
ENSEMBLES FOR PREDICTING

STRUCTURED OUTPUTS

Doctoral Dissertation

Jožef Stefan International Postgraduate School

Ljubljana, Slovenia, October 2010

Supervisor: Prof. Dr. Sašo Džeroski, Jožef Stefan Institute, Ljubljana, Slovenia

Evaluation Board:

Prof. Dr. Nada Lavrač, Chairman, Jožef Stefan Institute, Ljubljana, Slovenia

Prof. Dr. Cesare Furlanello, Member, Fondazione Bruno Kessler, Trento, Italy

Prof. Dr. Marko Robnik-Šikonja, Member, Faculty of Computer Science, University of Ljubljana, Slovenia

Dr. Jan Struyf, Member, Katholieke Universiteit Leuven, Belgium

Dragi Kocev

ENSEMBLES FOR PREDICTING

STRUCTURED OUTPUTS

Doctoral Dissertation

ANSAMBLI ZA NAPOVEDOVANJE

STRUKTURIRANIH VREDNOSTI

Doktorska disertacija

Supervisor: Prof. Dr. Sašo Džeroski

October 2010

v

Contents

1 Introduction 1

1.1 General perspective . 1

1.2 Motivation . 4

1.3 Contributions . 5

1.4 Organization . 7

2 Background 9

2.1 Machine learning tasks considered . 9

2.1.1 The task of predicting multiple targets 9

2.1.2 The task of hierarchical multi-label classification 10

2.2 Related work . 12

2.2.1 Ensemble learning . 12

2.2.2 Predictive clustering . 19

2.2.3 The task of predicting structured outputs 22

3 Ensembles for predicting structured outputs 27

3.1 PCTs for structured outputs . 27

3.1.1 PCTs for multiple target variables 28

3.1.2 PCTs for hierarchical multi–label classification 29

3.2 Ensembles of PCTs for predicting structured outputs 33

3.2.1 Constructing ensembles of PCTs 34

3.2.2 Bagging . 34

3.2.3 Random forests . 34

3.2.4 Random subspaces . 35

3.2.5 Bagging of subspaces . 36

3.2.6 Combining the predictions of individual PCTs 36

3.3 Local prediction of structured outputs with PCTs and ensembles 37

vi CONTENTS

4 Experimental design and results 41

4.1 Experimental design . 41

4.1.1 Experimental questions . 41

4.1.2 Descriptions of the datasets . 42

4.1.3 Evaluation measures . 42

4.1.4 Experimental setup . 45

4.2 Results and discussion . 46

4.2.1 Multiple continuous targets . 47

4.2.2 Multiple discrete targets . 50

4.2.3 Hierarchical multi–label classification 54

4.2.4 Summary of the results . 57

5 Further developments 59

5.1 Predicting other structured outputs . 60

5.1.1 Distances for hierarchical classification 60

5.1.2 Time series . 61

5.1.3 Prototypes and voting . 61

5.2 Feature ranking for structured outputs 62

5.2.1 Feature ranking using random forests 62

5.2.2 Biomarker discovery using multi-target ranking 64

5.3 Construction of ensembles of PCTs using beam search 65

5.3.1 Beam search induction of PCTs 67

5.3.2 Diversity in the beam . 70

5.3.3 Empirical evaluation . 72

6 Case studies 75

6.1 Predicting vegetation condition . 76

6.2 Hierarchical annotation of medical images 77

6.3 Predicting gene function . 78

6.4 Summary of the case studies . 79

7 Conclusions and further work 81

7.1 Conclusions . 81

7.2 Further work . 83

8 References 85

vii

Appendix 1: Complete results 99

8.1 Prediction of multiple continuous targets 100

8.1.1 Saturation curves . 100

8.1.2 Statistical tests for predictive performance 102

8.1.3 Statistical tests for efficiency . 103

8.2 Prediction of multiple discrete targets 104

8.2.1 Saturation curves . 104

8.2.2 Statistical tests for predictive performance 106

8.2.3 Statistical tests for efficiency . 107

8.3 Hierarchical multi-label classification . 108

8.3.1 Saturation curves . 108

8.3.2 Statistical tests for predictive performance 110

8.3.3 Statistical tests for efficiency . 111

viii CONTENTS

1

1 Introduction

In this chapter, we present an overview of the thesis and motivate it within its research

area. We start by outlying the context of the work performed in this thesis. Next, we

state the motivation and the original contributions of the thesis. Finally, we sketch a road

map for the rest of the thesis.

1.1 General perspective

The work presented in this thesis falls within the area of artificial intelligence (McCarthy

et al., 1955), more specifically in the area of machine learning. Machine learning studies

the computer programs that have ability to learn, i.e., the computer programs that improve

with experience (Mitchell, 1997). A very significant part of the research in machine learning

is concerned with extracting new knowledge out of available data, i.e., the experience is

given in the form of learning examples (instances). This type of machine learning is called

inductive learning (Bratko, 2000).

In the classical inductive learning setting, the available learning examples are given in

a form of a table. Each row of the table is an example and each column is a property

of the example (called attribute). If the goal is to predict the value of one property of

the examples (called target attribute) using the values of the remaining properties (called

descriptive attributes), then the task is called predictive modelling (or supervised learning).

On the other hand, if such target property does not exist and the goal is to provide general

descriptions of the examples, then the task is called descriptive modelling (or unsupervised

learning) (Langley, 1996). Examples of machine learning methods for predictive modelling

include decision trees, decision rules, Bayesian networks and support vector machines and

examples of machine learning methods for descriptive modelling include clustering, associ-

ation rules modelling and principal-component analysis (Bishop, 2007).

Predictive and descriptive modelling are considered as different machine learning tasks.

The goal of predictive modelling is to identify clusters that are compact in the target

space (i.e., instances with similar value of the target variable). The goal of the descriptive

modelling, on the other hand, is to identify clusters compact in the descriptive space (i.e.,

2 INTRODUCTION

instances with similar values of the descriptive variables). Blockeel (1998) presented a

machine learning task, called predictive clustering, that combines the advantages of both

predictive and descriptive modelling. The predictive clustering identifies clusters that are

compact both in the target and the descriptive space. The methods presented in this

thesis are based on the predictive clustering framework (Blockeel, 1998).

The predictive and descriptive modelling are connected by the machine learning meth-

ods that partition the instances, such as decision trees and decision rules. These two meth-

ods are already available in the predictive clustering framework: Blockeel et al. (1998);

Struyf and Džeroski (2006) developed the decision trees for predictive clustering, called

predictive clustering trees (PCTs), and Ženko (2007) developed the decision rules for pre-

dictive clustering, called predictive clustering rules (PCRs). These methods, in addition

to providing clusters of the instances, provide symbolic descriptions of the clusters. The

clusters from the decision trees are described by the conjunction of the conditions from

the nodes that are on the path from the root node to the given cluster (node of the tree,

typically a leaf). The clusters from the decision rules are described by the rule’s conditions.

Typical machine learning methods for predictive modelling are able to make a prediction

for a single target attribute of an example. The target attribute can be either a discrete

variable (classification) or a continuous variable (regression). However, there are many real

life domains, such as image annotation, text categorization, gene networks, etc., where

the input and/or the output can be structured. In this thesis, we are concerned with the

latter: tasks with structured outputs.

There are two groups of methods for solving the task of predicting structured outputs

(Bakır et al., 2007; Silla and Freitas, 2010): (1) methods that predict component(s) of

the output and then combine the separate models to get the overall prediction (called local

methods) and (2) methods that predict the complete structure as a whole (called global

methods). The latter group of methods has several advantages over the former. They

can exploit and use the dependencies that exist between the components of the structured

output in the model learning phase and as a result have better predictive performance.

Next, they are more efficient: it can easily happen the number of components in the

output to be very large (e.g., hierarchies in functional genomics) in which case executing a

basic method for each component is not feasible. Furthermore, they produce models that

are typically smaller than the sum of the sizes of the models for the components. The

predictive clustering framework belongs to the group of global approaches.

The predictive clustering framework was extended so far in the context of prediction

of multiple discrete variables (Blockeel et al., 1998; Ženko, 2007), predicting multiple

continuous variables (Blockeel et al., 1998; Struyf and Džeroski, 2006; Ženko, 2007),

General perspective 3

hierarchical multi–label classification (Vens et al., 2008) (the output is a set of classes

that are organized in a hierarchy) and prediction of short time series (Slavkov et al.,

2010b). This was done by adjusting the variance and prototype functions (needed for the

induction of the trees and the rules) specifically for each task. Each of the tasks was

evaluated empirically and confirmed the advantages of the global methods stated above.

To further increase the predictive performance of the predictive clustering trees, in

this thesis, we extend the predictive clustering framework in the context of ensemble

methods. Ensemble methods construct a set of classifiers (an ensemble) and combine

their outputs to obtain a single prediction (Dietterich, 2000a). There are many practical

studies that show that ensembles achieve high predictive performance and that they lift

the predictive performance of a single classifier (Banfield et al., 2007; Bauer and Kohavi,

1999; Breiman, 1996a; Freund and Schapire, 1996; Opitz and Maclin, 1999). Furthermore,

several theoretical explanations were offered that justify and explain the high predictive

performance of the ensembles (Allwein et al., 2000; Breiman, 1996b; Domingos, 2000;

Geman et al., 1992; Kong and Dietterich, 1995; Mason et al., 2000; Schapire et al.,

1997).

The different ensemble methods can differ in how they construct the set of constituent

(or base) classifiers and in how they combine their predictions. Having in mind that

combining identical or very similar classifiers will not produce an increase of predictive

performance, it only makes sense to construct ensembles of classifiers that are diverse.

The diversity in the ensemble is obtained by learning heterogeneous classifiers, by modifying

the training set or by changing the learning algorithm. To obtain the prediction of the

ensemble, classifier fusion or classifier selection can be used (Džeroski et al., 2009). The

former selects the best classifier and uses its predictions as predictions of the ensemble.

The latter combines the predictions of all base classifiers by means of a voting scheme

and gives the combined predictions as predictions of the ensemble. There is a plethora of

ensemble learning methods and voting schemes that have been proposed in the literature

(for an overview, see (Kuncheva, 2004; Seni and Elder, 2010)).

In this thesis, we focus on two widely used ensemble methods that use decision trees as

base classifiers: bagging (Breiman, 1996a) and random forests (Breiman, 2001a). As base

classifiers, we use predictive clustering trees. We also provide adequate voting schemes for

combining the predictions (for the structured outputs) obtained from the base classifiers.

4 INTRODUCTION

1.2 Motivation

In many real life problems the output (i.e., the target property) is structured, meaning

that there are either dependencies between classes (e.g., classes are organized into a tree-

shaped hierarchy or directed acyclic graph) or there are some internal relations between

the classes (e.g., sequences). These types of problems occur in domains such as: life

sciences (predicting the functions of a gene, selecting the most important genes for a

given disease, detecting toxic molecules, etc), ecology (analysis of remote sensed data,

habitat modelling), multimedia (annotation and retrieval of images and videos), semantic

web (categorization and analysis of text and web) etc. Having in mind the needs of the

application domains and the increasing generation of structured data, Yang and Wu (2006)

listed the machine learning methods for “mining complex knowledge from complex data”

as one of the ten challenging problems in machine learning.

There are variety of methods that have been proposed (Bakır et al., 2007) that are

specialized for predicting a given type of a structured output (e.g., hierarchy of classes

(Silla and Freitas, 2010)). However, many of these are computationally demanding and not

suited for dealing with large datasets (especially large outputs). The predictive clustering

framework offers an unifying approach for the different types of structured outputs and the

algorithms developed in this framework construct the classifiers very efficiently. Moreover,

the PCTs and PCRs can be easily interpreted by a domain expert thus support the process

of knowledge extraction.

To further increase the predictive performance of a single classifier, one can construct

an ensemble of classifiers. In the simple classification and regression tasks, it is widely

accepted that an ensemble of classifiers lifts the predictive performance of its base clas-

sifiers (Dietterich, 2000a; Džeroski et al., 2009; Kuncheva, 2004; Seni and Elder, 2010).

However, in the task of predicting structured outputs using the predictive clustering frame-

work (and the other global classifiers), this is not that obvious. In the case when the base

classifiers are decision trees, Bauer and Kohavi (1999) conclude that the increase in perfor-

mance is related to the trees being unpruned, i.e., overfitting. On the other hand, Blockeel

et al. (2006) state that predictive clustering trees overfit less than the single classification

approach. Having in mind these two conflicting influences, it is not obvious whether an

ensemble of predictive clustering trees will significantly increase the predictive performance

of a single predictive clustering tree.

The global classifiers exploit the dependencies between the components of the struc-

tured outputs and, as a result, have better predictive performance than the local classifiers.

However, in the ensemble learning setting, it is not clear if the predictive performance of

Contributions 5

an ensemble of global classifiers will be better or worse than the predictive performance of

ensembles of local classifiers (i.e., an ensemble per component of the structured output).

It is not also clear which of these two methods will be more efficient, in terms of running

time and size of the classifiers.

Another open issue in ensemble learning is how many classifiers are enough for getting

the optimal performance. Bauer and Kohavi (1999); Opitz and Maclin (1999) observe

ensembles of up to 30 classifiers and show that the biggest improvement in terms of

predictive performance is achieved after adding the first 10-15 classifiers. After that,

the error rate gradually reaches a plateau. They suggest 25 classifiers as a reasonable

compromise between the predictive performance and the efficiency of an ensemble. On

the other hand, Banfield et al. (2007) investigate ensembles of 1000 classifiers and propose

an algorithm that chooses when the ensemble learning should stop. The algorithm uses

stabilization of the error rates as a stopping criterion for the ensemble learning. This means

that the number of classifiers in the ensemble is going to be different for each dataset.

