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Abstract— Sleep scoring is used as a diagnostic technique in 

the diagnosis and treatment of sleep disorders. Automated sleep 

scoring is crucial, since the large volume of data should be 

analyzed visually by the sleep specialists which is burdensome, 

time-consuming tedious, subjective, and error-prone. Therefore, 

automated sleep stage classification is crucial step in sleep 

research and sleep disorder diagnosis. In the present article, a 

robust system, consisting of three modules, is proposed for 

automated classification of sleep stages from single channel EEG. 

In the first module, signals taken from Pz-Oz electrode were 

denoised using multiscale principal component analysis. In the 

second module, the most informative features are extracted using 

discrete wavelet transform (DWT) and then, statistical values of 

DWT sub-bands are calculated. In the third module, extracted 

features were fed into an ensemble classifier, which can be called 

as rotational support vector machine (RotSVM). The proposed 

classifier combines advantages of the principal component 

analysis and SVM to improve classification performances of the 

traditional SVM. The sensitivity and accuracy values across all 

subjects were 84.46% and 91.1% respectively for five stage sleep 

classification with Cohen’s kappa coefficient of 0.88.  Obtained 

classification performance results indicate that, it is possible to 

have an efficient sleep monitoring system with a single channel 

EEG, and can be used effectively in medical and home-care 

application. 

 
Index Terms—Sleep stage classification, single-channel EEG, 

multiscale principal component analysis (MSPCA), discrete wavelet 

transform (DWT), rotational support vector machine (RotSVM). 

I. INTRODUCTION 

HIS study presents a novel automated system for sleep 

stage classification which utilizes a single EEG channel. It 

is known that human beings spend around one third of their 

lives, in average, in sleep. Even though body physical 

activities are covert to a great extent, internal brain activities 

during sleep have power which cannot be easily understood 

and explained. A set of highly complex patterns happen in 

human brain during sleep. Recently, great amount of effort has 

been invested in sleep analysis studies and its connection to 

other psychological states. Yet, very little is known about 

sleep. Unfortunately, number of subjects suffering from sleep 

disorders is significant and it hardens subjects’ everyday 

activities, besides it effects subject’s health conditions in 
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different ways to great extent. Recent studies hypothesized 

that sleep may have significant task in memory consolidation 

where certain memories are build up while other less 

significant memories are vanished [1, 2]. Therefore, it is of 

great importance to have an accurate system for sleep 

monitoring and analysis of sleep behavior. 

Objective sleep monitoring and analysis is commonly 

performed by expert(s) observing different sleep stages during 

whole night. As of the date, polysomnography (PSG) is 

“paragon of excellence” in sleep analysis. PSG can be 

understood as multivariate system which records different 

biological signals, like electroencephalogram (EEG), 

electrocardiogram (ECG), electromyogram (EMG), 

electrooculogram (EOG), concurrently. Once biological 

signals are collected, next step would be to agree on how 

collected signal should be scored. Rechtschaffen and Kales (R 

& K) [3] proposed a guide for classification of sleep which 

later became a golden standard and is employed as a tool for 

classification of sleep stages in numerous labs worldwide 

despite to its weaknesses [4]. R & K standard was further 

improved by American Academy of Sleep Medicine (AASM) 

[5]. Accordingly, sleep scoring distinguishes wakefulness (W) 

and one of two sleep stages: rapid eye movement (REM) and 

non-rapid eye movement (NREM). NREM can be further 

divided into 4 different stages enumerated as 1, 2, 3 and 4. 

Often NREM3 and NREM 4 are combined into one sleep 

stage called as slow-wave sleep (SWS). Yet, there could still 

be certain disagreement in manual scoring of sleep stages 

caused by experts’ biased decisions and training education. 

Therefore, there is a need to develop an objective, non-biased 

automated sleep scoring system. 

Many studies have been conducted with the aim to describe 

and detect different sleep stages [6, 7, 8, 9, 10]. In general, any 

objective, non-biased automated classification system consists 

of three different modules, namely pre-processing module, 

feature extraction module and classification module. In pre-

processing module, normally noise and undesired signal 

components are removed using different filtering techniques. 

