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Abstract

Slice sampling has emerged as a powerful Markov Chain Monte Carlo algorithm that adapts to the characteristics of the target

distribution with minimal hand-tuning. However, Slice Sampling’s performance is highly sensitive to the user-specified initial

length scale hyperparameter and the method generally struggles with poorly scaled or strongly correlated distributions. This

paper introduces Ensemble Slice Sampling (ESS), a new class of algorithms that bypasses such difficulties by adaptively

tuning the initial length scale and utilising an ensemble of parallel walkers in order to efficiently handle strong correlations

between parameters. These affine-invariant algorithms are trivial to construct, require no hand-tuning, and can easily be

implemented in parallel computing environments. Empirical tests show that Ensemble Slice Sampling can improve efficiency

by more than an order of magnitude compared to conventional MCMC methods on a broad range of highly correlated target

distributions. In cases of strongly multimodal target distributions, Ensemble Slice Sampling can sample efficiently even in

high dimensions. We argue that the parallel, black-box and gradient-free nature of the method renders it ideal for use in

scientific fields such as physics, astrophysics and cosmology which are dominated by a wide variety of computationally

expensive and non-differentiable models.

Keywords Markov Chain Monte Carlo · Bayesian inference · Slice sampling · Adaptive Monte Carlo · Probabilistic data

analysis

1 Introduction

Bayesian inference and data analysis has become an integral

part of modern science. This is partly due to the ability of

Markov Chain Monte Carlo (MCMC) algorithms to generate

samples from intractable probability distributions. MCMC

methods produce a sequence of samples, called a Markov

chain, that has the target distribution as its equilibrium dis-

tribution. The more samples are included, the more closely

the distribution of the samples approaches the target distri-

bution. The Markov chain can then be used to numerically

approximate expectation values (e.g. parameter uncertain-

ties, marginalised distributions).
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Common MCMC methods entail a significant amount of

time spent hand-tuning the hyperparameters of the algorithm

to optimise its efficiency with respect to a target distribution.

The emerging and routine use of such mathematical tools in

science calls for the development of black-box MCMC algo-

rithms that require no hand-tuning at all. This need led to

the development of adaptive MCMC methods like the Adap-

tive Metropolis algorithm (Haario et al. 2001) which tunes its

proposal scale based on the sample covariance matrix. Unfor-

tunately, most of those algorithms still include a significant

number of hyperparameters (e.g. components of the covari-

ance matrix) rendering the adaptation noisy. Furthermore, the

tuning is usually performed on the basis of prior knowledge,

such as one or more long preliminary runs which further slow

down the sampling. Last but not least, there is no reason to

believe that a single Metropolis proposal scale is optimal

for the whole distribution (i.e. the appropriate scale could

vary from one part of the distribution to another). Another

approach to deal with those issues would be to develop meth-

ods that by construction require no or minimal hand-tuning.
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An archetypal such method is the Slice Sampler (Neal 2003),

which has only one hyperparameter, the initial length scale.

It should be noted that powerful adaptive methods that

require no hand-tuning (although they do require preliminary

runs) already exist. Most notable of them is the No U-Turn

Sampler (NUTS) (Hoffman and Gelman 2014), an adap-

tive extension of Hamiltonian Monte Carlo (HMC) (Neal

et al. 2011). However, such methods rely on the gradient of

the log probability density function. This requirement is the

reason why these methods are limited in their application

in quantitative fields such as physics, astrophysics and cos-

mology, which are dominated by computationally expensive

non-differentiable models. Thus, our objective in this paper

is to introduce a parallel, black-box and gradient-free method

that can be used in the aforementioned scientific fields.

This paper presents Ensemble Slice Sampling (ESS), an

extension of the Standard Slice Sampling method. ESS natu-

rally inherits most of the benefits of Standard Slice Sampling,

such as the acceptance rate of 1, and most importantly the

ability to adapt to the characteristics of a target distribu-

tion without any hand-tuning at all. Furthermore, we will

show that ESS’s performance is insensitive to linear cor-

relations between the parameters, thus enabling efficient

sampling even in highly demanding scenarios. We will also

demonstrate ESS’s performance in strongly multimodal tar-

get distributions and show that the method samples efficiently

even in high dimensions. Finally, the method can easily be

implemented in parallel taking advantage of multiple CPUs

thus facilitating Bayesian inference in cases of computation-

ally expensive models.

Our implementation of ESS is inspired by Tran and Nin-

ness (2015). However, our method improves upon that by

extending the direction choices (e.g. Gaussian and global

move), adaptively tuning the initial proposal scale and par-

allelising the algorithm. Nishihara et al. (2014) developed

a general algorithm based on the elliptical slice sampling

method (Murray et al. 2010) and a Gaussian Mixture approx-

imation to the target distribution. ESS utilises an ensemble of

parallel and interacting chains, called walkers. Other meth-

ods that are based on the ensemble paradigm include the

Affine-Invariant Ensemble Sampler (Goodman and Weare

2010) and the Differential Evolution MCMC (Ter Braak

2006) along with its various extensions (ter Braak and Vrugt

2008; Vrugt et al. 2009), as well as more recent approaches

that are based on Langevin diffusion dynamics (Garbuno-

Inigo et al. 2020a, b) and the time discretisation of stochastic

differential equations (Leimkuhler et al. 2018) in order to

achieve substantial speedups.

In Sect. 2, we will briefly discuss the Standard Slice Sam-

pling algorithm. In Sect. 3, we will introduce the Ensemble

Slice Sampling method. In Sect. 4 we will investigate the

empirical evaluation of the algorithm. We reserve Sects. 5

and 6 for discussion and conclusion, respectively.

2 Standard Slice Sampling

Slice Sampling is based on the idea that sampling from a

distribution p(x) whose density is proportional to f (x) is

equivalent to uniformly sampling from the region underneath

the graph of f (x). More formally, in the univariate case, we

introduce an auxiliary variable, the height y, thus defining the

joint distribution p(x, y), which is uniform over the region

U = {(x, y) : 0 < y < f (x)}. To sample from the marginal

density for x , p(x), we sample from p(x, y) and then we

ignore the y values.

Generating samples from p(x, y) is not trivial, so we

might consider defining a Markov chain that will converge

to that distribution. The simplest, in principle, way to con-

struct such a Markov chain is via Gibbs sampling. Given the

current x , we sample y from the conditional distribution of

y given x , which is uniform over the range (0, f (x)). Then,

we sample the new x from the slice S = {x : y < f (x)}.
Generating a sample from the slice S may still be difficult,

since we generally do not know the exact form of S. In that

case, we can update x based on a procedure that leaves the

uniform distribution of S invariant. Neal (2003) proposed the

following method:

Given the current state x0, the next one is generated as:

1. Draw y0 uniformly from (0, f (x0)), thus defining the hor-

izontal slice S = {x : y0 < f (x)},
2. Find an interval I = (L, R) that contains all, or much, of

S (e.g. using the stepping-out procedure defined bellow),

3. Draw the new point x1 uniformly from I ∩ S.

In order to find the interval I , Neal (2003) proposed to

use the stepping-out procedure that works by randomly posi-

tioning an interval of length µ around the point x0 and then

expanding it in steps of size µ until both ends are outside of

the slice. The new point x1 is found using the shrinking pro-

cedure, in which points are uniformly sampled from I until

a point inside S is found. Points outside S are used to shrink

the interval I . The stepping-out and shrinking procedures are

illustrated in Fig. 1. By construction, the stepping-out and

shrinking procedures can adaptively tune a poor estimate of

the length scale µ of the initial interval. The length scale µ is

the only free hyperparameter of the algorithm. For a detailed

review of the method we direct the reader to Neal (2003) and

MacKay (2003) (also Exercise 30.12 in that text).