Moreover, this approach further adds to the computational complexity of the ensemble

learning. Since the issue of the ‘ensemble size’ is not completely resolved for the simple

classification and regression tasks, it is even less known how many global classifiers are

enough for optimal performance of an ensemble of global classifiers.

1.3 Contributions

In this thesis, we propose to use ensembles of PCTs for predicting structured outputs to

address the issues raised in the previous section. We summarize the main contributions of

the work presented in this thesis as follows:

• We develop ensemble learning methods for predicting structured outputs that are
based on PCTs. To the best of our knowledge, this is the first work done on

ensembles of global classifiers1. Moreover, the proposed methods are general in terms

of the type of the structured output. Currently, they are suitable for three types of

structured outputs: multiple continuous targets, multiple discrete targets and classes

organized into a hierarchy (tree-shaped or directed acyclic graph), however, they can

1There is a distinction between ensemble and architecture of classifiers. An ensemble of classifiers

combines the outputs of each base classifier to obtain the overall prediction. An architecture of classifiers is

a set of classifiers whose outputs are not just directly combined to obtain the overall prediction but rather the

output of one classifier can be used in the training of some of the next classifiers (Ianakiev and Govindaraju,

2000). An example of architecture of classifiers are the ‘classifier chains’ (Read et al., 2009).

6 INTRODUCTION

be easily adapted for other types of structured outputs. With this we extend the

predictive clustering framework in the context of ensemble learning.

• We perform extensive empirical evaluation of the proposed methods over a variety
of domains. The experimental results show that ensembles of global classifiers lift

the predictive performance of a single global classifier. We also construct ensembles

of up to 1000 classifiers and select ensembles of 50 global classifiers as optimal in

terms of predictive performance and efficiency. Next, although the difference in the

predictive performance of the ensembles of global classifiers and the ensembles of

local classifiers is not statistically significant, the ensembles of global classifiers often

have better predictive performance than the ensembles of local classifiers. Moreover,

the ensembles of global classifiers are more efficient in terms of training time and

size of the trees in the ensembles.

• We propose a method, based on random forest, that performs feature ranking for
structured outputs. Traditionally, in the tasks with structured outputs, the feature

ranking is obtained by constructing several feature rankings for the components of

the outputs and then aggregating them to obtain a single overall feature ranking.

The method we propose produces single feature ranking and takes into account the

dependencies and the relations that exist between the components of the structured

output. Moreover, the ranking produced this way is more computationally efficient

than building feature rankings for the components separately. On a case study for

biomarker discovery, we show that feature ranking for multiple targets offers some

advantages over the ranking for a single target.

• We suggest a novel ensemble learning method that is based on the beam search
technique and uses decision trees as base classifiers. This method offers direct

control over the diversity in the ensemble and allow to further investigate the trade-

off between the ensemble’s diversity and ensemble’s predictive performance. In turn,

the optimal trade-off will lead towards creating an ensemble with the best predictive

performance. Furthermore, by selecting the top-ranked tree from the ensemble (since

the beam keeps the trees sorted by a heuristic score) as representative for the whole

ensemble, we get an ‘interpretable’ ensemble.

• We apply the ensembles for predicting structured outputs in three domains: modelling
the vegetation condition, image annotation and prediction of gene functions. Each

application gives a contribution to the respective domain.

– We extract knowledge about the resilience of some indigenous vegetation types

Organization 7

and the relative importance of biophysical and landscape attributes that influ-

ence their condition. Next, we use the ensembles of PCTs to generate maps of

the condition of the indigenous vegetation across the Victoria State, Australia.

We construct the ensembles using easily obtained and remotely acquired data

in conjunction with adequate field data. The generated maps can be further

used in support of biodiversity planning, management and investment decisions.

– We apply the ensembles of PCTs for HMC to two benchmark tasks for hierar-

chical annotation of medical (X-ray) images and an additional task for photo

annotation. The ensembles of PCTs for HMC achieve better results than a

collection of SVMs (trained with a χ2 kernel), the best-performing and most-

frequently used approach to (hierarchical) image annotation, on all three tasks.

Moreover, for the two medical image datasets, they produce the best results

reported in the literature so far. Furthermore, the ensembles of PCTs for HMC

are more efficient (smaller training and testing times) than the collection of

SVMs.

– We present the use of PCTs for HMC and ensembles of PCTs for HMC in

functional genomics, i.e., to predict gene functions (using FunCat and the

Gene Ontology as function clsasification schemes), for each of the following

three model organisms: Saccharomyces cerevisiae (yeast), Arabidopsis thaliana

(cress) and Mus musculus (mouse). The ensembles of PCTs for HMC outper-

form a statistical learner based on SVMs for Saccharomyces cerevisiae, both in

predictive performance and in efficiency. Also, they are competitive to statistical

and network based methods for Mus musculus data. Overall, the ensembles of

PCTs for HMC yield state-of-the-art quality (predictive performance) for gene

function prediction.

1.4 Organization

9

2 Background

The work we present in this thesis concerns the learning of ensembles for predicting struc-

tured outputs. In this chapter, we first define the machine learning tasks that we consider:

the tasks of predicting multiple targets and hierarchical multi-label classification. We then

give an overview of the three paradigms that are the basis for the approaches presented

in this thesis: ensemble learning, predictive clustering and predicting structured outputs.

2.1 Machine learning tasks considered

First, we formally describe the machine learning tasks that we consider here. We follow the

suggestions by Džeroski (2007), where predictive modelling is defined for arbitrary types

of input and output data. In particular, we describe the tasks of predicting multiple targets

and hierarchical multi-label classification.

2.1.1 The task of predicting multiple targets

This task was previously referred to as multi-objective prediction (Demšar et al., 2006;

Kocev et al., 2007b; Struyf and Džeroski, 2006). However, the term ‘multi-objective’ is

already established in the area of optimization. We will thus use the term ‘predicting mul-

tiple targets’ or multi-target prediction (resp. multi-target classification and regression).

We define the task of predicting multiple targets as follows.

Given:

• A description space X that consists of tuples of values of primitive data types
(boolean, discrete or continuous), i.e., ∀Xi ∈ X,Xi = (xi1, xi2, ..., xiD), where D
is the size of the tuple (or number of descriptive variables),

• a target space Y which is a tuple of several variables that can be either continuous
or discrete, i.e., ∀Yi ∈ Y, Yi = (yi1, yi2, ..., yiT), where T is the size of the tuple (i.e.,
number of target variables),

10 BACKGROUND

• a set of examples E, where each example is a pair of tuples from the description and
target space, respectively, i.e., E = {(Xi , Yi)|Xi ∈ X, Yi ∈ Y, 1 ≤ i ≤ N} and N is
the number of examples of E (N = |E|), and

• a quality criterion q (which rewards models with high predictive accuracy and low
complexity).

Find: a function f : X → Y such that f maximizes q.
In this thesis, the function f is represented with decision trees, i.e., predictive clustering

trees or ensembles thereof.

Figures 2.1 and 2.2 show examples of datasets with multiple targets. If the tuples from

Y (the target space) consist of continuous/numeric variables (Figure 2.1), then the task at

hand is multi-target regression. Likewise, if the tuples from Y consist of discrete/nominal

variables (Figure 2.2), then the task is called multi-target classification.

L
a

n
d

C
o
v
e

r

T
e

m
p

R
a

n
g

e

N
a

ti
v
e

T
re

e
P

ro
b

G
ra

s
s
P

ro
b

1
H

a
_

R
e

g
io

n
S

td
D

e
v

… L
a

rg
e

tr
e

e
 s

c
o

re

T
re

e
 c

a
n

o
p
y
 s

c
o

re

U
n

d
e

rs
to

re
y

s
c
o

re

L
it
te

r
s
c
o

re

L
o

g
s
 s

c
o

re

W
e

e
d
s
 s

c
o

re

R
e

c
ru

it
m

e
n
t

s
c
o

re

ID1 2.0 225.0 0.0 1.79 … 7 3 15 3 5 15 5

ID2 4.0 278.0 2.0 12.31 … 6 3 10 5 5 13 3

ID3 8.0 191.0 54.0 6.52 … 0 5 10 5 0 0 3

… … … … … … … … … … … … …

Descriptive variables

S
it
e

 I
D

Target variables

Figure 2.1: An example of a dataset with multiple continuous targets used for modelling

the condition of indigenous vegetation (Kocev et al., 2010). The descriptive variables are

obtained from a geographical information system, while the target variables are indices

describing the condition of the vegetation.

2.1.2 The task of hierarchical multi-label classification

Classification is defined as the task of learning a model using a set of classified instances

and applying the obtained model to a set of previously unseen examples (Breiman et al.,

Machine learning tasks considered 11

T
e

m
p

e
ra

tu
re

K
2
C

r 2
O

7

N
O

2

C
l

C
O

2

…

C
h

lo
ro

p
h

y
ta

C
la

d
o

p
h

o
ra

s
p

.

C
h

lo
ro

p
h

y
ta

G
o

n
g

ro
s
ir

a
in

c
ru

s
ta

n
s

C
h

lo
ro

p
h

y
ta

O
e

d
o

g
o

n
iu

m
s
p

.

C
h

lo
ro

p
h

y
ta

S
ti
g

e
o

c
lo

n
iu

m
te

n
u

e

B
a

c
ill

a
ri

o
p

h
y
ta

 M
e

lo
s
ir

a
 v

a
ri

a
n

s

B
a

c
ill

a
ri

o
p

h
y
ta

N
it
z
s
c
h

ia
p

a
le

a

R
h

o
d

o
p

h
y
ta

A
u

d
o

u
in

e
lla

 c
h

a
ly

b
e

a

H
ir

u
d

in
e

a
 E

rp
o

b
d

e
lla

 o
c
to

c
u

la
ta

A
m

p
h

ip
o

d
a

G
a

m
m

a
ru

s
fo

s
s
a

ru
m

E
p

h
e

m
e

ro
p

te
ra

B
a

e
ti
s

rh
o

d
a

n
i

T
ri

c
h

o
p

te
ra

H
y
d

ro
p

s
y
c
h

e
s
p

.

T
ri

c
h

o
p

te
ra

R
h

y
a

c
o

p
h

ila
s
p

.

D
ip

te
ra

S
im

u
lim

s
p

.

O
lig

o
c
h

a
e

ta
T
u

b
if
e

x
s
p

.

ID1 0.66 0.00 0.40 1.46 0.84 … 1 0 0 0 0 1 1 0 1 1 1 1 1 1

ID2 2.03 0.16 0.35 1.74 0.71 … 0 1 0 1 1 1 1 0 1 1 1 1 1 0

ID3 3.25 0.70 0.46 0.78 0.71 … 1 1 0 0 1 0 1 0 1 1 1 0 1 1

… …

Descriptive variables
S

a
m

p
le

ID
Target variables

Figure 2.2: An example of a dataset with multiple discrete targets used for habitat mod-

elling of bioindicator organisms (Džeroski et al., 2000). The descriptive variables are

chemical parameters of the water samples, while the target variables are the abundances

of 14 bioindicator organisms.

1984; Langley, 1996). The unseen examples are classified into a single class from a set of

possible classes.

Hierarchical classification differs from the ‘traditional’ classification in the following: the

classes are organized in a hierarchy: An example that belongs to a given class automatically

belongs to all its super-classes (this is known as the ‘hierarchy constraint’). Furthermore,

an example can belong simultaneously to multiple classes that can follow multiple paths

from the root class. This task is then called hierarchical multi-label classification (HMC)

(Silla and Freitas, 2010; Vens et al., 2008).

We formally define the task of hierarchical multi-label classification as follows:

Given:

• A description space X that consists of tuples of values of primitive data types
(boolean, discrete or continuous), i.e., ∀Xi ∈ X,Xi = (xi1, xi2, ..., xiD), where D
is the size of the tuple (or number of descriptive variables),

• a target space S, defined with a class hierarchy (C,≤h), where C is a set of classes
and ≤h is a partial order (structured as a rooted tree) representing the superclass
relationship (∀ c1, c2 ∈ C : c1 ≤h c2 if and only if c1 is a superclass of c2),

• a set E, where each example is a pair of a tuple and a set from the descriptive
and target space respectively, and each set satisfies the hierarchy constraint, i.e.,

E = {(Xi , Si)|Xi ∈ X,Si ⊆ C, c ∈ Si ⇒ ∀c ′ ≤h c : c ′ ∈ Si , 1 ≤ i ≤ N} and N is the
number of examples of E (N = |E|), and

12 BACKGROUND

• a quality criterion q (which rewards models with high predictive accuracy and low
complexity).

Find: a function f : X → 2C (where 2C is the power set of C) such that f maximizes
q and c ∈ f (x) ⇒ ∀c ′ ≤h c : c ′ ∈ f (x), i.e., predictions made by the model satisfy the
‘hierarchy constraint’.

In our case, the function f is represented with decision trees, i.e., predictive clustering

trees or ensembles thereof.

Figure 2.3 gives an example of hierarchical multi-label classification. In particular, it

presents an example dataset for annotation of medical X-ray images. The descriptive vari-

ables are descriptors extracted from the images using the edge histogram technique, while

the targets are the annotations of the images using the IRMA coding scheme (Lehmann

et al., 2003).

ClassesImage
Descriptive variables

Figure 2.3: An example of a dataset for hierarchical multi-label classification of medical

X-ray images (Dimitrovski et al., 2008).

