for k = 5 again at the next time t = 2. Presumably,
possibilities like this become unimportant as L→∞. We sample the Rosenbrock
density using the fact that the marginal of X is Gaussian, and the conditional density
of Y given X also is Gaussian.

Finally, we offer a tentative explanation of the fact that stretch moves are better
than walk moves for the Rosenbrock function. The walk step, W , is chosen using
three points as in Figure 3; see (11). If the three points are close to Xk , the covariance
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u

Figure 4. Sample path generated according to π in (22).

of W will be skewed in the same direction of the probability density near Xk . If
one or more of the Xm are far from Xk , the simplex formed by the Xm will have
the wrong shape. In contrast, the stretch move only requires that we choose one
point X j in the same region as Xk . This suggests that it might be desirable to use
proposals which depend on clusters of near by particles. We have been unable to
find such a method that is at the same time reasonably quick and has the Markov
property, and is even approximately affine invariant. The replacement move may
have promise in this regard.

4.2. The invariant measure of an SPDE. In our second example we attempt to
generate samples of the infinite-dimensional measure on continuous functions of
[0, 1] defined formally by

exp
(
−

∫ 1

0

1
2 ux(x)2+ V (u(x)) dx

)
, (20)

where V represents the double well potential

V (u)= (1− u2)2.

This measure is the invariant distribution of the stochastic Allen–Cahn equation

ut = uxx − V ′(u)+
√

2 η, (21)

with free boundary condition at x = 0 and x = 1 [3; 12]. In these equations η is a
space time white noise. Samples of this measure tend to resemble rough horizontal
lines found either near 1 or near −1 (see Figure 4).

In order to sample from this distribution (or approximately sample from it) one
must first discretize the integral in (20). The finite-dimensional distribution can
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method time

Metropolis 80
stretch moves 5.2
walk moves, |S| = 3 1.4

Table 2. Autocorrelation times (multiplied by 10−3 with f given
in (23) for single-particle Metropolis and the chains generated by
the two ensemble methods. The ensemble size is 102. Note that in
terms of CPU time in our implementation, the Metropolis scheme
is about five times more costly per step than the other two methods.
We have not adjusted these autocorrelation times to incorporate the
extra computational requirements of the Metropolis scheme.

then be sampled by Markov chain Monte Carlo. We use the discretization

π(u(0), u(h), u(2h) . . . , u(1))=

exp
(
−

N−1∑
i=0

1
2h
(u((i + 1)h)− u(ih))2+

h
2

(
V (u((i + 1)h)+ u(ih))

))
, (22)

where N is a large integer and h = 1/N . This distribution can be seen to converge
to (20) in an appropriate sense as N→∞. In our experiments we choose N = 100.
Note that the first term in (22) strongly couples neighboring values of u in the
discretization while the entire path roughly samples from the double well represented
by the second term in (22).

For this problem we compare the auto correlation time for the function

f (u(0), u(h), . . . , u(1))=
N−1∑
i=0

h
2

(
u((i + 1)h)+ u(ih)

)
, (23)

which is the trapezoidal rule approximation of the integral
∫ 1

0 u(x) dx . As before
we use |S| = 3 for the walk step and Te = Ts/L where Ts = 1011 and L = 102.
As with most MCMC schemes that employ global moves (moves of many or all
components at a time), we expect the performance to decrease somewhat as one
considers larger and larger problems. However, as the integrated auto correlation
times reported in Table 2 indicate, the walk move outperforms single site Metropolis
by more than a factor of 50 on this relatively high-dimensional problem. Note that
in terms of CPU time in our implementation, the Metropolis scheme is about 5 times
more costly per step than the other two methods tested. We have not adjusted the
autocorrelation times in Table 2 to incorporate the extra computational requirements
of the Metropolis scheme.
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5. Software

Most of the software used here is available on the web (for example, Acor). We
have taken care to supply documentation and test programs, and to create easy
general user interfaces. The user needs only to supply procedures in C or C++ that
evaluate π(x) and f (x), and one that supplies the starting ensemble EX(1). We
appreciate feedback on user experiences.

The Acor program for estimating τ uses a self consistent window strategy related
to that of [7] to estimate (18) and (17). Suppose the problem is to estimate the
autocorrelation time for a time series, f (0)(t), and to get an error bar for its mean,
f . The old self consistent window estimate of τ (see (17) and [13]) is

τ̂ (0) =min
{

s
∣∣∣∣ 1+ 2

∑
1≤t≤Ms

Ĉ (0)(t)

Ĉ (0)(0)
= s

}
, (24)

where Ĉ(t) is the estimated autocovariance function

Ĉ (0)(t)=
1

T−t

T−t∑
t ′=1

( f (0)(t ′)− f )( f (0)(t + t ′)− f ). (25)

The window size is taken to be M = 10 in computations reported here. An efficient
implementation would use an FFT to compute the estimated autocovariance function.
The overall running time would be O(T ln(T )).

The new Acor program uses a trick that avoids the FFT and has an O(T ) running
time. It computes the quantities Ĉ (0)(t) for t = 0, . . . , R. We used R = 10 in the
computations presented here. If (24) indicates that M τ̂ > R, we restart after a
pairwise reduction

f (k+1)(t)= 1
2

(
f (k)(2t) + f (k)(2t + 1)

)
.

The new time series is half as long as the old one and its autocorrelation time is
shorter. Repeating the above steps (25) and (24) successively for k = 1, 2, . . . gives
an overall O(T ) work bound. Of course, the (sample) mean of the time series
f (k)(t) is the same f for each k. So the error bar is the same too. Eventually we
should come to a k where (24) is satisfied for s ≤ R. If not, the procedure reports
failure. The most likely cause is that the original time series is too short relative to
its autocorrelation time.

6. Conclusions

We have presented a family of many particle ensemble Markov chain Monte Carlo
schemes with an affine invariance property. Such samplers are uniformly effective on
problems that can be rescaled by affine transformations to be well conditioned. All
Gaussian distributions and convex bodies have this property. Numerical tests indicate
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that even on much more general distributions our methods can offer significant per-
formance improvements over standard single-particle methods. The computational
cost of our methods over standard single-particle schemes is negligible.
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