It is important to mention here that for multimodal distri-

butions, there is no guarantee that the slice would cross any

of the other modes, especially if the length scale is underes-

timated initially. Ideally, in order to provide a large enough

initial value of the scale factor µ, prior knowledge of the

distance between the modes is required. As we will show in

the next section, Ensemble Slice Sampling does not suffer
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Fig. 1 The plot shows the univariate slice sampling method. Given

an initial value x0, a value y0 is uniformly sampled along the vertical

slice (0, f (x0)) (green dashed line) thus defining the initial point (blue

star). An interval (L, R) is randomly positioned horizontally around

the initial point, and then it is expanded in steps of size µ = R − L

until both of its ends L ′, R′ are outside the slice. The new point (green

star) is generated by repeatedly sampling uniformly from the expanded

interval (L ′, R′) until a point is found inside the slice. Points outside

the slice (e.g. the red star) are used to shrink the interval (L ′, R′) by

moving L ′ or in this case R′ to that point and accelerate the sampling

procedure. (Color figure online)

from this complication and can handle strongly multimodal

distributions efficiently.

3 Ensemble Slice Sampling

The univariate slice sampling scheme can be used to sam-

ple from multivariate distributions by sampling repeatedly

along each coordinate axis in turn (one parameter at a time)

or by sampling along randomly selected directions (MacKay

2003). Using either of those choices, the Standard Slice Sam-

pler performs acceptably in cases with no strong correlations

in parameter space. The overall performance of the algo-

rithm generally depends on the number of expansions and

contractions during the stepping-out and shrinking proce-

dures, respectively. Ideally, we would like to minimise that

number. A reasonable initial estimate of the length scale is

still required in order to reduce the amount of time spent

expanding or contracting the initial interval.

However, when strong correlations are present two issues

arise. First, there is no single value of the initial length scale

that minimises the computational cost of the stepping-out

and shrinking procedures along all directions in parameter

space. The second problem concerns the choice of direction.

In particular, neither the component-wise choice (one param-

eter at a time) nor the random choice is suitable in strongly

correlated cases. Using such choices results in highly auto-

correlated samples.

Our approach would be to target each of those two issues

individually. The resulting algorithm, Ensemble Slice Sam-

pling (ESS), is invariant under affine transformations of the

parameter space, meaning that its performance is not sensi-

tive to linear correlations. Furthermore, ESS minimises the

computational cost of finding the slice by adaptively tuning

the initial length scale. Last but not least, unlike most MCMC

methods, ESS is trivially parallelisable, thus enabling the data

analyst to take advantage of modern high-performance com-

puting facilities with multiple CPUs.

3.1 Adaptively tuning the length scale

Let us first consider the effect of the initial length scale on

the performance of the univariate slice sampling method. For

instance, if the initial length scale is λ times smaller than

the actual size of the slice, then the stepping-out procedure

would require O(λ) steps in order to fix this. However, in this

case, since the final interval is an accurate approximation of

the slice there would probably be no contractions during the

shrinking phase. On the other hand, when the initial length

scale is larger than the actual slice then the number of expan-

sions would be either one or zero. In this case though, there

would be a number of contractions.

3.1.1 Stochastic approximation

As the task is to minimise the total number of expansions

and contractions, we employ and adapt the Robbins–Monro

inspired stochastic approximation algorithm (Robbins and

Monro 1951) of Tibbits et al. (2014). Ideally, based on the

reasoning of the previous paragraph, only one expansion and

one contraction will take place. Therefore, the target ratio

of number of expansions to total number of expansions and

contractions is 1/2. To achieve this, we update the length

scale µ based on the following recursive formula:

µ(t+1) = 2µ(t) N
(t)
e

N
(t)
e + N

(t)
c

, (1)

where N
(t)
e and N

(t)
c are the number of expansions and con-

tractions during iteration t . It is easy to see that when the

fraction N
(t)
e /(N

(t)
e + N

(t)
c ) is larger than 1/2 the length scale

µ will be increased. In the case where the fraction is smaller

than 1/2 the length scale µ will be decreased accordingly.

The optimization can stop either when the fraction is close to

1/2 within a threshold or when a maximum number of tuning

steps has been completed. The pseudocode for the first case

is shown in Algorithm 1. In order to preserve detailed bal-

ance, it is important to be sure that the adaptation stops after
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a finite number of iterations. In practice, this happens after

O(10) iterations. An alternative would be to use diminishing

adaptation (Roberts and Rosenthal 2007) but we found that

our method is sufficient in practice (see Sect. 4.3 for more

details).

Algorithm 1 Function to tune the length scale µ.

1: function TuneLengthScale(t , µ(t), N
(t)
e , N

(t)
c , Madapt)

2: if t ≤ Madapt then

3: Compute µ(t+1) using Equation 1,

4: return µ(t+1)

5: else

6: return µ(t)

7: end if

3.2 The choice of direction & parallelization

In cases where the parameters are correlated, we can accel-

erate mixing by moving more frequently along certain

directions in parameter space. One way of achieving this

is to exploit some prior knowledge about the covariance of

the target distribution. However, such an approach would

either require significant hand-tuning or noisy estimations

of the sample covariance matrix during an initial run of the

sampler. For that reason, we employ a different approach to

exploit the covariance structure of the target distribution and

preserve the hand-tuning-free nature of the algorithm.

3.2.1 Ensemble of walkers

Following the example of Goodman and Weare (2010), we

define an ensemble of parallel chains, called walkers. In our

case though, each walker is an individual slice sampler. The

sampling proceeds by moving one walker at a time by slice

sampling along a direction defined by a subset of the rest

of walkers of the ensemble. As long as the aforementioned

direction does not depend on the position of the current

walker, the resulting algorithm preserves the detailed balance

of the chain. Moreover, assuming that the distribution of the

walkers resembles the correlated target distribution, the cho-

sen direction will prefer directions of correlated parameters.

We define an ensemble of N parallel walkers as the col-

lection S = {X1, . . . , XN}. The position of each individual

walker Xk is a vector Xk ∈ R
D , and therefore, we can think

of the ensemble S as being in R
N D . Assuming that each

walker is drawn independently from the target distribution

with density p, then the target distribution for the ensemble

would be the product

P(X1, . . . , XN) =
N

∏

k=1

p(Xk) . (2)

The Markov chain of the ensemble would preserve the prod-

uct density of Eq. 2 without the individual walker trajectories

being Markov. Indeed, the position of Xk at iteration t + 1

can depend on Xj at iteration t with j �= k.

Given the walker Xk that is to be updated there are arbi-

trary many ways off defining a direction vector from the

complementary ensemble S[k] = {Xj, ∀ j �= k}. Here, we

will discuss a few of them. Following the convention in the

ensemble MCMC literature, we call those recipes of defining

direction vectors, moves. Although the use of the ensem-

ble might seem equivalent to that of a sample covariance

matrix in the Adaptive Metropolis algorithm (Haario et al.

2001), the first has a higher information content as it encodes

both linear and nonlinear correlations. Indeed, having an

ensemble of walkers allows for arbitrary many policies for

choosing the appropriate directions along which the walk-

ers move in parameter space. As we will shortly see, one of

the choices (i.e. the Gaussian move, introduced later in this

section) is indeed the slice sampling analogue of a covari-

ance matrix. However, other choices (i.e. differential move or

Global move) can take advantage of the non-Gaussian nature

of the ensemble distribution and thus propose more informa-

tive moves. As it will be discussed later in this section, those

advanced moves make no assumption of Gaussianity for the

target distribution. Furthermore, as we will show in the last

part of this section, the ensemble can also be easily paral-

lelised.