2.2 Related work

Having defined the machine learning tasks we address, we now present basic ideas and

concepts from three machine learning paradigms relevant to our work: ensemble meth-

ods, predictive clustering and predicting structured outputs. First, we discuss why and

how ensembles are built. Then, we present the predictive clustering framework and its

advantages. Finally, we present related approaches for predicting structured outputs.

2.2.1 Ensemble learning

Ensemble methods are machine learning techniques that generate a set of classifiers and

combine their predictions into a single prediction (Dietterich, 2000a; Džeroski et al., 2009;

Kuncheva, 2004; Valentini, 2003). Each of the constituent classifiers is called a base

Related work 13

classifier and the set of classifiers is called an ensemble. The notion of ensemble is general

and applies to other types of predictive models, such as regression models. However, most

of the survey literature in this area only talks about ensemble classifiers, and so does this

section. Many practical studies show that ensembles achieve high predictive performance

and lift the predictive performance of a single classifier (Banfield et al., 2007; Bauer and

Kohavi, 1999; Breiman, 1996a; Freund and Schapire, 1996; Opitz and Maclin, 1999).

Furthermore, several theoretical explanations are offered that justify and explain the high

predictive performance of ensembles (Allwein et al., 2000; Breiman, 1996b; Domingos,

2000; Geman et al., 1992; Kong and Dietterich, 1995; Mason et al., 2000; Schapire et al.,

1997).

Ensemble learning is now an established research area in the field of machine learning.

It attracts a great deal of research effort reflected in the amount of published literature

(Dietterich, 2000a,b; Džeroski et al., 2009; Kittler et al., 1998; Kuncheva, 2004; Seni and

Elder, 2010; Valentini, 2003). In the remainder of this section, we explain how ensembles

are constructed, how the base classifiers are combined to obtain a single prediction, and

why ensembles have good predictive performance.

Ensemble creation techniques

An ensemble is a set of classifiers. We present the three most widely used approaches to

ensemble learning (i.e., constructing the different base classifiers): (1) use of heteroge-

neous classifiers; (2) manipulating the training set (manipulating the training instances,

manipulating the feature space, or both) and (3) manipulating the learning algorithm. Ta-

ble 2.2.1 summarizes the most often used ensemble learning methods that utilize these

approaches. In the following, we shortly describe these approaches and some representative

methods.

In the first approach, the ensemble is constructed by learning heterogeneous classifiers

(such as decision trees, neural networks, näıve Bayes, nearest neighbours, etc). One can

use a voting scheme (Kuncheva, 2004) to combine the predictions of the different classifiers

into a single prediction. However, the most prominent ensemble learning method that

employs this technique is stacking (Džeroski and Ženko, 2004; Wolpert, 1992). Stacking

combines the classifiers not by a fixed voting scheme, but by learning an additional meta

classifier that uses as input the predictions of the base classifiers. The performance of

stacking highly depends on the attributes that are used in the dataset for constructing the

meta classifier and the selection of the learning algorithm for the meta classifier.

In the second approach, the base classifiers are constructed by manipulating the training

set. This approach is typically used in combination with unstable classifiers. An unstable

14 BACKGROUND

Table 2.1: Summarized approaches to ensemble learning.

Method

Use of hete- Manipulate Manipulate Manipulate

rogeneous the data the data the learning

classifiers instances features algorithm

Stacking √
(Wolpert, 1992)

Bagging √
(Breiman, 1996a)

Random forests √ √ √
(Breiman, 2001a)

Bootstrap ensemble with noise √
(Raviv and Intrator, 1996)

Boosting √
(Freund and Schapire, 1996)

Random subspaces √
(Ho, 1998)

Bagging of subspaces √ √
(Panov and Džeroski, 2007)

Neural networks ensemble √
(Hansen and Salamon, 1990)

Randomized FOIL √
(Ali and Pazzani, 1996)

Randomized C4.5 √
(Dietterich, 2000b)

Extra-Trees ensemble √
(Geurts et al., 2006a)

classifier is one that suffers great changes in its structure with small changes in the training

set. A typical example of such a classifier is the decision tree classifier (Breiman, 1996a).

The manipulation of the training set is performed by manipulating the instances, manip-

ulating the feature space, or both. The manipulation of the instances is done using different

techniques, such as bootstrapping or boosting. Bootstrapping creates several bootstrap

replicates of the training dataset by random selection with replacement (Berthold and

Hand, 2003). A classifier is then learned using each of the bootstrap replicates. The most

prominent ensemble learning method that uses bootstraping is Bagging (Breiman, 1996a).

Bagging can use any type of classifier as a base classifier, but, most often it uses decision

Related work 15

trees.

Raviv and Intrator (1996) construct ensembles of neural networks using bootstrap

replicates of the training set. Additionaly, noise is added to the instances of the bootstrap

replicates. The noised replicates are then used to train the neural networks.

Boosting (Freund and Schapire, 1996) is a cascade procedure. It re-weights the in-

stances of the training set based on the predictions from the previously trained classifier,

thus creating a chain of classifiers. If an instance was correctly classified, then its weight is

decreased when used to train the next classifier or if an instance was miss-classified, then

its weight is increased when it is used to train the next classifier. The training set with the

re-weighted instances is used to train the next classifier. This ensures that the different

classifiers are focused on different areas of the instance space. The procedure iterates until

the predictive performance of the ensemble or the number of trained classifiers reaches

some user defined threshold.

The manipulation of the feature space can be done by random selection of feature

sub-spaces from the original feature space. Each of the base classifiers is then learned

using a different feature sub-space. The most widely used ensemble learning method

that manipulates the feature space is the Random Subspaces Method (Ho, 1998). This

approach is expected to perform well when the data have a high dimensionality (i.e., large

feature space) and a small number of instances. Redundancy in the feature space can

positively influence the performance of this method.

There are several ensemble learning methods that change both the instance and the

feature space to build an ensemble; here we mention two of them: Bagging of subspaces

(Panov and Džeroski, 2007) and Random forests (Breiman, 2001a). Bagging of subspaces

constructs the base classifiers using both bootstrap replicates of the training set and feature

sub-spaces. This method can use any type of classifier as base classifier.

Random forests are the most famous ensemble learning method that can only use deci-

sion trees as base classifiers. This method combines bootstrapping with feature sub-space

selection as follows. It constructs each tree using a different bootstrap replica of the

training set. During tree construction, at each node of the tree it considers a different

(randomly selected) subset of the features. This method is more ‘time efficient’ (espe-

cially when the feature space is large) than the rest of the ensemble methods. Random

forests can also be considered as a ensemble learning method that manipulates the learning

algorithm itself.

The manipulation of the learning algorithm is the last ensemble construction approach

that we present here. It constructs the base classifiers by changing the learning algorithm

(e.g., some of its parameters) for each base classifier. There are several ensemble learning

16 BACKGROUND

methods that use this approach. One of the earliest ensembles of this type was constructed

by Hansen and Salamon (1990), where each base classifier is a neural network obtained

with different initial parameters. Another group of ensemble methods that use trees and

rules as base classifiers perform random selection of a split from the set of possible splits,

as described bellow.

Ali and Pazzani (1996) randomized the FOIL rule learning algorithm as follows. First,

all candidate solutions with score at least 80% of the top-ranked candidate are calculated.

Then, the selection of a condition is done using a weighted random choice algorithm. Di-

etterich (2000b) has proposed a similar method with C4.5 decision trees as base classifiers.

At each node of a decision tree, the top 20 best ranked tests are calculated. One test

is selected from these ‘test candidates’ randomly (with equal probability) and is used as

the test at the given node. Geurts et al. (2006a) have proposed the ‘E-Tree Ensemble’

algorithm. For choosing a test in each internal node, K attributes are randomly selected

first; for each of these attributes a random split is picked next. From the resulting set of

tests, the best performing test is then selected and placed at the given node.

Ensemble combination schemes

One of the most important issues in ensemble learning is the proper combination of the

predictions of the base classifiers into a single prediction (Kittler et al., 1998; Kuncheva,

2004). There are generally two approaches for obtaining a single prediction from an

ensemble: classifier selection and classifier fusion/combination (Džeroski et al., 2009).

The classifier selection approach first evaluates the performance of each base classifier.

The prediction of the ensemble in that case is the prediction of the best performing

classifier. This approach, however, uses only one classifier to make a prediction and its

performance is limited by the performance of the best classifier. The advantages of this

approach are that the final classifier is simpler, understandable and can be executed fast.

The classifier fusion/combination approach combines the predictions of all base clas-

sifiers into an overall prediction of the ensemble. Stacking can be viewed as a classifier

fusion approach: it uses the predictions of the base classifiers to train a meta classifier,

and is then used to combine the predictions of the base classifiers to produce the overall

prediction from of the ensemble. However, by far the most common method for classifier

fusion is the use of a voting scheme. There are many different voting schemes that can be

selected based on the task (classification or regression) or based on the problem at hand.

Here, we describe the ones that are most often used in real-world domains.

The most widely used voting schemes for classification tasks are the majority and

probability distribution vote. Majority voting counts how many of the classifiers predicted

Related work 17

each of the possible class values. Each base classifier has a single ‘vote’, i.e., it predicts a

single class. The final prediction of the ensemble is the class with the most ‘votes’, i.e.,

the class that was most often predicted by the base classifiers.

A weighted sum of the votes can also be used, where the vote from each classifier

is weighted by a number in the interval [0, 1]. Weights are assigned based on the the

classifier’s overall performance (such as accuracy, area under the ROC curve, F-measure

etc...) or in some more complex manner. (Kuncheva, 2004). The overall prediction of

the ensemble is then the class value with the highest weighted sum of votes.

In the probability distribution voting scheme, the base classifiers predict the probability

that an example belongs to each possible class. Thus, each base classifier gives its vote

(i.e., probability estimate) for each class separately. At the end, the predicted class is the

one that has highest sum of probabilities from all base classifiers. As for the majority vot-

ing scheme, one can weight the votes of the base classifiers by their overall performance.

There are more complex voting schemes, but they are seldomly used by the community.

These voting schemes include näıve Bayes combination (Domingos and Pazzani, 1997),

multinomial methods to estimate the posterior probabilities for each class (e.g., the behav-

ior knowledge space method (Huang and Suen, 1995) and Wernecke’s method (Wernecke,

1992)), probabilistic approximations (Kuncheva, 2004) and singular value decomposition

(i.e., correspondence analysis) (Merz, 1999).

For regression tasks, the most widely used scheme for combinining the predictions of

the base models is averaging. This combining scheme is simple: It takes the predictions

of all classifiers and calculates their mean value. This mean value is then used as the

prediction of the ensemble. One can use weights for the predictions of the base classifiers.

The weights (as for classification), can be related to the performance of the classifires

(e.g., correlation coefficient, relative root mean squared error, etc...) or more complex

(Kuncheva, 2004). Other voting schemes for regression (Kittler et al., 1998; Kuncheva,

2004) include the (weighted) median, (weighted) geometric mean, generalized mean, fuzzy

integral, decision templates, etc.

Why do ensembles perform well?

A necessary condition for an ensemble to perform better than any of its base classifiers is

that the base classifiers are accurate and diverse (Hansen and Salamon, 1990; Hastie and

Tibshirani, 1990). An accurate classifier makes smaller error on unseen instances than

random guessing. Diverse classifiers make different errors on unseen instances (i.e., the

errors of the classifiers are independent). These conditions were regarded as a sufficient

requirement for the effective ensemble. However, Kuncheva and Whitaker (2003) have

18 BACKGROUND

shown that this is not always the case: the classifiers producing independent errors not

always do outperform the ones that produce dependent errors. Actually, there exists a

trade-off between the accuracy and the independence of the base classifiers. Dietterich

(2000a); Džeroski et al. (2009); Valentini (2003) offer several fundamental reasons and

theoretical analyses as to why ensembles of classifiers perform well.

First, learning algorithms search for the best model in a given space of models. However,

in the real world problems there are only limited quantities of data available. The learning

algorithm can thus find several models that are equally good for the data at hand. By

combining them into an ensemble, the algorithm reduces the risk of choosing the wrong

model.

The second reason for the success of ensembles comes from the fact that learning

algorithms perform some kind of local search and can easily get stuck in local optima. If

an ensemble is constructed with multiple restarts of the search, it can provide a better

approximation to the true model.

Another reason is that, the true model of the problem under consideration may not

reside in the space of possible models. By combining the multiple different models, the

space of possible models is expanded. This extended space of models may include also the

true model or a better approximation thereof.

There are two main theories that explain why ensembles are successful. The first

theory considers ensembles from the view point of large margin classifiers (Allwein et al.,

2000; Mason et al., 2000; Schapire et al., 1997). According to this theory, the ensembles

enlarge the margins, thus enhancing the generalization capability. The second theory uses

bias-variance decomposition of the error (Breiman, 1996b; Geman et al., 1992; Kong

and Dietterich, 1995) to show that the ensemble can reduce the variance and the bias.

Domingos (2000) has proved that the margin-based and bias-variance-based explanations

are equivalent.

Interpretability of ensembles

Fayyad et al. (1996) define the process of knowledge discovery in databases as “the

overall process of discovering useful knowledge from data”. This proces consists of several

steps: data preparation, data selection, data cleaning, incorporation of appropriate prior

knowledge, data mining and interpretation of the obtained data mining results. The proper

interpretation of the results is crucial “to ensure that useful knowledge is derived from the

data”. Considering this, high predictive performance is not always sufficient for the results

(extracted models) to be regarded as useful: They need to be insepected and understood

by human users. Furthermore, for many real life problems, the users need models that give

Related work 19

better insight into the domain rather than high predictive performance.