This can be achieved by detrending i.e. removing linear trends 

from signals and filtering out undesired frequency 

components.  At this module, also different blind source 

separation algorithms, such as principal component analysis 

(PCA), independent component analysis (ICA), denoising 

source separation (DSS) etc., can be applied in order to clean 

the source signals from noise. Multiscale PCA (MSPCA) was 

proposed by Bakshi [11] to merge the capabilities of wavelet 
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transform (WT) and PCA. The PCA extracts the relationship 

between multiple variables, whereas the WT decorrelate the 

auto-correlation among the measurements [11]. MSPCA was 

already successfully applied for denoising different 

biomedical signals, e.g. EEG [12], EMG [13] and ECG [14] 

where significant improvement in classification accuracy was 

achieved. After removing undesired signal components, next 

step would be to extract the most informative features from 

signals. In literature, a wide variety of different approaches on 

how these features can be extracted are reported [12, 14, 13]. 

There is no rule which technique should be selected, but it 

depends on the nature and dynamics of signal.  

In literature, different techniques are proposed for 

extraction of informative features from EEG signals that can 

reliably catch sleep dynamics. These include time-domain 

statistics approaches [15], spectral analysis [16], time-

frequency analysis such as Wigner–Ville distribution [17] and 

wavelet analysis [7] and dynamic warping [18], graph domain 

analysis [9], coherence [19], etc. After it is decided on which 

features are to be extracted from the signals, next step would 

be to classify different states (such as wakeful vs sleep, or 

wakeful vs REM vs NREM, etc.). For this step, different 

machine learning (ML) techniques can be applied and there is 

a wide variety of different techniques reported in literature and 

how they can be applied for classification. They range from 

simple linear discriminant analysis (LDA) to non-linear and 

highly complex Gaussian mixture model-based classifiers [20, 

21]. For classification of different sleep states, several 

traditional methods, namely LDA [18, 22], neural networks 

[23, 24], support vector machines (SVM) [25, 9, 26, 27, 6], k-

nearest neighbor (k-NN) [16], hidden Markov model [28], 

fuzzy systems [29, 30], etc., are proposed for distinguishing 

between different sleep stages. The common to all traditional 

classifiers is that they have only one classifier. Recently, 

ensemble ML (EML) classifiers, where multiple traditional 

classifiers are combined, have been proposed to improve the 

performance of single classifier. One of the most applied EML 

methods, that found application in variety of research areas, is 

the random forest (RF) proposed by Breiman [31]. RF has also 

been proposed for identification of different sleep stages in 

[7]. 

The aforementioned techniques and proposed systems 

generally combine the features from different signal types 

(EEG, ECG, EMG and EOG) and perform classification with 

such features as inputs to the classifier. Perhaps more 

importantly, these systems can be further improved in terms of 

overall performances by proposing novel model for sleep 

stage classification that will use single-channel EEG signals 

while maintaining high classification performances. The 

contribution of this study is to use MSPCA for denoising and 

Rotational SVM for classification to create a reliable and 

efficient automated system for sleep stage identification and 

classification where the features will be extracted from a 

single-channel EEG signals. After segmenting Pz-Oz EEG 

channel signals, MSPCA is used to denoise the EEG signals in 

the pre-processing module. After denoising the EEG signals, 

in the second module, informative features from the denoised 

signals are extracted using discrete wavelet transform (DWT), 

since it can efficiently decompose EEG signal into different 

frequency bands relevant to this study: delta (0.5-3 Hz), theta 

(4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and low-gamma 

(30-50 Hz). Furthermore, in order to reduce the dimension of 

data, statistical values of DWT sub-bands are calculated to 

represent the distribution of wavelet coefficients in a better 

way. The extracted features are fed into the classifier in the 

third module. In this study, we propose a modified SVM 

which is called rotational SVM (RotSVM). The experimental 

results showed that it outperformed the results reported in 

similar studies done before. 

The remainder of the paper is organized as follows. The 

next section describes the experimental data used in this study. 

In section III, methodology used for construction of single-

channel sleep stage system together with theoretical 

background is explained. In section IV, experimental results 

obtained, when proposed system is applied on whole-night 

recorded sleep data, are reported. Afterwards, this section 

gives comparison of results obtained in this study with other 

results reported in literature. This section is concluded with 

discussion. Section V gives conclusion of this study.  