Algorithm 2 Function to return a differential move direction

vector.
1: function DifferentialMove(k, µ, S)

2: Draw two walkers Xl, and Xm uniformly and without replacement

from the complementary ensemble S,

3: Compute direction vector ηk using Equation 6,

4: return ηk

3.2.2 Affine transformations and invariance

Affine invariance is a property of certain MCMC samplers

first introduced in the MCMC literature by Goodman and

Weare 2010. An MCMC algorithm is said to be affine invari-

ant if its performance is invariant under the bijective mapping

g : R
D → R

D of the form Y = AX + b where A ∈ R
D×D

is a matrix and b ∈ R
D is a vector. Linear transformations of

this form are called affine transformations and describe rota-

tions, rescaling along specific axes as well as translations in

parameter space. Assuming that X has the probability density

p(X), then Y = AX + b has the probability density

pA,b(Y) = p(AX + b) ∝ p(X) . (3)
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Given a density p as well as an MCMC transition operator

T such that X(t + 1) = T
(

X(t); p
)

for any iteration t we

call the operator T affine invariant if

T
(

AX + b; pA,b

)

= A T
(

X; p
)

+ b (4)

for ∀A ∈ R
D×D and ∀b ∈ R

D . In case of an ensemble of

walkers, we define an affine transformation from R
N D to

R
N D as

S = {X1, . . . , XN} A,b−−→ {AX1 + b, . . . , AXN + b} . (5)

The property of affine invariance is of paramount impor-

tance for the development of efficient MCMC methods. As

we have discussed already, proposing samples more fre-

quently along certain directions can accelerate sampling by

moving further away in parameter space. Given that most

realistic applications are highly skewed or anisotropic and

are characterised by some degree of correlation between their

parameters, affine-invariant methods are an obvious choice

of a tool that can be used in order to achieve high levels of

efficiency.

3.2.3 Differential move

The differential direction choice works by moving the walker

Xk based on two randomly chosen walkers Xl and Xm of the

complementary ensemble S[k] = {Xj, ∀ j �= k} (Gilks et al.

1994), see Fig. 2 for a graphical explanation. In particular,

we move the walker Xk by slice sampling along the vector

ηk defined by the difference between the walkers Xl and Xm .

It is important to notice here that the vector ηk is not a unit

vector and thus carries information about both the length

scale and the optimal direction of movement. It will also

prove to be more intuitive to include the initial length scale

µ in the definition of the direction vector in the following

way:

ηk = µ
(

Xl − Xm

)

. (6)

The pseudocode for a function that, given the value of

µ and the complementary ensemble S, returns a differential

direction vector ηk is shown in Algorithm 2. Furthermore, the

differential move is clearly affine invariant. Assuming that

the distribution of the ensemble of walkers follows the target

distribution and the latter is highly elongated or stretched

along a certain direction then the proposed direction given

by Eq. 6 will share the same directional asymmetry.

3.2.4 Gaussian move

The direction vector ηk can also be drawn from a normal dis-

tribution with the zero mean and the covariance matrix equal

Fig. 2 The plot shows the differential direction move. Two walkers (red)

are uniformly sampled from the complementary ensemble (blue). Their

positions define the direction vector (solid black). The selected walker

(magenta) then moves by slice sampling along the parallel direction

(dashed black). (Color figure online)

to the sample covariance of the complementary ensemble

S[k],

CS = 1

|S|
∑

j∈S

(

X j − X̄S

)(

X j − X̄S

)t
. (7)

We chose to include the initial length scale µ in this definition

as well:

ηk

2µ
∼ N

(

0, CS

)

. (8)

The factor of 2 is used so that the magnitude of the direction

vectors are consistent with those sampled using the differ-

ential direction choice in the case of Gaussian-distributed

walkers.

The pseudocode for a function that, given the value of

µ and the complementary ensemble S, returns a Gaussian

direction vector ηk is shown in Algorithm 3. See Fig. 3 for a

graphical explanation of the method. Moreover, just like the

differential move, the Gaussian move is also affine invari-

ant. In the limit in which the number of walkers is very

large and the target distribution is normal, the first reduces

to the second. Alternatively, assuming that the distribution

of walkers follows the target distribution then the covariance

matrix of the ensemble would be the same as that of inde-

pendently drawn samples from the target density. Therefore,

any anisotropy characterising the target density would also

be present in the distribution of proposed directions given by

Eq. 8.
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Algorithm 3 Function to return a Gaussian Move direction

vector.
1: function GaussianMove(k, µ, S)

2: Estimate sample covariance CS of the walkers in the complementary

ensemble S using Equation 7,

3: Sample ηk/(2µ) ∼ N
(

0, CS

)

,

4: return ηk

Fig. 3 The plot shows the Gaussian direction move. A direction vector

(solid black) is sampled from the Gaussian-approximated distribution

of the walkers of the complementary ensemble (green). The selected

walker (magenta) then moves by slice sampling along the parallel direc-

tion (dashed black). (Color figure online)

3.2.5 Global move

ESS and its variations described so far (i.e. differential move,

Gaussian move) have as much difficulty traversing the low

probability regions between modes/peaks in multimodal dis-

tributions as most local MCMC methods (e.g. Metropolis,

Hamiltonian Monte Carlo, slice sampling, etc.). Indeed, mul-

timodal distributions are often the most challenging cases

to sample from. Fortunately, Ensemble Slice Sampling’s

flexibility allows to construct advanced moves which are

specifically designed to handle multimodal cases even in

moderate to high-dimensional parameter spaces. The global

move is such an example.

We first fit a Gaussian Mixture to the distribution of the

walkers of the complementary ensemble S[k] using Varia-

tional Inference. To avoid defining the number of components

of the Gaussian Mixture, we use a Dirichlet process as the

prior distribution for the Gaussian Mixture weights1 (Görür

and Rasmussen 2010). The exact details of the construction of

the Dirchlet process Gaussian Mixture (DPGM) are beyond

1 To this end, we use the Scikit-Learn implementation of the Dirichlet

process Gaussian Mixture.

the scope of this work and we direct the reader to Görür

and Rasmussen (2010) and Bishop (2006) for more details.

One of the major benefits of fitting the DPGM using varia-

tional inference compared to the expectation–maximisation

(EM) algorithm (Dempster et al. 1977) that is often used

is the improved stability. In particular, the use of priors in

the variational Bayesian treatment guarantees that Gaussian

components do not collapse into specific data points. This

regularisation due to the priors leads to component covari-

ance matrices that do not diverge even when the number of

data points (i.e. walkers in our case) in a component is lower

than the number of dimensions. In our case, this means that

even if the number of walkers located in a mode of the target

distribution is small DPGM would still identify that mode

correctly. In such cases, the covariance of the component

that corresponds to that mode would be over-estimated. This

however does not affect the performance of the Global move

as the latter does not rely on exact estimates of the component

covariance matrices.2

In practice, we recommend using more than the mini-

mum number of walkers in cases of multimodal distributions

(e.g. at least two times as many in bimodal cases). We found

that the computational overhead introduced by the variational

fitting of the DPGM is negligible compared to the compu-

tational cost of the evaluation of the model and posterior

distribution in common problems in physics, astrophysics

and cosmology. Indeed, the cost is comparable, and only a

few times higher than the Differential or Gaussian move. The

reason for that is the relatively small number of walkers (i.e.

O(10 − 103)) that simplifies the fitting procedure.

Once fitting is done, we have a list of the means and covari-

ance matrices of the components of the Gaussian Mixture.

As the ensemble of walkers traces the structure of the tar-

get distribution, we can use the knowledge of the means and

covariance matrices of the Gaussian Mixture to construct

efficient direction vectors. Ideally, we prefer direction vec-

tors that connect different modes. This way, the walkers will

be encouraged to move along those directions that would

otherwise be very unlikely to be chosen.

We uniformly select two walkers of the complementary

ensemble and identify the Gaussian components to which

they belong, say i and j . There are two distinct cases, and

we will treat them as such. In case A, i = j , meaning that the

selected walkers originate from the same component. In case

B, i �= j , meaning that the two walkers belong to different

components and thus probably different peaks of the target

distribution.

As we will show next, only in case B, we can define a direc-

tion vector that favours mode-jumping behaviour. In case A,

2 Indeed, the covariance matrix of a component only enters through

Eq. 10, but then it is rescaled by the factor γ .

123



Statistics and Computing (2021) 31 :61 Page 7 of 18 61

we can sample a direction vector from the Gaussian compo-

nent that the two select walkers belong to:3

ηk

2µ
∼ N

(

0, C i= j

)

, (9)

where C i= j is the covariance matrix of the ith (or equivalently

jth) component. Just as in the Gaussian move, the mean of

the proposal distribution is zero so that we can interpret η as

a direction vector.