Many studies, both theoretical and empirical (the references above), show that the

ensembles often outperform their base classifiers/models and offer high predictive per-

formance. Since the ensembles are set of classifiers they do not offer additional insight

about the problem at hand. However, some useful knowledge from an ensemble can be

extracted by using a meta model that represents the whole ensemble (thus sacrificing some

of its predictive performance) (Assche, 2008) or by performing feature ranking using the

ensembles mechanism(Breiman, 2001a). We briefly discuss these two approaches in the

following.

The meta model can be constructed by constructing a complex model while building the

ensemble or by learing a new model based on the ensemble. The first approach constructs

an complex understandable model (such as alternating decision tree, consolidated tree

and orthogonal decision tree) that has some ensemble characterists: it combines several

predictions to get the final prediction (Freund and Mason, 1999; Kargupta et al., 2006;

Pérez et al., 2004). The second approach uses the models that are in the ensemble to

construct or extract a model representative for the whole ensemble. This can be done

by selecting a representative model by some measure (Ferri et al., 2002) or by generating

artificial data using the base models and use these data to learn a representative model

(Assche, 2008; Craven, 1996; Domingos, 1998).

Breiman (2001a) proposed to further expolit the random forests (or bagging) mechnism

for providing ranking of the descriptive variables (i.e., feature ranking). To calculate

the importance of each descriptive variable for the class, this approach performs random

permutations of the variable’s values and out-of-bag error estimates. This approach offers

additional insights into the domain while preserving the predictive performance of the

ensemble.

2.2.2 Predictive clustering

The notion of predictive clustering was first introduced by Blockeel (1998). The predic-

tive clustering framework unifies two machine learning techniques, predictive modelling

and clustering, usually viewed as completely different. The connection between these

techniques is made by machine learning methods that partition the instances into subsets,

such as decision trees and decision rules. These methods can be considered both as pre-

dictive and as clustering methods (Langley, 1996). In particular, the predictive clustering

framework regards the decision tree as a hierarchy of clusters: each node corresponds to

a cluster and the top node contains all instances. Similarly, a decision rule represents a

cluster that contains the instances which it covers.

20 BACKGROUND

The benefit of using predictive clustering methods is that, besides the clusters them-

selves, they also provide symbolic descriptions of the constructed clusters. Each node

from the tree (i.e., cluster) can be described with a conjunction of conditions, namely

those on the path from the root node to the given node. A cluster represented by a rule

is described by the rule’s conditions. The difference between the ‘tree’ and ‘rule’ clusters

is that the ‘tree’ clusters are ordered in a hierarchy and do not overlap, while the ‘rule’

clusters represent a flat clustering, where clusters may overlap.

Predictive clustering combines predictive modelling and clustering techniques (Blockeel,

1998; Blockeel et al., 1998; Ženko, 2007). The task of predictive clustering is to identify

clusters of instances that are close to each other both in the target and in the descriptive

space. Figure 2.4 illustrates the tasks of predictive modelling (Figure 2.4(a)), clustering

(Figure 2.4(b)) and predictive clustering (Figure 2.4(c)). Note that Figure 2.4 presents

the target and the descriptive space as one-dimensional axes for easier visual interpretation,

but they can be of higher dimensionality.

(a) (b) (c)

Descriptive space

T
ar
g
et
sp
ac
e

Descriptive space

T
ar
g
et
sp
ac
e

Descriptive space

T
ar
g
et
sp
ac
e

Figure 2.4: An illustration of predictive clustering: (a) clustering in the target space, (b)

clustering in the descriptive space, and (c) clustering in both the target and the descriptive

space. Figure taken from Blockeel (1998) and Ženko (2007).

The clusters that were obtained using the target space only (Figure 2.4(a)) are homo-

geneous in the target space (the target variables of the instances belonging to the same

cluster have similar values). On the other hand, the clusters obtained using the descriptive

space only (Figure 2.4(b)) are homogeneous in the descriptive space (the descriptive vari-

ables of the instances belonging to the same cluster have similar values). The predictive

clustering combines these two and produces clusters that are homogeneous both in the

target and in the descriptive space (Figure 2.4(c)).

Each cluster that is identified by predictive clustering is associated with a predictive

model. The predictive model makes a prediction for the target space using the descriptive

Related work 21

space for all the instances belonging to that cluster. Typically, the prediction of the model

is the projection of the prototype of the cluster on the target space: The prototype is an

instance representative of the cluster and most similar to all elements of the cluster.

The predictive clustering framework is implemented using decision trees (called pre-

dictive clustering trees) (Blockeel et al., 1998; Struyf and Džeroski, 2006) and decision

rules (called predictive clustering rules) (Ženko, 2007) as predictive models. These two

machine learning methods use a heuristic function to split the instances into clusters. The

heuristic function, in the predictive clustering framework, is based on minimization of the

intra-cluster variance and maximization of the inter-cluster variance. The variance and

prototype function for performing the clustering of the instances need to be instantiated

depending on the prediction task at hand. So far, the predictive clustering framework has

been used for the prediction of multiple continuous variables, prediction of multiple discrete

variables, hierarchical multi-label classification (HMC) and prediction of time series. The

predictive clustering framework is implemented in the CLUS system1 (Blockeel and Struyf,

2002; Kocev et al., 2007b; Slavkov et al., 2010b; Struyf and Džeroski, 2006; Vens et al.,

2008; Ženko, 2007).

The variance function has been instantiated as follows. For predicting multiple discrete

variables, the variance is calculated as the average value of the Gini index for each vari-

able. The variance can also be calculated by using information gain or entropy (Blockeel

et al., 1998; Ženko, 2007). When predicting multiple continuous variables the variance,

is calculated by using the Euclidean distance for each variable. The contribution of each

variable is normalized, thus, each target variable contributes equally to the overall variance

(Struyf and Džeroski, 2006; Ženko, 2007). Moreover, the contribution of each target

variable, both when predicting continuous or discrete variables, to the overall variance can

be weighted, thus making the model better for some of the target variables. In the task

of HMC, the variance is calculated by using a weighted Euclidean distance (Vens et al.,

2008). Some other distance measures, such as the weighted Jaccard distance, a semantic

similarity measure etc, can be also used (Aleksovski et al., 2009). The variance for the

prediction of time series (Slavkov et al., 2010b) is calculated by using the dynamic time

warping distance (Sakoe and Chiba, 1978) or a qualitative distance measure (Todorovski

et al., 2002), or the correlation of the time series. The predictive clustering framework

can be easily extended with new variance functions, thus extending it for other prediction

tasks.

The prototype function is also appropriately instantiated for each prediction task. The

prototype when predicting multiple continuous variables is the vector of the mean values

1The CLUS system is available for download at http://www.cs.kuleuven.be/˜dtai/clus.

http://www.cs.kuleuven.be/~dtai/clus

22 BACKGROUND

of each variable Blockeel et al. (1998); Struyf and Džeroski (2006). The median can be

used instead of the mean in the prototype. Moreover, a complex prototype function that

weights the instances can be used to calculate the prototype. In the task for prediction

of multiple discrete variables, the prototype is calculated as a vector of the probability

distributions with each distribution containing the probabilities of the class values for each

target separately. Afterwards, the majority classes per target are easily retrieved (Blockeel

et al., 1998). The prototype in the case of HMC is calculated by using the average

values per class and then applying some user defined threshold (see Section 3.1.2 for

details). When predicting time series, the prototype is calculated as the mean and/or the

medoid value, where the medoid is taken with respect to the used distance measure. Both

prototypes are reported when all time series have equal length, while only the median is

reported when the time series have different lengths.

The predictive clustering framework offers a unifying view over several machine learning

tasks. A proper instantiation of the variance and prototype function enables the framework

to handle a given prediction task. So far, the predictive clustering framework has used

only decision trees and decision rules as predictive models.

In this thesis, we extend the predictive clustering framework towards ensemble learning.

In particular, we investigate whether an ensemble of predictive clustering trees improve the

performance of individual predictive clustering trees. We also investigate whether ensemble

for predicting structured outputs outperform the ensembles learned separately for each

component of the target.

2.2.3 The task of predicting structured outputs

The task of predicting structured outputs is gaining more and more attention within the

machine learning research community (Bakır et al., 2007; Silla and Freitas, 2010). The

methods for predicting structured outputs can be divided into two main groups: local and

global. The local methods decompose the output to its smallest components, construct

a classifier/model for each of the components and then combine their outputs to ob-

tain a structured prediction. Standard, traditionally developed machine learning methods

(Berthold and Hand, 2003; Breiman et al., 1984; Langley, 1996; Mitchell, 1997; Tan et al.,

2005) can be used to construct the classifiers for each sub-componenent.

The global methods, on the other hand, construct only a single classifier that pre-

dicts the complete structured output at once (the so-called ‘big-bang’ approach (Silla and

Freitas, 2010)). The main advantage of the global approaches is that they are able to

exploit the interdependencies between the components of the outputs (given in the form

of constraints or statistical correlations) (Bakır et al., 2007; Blockeel et al., 2006; Ženko,

Related work 23

2007).

The proposed methods for predicting structured outputs are typically ‘computationally

demanding and ill-suited for dealing with large datasets’ (Bakır et al., 2007). In this thesis,

we propose a global method for predicting structured outputs that has good predictive

performance and is very efficient. We use the predictive clustering framework both for

predicting multiple targets and for hierarchical multi-label classification. In the literature,

there are mostly methods that solve one of these two tasks. In the remainder of this

section, we first present the methods that predict multiple targets and then the methods

for hierarchical multi-label classification.

Methods for multi-target prediction

The task of predicting multiple targets is connected with the ‘multi-task learning’ (Caruana,

1997) and ‘learning to learn’ (Thrun and Pratt, 1998) paradigms. These paradigms include

the task of predicting a variable (continuous or discrete) using multiple input spaces (i.e.,

biological data for a disease obtained using different technologies); predicting multiple

variables from multiple input spaces, and predicting multiple variables from a single input

space. We consider here the last task: The approach we take can handle two types

of outputs/targets: discrete targets (classification) and continuous targets (regression),

while most of the approaches from the literature can handle only one type of targets.

There is extensive empirical work showing an increase in predictive performance when

multiple tasks are learned simultaneously as compared to learning each task separately

(for example, see (Baxter, 2000; Ben-David and Borbely, 2008; Caponnetto et al., 2008;

Evgeniou et al., 2005) and the references therein).

The key for the success of multi-task learning is the ‘relatedness’ between the mul-

tiple tasks. The notion of ‘relatedness’ is differently perceived and defined by different

researchers. For example, Ando et al. (2005) assume that all related tasks have some

common hidden structure. Greene (2007) models the relatedness under the assumption of

correlation between the noise for the different regression estimates. Baxter (2000) views

the similarity through a model selection criterion, i.e., learning multiple tasks simultane-

ously is beneficial if the tasks share a common optimal hypothesis space. To this end,

a generalized VC-dimension is used for bounding the average empirical error of a set of

predictors over a class of tasks.

We present and categorize the related work along four dimensions: statistics, statistical

learning theory, Bayesian theory and kernel learning. To begin with, in statistics, Brown

and Zidek (1980) extend the standard ridge regression to multivariate ridge regression,

while Breiman and Friedman (1997) propose the curds&whey method, where the relations

24 BACKGROUND

between the task are modeled in a post-processing phase. In statistical learning theory,

for handling multiple tasks, an extension of the VC-dimension and the basic generalization

bounds for single task learning are proposed by Baxter (2000) and Ben-David and Borbely

(2008).

Most of the work in multi-task learning is done using Bayesian theory (Bakker and

Heskes, 2003; Thrun and Pratt, 1998; Wilson et al., 2007). In this case, simultaneously

with the parameters of the models for each of the tasks, a probabilistic model that captures

the relations between the various tasks is being calculated. Most of these approaches use

hierarchical Bayesian models.

Finally, there are many approaches for multi-task learning using kernel methods. For

example, Evgeniou et al. (2005) extend the kernel methods to the case of multi-task

learning by using a particular type of kernel (multi-task kernel). The regularized multi-

task learning then becomes equivalent to single-task learning when such a kernel is used.

They show experimentally that the support vector machines with multi-task kernels have

significantly better performance than the ones with single-task kernels. For more details on

kernel methods and SVMs for multi-task learning, we refer the reader to (Argyriou et al.,

2008; Cai and Cherkassky, 2009; Caponnetto et al., 2008; Micchelli and Pontil, 2004) and

the references therein.

Methods for hierarchical multi-label classification

A number of approaches have been proposed for the task of hierarchical multi-label clas-

sification (Bakır et al., 2007). Silla and Freitas (2010) survey and categorize the HMC

approaches based on their characteristics and the application domains. The characteristics

of the approaches they consider as most important are: prediction of single or multiple

paths from the hierarchy, the depth of the predicted class, the type of the taxonomy that

can be handled (tree or directed acyclic graph) and whether the approach is local (con-

structs a model for each part of the taxonomy) or global (constructs a model for the whole

taxonomy). The most prominent application domains for these approaches are functional

genomics (biology), image classification, text categorization, and genre classification.

Here, we present and group some existing approaches based on the learning technique

they use. We group the methods as follows: network based methods, kernel base methods

and decision tree based methods.

Network based methods. The network based approaches predict functions of unanno-

tated genes based on known functions of genes that are nearby in a functional association

network or protein-protein interaction network (Chen and Xu, 2004). Mostafavi et al.