II. EXPERIMENTAL DATA 

A. Subjects and Data Collection 

Data used in this study to evaluate the performances of 

proposed system was obtained from the Sleep EDF 

[Expanded] database [32, 33] which is publicly available 

online from Physionet Bank [34, 35]. This database is 

collection of whole-night PSG sleep records that include EEG 

(2 channels, Fpz-Cz and Pz-Oz), one horizontal EOG and 

EMG signal records together with their hypnograms 

(annotation of different sleeps stages). Sampling frequency for 

EEG signals was Hz 100Fs = . Since the focus of this study is 

to construct the system that will utilized only one EEG 

channel, Pz-Oz channel was selected since several recent 

studies reported that this channel provides higher classification 

performances [36, 22, 9]. Data contained in this database 

comes from two different studies where one study was 

conducted to understand age effects on sleep in healthy 

subjects (SC group) and contains two PSGs, each with 

duration around 20 hours whereas the second study was 

conducted to understand temazepam effects on sleep in 

Caucasian subjects (ST group) and contains one PSG, with 

duration of approximately 9 hours. In this study, 20 different 

subjects were considered where 10 subjects were randomly 

selected from SC groups and the remaining 10 subjects from 

ST group and in total we had 30 PSG records

)30110210( PSGsPSGsubjectsPSGssubjects =⋅+⋅ .  

B. Manual Sleep Stage Scoring 

Each PSG file in this database is associate with its 

corresponding hypnograms which were manually labeled 

according to R & K rules [3] by two well-trained sleep experts 

who labeled sleeps states independently, but according to Fpz-

Cz/Pz-Oz EEGs instead of C4-A1/C3-A2 EEGs by proposed 
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C. Dimension Reduction 

When selecting the basis (“mother”) function which 

approximately matches the frequency characteristic of the 

EEG, i.e. delta, theta, alpha, beta, gamma, EEG signals were 

decomposed into six frequency bands in order to achieve 

required frequency resolution. Daubechies wavelet (db4) was 

selected as the basis function because of its recognized 

orthogonality property. In this study, six different statistical 

features were selected for EEG classification. The motivation 

to use signal statistics or to extract statistical features is to 

extract important information while reducing data dimensions. 

These statistical features are: a) Mean of coefficients’ absolute 

values in each sub-band, b) Average power of the coefficients 

in each sub-band, c) Standard deviation of the coefficients in 

each sub-band, d) Ratio of absolute mean values of adjacent 

sub-bands, e) Skewness of every sub-band and f) Kurtosis of 

every sub-band. 

Since we decomposed the EEG signal into six frequency 

bands we have cD1, cD2, cD3, cD4, cD5, cD6 and cA6 from 

DWT decomposition. Hence, seven different features are 

extracted from each statistics (a), (b), (c), (e) and (f); six 

different features are extracted from (d) for each sub-band. 

Thus, in total, we have extracted 41 features for each epoch. In 

the present contribution, we also consider the ranking of these 

features to assess their relevance, we used information gain 

ranker method and found that all the features are relevant and 

important. 

D. Module 3: Classification with RotSVM 

After informative features are extracted, next step would be 

to feed these features into the classifier. SVM with RBF kernel 

was already applied on the same database in [9], but more 

complex feature extraction method was used, and the accuracy 

was low 89%. Therefore, we propose a new approach, i.e. 

modified SVM, which we can be called as rotational SVM 

(RotSVM). Motivation for this classifier was found in 

ensemble machine learning (EML) approach, referred to as a 

rotation forest, which was successfully applied in [42], and 

one can consider rotational SVM as type of rotation forest 

proposed by Rodriguez et.al. in 2006 [43]. In the present 

contribution, we have attempted to further improve state-of-

the-art results reported in the literature. RotSVM can be 

understood as an EML method where SVM is trained on 

different feature subsets. Since SVM is one of the most 

celebrated and popular classification algorithm in the field of 

ML, we do not give details on the SVM classifier, but instead 

we forward the readers interested in knowing more about 

SVM to consult [44].  

Here we present RotSVM algorithm. Let miif ,,.1, K= be 

the i-th row of matrix F and let [ ]TmhhH ,,1 K= be vector 

with class labels for each row (epoch) where mihi ,,.1, K=

takes values from one of five class labels 

{ }SWSNREMNREMREMWSL ,2,1,,= . The classifier for 

each feature subset is the same, namely, SVM with 

polynomial kernel. Also, we denote the total number of SVM 

classifiers as X, which we train in parallel.  