In case B, where the two selected walkers belong to differ-

ent components, i �= j , we will follow a different procedure

to facilitate long jumps in parameter space. We will sample

two vectors, one from each component:

ηk,n ∼ N
(

µn, γ Cn

)

, (10)

for n = i or n = j . Here, µn is the mean of the nth com-

ponent and Cn is its covariance matrix. In practise, we also

rescale the covariance by a factor of γ = 0.001, which results

in direction vectors with lower variance in their orientation.

γ < 1 ensures that the chosen direction vector is close to the

vector connecting the two peaks of the distribution. Finally,

the direction vector will be defined as:

ηk = 2
(

ηk,i − ηk, j

)

. (11)

The factor of 2 here is chosen to better facilitate mode-

jumping. There is also no factor of µ in the aforementioned

expression, since in this case there is no need for the scale

factor to be tuned.

The pseudocode for a function that, given the comple-

mentary ensemble S, returns a Global direction vector ηk is

shown in Algorithm 4. See Fig. 4 for a graphical explanation

of the method. It should be noted that for the global move

to work at least one walker needs to be present on each well

separated mode.

Here, we introduced three general and distinct moves that

can be used in a broad range of cases. In general, the global

move requires a higher number of walkers than the differ-

ential or Gaussian move in order to perform well. We found

that the differential and Gaussian moves are good choices

for most target distributions, whereas the global move is

only necessary in highly dimensional and multimodal cases.

One can use the information in the complementary ensemble

to construct more moves tailor-made for specific problems.

Such additional moves might include kernel density estima-

tion or clustering methods and as long as the information used

comes from the complementary ensemble (and not from the

3 In practice, we use uniformly sample two walkers from the list of

walkers that DPGM identified in that mode. This step removes any

dependency on covariance matrix estimates.

Algorithm 4 Function to return a global move direction vec-

tor.
1: function GlobalMove(k, µ, S)

2: Fit Dirichlet process Gaussian Mixture (DPGM) to the complemen-

tary ensemble S[k],
3: If N is the number of components of the DPGM then select two

components i, j uniformly such that i �= j ,

4: if i = j then

5: Sample ηk/(2µ) ∼ N
(

0, C i= j

)

,

6: else

7: Sample ηk,n ∼ N
(

µn, γ Cn

)

for n = i, j ,

8: Compute direction vector ηk using Equation 11,

9: end if

10: return ηk

Fig. 4 The plot shows the global direction move assuming that the uni-

formly selected pair of walkers of the complementary ensemble belongs

to different components (blue and green). A position (red) is sampled

from each component (using the rescaled by γ covariance matrix).

Those two points (red) define the direction vector (black) connecting

the two modes (blue and green). The selected walker (magenta) then

moves by slice sampling along the parallel direction (dashed). (Color

figure online)

walker that would be updated) the detailed balance is pre-

served.

3.2.6 Parallelising the ensemble

Instead of evolving the ensemble by moving each walker in

turn, we can do this in parallel. A naive implementation of

this would result in a subtle violation of detailed balance.

We can avoid this by splitting the ensemble into two sets of

walkers (Foreman-Mackey et al. 2013) of nWalkers/2 each.

We can now update the positions of all the walkers in the

one set in parallel along directions defined by the walkers of

the other set (the complementary ensemble). Then we can

perform the same procedure for the other set. In accordance
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with Eq. 2, the stationary distribution of the split ensemble

would be

P(X1, . . . , XN) =
N/2
∏

k=1

p(Xk)

N
∏

k=1+N/2

p(Xk) . (12)

The method generates samples from the target distribution by

simulating a Markov chain which leaves this product distri-

bution invariant. The transition operator T1 that updates the

walkers of the first set (i.e. k = 1, . . . , N/2) uses the walkers

of the complementary ensemble (i.e. k = 1 + N/2, . . . , N )

and vice versa for the transition operator T2 that acts on the

second set. In the context of ESS, the aforementioned transi-

tion operators correspond to a single iteration of Algorithm 5

coupled with one of the moves (e.g. differential move).

It follows from the ensemble splitting technique that the

maximum number of CPUs used without any of them being

idle is equal to the total number of walkers updated concur-

rently, that is nWalkers/2. We will also verify this empirically

in Sect. 4. Of course, this does not mean that if there are more

CPUs available they cannot be used as we can always increase

the size of the ensemble to match the available CPUs.

Combining this technique with the stochastic approxima-

tion solution of Sect. 3.1 and the choices (moves) of direction

and ensemble-splitting technique of this subsection leads to

the Ensemble Slice Sampling method of Algorithm 5.4 Of

course, another move (e.g. Gaussian, global) can be used

instead of the differential move in Algorithm 5. Finally, the

minimum number of walkers used should be twice the num-

ber of parameters. Using fewer walkers than that could lead

to erroneous sampling from a lower-dimensional parameter

space (Ter Braak 2006).

In general, parallelising a slice sampler is not trivial (e.g. as

it is for Metropolis) because each update requires an unknown

number of probability density evaluations. However, because

of the affine invariance (i.e. performance unaffected by lin-

ear correlations) induced by the existence of the ensemble,

all iterations require on average the same number of prob-

ability density evaluations (i.e. usually 5 if the stochastic

approximation for the length scale µ is used). Therefore, the

parallelization of Ensemble Slice Sampling is very effective

in practice. Furthermore, the benefit of having parallel walk-

ers instead of parallel independent chains (e.g. such as in

Metropolis sampling) is clear, the walkers share information

about the covariance structure of the distribution thus accel-

erating mixing.

4 Perhaps a small detail, but we have included the length scale in the

definition of the direction vector η, and therefore, it does not appear in

the definition of the (L, R) interval.

Algorithm 5 Single Iteration t of Ensemble Slice Sampling.

1: Given t , f , µ(t), S[0], S[1], Madapt:

2: Initialise N
(t)
e = 0 and N

(t)
c = 0,

3: for i = 0, 1 do

4: for k = 1, ..., N/2 do

5: k ← k + i N/2

6: Compute direction vector ηk ← DifferentialMove(k, µ(t),

S[i])
7: Sample Y ∼ Uniform(0, f (Xk

(t)))

8: Sample U ∼ Uniform(0, 1)

9: Set L ← −U , and R ← L + 1

10: while Y < f (L) do

11: L ← L − 1

12: N
(t)
e ← N

(t)
e + 1

13: end while

14: while Y < f (R) do

15: R ← R + 1

16: N
(t)
e ← N

(t)
e + 1

17: end while

18: while True do

19: Sample X ′ ∼ Uniform(L, R)

20: Set Y ′ ← f (X ′ηk + Xk
(t))

21: if Y < Y ′ then

22: break

23: end if

24: if X ′ < 0 then

25: L ← X ′

26: N
(t)
c ← N

(t)
c + 1

27: else

28: R ← X ′

29: N
(t)
c ← N

(t)
c + 1

30: end if

31: end while

32: Set Xk
(t+1) ← X ′ηk + Xk

(t)

33: end for

34: end for

35: µ(t+1) ← TuneLengthScale(t , µ(t), N
(t)
e , N

(t)
c , Madapt ),

4 Empirical evaluation

To empirically evaluate the sampling performance of the

Ensemble Slice Sampling algorithm, we perform a series of

tests. In particular, we compare its ability to sample from

two demanding target distributions, namely the autoregres-

sive process of order 1 and the correlated funnel, against

the Metropolis and Standard Slice Sampling algorithms.