(2008) calculate per gene function a composite functional association network from mul-

Related work 25

tiple networks derived from different genomic and proteomic data sources. Since the

network base approaches are based on label propagation, a number of approaches were

proposed to combine predictions of functional networks with those of a predictive model.

Tian et al. (2008), for instance, use logistic regression to combine predictions made by a

functional association network with predictions from a random forest.

Kernel based methods. Lee et al. (2006) combine Markov random fields and support

vector machines which are generated for each class separately. They compute diffusion

kernels and use them in kernel logistic regression. Obozinski et al. (2008) present a two-

step approach in which SVMs are first learned independently for each class separately

(allowing violations of the hierarchy constraint) and are then reconciliated to enforce the

hierarchy constraint. Similarly, Barutcuoglu et al. (2006) use un-thresholded SVMs learned

for each class separately and then combine the SVMs by using a Bayesian network so that

the predictions are consistent with the hierarchical relationships.

Guan et al. (2008) extend the method by Barutcuoglu et al. (2006) to an ensemble

framework. Valentini and Re (2009) also propose a hierarchical ensemble method that

uses probabilistic SVMs as base learners. It combines the predictions by propagating the

weighted true path rule both top-down and bottom-up through the hierarchy, which ensures

consistency with the hierarchy constraint.

Rousu et al. (2006) present a more direct approach that does not require a second

step to make sure that the hierarchy constraint is satisfied. Their approach is based on

a large margin method for structured output prediction which defines a joint feature map

over the input and the output space. Next, it applies a SVM based techniques to learn the

weights of a discriminant function (defined as the dot product of the weights and the joint

feature map). Rousu et al. (2006) propose a suitable joint feature map and an efficient

way for computing the argmax of the discriminant function (which is the prediction for a

new instance).

Decision tree based methods. The disadvantage of sub-symbolic learning techniques,

such as SVMs, is the lack of interpretability: it is very hard to find out why a SVM assigns

certain classes to an example, especially if a non-linear kernel is used. In contrast to the

output of the previously described models, decision trees are easily interpreted by a domain

expert.

Clare (2003) adapts the well-known decision tree algorithm C4.5 (Quinlan, 1993) to

cope with the issues introduced by the HMC task. This version of C4.5 (called C4.5H)

uses the sum of entropies of the class variables to select the best split. C4.5H predicts

classes on several levels of the hierarchy, assigning a larger cost to misclassifications higher

up in the hierarchy. The resulting tree is then transformed into a set of rules, and the best

26 BACKGROUND

rules are selected, based on a significance test on a validation set.

Geurts et al. (2006b) present a decision tree based approach related to predictive

clustering trees. They start from a different definition of variance and then kernelize this

variance function. The result is a decision tree induction system that can be applied to

structured output prediction using a method similar to the large margin methods mentioned

above. Therefore, this system could also be used for HMC after defining a suitable kernel.

To this end, an approach similar to that of Rousu et al. (2006) could be used.

Blockeel et al. (2002, 2006) proposed the idea of using predictive clustering trees

(Blockeel et al., 1998) for HMC tasks. This work (Blockeel et al., 2006) presents the

first thorough empirical comparison between an HMC and SC decision tree method in the

context of tree shaped class hierarchies. Vens et al. (2008) extend the algorithm towards

hierarchies structured as DAGs and show that learning one decision tree for predicting all

classes simultaneously outperforms learning one tree per class (even if those trees are built

by taking into account the hierarchy).

27

3 Ensembles for predicting structured outputs

In this chapter, we present the main contribution of this thesis: ensemble methods for

predicting structured outputs. We begin by presenting the predictive clustering trees and

their instantiations for predicting multiple continuous variables, predicting multiple discrete

variables and hierarchical multi-label classification. Next, we describe how ensemble learn-

ing methods can be adapted to use predictive clustering trees as base predictive models.

Finally, we show approach to prediction of structured outputs using local predictive models.

3.1 PCTs for structured outputs

The Predictive Clustering Trees (PCTs) framework sees a decision tree as a hierarchy

of clusters: the top-node corresponds to one cluster containing all data, which is recur-

sively partitioned into smaller clusters while moving down the tree. The PCT framework

is implemented in the CLUS system (Blockeel and Struyf, 2002), which is available for

download at http://www.cs.kuleuven.be/˜dtai/clus.

CLUS takes as input a set of examples E = {(xi , yi)|i = 1, ...N}, where each xi is
a vector of attribute values and yi are values of a structured (output) datatype TY . In

this thesis, we consider three different classes of datatypes TY : tuples of discrete values,

tuples of real values, and hierarchies. For each type TY , CLUS needs two functions to be

defined. The prototype function returns a representative structured value given a set of

such values. The variance function describes how homogeneous a set of structured values

is: It is typically based on a distance function on the space of structured values.

PCTs can be induced with a standard ‘top-down induction of decision trees’ (TDIDT)

algorithm (Breiman et al., 1984). The algorithm is presented in Table 3.1. It takes as

input a set of examples (E) and outputs a tree. The heuristic (h) that is used for selecting

the tests (t) is the reduction in variance caused by partitioning (P) the instances (see

line 4 of BestTest procedure in Table 3.1). Maximizing the variance reduction maximizes

cluster homogeneity and improves predictive performance.

The main difference between the algorithm for learning PCTs and a standard decision

tree learner (for example, see the C4.5 algorithm proposed by Quinlan (1993)) is that

http://www.cs.kuleuven.be/~dtai/clus

28 ENSEMBLES FOR PREDICTING STRUCTURED OUTPUTS

Table 3.1: The top-down induction algorithm for PCTs.

procedure PCT(E) returns tree

1: (t∗, h∗,P∗) = BestTest(E)

2: if t∗ 6= none then
3: for each Ek ∈ P

∗ do

4: treek = PCT(Ek)

5: return node(t∗,
⋃

k{treek})
6: else

7: return leaf(Prototype(E))

procedure BestTest(E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each possible test t do

3: P = partition induced by t on E

4: h = Var(E)−∑Ek∈P
|Ek |
|E|
Var(Ek)

5: if (h > h∗)∧Acceptable(t,P) then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

the former considers the variance function and the prototype function, that computes a

label for each leaf, as parameters that can be instantiated for a given learning task. So

far, the PCTs have been instantiated for the following tasks: multiple targets prediction

(Kocev et al., 2007b; Struyf and Džeroski, 2006), hierarchical-multi label classification

(Vens et al., 2008) and prediction of time-series (Slavkov et al., 2010b). In this thesis, we

focus on the first two tasks.

3.1.1 PCTs for multiple target variables

PCTs that are able to predict multiple targets simultaneously are called multi-target deci-

sion trees (MTDTs). The MTDTs that predict a tuple of continuous variables (regression

tasks) are called multi-target regression trees (MTRTs), while the MTDTs that predict

a tuple of discrete variables are called multi-target classification trees (MTCTs). The

instantiation of the CLUS system that learns multi-target trees is called CLUS-MTDT.

PCTs for multiple continuous variables

An example of a MTRT is shown in Figure 3.1. The internal nodes of the tree contain tests

on the descriptive variables (in this case, data from a geographical information system)

and the leafs store the predictions (in this case, a vector of indices describing the condition

of the vegetation).

The variance and prototype functions for MTRTs are instantiated as follows. The

variance is calculated as the sum of the variances of the target variables, i.e., Var(E) =
∑T

i=1 V ar(Yi). The variances of the targets are normalized, so each target contributes

equally to the overall variance. The prototype function (calculated at each leaf) returns

as a prediction the vector of the mean values of the target variables, calculated by using

the training instances that belong to the given leaf.

PCTs for structured outputs 29

Land Cover categories
1 - Dryland agriculture
(including cereal cropping and pasture);
2 - Dense Forest Cover;
3 - Woodlands and Open Forests;
4 - Open Woodlands and Mallee Shrublands;
5 - Temperate Grasslands and
Chenopod Shrublands;
6 - Urban/suburban;
7 - Urban/industrial and commercial;
8 - Irrigated crops, pasture and horticulture;
9 - Plantation Forestry;
10 - Waterbodies and Wetlands;

Indices of vegetation condition
Large tree score
Tree canopy score
Understorey score
Litter score
Logs score
Weeds score
Recruitment score

NativeT reeProb > 0.31

yes no

LandCover in {1, 2, 6, 7, 8, 9}

yes no

LandCover = 2

yes no

GrassProb1Ha RegionStdDev > 3.386

yes no

2.70

1.50 0.22

5.01 TempRange > 23.4oC

yes no

4.27 2.31

1.10

4.02

2.15

0.49

2.97

1.58

0.18

0.70

0.43

0.10

0.61

0.31

1.98

7.47

3.00

1.20

5.37

2.80
4.06

11.31

4.03

2.38

9.66

4.26

2.87

12.67

3.92

2.11

7.30

5.10

4.07

13.93

4.41

4.08

13.38

5.54

Figure 3.1: Example of a predictive clustering tree for predicting multiple continuous

targets (Kocev et al., 2009). Each leaf stores a prediction for the values of a set of indices

of the state of indigenous vegetation in Victoria, Australia. The tree was learned using

the data depicted in Figure 2.1.

PCTs for multiple discrete variables

An example of a MTCT is shown in Figure 3.2. This MTCT presents a habitat model

for 14 bioindicator species (Džeroski et al., 2000). The internal nodes of the tree contain

tests on the descriptive variables (in this case, chemical parameters of the water samples)

and the leafs store the predictions (in this case, which species are encountered and which

not in a given water sample).

The variance function for the MTCTs is computed as the sum of the Gini indices

of the target variables, i.e., Var(E) =
∑T

i=1Gini(E ,Yi). Furthermore, one can also

use the sum of the entropies of class variables as a variance function, i.e., Var(E) =
∑T

i=1 Entropy(E ,Yi) (this definition has also been used in the context of multi–label pre-

diction (Clare, 2003)).

The prototype function returns a vector of probabilities that an instance belongs to a

given class for each target variable. Using these probabilities, the most probable (majority)

class for each target attribute can be calculated. In addition to the two aforementioned

instantiations of the variance function for classification problems, the CLUS system also

implements other variance functions, such as reduced error, information gain, gain ratio

and the m-estimate.

3.1.2 PCTs for hierarchical multi–label classification

Hierarchical multi-label classification is a variant of classification where a single example

may belong to multiple classes at the same time and the possible classes are organized

30 ENSEMBLES FOR PREDICTING STRUCTURED OUTPUTS

Species present in all samples

NO2 > 0.12

yes no

K2Cr2O7 > 0.86

yes no

Nitzschia pal. Cl > 0.35

yes no

Temperature > 2.55

yes no

Nitzschia pal.

Cladophora sp. Melosira var.

Cl > 0.22

yes no

CO2 > 0.0

yes no

Rhyacophila sp.

Melosira var. Cladophora sp.

Tubifex sp.

Oedogonium sp.
Nitzschia pal.
Erpobdella oc.
Gammarus fo.
Hydropsyche sp.

Nitzschia pal.
Gammarus fo.
Hydropsyche sp.

Gammarus fo. Audouinella ch.
Gammarus fo.

Baetis rh.
Rhyacophila sp.

Melosira var.
Gammarus fo.
Hydropsyche sp.

Chlorophyta Cladophora sp.

Chlorophyta Gongrosira incrustans

Chlorophyta Oedogonium sp.

Chlorophyta Stigeoclonium tenue

Bacillariophyta Melosira varians

Bacillariophyta Nitzschia palea

Rhodophyta Audouinella chalybea

Hirudinea Erpobdella octoculata

Amphipoda Gammarus fossarum

Ephemeroptera Baetis rhodani

Trichoptera Hydropsyche sp.

T richoptera Rhyacophila sp.

Diptera Simulim sp.

Oligochaeta Tubifex sp.

Figure 3.2: Example of a predictive clustering tree for predicting multiple discrete targets.

Each leaf stores a prediction for the presence or absence of each bioindicator species. The

tree was learned using the data depicted in Figure 2.2.

in a hierarchy. An example that belongs to some class c automatically belongs to all

super-classes of c : This is called the hierarchical constraint. Problems of this kind can be

found in many domains including text classification, functional genomics, and object/scene

classification. Silla and Freitas (2010) give a detailed overview of the possible application

areas and the available approaches to HMC.

Silla and Freitas (2010) describe the algorithms for hierarchical classification with a

4-tuple 〈∆,Σ,Ω,Θ〉. In this 4-tuple, ∆ indicates whether the algorithm makes predictions
for a single or multiple paths in the hierarchy, Σ is the depth of the predicted classes, Ω is

the taxonomy structure of the classes that the algorithm can handle, and Θ is the type of

the algorithm (local or global). Using this categorization, the algorithm we present here

can be described as follows:

• ∆ = multiple path prediction: the algorithm can assign multiple paths or predicted
classes to each instance.

• Σ = non-mandatory leaf-node prediction: an instance can be labeled with a label at
any level of the taxonomy.

• Ω = tree or directed acyclic graph: the algorithm can handle both tree-shaped or
DAG hierarchies of classes.

• Θ = global classifier: the algorithm constructs a single model valid for all classes.

CLUS-HMC is the instantiation (with the distances and prototypes as defined bellow)

of the PCT algorithm for hierarchical classification implemented in the CLUS system.