Training phase: For the x-th classifier, where Xx ,,1K= , 

first decouple the matrix F into J subsets (submatrices) where 

each subset contains Jn /35= features. Let  JjF j ,,1, K=  

be j-th feature subset to train on x-th SVM classifier. For each

jF , arbitrarily choose a non-empty subset of classes, with size 

of 4/)3( m to perform bagging and denote this subset as 'jF . In 

the next step, PCA should be applied on 'jF and let the new 

generated matrix be "jF . In the subsequent step, store "jF  in a 

sparse rotation matrix xΨ  as: 

{ }
[ ] [ ]

[ ] [ ]

[ ] [ ] ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==Ψ

"00

0"
2

0

00"
1

",,"
1

J
F

F

F

J
FFdiag

x

K

MOMM

K

K

K
   (2) 

In the next step, columns of xΨ  matrix should be reordered to 

match the original features and let such matrix be 'xΨ . In the 

last step, x-th classifier is built by employing [ ]'xF Ψ⋅  and H 

as a training set.  Repeat previous procedure for all SVMs. 

Testing phase: In the classification phase, for a given epoch 

f, probability )'( xxp Ψ⋅  is given by the x-th SVM classifier to 

the hypothesis that f belongs to tθ , where t is one of the classes 

from SL , and the confidence for each class is computed by 

using the average combination method:  

)(),...,1(,)'(
1

)(

1

endSLSLtxp
X

f

X

x

xt =Ψ⋅= ∑
=

λ    (3) 

Epoch f is associated with the class having the highest tλ .  

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

In this section, we demonstrate how the proposed system 

can be used to solve the practical problem of sleep stage 

classification. To verify the performance of the proposed 

system, three different approaches were adopted. In the first 

approach, we evaluate the performances of the proposed 

system on each subject separately, where the system was 

trained and tested on the subject’s own data and we refer to 

this approach as Subject-Specific approach (SSA). Records 

obtained from 20 subjects were employed and therefore 20 

different datasets were generated. Two PSGs per subject were 

recorded for SC group, from where we randomly selected 10 

subjects, and EEG data from these 2 PSGs were collected into 

one dataset per subject.  

One may argue that this approach is biased since the system 

is trained and tested on data obtained from the same subject. 

Therefore, in our second approach, we attempt to avoid any 

possible such bias and therefore we adopted Test-Group-

Specific classification approach (TGSA), where we generated 

two different datasets. The first dataset contained all epochs 

from the first study (SC) group and the second dataset 

contained all epochs from the second study (ST) group. In this 

approach, we aimed to see if the proposed system is robust to 

subjects with similar clinical history that is if the system is 
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robust when it is applied on any healthy subject or any subject 

with insomnia.   

However, one may argue that this is approach is also biased 

since it was applied separately on each study group (subject 

with similar health conditions). Therefore, we have adopted 

the third approach which we call Grand-Subjects-Specific 

classification approach (GSSA).   

A one-way analysis of variance (ANOVA) was carried out 

at 95% confidence level and p = 0.05 for ensuring statistical 

validation. Features are checked if p > 0.5 from the feature 

matrices and it is found p < 0.5 for 41 features. Moreover two-

way-ANOVA test indicates that there was no benefit in adding 

more number of features while deriving discriminate feature 

vectors. Minimal drop of accuracy, significant at p = 0.05 was 

observed while decreasing feature dimension below 41. 

Therefore, significant features from where DWT sub-band 

features were evaluated were taken as 41. 

In all three approaches, 10-fold CV was used, meaning that 

dataset was divided randomly into 10 different fold and 9 of 

these folds were used for training and remaining 10th fold was 

used for testing. This procedure was repeated 10 times, and at 

the end, average accuracy was computed.  

In this study RotSVM, explained in Section III, was used 

for classification. SVM was trained using sequential 

minimization algorithm (SMO) [45] using polynomial kernel. 

To evaluate plausibility and efficiency of the system proposed 

system, performances were evaluated in terms sensitivity [46], 

Cohen’s kappa coefficient κ  [47] and overall accuracy. 

Sensitivity refers to fraction of positives that are correctly 

classified by the system. Cohen’s kappa coefficient κ
evaluates performance agreement between the proposed 

system and experts and gives more intuitive measure or the 

system overall performances (0-0.2: slight, 0.21-0.4: fair, 

0.41-0.6: moderate, 0.61-0.8: substantial, 0.81-1: almost 

perfect agreement [48]). Accuracy is the number of epochs 

correctly classified by the system divided by the total number 

of epochs in dataset.  