The Metropolis’ proposal scale was tuned to achieve the

optimal acceptance rate, whereas the initial length scale

of Standard Slice Sampling was tuned using the stochastic

scheme of Algorithm 1. Ensemble Slice Sampling signifi-

cantly outperforms both of them. These tests help establish

the characteristics and advantages of Ensemble Slice Sam-

pling. Since our objective was to develop a gradient-free

black-box method we then proceed to compare Ensemble

Slice Sampling with a list of gradient-free ensemble methods

such as Affine Invariant Ensemble Sampling (AIES), Differ-

ential Evolution Markov Chain (DEMC) and Kernel Density

Estimate Metropolis (KM) on a variety of challenging target
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distributions. Moreover, we are also interested in assessing

the convergence rate of the length scale µ during the first

iterations as well as the parallel scaling of the method in the

presence of multiple CPUs. Unless otherwise specified, we

use the differential move for the tests. Unlike ESS that has an

acceptance rate of 1, AIES’s and DEMC’s acceptance rate is

related to the number of walkers. For that reason, and for the

sake of a fair comparison, we made sure the selected number

of walkers in all examples would yield the optimal accep-

tance rate for AIES and DEMC. As we will discuss further

in Sect. 5, it makes sense to increase the number of walkers in

cases of multimodal distributions or strong nonlinear correla-

tions. In general though, we recommend using the minimum

number of walkers (i.e. twice the number of dimensions) as

the default choice and increase it only if it is required by a

specific application. For more rules and heuristics about the

initialisation and number of walkers, we direct the interested

reader to Sect. 5.

4.1 Performance tests

Autoregressive process of order 1: In order to investigate

the performance of ESS. In high-dimensional and correlated

scenarios, we chose a highly correlated Gaussian as the target

distribution. More specifically, the target density is a discrete-

time autoregressive process of order 1, also known as AR(1).

This particular target density is ideally suited for benchmark-

ing MCMC algorithms since the posterior density in many

scientific studies often approximates a correlated Gaussian.

Apart from that, the AR(1) is commonly used as a prior for

time-series analysis.

The AR(1) distribution of a random vector X = (X1, ...,

X N ) is defined recursively as follows:

X1 ∼ N (0, 1) ,

X2|X1 ∼ N (αX1, β
2) ,

...

X N |X N−1 ∼ N (αX N−1, β
2) ,

(13)

where the parameter α controls the degree of correlation

between parameters and we chose it to be α = 0.95. We set

β =
√

1 − α2 so that the marginal distribution of all param-

eters is N (0, 1). We also set the number of dimensions to

N = 50.

For each method, we measured the mean integrated auto-

correlation time (IAT), and the number of effective samples

per evaluation of the probability density function, also termed

efficiency (see “Appendix A” for details). For this test we ran

the samplers for 107 iterations. In this example, we used

the minimum number of walkers (i.e. 100 walkers) for ESS

and the equivalent number of probability evaluations for

Table 1 The table shows a comparison of the optimally tuned Metropo-

lis, Standard Slice, and Ensemble Slice Sampling with the differential

move (ESS-D) and the Gaussian move (ESS-G), respectively, in terms

of the integrated autocorrelation time (IAT) and the number of effective

samples per evaluation of the probability density (efficiency) multiplied

by 104. These metrics are formally defined in “Appendix A”. The target

distributions are the 50-dimensional autoregressive process of order 1

and the 25-dimensional correlated funnel distribution. The total number

of iterations was set to 107

Metropolis Slice ESS-D ESS-G

Autoregressive process of order 1

IAT 4341 2075 111 107

Efficiency 2.3 1.0 17.5 17.8

Correlated funnel distribution

IAT – 3905 129 141

Efficiency – 0.5 15.3 14.0

Metropolis and Slice Sampling with each walker initialised at

a position sampled from the distribution N (0, 1). The results

are presented in Table 1. The chain produced by Ensemble

Slice Sampling has a significantly shorter IAT (20–40 times)

compared to either of the other two methods. Furthermore,

Ensemble Slice Sampling, with either Differential or Gaus-

sian move, generates an order of magnitude greater number of

independent samples per evaluation of the probability den-

sity. In this example, the Differential and Gaussian moves

have achieved almost identical IAT values and efficiencies.

To assess the mixing rate of Ensemble Slice Sampling,

we set the maximum number of probability density eval-

uations to 3 × 105 and show the results in Fig. 5. We

compare the results of Ensemble Slice Sampling with those

obtained via the optimally tuned Metropolis and Standard

Slice Sampling methods. Ensemble Slice Sampling signifi-

cantly outperforms both of them, being the only one with a

chain resembling the target distribution in the chosen number

of probability evaluations.

4.1.1 Correlated funnel

The second test involves a more challenging distribution,

namely the correlated funnel distribution adapted from Neal

(2003). The funnel, tornado like, structure is common in

Bayesian hierarchical models and possesses characteristics

that render it a particularly difficult case. The main difficulty

originates from the fact that there is a region of the parameter

space where the volume of the region is low but the proba-

bility density is high, and another region where the opposite

holds.

Suppose we want to sample an N-dimensional vector

X = (X1, ..., X N ) from the correlated funnel distribution.

The marginal distribution of X1 is Gaussian with mean zero

and unit variance. Conditional on a value of X1, the vector
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Fig. 5 The plots compare the 1-sigma and 2-sigma contours generated

by the optimised random-walk Metropolis (left), Standard Slice (cen-

tre) and Ensemble Slice Sampling (right) methods to those obtained by

Independent Sampling (blue) for the AR(1) distribution. All samplers

used the same number of probability density evaluations, 3×105. Only

the first two dimensions are shown here. (Color figure online)

X2−N = (X2, ..., X N ) is drawn from a Gaussian with mean

zero and a covariance matrix in which the diagonal elements

are exp(X1), and the non-diagonal equal to γ exp(X1). If

γ = 0, the parameters X2 to X N conditional on X1 are

independent and the funnel distribution resembles the one

proposed by Neal (2003). The value of γ controls the degree

of correlation between those parameters. When γ = 0 the

parameters are uncorrelated. For the following test, we chose

this to be γ = 0.95. We set the number of parameters N to

25.

Using 107 iterations, we estimated the IAT and the effi-

ciency of the algorithms for this distribution as shown in

Table 1. Just like in the AR(1) case, we used the minimum

number (i.e. 50) of walkers for ESS with each walker ini-

tialised at a position sampled from the distribution N (0, 1).

Since the optimally-tuned Metropolis fails to sample from

this particular distribution, we do not quote any results.

The Metropolis sampler is unable to successfully explore

the region of parameter space with negative X1 values. The

presence of strong correlations renders the Ensemble Slice

Sampler 30 times more efficient than the Standard Slice

Sampling algorithm on this particular example. In this exam-

ple, the differential move outperforms the Gaussian move in

terms of efficiency, albeit by a small margin. In general, we

expect the former to be more flexible than the latter since

it makes no assumption about the Gaussianity of the target-

distribution and recommend it as the default configuration of

the algorithm.

To assess the mixing rate of the algorithm on this demand-

ing case, we set the maximum number of evaluations of the

probability density function to 3 × 105. As shown in Fig. 6,

the Ensemble Slice Sampling is the only algorithm out of

the three whose outcome closely resembles the target dis-

tribution. The results of Metropolis were incorrect for both,

the limited run with 3 × 105 iterations and the long run with

107 iterations. In particular, the chain produced using the

Metropolis method resemble a converged chain but in fact

it is biased in favour of positive values of x1. The problem

arises because of the vanishing low probability of accept-

ing a point with highly negative value of x1. This indicates

the inability of Metropolis to handle this challenging case.

For a more detailed discussion of this problem, we direct the

reader to Section 8 of Neal (2003). In general, the correlated

funnel is a clear example of a distribution in which a single

Metropolis proposal scale is not sufficient for all the sam-

pled regions of parameter space. The locally adaptive nature

of ESS solves this issue.

4.2 Comparison to other ensemblemethods

So far, we have demonstrated Ensemble Slice Sampling’s

performance in simple, yet challenging, target distributions.

The tests performed so far demonstrate ESS’s capacity to

sample efficiently from highly correlated distributions com-

pared with standard methods such as Metropolis and Slice

Sampling. Although the use of Metropolis and Slice Sam-

pling is common, these methods are not considered to be

state-of-the-art. For this reason, we will now compare ESS

with state-of-the-art gradient-free ensemble MCMC meth-

ods.