PCTs for structured outputs 31

An example of a PCT for HMC is shown in Figure 3.3. This PCT is predicting the

annotations of medical X-ray images (Dimitrovski et al., 2008). The internal nodes of

the tree contain tests on the descriptive variables (in this case, descriptors of the images

extracted by the edge histogram technique) and the leafs store the predictions/annotations

(in this case, classes organized into a tree-shaped hierarchy called IRMA coding scheme

(Lehmann et al., 2003)).

| > 51

yes no

/ > 21

yes no

> 29

yes no

...
| > 21

yes no

...
lumbar spine 0.84
upper lumbar spine 0.62
ureter 0.51
...

cervical spine 0.81
musculosceletal 0.75
middle abdomen 0.72
...

renal pelvis 0.87
parenchyma 0.80
axis 0.74
...

Figure 3.3: Example of a predictive clustering tree for hierarchical multi-label classification.

Each leaf stores a prediction for the annotations of a given medical X-ray image from the

IRMA coding scheme. The tree was learned using the data depicted in Figure 2.3.

Instantiation of PCTs for HMC

To apply PCTs to the task of hierarchical multi-label classification, the variance and pro-

totype are defined as follows (Vens et al., 2008). First, the set of labels of each example

is represented as a vector with binary components; the i ’th component of the vector is 1

if the example belongs to class ci and 0 otherwise. It is easily checked that the arithmetic

mean of a set of such vectors contains as i ’th component the proportion of examples of

the set belonging to class ci .

The variance of a set of examples E is defined as the average squared distance between

each example’s class vector (Lk) and the set’s mean class vector (L), i.e.,

Var(E) =

∑

k d(Lk , L)
2

|E| .

In the HMC context, the similarity at higher levels of the hierarchy is more important

than the similarity at lower levels. This is reflected in the distance measure used in the

above formula, which is a weighted Euclidean distance:

d(L1, L2) =

√

∑

i

w(ci) · (L1,i − L2,i)2,

32 ENSEMBLES FOR PREDICTING STRUCTURED OUTPUTS

where Lk,i is the i ’th component of the class vector Lk of an instance Xk , and the class

weights w(c) decrease with the depth of the class in the hierarchy. More precisely, w(c) =

w0 · avgj {w(pj(c))}, where pj(c) denotes the j ’th parent of class c and 0 < w0 < 1).
For example, consider the toy class hierarchy shown in Figure 3.4(a,b), and two data

examples: (X1, S1) and (X2, S2) that belong to the classes S1 = {c1, c2, c2.2} (boldface in
Figure 3.4(b)) and S2 = {c2}, respectively. We use a vector representation with consec-
utive components representing membership of class c1, c2, c2.1, c2.2 and c3, in that order

(preorder traversal of the tree). The distance is then calculated as follows:

d(S1, S2) = d([1, 1, 0, 1, 0], [0, 1, 0, 0, 0]) =
√

w0 + w
2
0 .

(a)

c2c1 c3

c2.1 c2.2

(b)

c2(2)c1(1) c3 (5)

c2.1 (3) c2.2 (4)

(1)(2)(3)(4)(5)

Lk = [1, 1, 0, 1, 0]

(c)

c2c1

c6

c3

c4 c5

Figure 3.4: Toy examples of hierarchies structured as a tree and a DAG.(a) Class label

names contain information about the position in the hierarchy, e.g., c2.1 is a subclass of

c2. (b) The set of classes {c1, c2, c2.2}, shown in bold in the hierarchy, represented as a
vector. (c) A class hierarchy structured as a DAG. The class c6 has two parents: c1 and

c4.

Note that our definition of w(c) allows the classes to be structured in a directed acyclic

graph (DAG). Figure 3.4(c) depicts an example of a DAG structured hierarchy. In general,

a DAG hierarchy can have two interpretations: if an example belongs to a given class c , it

either a) also belongs to all super-classes of c , or b) belongs to at least one superclass of

c . Here, we adapt the first case, i.e., the multiple inheritance interpretation.

The variance function used for tree-shaped hierarchies uses the weighted Euclidean

distance between the class vectors, where the weight of a class depends on its depth in the

hierarchy. When the hierarchy is a DAG, then the depth of a class is not unique: classes

do not have a single path from the top-node (for example see class c6 in Figure 3.4(c)).

Ensembles of PCTs for predicting structured outputs 33

To resolve this issue, Vens et al. (2008) suggest four aggregation schemes of the possible

paths from the top-node to a given class: average, maximum, minimum and sum. The

aggregation schemes use the observation that w(c) = w
depth(c)
0 can be rewritten as the

recursive relation w(c) = w0 · w(par(c)), with par(c) as the parent class of c , and the
weights of the top-level classes equal to w0. After an extensive experimental evaluation,

Vens et al. (2008) recommend to use the average as aggregation function (w(c) = w0 ·
avgj{w(parj(c))}).

Calculation of the prediction

A classification tree stores in a leaf the majority class for that leaf, which will be the tree’s

prediction for all examples that will arrive in the leaf. In the case of HMC, an example may

have multiple classes, thus the notion of ‘majority class’ does not apply in a straightforward

manner. Instead, the mean L̄ of the class vectors of the examples in the leaf is stored as

a prediction. Note that the value for the i-th component of L̄ can be interpreted as the

probability that an example arriving at the given leaf belongs to class ci .

The prediction for an example that arrives in the leaf can be obtained by applying a

user defined threshold τ on the probability; if the i-th component of L̄ is above τ then

the examples belong to the class ci . When a PCT is making a prediction it preserves

the hierarchy constraint (the predictions comply to the parent child relationships from

the hierarchy) if the values for the thresholds τ are chosen as follows: τi ≤ τj whenever
ci ≤h cj (ci is ancestor of cj). The threshold is selected depending on the context. The
user may set the threshold such that the resulting classifier has high precision at the cost

of lower recall or vice versa, to maximize the F-score, to maximize the interpretability

or plausibility of the resulting model etc. In this work, we use a threshold-independent

measure (precision-recall curves) to evaluate the performance of the HMC models.

3.2 Ensembles of PCTs for predicting structured outputs

An ensemble is a set of predictive models (called base predictive models). In homogeneous

ensembles, such as the ones we consider here, the base predictive models are constructed

by using the same algorithm. The prediction of an ensemble for a new instance is obtained

by combining the predictions of all the base predictive models from the ensemble. In this

dissertation, we consider ensembles of PCTs for structured prediction. The PCTs in the

ensembles are constructed by using the bagging and random forests approaches that are

often used in the context of decision trees: We have adapted these approaches to use

PCTs.

34 ENSEMBLES FOR PREDICTING STRUCTURED OUTPUTS

3.2.1 Constructing ensembles of PCTs

A necessary condition for an ensemble to have better predictive performance than any

of its individual members, is that the base predictive models are accurate and diverse

(Hansen and Salamon, 1990). An accurate predictive model does better than random

guessing on new examples. Two predictive models are diverse if they make different

errors on new examples. There are several ways to introduce diversity in a set of base

predictive models: by manipulating the training set (by changing the weight of the examples

(Breiman, 1996a; Freund and Schapire, 1996), by changing the attribute values of the

examples (Breiman, 2001b), by manipulating the feature space (Breiman, 2001a; Ho,

1998)) and by manipulating the learning algorithm itself (Breiman, 2001a; Dietterich,

2000a).

We have implemented the bagging, random forests, random subspaces and bagging

of subspaces methods within the CLUS system. The algorithms of these ensemble learn-

ing methods are presented in Table 3.2. For the random forests approach (top-right in

Table 3.2), the PCT algorithm for structured prediction needed changes: A randomized

version of the selection of attributes was implemented, which replaced the standard se-

lection of attributes. However, in the empirical evaluation of these approaches, we only

consider the two ensemble learning techniques that are most widely known and have pri-

marily been used in the context of decision trees: bagging and random forests.

3.2.2 Bagging

Bagging (Breiman, 1996a) is an ensemble method that constructs the different classifiers

by making bootstrap replicates of the training set and using each of these replicates to

construct a predictive model (Table 3.2(top-left)). Each bootstrap sample is obtained

by randomly sampling training instances, with replacement, from the original training set,

until an equal number of instances as in the training set is obtained. Breiman (1996a) has

shown that bagging can give substantial gains in predictive performance, when applied to

an unstable learner (i.e., a learner for which small changes in the training set result in large

changes in the predictions), such as classification and regression tree learners.

3.2.3 Random forests

A random forest (Breiman, 2001a) is an ensemble of trees, where diversity among the

predictors is obtained by using bootstrap replicates as in bagging, and additionally by

changing the feature set during learning (Table 3.2(top-right)). More precisely, at each

Ensembles of PCTs for predicting structured outputs 35

Table 3.2: The four ensemble induction algorithms: bagging, random forests, random

subspaces and bagging of subspaces. Here, E is the set of the training examples, k is the

number of trees in the forest, and f (D) is the size of the feature subset that is used to

learn the model (for random subspaces and bagging of subspaces) and that is considered

at each node during tree construction (for random forests).

procedure Bagging(E, k)

returns Forest

1: F = ∅
2: for i = 1 to k do

3: Ei = boostrap(E)

4: Ti = PCT (Ei)

5: F = F
⋃

Ti

6: return F

procedure RForest(E, k, f (D))

returns Forest

1: F = ∅
2: for i = 1 to k do

3: Ei = boostrap(E)

4: Ti = PCT rnd(Ei , f (D))

5: F = F
⋃

Ti

6: return F

procedure RSubspaces(E, k, f (D))

returns Forest

1: F = ∅
2: for i = 1 to k do

3: Ei = f eature space(E)

4: Ti = PCT (Ei)

5: F = F
⋃

Ti

6: return F

procedure BagSubspaces(E, k, f (D))

returns Forest

1: F = ∅
2: for i = 1 to k do

3: Et = boostrap(E)

4: Ei = f eature space(Et)

5: Ti = PCT (Ei , f (D))

6: F = F
⋃

Ti

7: return F

node in the decision trees, a random subset of the descriptive attributes is taken, and the

best feature is selected from this subset. The number of attributes that are retained is

given by a function f of the total number of descriptive attributes D (e.g., f (D) = 1,

f (D) = ⌊
√
D + 1⌋, f (D) = ⌊log2(D) + 1⌋ . . .). By setting f (D) = D, we obtain

the bagging procedure. The algorithm for learning a random forest using PCTs as base

classifiers is presented in Table 3.2.

3.2.4 Random subspaces

The random subspaces method (Ho, 1998) creates an ensemble by learning each of the

base models on different feature subspaces (Table 3.2 (bottom-left)). This method first

selects a subset of the descriptive attributes and then learns a base model using the dataset

36 ENSEMBLES FOR PREDICTING STRUCTURED OUTPUTS

that contains only these attributes. The number of descriptive attributes that are used

to learn the base models, similarly as for random forests, is given with a function f of

the total number of descriptive attributes D: Ho (1998) suggests that best results are

obtained with f (D) = ⌊0.5 ·D+1⌋. The random subspaces method performs better when
the number of descriptive attributes is large and when the number of examples is not small.

This method is also more successful when redundant attributes are present.

3.2.5 Bagging of subspaces

The bagging of subspaces method (Panov and Džeroski, 2007) combines bagging and

random subspaces. This method is outlined in Table 3.2 (bottom-right) and learns the

base models as follows. It generates a training set for a base model by first creating a

bootstrap replicate of the whole training set (similar as for bagging) and then by random

selection of a subset of the descriptive attributes (similar as for random subspaces). The

number of descriptive attributes used to learn the base models are given as a function

f of the number of descriptive attributes D (similarly as for random forests and random

subspaces): Panov and Džeroski (2007) evaluated the method using f (D) = ⌊0.75·D+1⌋.
The performance of this method is comparable to the performance of random forests when

decision trees are used as base models, while it performs statistically significantly better

than bagging and random subspaces. Furthermore, this method can use any type of

predictive model (such as decision trees, classification rules, nearest neighbors, etc) as

base model.

3.2.6 Combining the predictions of individual PCTs

The prediction of an ensemble for a new instance is obtained by combining the predictions

of all the base predictive models from the ensemble. The predictions from the models

can be combined by taking the average (for regression tasks) and the majority or proba-

bility distribution vote (for classification tasks), as described in (Bauer and Kohavi, 1999;

Breiman, 1996a), or by taking more complex aggregation schemes (Kuncheva, 2004).

We use predictive clustering trees as base predictive models for the ensembles for struc-

tured outputs. To obtain a prediction from an ensemble for predicting structured outputs,

we accordingly extend the voting schemes. For the datasets with multiple continuous

targets, as prediction of the ensemble, we take average of the predictions of the base

classifiers. For the datasets for hierarchical classification we also use the average of the

predictions and apply the thresholding described in Section 3.1.2. We obtain the ensem-

ble predictions for the datasets with multiple discrete targets using probability distribution

Local prediction of structured outputs with PCTs and ensembles 37

voting (as suggested by Bauer and Kohavi (1999)) per target.

3.3 Local prediction of structured outputs with PCTs and

ensembles

The presented structured output learning algorithms (CLUS-MTDT and CLUS-HMC) be-

long to the group of approaches known as ‘big-bang’ or global predictive models (Bakır

et al., 2007; Silla and Freitas, 2010). Global predictive models make a single prediction for

the entire structured output, i.e., simultaneously predict all of its components. Local pre-

dictive models of structured outputs uses a collection of predictive models, each predicting

a component of the overall structure that needs to be predicted.

The local predictive models for the task of predicting multiple targets are constructed

by learning a predictive model for each of the targets separately. In the task of hierarchical

multi-label classification, however, there are four approaches (Silla and Freitas, 2010): flat

classification, local classifiers per level, local classifiers per node and local classifiers per

parent node.