B. Performance Evaluation of Proposed System 

Subject-Specific approach (SSA): Performance results for 

each subject are summarized in Figures 3, 4 and 5. Fig. 3 

shows classification accuracy values while Fig. 4 shows 

sensitivity values for each of five different classes and average 

accuracy and sensitivity respectively for every subject. Fig. 5 

shows Cohen’s kappa coefficient κ  values for each of 20 

subjects. It can be seen From Fig. 3 that accuracy for detection 

of NREM1 sleep stages for six subjects was below 70 %, and 

this was the case when number of NREM1 epochs was 

evidently smaller when compared to number of epochs of the 

other sleep stages. Accuracy in detection of NREM1 sleep 

stages was above 80 % when the number of NREM1 sleep 

stages was similar to the number of NREM2 and SWS sleep 

stages. Fig.4 also confirms previous explanation and from this 

figure, it can be seen that sensitivity values were low for 

subjects with low accuracy rates, which is consistent with 

accuracy results. From Fig. 5, it can bee see that Cohen’s 

kappa statistical values were above 0.8, from where it can be 

seen that the proposed system is in almost perfect agreement 

with experts labeling.  

Test-Group-Specific approach (TGSA): We were concerned 

that the aforementioned approach may be biased, since the 

proposed system was trained and tested on the data from the 

same subject. Therefore, we adopted the second approach to 

avoid such possible bias. Here, we generated two different 

datasets for two different studies explained in Section II. For 

that reason, we evaluated the system performance using data 

from all subjects from two different groups separately. 10-fold 

CV was adopted for training and testing. The obtained results 

for sensitivity and specificity are given in Table I. It is easy to 

see that the overall accuracy values are 95.89% for SC, and 

93.37% for ST, indicating the high performances of the 

system. Cohen’s coefficient value for the SC dataset is 0.92 

and for the ST dataset is 0.91 indicating that this system is in 

almost perfect agreement with the experts.  

Grand-Subjects-Specific approach (GSSA): Since one may 

also argue that the previous approach is also biased since it is 

evaluated in the subjects with similar health condition, we 

conducted the third experiment where the system was 

evaluated on all data collected from both groups. 10-fold CV 

was adopted for system training and testing. Obtained resulted 

are summarized in Table II. Sensitivity for this approach was 

84.46% and the overall accuracy was 91.1%. Cohen’s kappa 

coefficient was 0.88 showing also in this case almost perfect 

agreement with experts.  

 
Fig. 3 Accuracy values for SSA

 

Fig. 4 Sensitivity values for SSA 
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Fig. 5. Cohen’s kappa coefficient values for SSA 

TABLE I 

PERFORMANCE OF RotSVM FOR TGSA (%) 

 Metric W N1 N2 SWS REM Avg. 

S

C 

Sensitivity 99.92 49.62 95.62 86.13 93.3 84.92 

Accuracy 99.58 97.86 98.08 98.43 97.64 98.32 

S

T 

Sensitivity 96.54 79.55 96.97 89.14 94.7 91.32 

Accuracy 99.43 97.05 96.72 96.08 96.99 97.25 

 W = wakeful, N1 = NREM1, N2 = NREM2, Avg. = Average 

 

TABLE II 

PERFORMANCE OF RotSVM FOR GSSA (%) 

Metric W N1 N2 SWS REM Avg. 

Sensitivity 98.59 48.78 95.54 97.94 94.59 84.46 

Accuracy 99.24 95.23 95.81 95.91 95.11 96.26 

 

TABLE III 

CONFUSION MATRIX FOR TGSA (SC) 

W NREM1 NREM2 SWS REM 

W 30421 19 0 0 6 

NREM1 140 845 0 40 678 

NREM2 15 7 9425 251 159 

SWS 0 11 398 2738 32 

REM 17 136 90 17 3622 

 

TABLE IV 

CONFUSION MATRIX FOR TGSA (ST) 

W NREM1 NREM2 SWS REM 

W 920 20 0 2 11 

NREM1 15 599 1 6 132 

NREM2 0 0 3691 127 0 

SWS 2 7 168 1650 24 

REM 0 84 0 20 1860 

 

TABLE V 

CONFUSION MATRIX FOR GSSA 

W NREM1 NREM2 SWS REM 

W 7178 93 0 0 10 

NREM1 112 1198 1 87 1058 

NREM2 15 8 13065 428 159 

SWS 0 35 667 4265 63 

REM 9 169 87 51 5530 

 