By far, the two most popular choices5 of gradient-free

ensemble methods are the Affine-Invariant Ensemble Sam-

pling (AIES) (Goodman and Weare 2010) method and the

Differential Evolution Monte Carlo (DEMC) (Ter Braak

2006) algorithm supplemented with a Snooker update (ter

Braak and Vrugt 2008).

5 For instance, in the fields of Astrophysics and Cosmology where

most models are not differentiable and gradient methods (e.g. Hamil-

tonian Monte Carlo or NUTS) are not applicable the default choice is

the Affine-Invariant Ensemble Sampler (AIES) (Goodman and Weare

2010) as implemented in emcee.
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Fig. 6 The plots compare the 1-sigma and 2-sigma contours generated

by the optimised random-walk Metropolis (left), Standard Slice (cen-

tre) and Ensemble Slice Sampling (right) methods to those obtained

by Independent Sampling (blue) for the correlated funnel distribution.

All samplers used the same number of probability density evaluations,

3 × 105. Only the first two dimensions are shown here. (Color figure

online)

In cases of strongly multimodal target distributions, we

will also test our method against Sequential Monte Carlo6

(SMC) (Liu and Chen 1998; Del Moral et al. 2006) and Ker-

nel Density Estimate Metropolis (KM) (Farr and Farr 2015)

which are particle methods specifically designed to handle

strongly multimodal densities.

4.2.1 Ring distribution

Although all three of the compared methods (i.e. ESS, AIES

and DEMC) are affine invariant and thus unaffected by lin-

ear correlations, they do however differ significantly in the

way they handle nonlinear correlations. In particular, only

Ensemble Slice Sampling (ESS) is locally adaptive because

of its stepping-out procedure and therefore able to handle

nonlinear correlations efficiently.

To illustrate ESS’s performance in a case of strong non-

linear correlations, we will use the 16-dimensional ring

distribution defined by:

ln L = −
[

(x2
n + x2

1 − a)2

b

]2

−
n−1
∑

i=1

[

(x2
i + x2

i+1 − a)2

b

]2

,

(14)

where a = 2, b = 1 and n = 16 are the total number of

parameters. We also set the number of walkers to be 64 and

run the samplers for 107 steps discarding the first half of

the chains. Here, we followed the heuristics discussed at the

beginning of this section and increased the number of walk-

ers from the minimum of 2×16 to 4×16 due to the presence

6 As there are many different flavours of SMC, we decided to use the one

implemented in PyMC3 which utilises importance sampling, simulated

annealing and Metropolis sampling.

Table 2 The table shows a comparison of the Affine-Invariant Ensem-

ble Sampling (AIES), Differential Evolution Markov Chain (DEMC)

and Ensemble Slice Sampling methods in terms of the integrated

autocorrelation time (IAT) and the number of effective samples per

evaluation of the probability density (efficiency) multiplied by 105

AIES DEMC ESS

Ring distribution

IAT 49470 91128 1675

Efficiency 2.0 1.1 12.2

Gaussian shells distribution

IAT 33046 2760 89

Efficiency 3.0 36.0 731.0

Hierarchical Gaussian process regression

IAT 55236 30990 547

Efficiency 1.8 3.2 38.0

These metrics are formally defined in “Appendix A”. The target dis-

tributions are the 16-dimensional ring distribution, the 10-dimensional

Gaussian shells distribution and the 13-dimensional hierarchical Gaus-

sian process regression distribution. In all cases, the total number of

iterations was set to 107. It should be noted that in the case of the Gaus-

sian shells the global move was used instead of the differential move

of strong nonlinear correlations in order to achieve the opti-

mal acceptance rate for AIES and DEMC. The number of

iterations is large enough for all samplers to converge and

provide accurate estimates of the autocorrelation time.

The results are shown in Table 2 and verify that ESS’

performance is an order of magnitude better than that of the

other methods.

4.2.2 Gaussian shells distribution

Another example that demonstrates ESS’s performance in

cases of nonlinear correlations is the Gaussian Shells distri-

bution defined as:
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L(Θ) = circ(Θ|c1, r1, w1) + circ(Θ|c2, r2, w2), (15)

where

circ(Θ|c, r , w) = 1√
2πw

exp

[

− 1

2

(|Θ − c| − r)2

w2

]

.

(16)

We choose the centres, c1 and c2 to be −3.5 and 3.5 in the

first dimension, respectively, and zero in all others. We take

the radius to be r = 2.0 and the width w = 0.1. In two

dimensions, the aforementioned distribution corresponds to

two equal-sized Gaussian Shells. In higher dimensions, the

geometry of the distribution becomes more complicated and

the density becomes multimodal.

For our test, we set the number of dimensions to 10 and the

number of walkers to 40 due to the existence of two modes.

Since this target distribution exhibits some mild multimodal

behaviour we opt for the global move instead of the default

differential move although the latter also performs acceptably

in this case. The total number of iterations was set to 107,

and the first half of the chains was discarded. The results are

presented in Table 2. ESS’s autocorrelation time is 2–3 orders

of magnitude lower than that of the other methods and the

efficiency is higher by 1–2 orders of magnitude, respectively.

4.2.3 Hierarchical Gaussian process regression

To illustrate ESS’s performance in a real-world example, we

will use a modelling problem concerning the concentration

of C O2 in the atmosphere adapted from Chapter 5 of Ras-

mussen (2003). The data consist of monthly measurements

of the mean C O2 concentration in the atmosphere measured

at the Mauna Loa Observatory (Keeling and Whorf 2004) in

Hawaii since 1958. Our goal is to model the concentration

of C O2 as a function of time. To this end, we will employ

a hierarchical Gaussian process model with a composite

covariance function designed to take care of the properties

of the data. In particular, the covariance function (kernel) is

the sum of following four distinct terms:

k1(r) = θ2
1 exp

(

− r2

2θ2

)

, (17)

where r = x − x ′ that describes the smooth trend of the data,

k2(r) = θ2
3 exp

[

− r2

2θ4
− θ5 sin2

(

πr

θ6

)]

, (18)

that describes the seasonal component,

k3(r) = θ2
7

[

1 + r2

2θ8θ9

]−θ8

, (19)

which encodes medium-term irregularities, and finally:

k4(r) = θ2
10 exp

(

− r2

2θ11

)

+ θ2
12δi j , (20)

that describes the noise. We also fit the mean of the data,

having in total 13 parameters to sample.

We sample this target distribution using 36 walkers for

107 iterations, and we discard the first half of the chains. The

number of walkers that was used corresponds to 1.5 times

the minimum number. We found that this value results in

the optimal acceptance rate for AIES and DEMC. For this

example, we use the differential move of ESS. The results

are presented in Table 2. The integrated autocorrelation time

of ESS is 2 orders of magnitude lower than that of the other

methods and its efficiency is more than an order of magnitude

higher. The performance is weakly sensitive to the choice of

the number of walkers.

4.2.4 Bayesian object detection

Another real-world example with many applications in the

field of astronomy is Bayesian object detection. The follow-

ing model adapted from Feroz and Hobson (2008) can be

used with a few adjustments to detect astronomical objects

in telescope images often hidden in background noise.

We assume that the 2D circular objects present in the

image are described by the Gaussian profile:

G(x, y; θ) = A exp

[

− (x − X)2 + (y − Y )2

2R2

]

, (21)

where Θ = (X , Y , A, R) are parameters that define the coor-

dinate position, the amplitude and the size of the object,

respectively. Then, the data can be described as:

D = N +
nObj
∑

i=1

G(θi ) , (22)

where nObj is the number of objects in the image and N is an

additive Gaussian noise term.