The first approach, flat classification, constructs a classifier for each leaf node from

the hierarchy, typically, using one vs. all strategy (the examples belonging to a given leaf

node from the hierarchy are labeled as positive, while the other examples as negative).

In this approach, the classifiers are not aware of the hierarchical dependencies that exist

between the classes and they are incapable of making a prediction for the non-leaf nodes

from the hierarchy.

The second approach, local classifiers per level, constructs a classifier for each level

from the hierarchy. This approach also requires a post-processing to solve the class-

membership inconsistencies that may appear. It hasn’t been used much by the community

(only as a baseline comparison in Clare and King (2003) and Costa et al. (2007)).

The third approach, local classifiers per node, constructs a classifier for each node from

the hierarchy except the root. This is the most widely used approach by the community.

There are several policies for selection of the positive and negative examples that will be

used to train the local classifiers (for details, see (Ceci and Malerba, 2007; Eisner et al.,

2005)).

The last approach, local classifiers per parent node, constructs a classifier for each non-

leaf node from the hierarchy. One can learn a multi-class classifier for each parent node

or transform the problem using One-Against-All scheme and then use binary classifiers for

each child node (i.e., construct a classifier for each edge in the hierarchy).

38 ENSEMBLES FOR PREDICTING STRUCTURED OUTPUTS

Vens et al. (2008) investigated the performance of the last two approaches with local

classifiers over a large set of datasets from functional genomics. The conclusion of the

study was that the last approach performs better in terms of predictive performance,

smaller total model size and faster induction times.

In particular, the CLUS-HSC algorithm by Vens et al. (2008), presented in Figure 3.5,

constructs a decision tree classifier for each edge (connecting a class c with a parent class

par(c)) in the hierarchy, thus creating an architecture of classifiers. The corresponding

tree predicts membership to class c , using the instances that belong to par(c). The

construction of this type of tree uses few instances: only instances labeled with par(c)

are used for training. The instances labeled with class c are positive instances, while the

ones that are labeled with par(c), but not with c are negative.

c2c1 c3

c2.1 c2.2

c2c1 c3

c2.1 c2.2

(a) (b)

Figure 3.5: An illustration of the hierarchical single-label classification approach used by

Vens et al. (2008). The local classifiers at each branch from the hierarchy are: (a) decision

trees and (b) ensembles of decision trees.

The resulting HSC tree predicts the conditional probability P (c |par(c)). A new in-
stance is predicted by recursive application of the product rule P (c) = minj P (c |parj(c)) ·
P (parj(c)) (with parj(c) denoting the j-th parent of c in case of a DAG), starting from

the tree for a top-level class. Again, the probabilities are thresholded to obtain the set of

predicted classes. To satisfy the hierarchy constraint, the threshold τ should be chosen as

in the case of CLUS-HMC.

In this thesis, we extend the approach of Vens et al. (2008) by applying ensembles

as local classifiers instead of decision trees. The CLUS-HSC algorithm can be applied to

ensemble learning in two ways by constructing: ensemble of architectures or architecture

of ensembles. The first approach creates the ensemble by creating multiple architectures

Local prediction of structured outputs with PCTs and ensembles 39

(as shown in Figure 3.5(a)). These multiple architectures can be created on different

bootstrap replicates, different feature spaces, different local classifiers etc. The second

approach is simpler and, instead of a single local classifier (for example a decision tree),

uses an ensemble as classifier at each branch (depicted in Figure 3.5(b)). We prefer here

the second approach since it is closer to the learning of local classifiers for the prediction

of multiple targets task.

In Chapter 4, we will compare global predictive models to collections of local predictive

models. Single PCTs for structured prediction (global predictive models) will be com-

pared to collections of PCTs for the components of the output (local predictive models).

Ensembles of PCTs (global predictive models) will be compared to collections of PCT

ensembles for the components of the output (local predictive models).

41

4 Experimental design and results

4.1 Experimental design

In this section, we describe the procedure for experimental evaluation of the proposed

ensemble methods for predicting structured outputs. First, we state the questions we

consider. Next, we present the datasets we use to evaluate the algorithms, and then the

evaluation measures we applied. In the last subsection, we give the parameter values used

in the algorithms and the statistical tests that we used.

4.1.1 Experimental questions

Given the methodology from Chapter 3, we construct several types of trees and ensembles.

First, we construct PCTs that predict components of the structured output: a separate

tree for each variable from the target tuple (CLUS-STDT) and a separate tree for each

hierarchy edge (CLUS-HSC). Second, we learn PCTs that predict the entire structured

output simultaneously: a tree for the whole target tuple (CLUS-MTDT) and a tree for the

whole hierarchy (CLUS-HMC). Finally, we construct the ensemble classifiers in the same

manner (CLUS-ENS-ST, CLUS-ENS-HSC, CLUS-ENS-MT, CLUS-ENS-HMC) by using

both bagging and random forests.

We consider the following questions:

• Predictive performance: Can exploitation of the structure of the output lift the
predictive performance of an ensemble?

• Convergence: Does the performance of the ensembles for structured outputs con-
verge/saturate faster than ensembles that predict components of the output?

• Suitability: Which ensemble method should be preferred given the size of a dataset,
as measured by the number of instances, the number of descriptive attributes and

the size of the structured output?

• Efficiency: How much can the learning process benefit, in terms of time and memory
consumption, from the ensembles for structured outputs as compared to the sets of

42 EXPERIMENTAL DESIGN AND RESULTS

ensembles that predict components of the structured output?

We compare the algorithms that predict the complete structured output (CLUS-

MTDT, CLUS-HMC, CLUS-ENS-MT, CLUS-ENS-HMC) to the algorithms that predict

the components of the structured outputs separately (CLUS-STDT, CLUS-HSC, CLUS-

ENS-ST, CLUS-ENS-HSC). First, we inspect the predictive performance of all algorithms.

Then, we focus only on the ensembles and examine their predictive performance at differ-

ent ensemble sizes (i.e., we construct ‘saturation curves’). Our intention is to investigate

whether the performance of the ensembles for structured outputs saturates at a smaller

number of trees as compared to the saturation of ensembles that predict the components

of the structured outputs. At the end, we compare the running times and the sizes of the

obtained models.

4.1.2 Descriptions of the datasets

In this subsection, we present the datasets that were used to evaluate the predictive

performance of the ensembles. The datasets are divided into three groups of datasets

based on the type of their targets: multiple continuous targets datasets (regression),

multiple discrete targets datasets (classification) and hierarchical multi–label classification

datasets (HMC). Statistics about the used datasets are presented in Tables 4.1, 4.2, and

4.3, respectively.

The datasets with multiple continuous targets (13 in total, see Table 4.1) are mainly

from the domain of ecological modelling. The datasets with multiple discrete targets

(9 in total, see Table 4.2) are from various domains: ecological modelling (Sigmea Real

and Water Quality), biological (Yeast), multimedia (Scene and Emotions), media space

(Mediana), etc. The datasets that have classes organized in a hierarchy come from vari-

ous domains, such as: biology (Expression-FunCat, SCOP-GO, Yeast-GO and Sequence-

FunCat), text classification (Enron, Reuters andWIPO) and image annotation/classification

(ImCLEF07D, ImCLEF07A and Diatoms). Hence, we use 10 datasets from 3 domains

(see Table 4.3). Note that two datasets from the biological domain have a hierarchy

organized as a DAG (they have GO in the dataset name), and the remaining datasets

have tree-shaped hierarchies. For more details on the datasets, we refer the reader to the

referenced literature.

4.1.3 Evaluation measures

Empirical evaluation is the most widely used approach for assessing the performance of

machine learning algorithms. The performance of a machine learning algorithm is com-

Experimental design 43

Table 4.1: Properties of the datasets with multiple continuous targets (regression

datasets); N is the number of instances, D/C the number of descriptive attributes (dis-

crete/continuous), and T the number of target attributes.

Name of dataset N D/C T

Collembola (Kampichler et al., 2000) 393 8/39 3

EDM (Karalič, 1995) 154 0/16 2

Forestry–Kras (Stojanova et al., 2010) 60607 0/160 11

Forestry–Slivnica-LandSat (Stojanova, 2009) 6218 0/150 2

Forestry–Slivnica-IRS (Stojanova, 2009) 2731 0/29 2

Forestry–Slivnica-SPOT (Stojanova, 2009) 2731 0/49 2

Sigmea real (Demšar et al., 2005) 817 0/4 2

Soil quality (Demšar et al., 2006) 1944 0/142 3

Solar–flare 1 (Asuncion and Newman, 2007) 323 10/0 3

Solar–flare 2 (Asuncion and Newman, 2007) 1066 10/0 3

Vegetation Clustering (Gjorgjioski et al., 2008) 29679 0/65 11

Vegetation Condition (Kocev et al., 2009) 16967 1/39 7

Water quality (Blockeeel et al., 1999; Džeroski et al., 2000) 1060 0/16 14

Table 4.2: Properties of the datasets with multiple discrete targets (classification

datasets); N is the number of instances, D/C the number of descriptive attributes (dis-

crete/continuous), and T the number of target attributes.

Name of dataset N D/C T

EDM (Karalič, 1995) 154 0/16 2

Emotions (Trohidis et al., 2008) 593 0/72 6

Mediana (Skrjanc et al., 2001) 7953 21/58 5

Scene (Boutell et al., 2004) 2407 0/294 6

Sigmea real (Demšar et al., 2005) 817 0/4 2

Solar–flare 1 (Asuncion and Newman, 2007) 323 10/0 3

Thyroid (Asuncion and Newman, 2007) 9172 22/7 7

Water quality (Blockeeel et al., 1999; Džeroski et al., 2000) 1060 0/16 14

Yeast (Elisseeff and Weston, 2001) 2417 0/103 14

puted using some evaluation measure. The different machine learning tasks, described

in Section 2.1, use ‘task-specific’ evaluation measures. We first describe the evaluation

44 EXPERIMENTAL DESIGN AND RESULTS

Table 4.3: Properties of the datasets with hierarchical targets; Ntr/Nte is the number

of instances in the training/testing dataset, D/C is the number of descriptive attributes

(discrete/continuous), |H| is the number of classes in the hierarchy, Hd is the maximal
depth of the classes in the hierarchy, L is the average number of labels per example, and

LL is the average number of leaf labels per example.

Domain Ntr/Nte D/C |H| Hd L LL

ImCLEF07D(Dimitrovski et al., 2008) 10000/1006 0/80 46 3.0 3.0 1.0

ImCLEF07A(Dimitrovski et al., 2008) 10000/1006 0/80 96 3.0 3.0 1.0

Diatoms (ADIAC, 2008) 2065/1054 0/371 377 3.0 1.95 0.94

Enron (Klimt and Yang, 2004) 988/660 0/1001 54 3.0 5.30 2.84

Reuters (Lewis et al., 2004) 3000/3000 0/47236 100 4.0 3.20 1.20

WIPO (Rousu et al., 2006) 1352/358 0/74435 183 4.0 4.0 1.0

Expression–FunCat (Clare, 2003) 2494/1291 4/547 475 4.0 8.87 2.29

SCOP–GO (Clare, 2003) 6507/3336 0/2003 523 5.5 6.26 0.95

Sequence–FunCat (Clare, 2003) 2455/1264 2/4448 244 4.0 3.35 0.94

Yeast–GO (Barutcuoglu et al., 2006) 2310/1155 5588/342 133 6.3 5.74 0.66

measures for multiple continuous targets (regression), then for multiple discrete targets

(classification) and at the end for hierarchical classification.

For the task of predicting multiple continuous targets (regression), we employed three

well known measures: the correlation coefficient (CC), root mean squared error (RMSE)

and relative root mean squared error (RRMSE). For each of these measures, we per-

formed statistical analysis and constructed saturation curves. We present only the results

in terms of RRMSE, but same conclusions hold for the other two measures.

What evaluation measure to use in the case of classification algorithms is not as clear

as in the case of regression. Sokolova and Lapalme (2009) conducted a systematic analysis

of twenty four performance measures that can be used in a classification context. They

conclude that evaluation measures for classification algorithms should be chosen based on

the application domain.

In our study, we used seven evaluation measures for classification: accuracy, preci-

sion, recall, F-score, the Matthews correlation coefficient, balanced accuracy (also known

as Area Under the Curve) and discriminant power. We used two averaging approaches

to adapt these measures for multi-class problems: micro and macro averaging (note

that averaging is not needed for accuracy). More about these measures can be found

in Sokolova et al. (2006). Since the goal of this study is not to assess the evaluation

Experimental design 45

measures themselves, we present here only the results in terms of the micro average F-

score (F = 2 · P recision·Recal l
P recision+Recall

). However, the conclusions drawn from the evaluation of the

performance of the algorithms using the other measures concur with the ones presented

here.

In the case of hierarchical classification, we evaluate the algorithms using the Area

Under the Precision-Recall Curve (AUPRC), and in particular, the Area Under the Average

Precision-Recall Curve (AUPRC) as suggested by Vens et al. (2008). A Precision-Recall

curve plots the precision of a classifier as a function of its recall. The points in the PR

space are obtained by varying the value for the threshold τ from 0 to 1 with step 0.02.

The precision and recall are micro averaged for all classes from the hierarchy.

In these domains, the positive examples for a given class are only few as compared to

the negative ones. The PR evaluation of these algorithms is most suitable in this context

because we are typically more interested in recognizing the positive examples (i.e., that an

example belongs to a given class), rather than correctly predicting negative instances.