TABLE VI 

COMPARISON OF PERFORMANCE OF PREVIOUS STUDIES 

Methods 

 

Accuracy 

Entropy metrics, J-means approach [8] 81% 

Hybrid features, Artificial neural networks [49] 81.55% 

Energy features, Recurrent neural classifier [50] 87.20% 

Graph features, SVM [9] 88.90% 

Spectral Features, Bootstrap aggregating [10] 86.53% 

Temporal features and hierarchical decision tree [51] 77.98% 

Fuzzy logic based iterative method [36] 74.50% 

Multiscale entropy, LDA [22] 83.60% 

Proposed Method 91.10% 

 

C. Comparison with the existing methods 

In this section, the classification performance of the 

proposed method is compared with some existing approaches. 

All these methods utilize the same database and are based on 

EEG signals. The overall classification accuracies of these 

methods are listed in Table VI. As it can be seen easily from 

the table, our method has better performance than the previous 

studies. Standard sleep stage classification methods proposed 

in literature generally need data from different biological 

signals (EEG, EMG, EOG, ECG, etc.) to extract informative 

features what usually lowers the sleep quality due to multiple 

electrodes which need to be attached to the body. Therefore, 

there is a need to single channel sleep monitoring. System 

proposed in this study requires only one EEG channel (Pz-

Oz). In literature, few different systems based on single EEG 

channel were proposed. The proposed method has the best 

overall performance with the overall accuracy of 95.89% for 

TGSA (SC), 93.37% for TGSA (SC) and 91.1% for GSSA.  

Flexer et.al. [52]  used Gaussian observation hidden 

Markov model and reported accuracy of around 80 % for 

three-class classification (wakefulness, deep and REM sleep). 

Berthomier, et. al. [36] considered in their study PSG from 15 

healthy subjects and proposed a system based on Automatic 

Sleep EEG Analysis (ASEEGA) and reported Cohen’s kappa 

coefficient of 0.72 for five-class classification (W, REM, 

NREM1, NREM2 and SWS).  Koley B. and Dey D. proposed 

a system based on SVM and recursive feature elimination for 

sleep stage classification and reported average kappa value of 

0.8572. Liang et.al [22] in their study also proposed a system 

based on only one EEG channel which uses multiscale entropy 

and autoregressive model. They considered all-night PSG 

recordings from 20 healthy subject and reported average 

sensitivity of 0.836 and Cohen’s kappa value of 0.81 for five-

state classification (W, REM, NREM1, NREM2 and SWS) 

which are considerably lower when compared to results 

obtained in this study. Zhu, et.al. [9] , considered in their study 

8 PSG records from Sleep-EDF database and proposed a 

system based on difference visibility graph and SVM to 

classify the sleep stages and reported the accuracy and 

Cohen’s kappa coefficient of 87.5 % and 0.81. Although these 

results yielded almost equally good results (accuracy of 87.5 

% vs. 90.18 %, Cohens’ kappa of 0.81 vs 0.86), the number of 

subjects considered in [9] varied considerably (8 vs. 20).  

From Tables I-V, it can be seen that sensitivity value for 

detection of NREM1 sleep stage are considerably lower when 

compared with detection of other sleep stages. This is mainly 

due to the fact that NREM1 and REM exhibit similar EEG 

patterns since NREM1 is transition stage between wakefulness 

and different sleep stages just like REM is transitional 

between sleeps stages and wakefulness state (backward 

direction) [4].  Therefore, low sensitivity and accuracy values 

were obtained for NREM1. Systems which require multiple 

channels also experience the same problem what can be seen 

from similar studies reported in literature [9, 27].  

D. Discussion 

This study proposes a robust system for automatic 

classification of five different sleeps stages, namely 
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wakefulness, NREM1, NREM2, SWS and REM, using single-

channel EEG signals. The obtained results, explained in 

Section III.C demonstrate that the correct classification of five 

sleep stages is possible using only Pz-Oz EEG channel. As a 

matter of fact, along with high accuracy values obtained in all 

three approaches, high sensitivity values were also obtained.  