Assuming a 200 × 200 pixel-wide image, we can cre-

ate a simulated dataset by sampling the coordinate positions

(X , Y ) of the objects from U(0, 200) and their amplitude A

and size R from U(1, 2) and U(3, 7), respectively. We sam-

ple nObj = 8 objects in total. Finally, we sample the noise

N from N (0, 4). In practice we create a dataset of 100 such

images and one such example is shown in Fig. 7. Notice that

the objects are hardly visible as they are obscured by the

background noise, this makes the task of identifying those

objects very challenging.
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Fig. 7 The plot shows a simulated image used in the Bayesian object

detection exercise. There are 8 circular objects included here. As the

objects are hardly visible due to the background noise, their centres are

marked with red stars

Following the construction of the simulated dataset, the

posterior probability density function is defined as:

P(θ |D) ∝ exp

{ [G(θ) − D]2

2σ 2

}

P(θ) , (23)

where σ = 2 is the standard deviation of the N noise term.

The prior P(θ) can be decomposed as the product of prior dis-

tributions of X , Y , A and R. We used uniform priors for all of

these parameters with limits (0, 200) for X and Y , (1, 2) for A

and (2, 9) for R. It is important to mention here that the pos-

terior does not include any prior information about the exact

or maximum number of objects in the data. In that sense, the

sampler is agnostic about the exact number, positions and

characteristics (i.e. amplitude and size) of the objects that it

seeks to detect.

We sampled the posterior distribution using 200 walk-

ers (initialised from the prior distribution) for each image

in our dataset (i.e. 100 images in total) using Ensemble

Slice Sampling (ESS), Affine-Invariant Ensemble Sampling

(AIES) and Differential Evolution Markov Chain (DEMC).

Although the posterior distribution is multimodal (i.e. 8

modes) we used the differential move since the number of

dimensions is low and there is no reason to use more sophis-

ticated moves like the global move. We used a large enough

ensemble of walkers due to the potential presence of multiple

modes so that all three samplers are able to resolve them.

We ran each sampler for 104 iterations in total and we

discarded the first half of the chains. We found that, on aver-

age for the 100 images, ESS identifies correctly 7 out of 8

objects in the image, whereas AIES and DEMC identify 4

and 5, respectively.

In cases where the objects are well-separated ESS often

identifies correctly 8 out of 8. Its accuracy falls to 7/8 in

cases where two of the objects are very close to each other

or overlap. In those cases, ESS identifies the merged object

as a single object.

4.2.5 Gaussian Mixture

One strength of ESS is its ability to sample from strongly

multimodal distributions in high dimensions. To demonstrate

this, we will utilise a Gaussian Mixture of two components

centred at −0.5 and +0.5 with standard deviation of 0.1. We

also put 1/3 of the probability mass in one mode and 2/3 in

the other.

We first set this distribution at 10 dimensions and we

sample this using 80 walkers for 105 steps. The distance

between the two modes in this case is approximately 32

standard deviations. We then increase the number of dimen-

sions to 50 and we sample it using 400 walkers for 105

iterations. In this case, the actual distance between the two

modes is approximately 71 standard deviations. The total

number of iterations was set to 107 for all methods but the

SMC.

This problem consists of two, well-separated, modes and

thus requires using at least twice the minimum number of

walkers (i.e. at least 40 for the 10-dimensional case and 200

for the 50-dimensional one). Although the aforementioned

configuration was sufficient for ESS to provide accurate esti-

mates, we opted instead for twice that number (i.e. 80 walkers

for the 10-dimensional cases and 400 for the 50-dimensional

one) in order to satisfy the requirements of the other sam-

plers, mainly the Kernel Density Estimate Metropolis (KM),

but also AIES and DEMC. For the Sequential Monte Carlo

(SMC) sampler, we used 2000 and 20,000 independent

chains for the low and high-dimensional case, respectively.

The temperature ladder that interpolates between the prior

and posterior distribution was chosen adaptively guarantee-

ing an effective sample size of 90% the physical size of the

ensemble. Our implementation of SMC was based on that

of PyMC3 using and an independent Metropolis mutation

kernel.

The results for the 10-dimensional and 50-dimensional

cases are plotted in Figs. 8 and 9, respectively. In the 10-

dimensional case, both ESS (differential and global move)

and SMC managed to sample from the target, whereas AIES,

DEMC and KM failed to do so. In the 50-dimensional case,

only the Ensemble Slice Sampling with the global move

manages to sample correctly from this challenging target dis-

tribution. In practice, ESSG is able to handle similar cases

in even higher number of dimensions and with more than 2

modes.
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Fig. 8 The plot compares the results of 6 samplers, namely Sequential

Monte Carlo (SMC, red), Affine-Invariant Ensemble Sampling (AIES,

yellow), Differential Evolution Markov Chain (DEMC, purple), Kernel

Density Estimate Metropolis (KM, orange), Ensemble Slice Sampling

using the differential move (ESS, green) and Ensemble Slice Sam-

pling using the global move (ESS, blue). The target distribution is a

10-dimensional Gaussian Mixture. The figure shows the 1D marginal

distribution for the first parameter of the 10. (Color figure online)

4.3 Convergence of the length scale�

Figure 10 plots the convergence of the length scale during the

first 20 iterations. The target distribution in this example is

a 20-dimensional correlated normal distribution. The length

scale µ was initialised from a wide range of possible values.

Adaptation is significantly faster when the initial length scale

is larger than the optimal one rather than smaller. Another

benefit of using a larger initial estimate would be the reduced

number of probability evaluations during the first iterations.

This is due to the fact that the shrinking procedure is generally

faster than the stepping-out procedure.

4.4 Parallel scaling

By construction, Ensemble Slice Sampling can be used in

parallel computing environments by parallelising the ensem-

ble of walkers as discussed in Sect. 3.2. The maximum

number of CPUs used without any of them being idle is

equal to the size of complementary ensemble, nWalkers/2.

In order to verify this empirically and investigate the scal-

ing of the method for any number of CPUs, we sampled

a 10-dimensional normal distribution for 105 iterations with

varying number of walkers. The results are plotted in Fig. 11.

We sampled the aforementioned distribution multiple times

in order to get estimates of the confidence integrals shown

in Fig. 11. The required time to do the pre-specified num-

ber of iterations scales as O(1/nCPUs) as long as nCPUs ≤
nWalkers/2. This result does not depend on the specific distri-

bution. We can always use all the available CPUs by matching

the size of the complementary ensemble (i.e. half the number

of walkers) to the number of CPUs.

5 Discussion

In Sect. 4, we provided a quantitative comparison of the

efficiency of Ensemble Slice Sampling compared to other

methods. In this section, we will provide some qualita-

tive arguments to informally demonstrate the advantages of

Ensemble Slice Sampling over other methods. Furthermore,

we will briefly discuss some general aspects of the algorithm

and place our work in the context of other related algorithms.

After the brief adaptation period is over and the length

scale µ is fixed, the Ensemble Slice Sampling algorithm per-

forms on average 5 evaluations of the probability density

per walker per iteration, assuming that either the differen-

tial or Gaussian move is used. This is in stark contrast with

Metropolis-based MCMC methods that perform 1 evalua-

tion of the probability density per iteration. However, the

non-rejection nature of Ensemble Slice Sampling more than

compensates for the higher number of evaluations as shown

in Sect. 4, thus yielding a very efficient scheme.

One could think of the number of walkers as the only

free hyperparameter of Ensemble Slice Sampling. However,

choosing the number of walkers is usually trivial. As we

mentioned briefly at the end of Sect. 3, there is a minimum

limit to that number. In particular, in order for the method to
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Fig. 9 The plot compares the results of 6 samplers, namely Sequential

Monte Carlo (SMC, red), Affine-Invariant Ensemble Sampling (AIES,

yellow), Differential Evolution Markov Chain (DEMC, purple), Kernel

Density Estimate Metropolis (KM, orange), Ensemble Slice Sampling

using the differential move (ESS, green) and Ensemble Slice Sam-

pling using the global move (ESS, blue). The target distribution is a

50-dimensional Gaussian Mixture. The figure shows the 1D marginal

distribution for the first parameter of the 50. (Color figure online)

Fig. 10 The plot shows the adaptation of the length scale µ as a function

of the number of iterations and starting from a wide range of initial

values. Each trace is an independent run and the y-axis shows the value

of µ divided by the final value of µ. The target distribution in this

example is a 20-dimensional correlated normal distribution. Starting

from larger µ values leads to significantly faster adaptation

be ergodic, the ensemble should be made of at least 2 × D

walkers,7 where D is the number of dimensions of the prob-

lem. Assuming that the initial relative displacements of the

7 The reason that the minimum limit is 2 × D instead of D + 1 has to

do with the ensemble splitting procedure that we introduced in order to

make the method parallel. Splitting the ensemble into two equal parts

means that each walker is updated based on the relative displacements

of half the ensemble.

Fig. 11 The plot shows the time t f required for ESS to complete a pre-

specified number of iterations as a function of the ratio of the number of

available CPUs nCPUs to the total number of walkers nWalkers. The results

are normalised with respect to the single CPU case t1. The method scales

as O(1/nCPUs) as long as nCPUs ≤ nWalkers/2 (dashed line). The shaded

areas show the 2 − σ intervals

walkers span the parameter space (i.e. they do not belong to

a lower-than-D-dimensional space) the resulting algorithm

would be ergodic. As shown in Sect. 4, using a value close to

the minimum number of walkers, meaning twice the number

of parameters, is generally a good choice. Furthermore, we

suggest to increase the number of walkers by a multiplica-

tive factor equal to the number of well separated modes (e.g.

four times the number of dimensions in a bimodal density).
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Other cases in which increasing the number of walkers can

improve the sampling efficiency include target distributions

with strong nonlinear correlations between their parameters.

Regarding the initial positions of the walkers, we found

that we can reduce the length of the burn-in phase by initial-

ising the walkers from a tight sphere (i.e. normal distribution

with a very small variance) close to the Maximum a Posteri-

ori (MAP) estimate. In high-dimensional problems, the MAP

estimate will not reside in the typical set and the burn-in phase

might be longer. We found that the tight sphere initialisation

is still an efficient strategy compared to a more dispersed ini-

tialisation (Foreman-Mackey et al. 2013). Other approaches

include initialising the walkers by sampling from the prior

distribution or the Laplace approximation of the posterior

distribution. In multimodal cases, a prior initialisation is usu-

ally a better choice. A brief simulated annealing phase can

also be very efficient, particularly in cases with many well

separated modes.

Recent work on the No U-Turn Sampler (Hoffman and

Gelman 2014) has attempted to reduce the hand-tuning

requirements of Hamiltonian Monte Carlo (Betancourt 2017)

using the dual averaging scheme of Nesterov (2009). In

order to achieve a similar result, we employed the much

simpler stochastic approximation method of Robbins and

Monro (1951) to tune the initial length scale µ. The Affine-

Invariant Ensemble Sampler (Goodman and Weare 2010)

and the Differential Evolution MCMC (Ter Braak 2006) use

an ensemble of walkers to perform Metropolis updates. Our

method differs by using the information from the ensemble to

perform Slice Sampling updates. So why does ESS perform

better, as demonstrated, compared to those other methods?

The answer lies in the locally adaptive and non-rejection

nature of the algorithm (i.e. stepping out and shrinking) that

enables both efficient exploration of nonlinear correlations

and large steps in parameter space (e.g. using the global

move).8

For all numerical benchmarks in this paper, we used the

publicly available, open-source Python implementation of

Ensemble Slice Sampling called zeus9 (Karamanis et al.

2021).

6 Conclusion

We have presented Ensemble Slice Sampling (ESS), an

extension of Standard Slice Sampling that eliminates the

latter’s dependence on the initial value of the length scale

8 Indeed, large steps like the ones in the 50-dimensional Gaussian Mix-

ture example would not have been possible without the non-rejection

aspect of the method as most attempts to jump to the other mode would

have missed it using Metropolis updates.

9 The code is available at https://github.com/minaskar/zeus.

hyperparameter and augments its capacity to sample effi-

ciently and in parallel from highly correlated and strongly

multimodal distributions.

In this paper, we have compared Ensemble Slice Sam-

pling with the optimally-tuned Metropolis and Standard Slice

Sampling algorithms. We found that, due to its affine invari-

ance, Ensemble Slice Sampling generally converges faster to

the target distribution and generates chains of significantly

lower autocorrelation. In particular, we found that in the

case of AR(1), Ensemble Slice Sampling generates an order

of magnitude more independent samples per evaluation of

the probability density than Metropolis and Standard Slice

Sampling. Similarly, in the case of the correlated funnel dis-

tribution, Ensemble Slice Sampling outperforms Standard

Slice Sampling by an order of magnitude in terms of effi-

ciency. Furthermore, in this case, Metropolis-based proposals

fail to converge at all, demonstrating that a single Metropolis

proposal scale is often not sufficient.

When compared to state-of-the-art ensemble methods (i.e.

AIES, DEMC), Ensemble Slice Sampling outperforms them

by 1–2 orders of magnitude in terms of efficiency for target

distributions with nonlinear correlations (e.g. the Ring and

Gaussian shells distributions). In the real-world example of

hierarchical Gaussian process regression, ESS’s efficiency is

again superior by 1–2 orders of magnitude. Furthermore, in

the Bayesian object detection example ESS achieved higher

accuracy compared to AIES and DEMC. Finally, in the

strongly multimodal case of the Gaussian Mixture, ESS out-

performed all other methods (i.e. SMC, AIES, DEMC, KM)

and was the only sampler able to produce reliable results in

50 dimensions.

The consistent high efficiency of the algorithm across a

broad range of different problems along with its parallel,

black-box and gradient-free nature renders Ensemble Slice

Sampling ideal for use in scientific fields such as physics,

astrophysics and cosmology, which are dominated by a wide

range of computationally expensive and almost always non-

differentiable models. The method is flexible and can be

extended further using for example tempered transitions (Iba

2001) or subspace sampling (Vrugt et al. 2009).

Acknowledgements The authors thank Iain Murray and John Peacock

for providing constructive comments on an early draft. The authors

would also like to extend their gratitude to the anonymous reviewer and

editor for providing comments that helped improve the quality of the

manuscript. FB is a Royal Society University Research Fellow. FB is

supported by the European Research Council (ERC) under the Euro-

pean Union’s Horizon 2020 research and innovation programme (Grant

Agreement No. 853291).

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

123

https://github.com/minaskar/zeus


Statistics and Computing (2021) 31 :61 Page 17 of 18 61

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material
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A Estimating the effective sample size

Assuming that the computational bottleneck of a MCMC

analysis is the evaluation of the probability density function,

which is usually a valid assumption in scientific applica-

tions, the efficiency can be formally defined as the ratio of the

Effective Sample Size NEff to the total number of probability

evaluations for a given chain.

The NEff quantifies the number of effectively independent

samples of a chain, and it is defined as

NEff = n

IAT
, (24)

where n is the actual number of samples in the chain, and IAT

is the integrated autocorrelation time. The latter describes the

number of steps that the sampler needs to do in order to forget

where it started and it is defined as

IAT = 1 + 2

∞
∑

k=1

ρ(k) , (25)

where ρ(k) is the normalised autocorrelation function at lag

k. In practise, we truncate the above summation in order to

remove noise from the estimate (Sokal 1997).

Given a chain X(k) with k = 1, 2, ..., n the normalised

autocorrelation function ρ̂(k) at lag k is estimated as

ρ̂(k) = ĉ(k)

ĉ(0)
, (26)

where

ĉ(k) = 1

n − k

n−k
∑

m=1

[

X(k + m) − X̄
][

X(m) − X̄
]

, (27)

and X̄ is the mean of the samples.

In the case of ensemble methods, the IAT of an ensemble

of chains is computed by first concatenating the chain from

each walker into a single long chain. We found this estima-

tor has lower variance than the Goodman and Weare (2010)

estimator and the Foreman-Mackey (2019) estimator.
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