Cohen’s kappa coefficients were higher than 0.8 indicating 

perfect agreement with experts sleep stage labeling. Besides, 

the proposed method contains two wavelet analyses, one in the 

MSPCA for denoising and one for feature extraction. The 

MSPCA combines the features of wavelet analysis and PCA 

through decomposing every variable on a sym4 mother 

wavelet. Also, DWT is used for feature extraction with db4 

mother wavelet. It should also be noted that only first four 

moments were extracted from EEG signal frequency sub-

bands and these features are sufficient to extract the most 

information from EEG data. Since MCPCA is used for 

denoising, the proposed system is robust for noise. 

Furthermore, SVM is a robust classifier and by using 

ensemble of SVM which is RotSVM, the classifier will be 

more robust. These can be seen from the performance of the 

proposed method. 

As a classifier, rotational SVM, which can be thought as an 

ensemble of SVM, is proposed in the present contribution. 

Although it is not mentioned here, standard SVM with the 

same features as input and same parameter setup was also 

evaluated in this study and considerable improvements in 

performances were noticed when rotational SVM was used as 

classifier comparted to traditional SVM approach. This 

finding may reflect the relevance and the success of the 

operation of a RotSVM scheme over traditional SVM in such 

a way that RotSVM keeps the information relevant for sleep-

stage classification, so that the correct decision on 

classification can be made. Thus, a picture that emerges is that 

RotSVM can be applicable for the sleep-stage classification 

tasks. 

One may argue that PCA is not relevant for classification 

tasks since discriminatory information is not involved in 

computation of the optimal axis rotation. Therefore, numerous 

linear transformation substitutes to PCA established on 

discrimination conditions were proposed in literature [53]. 

Also, PCA may impose additional problems in classification 

due to data dimensionality reduction, if used, since some of 

the components which are neglected due to small variance can 

play important role in classification task. However, in this 

study, we kept all principal components in classification 

module. Experimental results showed improvement in 

performances when this approach was adopted. Although, not 

reported in this study, we also tried to use several other 

methods in lieu of PCA (random projection, normalization, 

wavelets), but the highest performances were obtained when 

PCA was used.  

This study proposes an automated system for sleep stage 

classification. It proposes a new approach for standard SVM 

classifier, which can be called as rotational SVM. 

Classification results in Figures 3-5 and Tables I-V 

demonstrate system’s high performances. Even though, 

performances were lower when the system was trained and 

tested on data multiple subjects (Test-Group-Specific 

approach and Grand-Subjects-Specific approach), result were 

still satisfactory. Remarkably, results obtained in this study 

demonstrate that only one single EEG channel can be used for 

sleep stage classification. For that reason, proposed system 

can be considered as promising tool for sleep monitoring.  

E. Advantages and Disadvantages of the Proposed System 

The core advantage of the proposed system over other 

approaches found in the existing literature is in its ability to 

incorporate all the available information from only one EEG 

channel to make an accurate decision on the sleep stages.  It 

does this by extracting the features of the highest relevance 

from each time-frequency band and feeding them into the 

efficient classifier. The second advantage lies in its ability not 

to use only the subject’s own data, but the model can be 

trained on any subject; and still be efficiently applied only on 

the small portion of the new test data from new subject, what 

saves recording time, and thus, clinicians’ time. The third is 

the high classification accuracy rates and performance results. 

The disadvantage of the proposed system is that our proposed 

model is non-linear, what might introduce additional 

computational complexity. In our future work, we will focus 

on the design of the linear model for accurate sleep stage 

classification. 

V. CONCLUSION 

In the present study, automated system for sleep stage 

classification system using only one channel EEG is proposed. 

The proposed system consists of three modules, preprocessing 

(denoising), feature extraction (using DWT) and classification 

using rotational SVM (ensemble machine learning tool). 

Overall classification accuracy, average sensitivity and 

Cohen’s kappa coefficient obtained with this system were 

91.1%, 84.46 % and 0.88 respectively for classification of five 

different sleeps stages (wakefulness, NREM1, NREM2, SWS 

and REM). Furthermore, system proposed in this study 

requires single EEG channel signal which further simplifies 

sleep stage monitoring. Since manual sleep stage classification 

is often time-consuming and subjective, and therefore prone to 

errors, system proposed in this study can be considered as tool 

in clinical and clinical and home-care application to 

discriminate specific patterns such as fatigue, drowsiness 

and/or various sleep disorders (e.g., sleep apnea) in near real-

time. As a conclusion, the system proposed in this study has 

the potential to substantially enhance sleep monitoring 

systems.  
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