Finally, we compare the algorithms by measuring their efficiency in terms of time con-

sumption and size of the models. We measure the processor time needed to construct

the models: in the case of predicting the components of the structure, we sum the times

needed to construct the separate models. In a similar way, we calculated the sizes of

the models as the total number of nodes (internal nodes and leafs). The experiments

for predicting multiple targets were performed on a server running Linux, with two Intel

Quad-Core Processors@2.5GHz and 64GB of RAM. The experiments for the hierarchical

classification were run on a cluster of AMD Opteron processors (1.8 – 2.4GHz, ≥ 2GB
RAM).

4.1.4 Experimental setup

Here, we first state the parameter values used in the algorithms for constructing the single

trees and the ensembles for all types of targets. We then describe how we assessed the

statistical significance of the differences in performance of the studied algorithms.

The single trees for all types of targets are obtained using F-test pruning. This pruning

procedure uses the exact Fisher test to check whether a given split/test in an internal

node of the tree produces a reduction in variance that is statistically significant at a given

significance level. If there is no split/test that can satisfy this, then the node is converted

to a leaf. An optimal significance level was selected by using internal 3-fold cross validation,

from the following values: 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

The construction of an ensemble takes the the size of the ensemble as an input param-

eter: number of base predictive models to be constructed. We constructed ensembles with

46 EXPERIMENTAL DESIGN AND RESULTS

10, 25, 50, 75 and 100 base predictive models for all types of targets and all datasets. In

addition, for the datasets with multiple continuous targets we constructed ensembles with

150 and 250 base predictive models, and for the datasets with multiple discrete targets

ensembles with 250, 500 and 1000 base predictive models. Following the findings from

the study conducted by Bauer and Kohavi (1999), the trees in the ensembles were not

pruned.

The random forests algorithm takes as input the size of the feature subset that is

randomly selected at each node. For the multiple targets datasets, we apply the loga-

rithmic function of the descriptive attributes ⌊log2Descr iptiveAttr ibutes⌋+1, which is
recommended by Breiman (2001a). For the hierarchical classification datasets, we used

⌊0.1 ·Descr iptiveAttr ibutes⌋+ 1, since the feature space of some of these datasets is
large (several thousands of features) and the logarithmic function is under-sampling the

feature space.

On the datasets with multiple targets, the predictive performance of the algorithms is

estimated by 10-fold cross-validation. The hierarchical datasets were previously divided (by

the data providers) into train and test sets. Thus, we estimate the predictive performance

of the algorithms on the test sets.

We adopt the recommendations by Demšar (2006) for the statistical evaluation of the

obtained results. We use the Friedman test (Friedman, 1940) for statistical significance

with the correction from Iman and Davenport (1980). Afterwards, to check where the

statistically significant differences appear (between which algorithms), we use the Nemenyi

post-hoc test (Nemenyi, 1963). We present the results from the statistical analysis with

‘average ranks diagrams’ (see Figures 4.3, 4.4, 4.7, 4.8, 4.11 and 4.12).

4.2 Results and discussion

The results from the experiments we performed can be analyzed along several dimensions.

First, we present the saturation curves of the ensemble methods (both for predicting

the structured output and the components). Then, we compare models that predict the

complete structured output vs. models that predict components of the structured output.

Next, we compare the performance of single trees and ensembles of trees. At the end, we

evaluate the algorithms by their efficiency in terms of running time and model size. We

make these comparisons for each task separately: predicting multiple continuous targets,

predicting multiple discrete targets and hierarchical multi–label classification.

Results and discussion 47

4.2.1 Multiple continuous targets

The results from the experiments for evaluating the algorithms on the task of prediction of

multiple continuous targets are presented in Figures 4.1, 4.3 and 4.4. First, we discuss the

results with respect to the saturation curves (Figure 4.1). Next, we discuss the statistical

comparison of predictive performance (Figure 4.3). Finally, we compare the efficiency of

the algorithms (Figure 4.4).

In Figure 4.1, we present the saturation curves for the ensemble methods. Although

these curves are averaged across all target variables for a given dataset (and in Figure 4.1(c)

averaged across all datasets), they still provide useful insight into the performance of

the algorithms. Random forests perform better than bagging, both when predicting the

multiple targets simultaneously and separately, on the ‘larger’ datasets (the ones with

more than 10000 examples), such as Forestry-Kras from Figure 4.1(a). On the other

hand, bagging outperforms random forests, in both scenarios, on the ‘medium’ datasets

(that contain between 1000 and 10000 examples), such as Soil quality from Figure 4.1(b).

For the ‘small’ datasets (the ones with less than 1000 examples and less than 10 descriptive

attributes), the curves are variable and it is not clear which algorithm should be preferred.

Also, there is no clear connection between the performance of the algorithms and the

number of target variables (i.e., the size of the target tuple). However, on the majority of

all datasets the ensembles for prediction of multiple targets simultaneously perform better

than the ensembles that predict the targets separately.

The saturation curves averaged across all datasets are shown in Figure 4.1(c). They

show that the ensembles for predicting multiple targets simultaneously perform better

than the ones predicting the targets separately across all ensemble sizes (except with

100 trees where random forests for multiple targets are worse than random forests for

single targets). The saturation point in such a curve is the ensemble size after which the

difference in performance achieved by increasing the ensemble size is no longer statistically

significant. To detect the saturation point, we perform Friedman and Nemenyi tests for

assessment of statistical significance for each method/algorithm separately. Figure 4.2

shows the results of these tests. In this case, for each of the algorithms, the difference

is not statistically significant after 50 trees. Thus, we compare the performance of the

ensembles with 50 and with 250 trees (the maximal number of trees).

The statistical tests (illustrated by the average rank diagrams in Figure 4.3) show

that the difference in performance of the ensemble methods is not statistically significant

at the 0.05 level. The best performing method is random forests for predicting multiple

targets simultaneously (average rank 2.53) and the worst performing method is bagging

for predicting the multiple targets separately (average rank 3.11). If more trees are added,

48 EXPERIMENTAL DESIGN AND RESULTS

0.54

0.545

0.55

0.555

0.56

0.565

0.57

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

0.7

0.71

0.72

0.73

0.74

0.75

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

0.69

0.695

0.7

0.705

0.71

0.715

0.72

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

(a) Forestry-Kras (b) Soil quality (c) Overall

Figure 4.1: Saturation curves for the different ensemble approaches to the prediction of

multiple continuous targets. These curves are obtained by averaging the RRMSE values

over all target variables in a dataset. Smaller RRMSE values mean better predictive

performance. The algorithm names are abbreviated as follows: random forests for the

prediction of multiple targets – MTRF , random forests for the prediction of single targets

– STRF , bagging for the prediction of multiple targets – MTBag and bagging for the

prediction of single targets – STBag.

the performance ordering of the algorithms does not change (only small changes appear

in the average ranks). The difference in performance between all ensembles and the single

trees is statistically significant at the 0.05 level. The single trees for predicting multiple

targets simultaneously are better than the single trees for predicting the multiple targets

separately.

Finally, we compare the algorithms by their running time and the size of the models,

considering ensembles that consist of 50 trees (see Figure 4.4). The statistical tests

show that both random forests and bagging for predicting multiple targets simultaneously

outperform significantly, in terms of model size, the ensembles that predict multiple targets

separately. In terms of running time, random forests for multiple targets outperform

significantly both ensemble methods for predicting the targets separately. Also, bagging

for multiple targets is significantly faster than bagging for separate prediction of the targets.

Let us further examine the speed-up and model size ratios. Random forests for pre-

dicting multiple targets simultaneously are ∼3.3 times faster to construct and the models
are ∼3.75 times smaller than the random forests predicting single targets. In addition,
they are ∼3.7 times faster to construct and yield ∼1.14 times smaller models as compared
to bagging for multiple targets. Furthermore, bagging for predicting multiple targets is

∼3 times faster and yields ∼3.6 times smaller models than bagging for predicting single
targets.

Results and discussion 49

7 6 5 4 3 2 1

MTBag250@2.76

MTBag150@3.14

MTBag100@3.21

MTBag75@3.47

MTBag50@3.81MTBag25@5.0

MTBag10@6.61

Critical Distance = 1.077

7 6 5 4 3 2 1

MTRF250@2.79

MTRF150@2.96

MTRF100@3.36

MTRF75@3.39

MTRF50@3.61MTRF25@5.21

MTRF10@6.69

Critical Distance = 1.077

(a) Bagging for multiple targets (b) Random forests for multiple targets

7 6 5 4 3 2 1

STBag250@2.81

STBag150@2.94

STBag75@3.26

STBag100@3.46

STBag50@3.79STBag25@5.23

STBag10@6.51

Critical Distance = 1.077

7 6 5 4 3 2 1

STRF250@2.75

STRF150@2.86

STRF100@3.14

STRF75@3.69

STRF50@3.73STRF25@5.16

STRF10@6.67

Critical Distance = 1.077

(c) Bagging for single target (d) Random forests for single target

Figure 4.2: Average rank diagrams (with the critical distance at a significance level of 0.05)

for detection of the saturation points for the prediction of multiple continuous targets. The

differences in performance of the algorithms connected with a red line are not statistically

significant. The number after the name of an algorithm indicates its average rank. The

abbreviations are the same as in Figure 4.1.

6 5 4 3 2 1

MTRF@2.53

STRF@2.61

MTBag@2.81

STBag@3.11MTRT@4.88

STRT@5.06

Critical Distance = 0.901

6 5 4 3 2 1

MTRF@2.55

STRF@2.63

MTBag@2.76

STBag@3.11MTRT@4.87

STRT@5.08

Critical Distance = 0.901

(a) ensemble with 50 trees (b) ensemble with 250 trees

Figure 4.3: Average rank diagrams (with the critical distance at a significance level of

0.05) for the prediction of multiple continuous targets. The differences in performance of

the algorithms connected with a red line are not statistically significant. The number after

the name of an algorithm indicates its average rank. The abbreviations are the same as in

Figure 4.1 with the addition of predicting clustering trees for multiple continuous targets

– MTRT and predictive clustering trees for single continuous targets – STRT .

To summarize, ensembles for predicting multiple continuous targets simultaneously

perform better than ensembles predicting multiple targets separately. While the differences

50 EXPERIMENTAL DESIGN AND RESULTS

4 3 2 1

MTRF@1.07

MTBag@2.29STRF@2.71

STBag@3.93

Critical Distance = 1.254
4 3 2 1

MTRF@1.39

MTBag@1.64STRF@3.43

STBag@3.54

Critical Distance = 1.254

(a) Time efficiency (b) Size of the models

Figure 4.4: Efficiency (running time and model size) of the ensembles for prediction of

multiple continuous targets. The size of the ensembles is 50 trees.

in predictive performance are not statistically significant, the differences in efficiency are.

Random forests have higher predictive performance than bagging on the larger datasets,

while on the medium datasets bagging ensembles are better. In terms of efficiency, the

ensembles , especially random forests, that predict multiple targets simultaneously are

significantly better.

4.2.2 Multiple discrete targets

The performance of the algorithms for multi-class classification can be assessed using

different measures, some of which we listed in Section 4.1.3. The selected evaluation

measure should be appropriate for the application domain (Sokolova and Lapalme, 2009).

In our study, we used the micro weighted averaged F-score (µF − score). We believe
this is a reasonable compromise between all the considered measures, since it combines

precision and recall.

The results for algorithms that predict multiple discrete targets are presented in Fig-

ures 4.5, 4.7 and 4.8. In Figure 4.5, we present the saturation curves. Next, we discuss

the statistical analysis of the results (Figure 4.7). At the end, we compare the algorithms

in terms of efficiency (Figure 4.8).

In Figure 4.5, we present three saturation curves for the four ensemble methods. As for

predicting multiple continuous targets, these values are averaged over all target variables

for a given dataset (and in Figure 4.5(c) averaged across all datasets). These saturation

curves offer us several insights into the performance of the ensembles on the task of

predicting multiple discrete targets. The saturation curves for the smaller datasets (with

less than 1000 examples) are variable (for instance, see the saturation curve for the Sigmea

real dataset shown in Figure 4.5(a)). However, we can note that, for smaller ensemble

sizes, the ensembles that predict the targets simultaneously outperform the ensembles that

predict the targets separately.

The saturation curves for the larger datasets (with more than 1000 examples) are more

Results and discussion 51

stable and we can observe two types of behavior: (1) on the datasets with less than 30

descriptive variables, the ensembles for predicting the targets simultaneously outperform

the ensembles that predict the targets separately (for instance, see the saturation curve

for the Water quality dataset shown in Figure 4.5(b)); (2) on the datasets with more

than 30 descriptive variables, the ensembles for predicting the targets simultaneously are

better when the size of the ensemble is small than the ensembles that predict the multiple

targets separately, while on the ensembles with bigger sizes the situation is reversed. Similar

behavior can be also noticed on the Overall saturation curve (Figure 4.5(c)). Finally, as for

the multiple continuous targets, there is no connection between the predictive performance

of the algorithms and the size of the target tuple.

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF
0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF
0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF

(a) Sigmea real (b) Water quality (c) Overall

Figure 4.5: Saturation curves for the prediction of multiple discrete targets. These curves

are obtained by averaging the µF −score values for all of the target variables in a dataset.
Larger µF − score values mean better predictive performance. The algorithm names are
abbreviated as follows: random forests for the prediction of multiple targets – MTRF ,

random forests for the prediction of single targets – STRF , bagging for the prediction of

multiple targets – MTBag and bagging for the prediction of single targets – STBag.

For each ensemble method separately, we check at which ensemble size the predictive

performance saturates, i.e., the difference in performance due to increasing the size of the

ensemble is no longer statistically significant. The results from the Friedman and Nemenyi

tests for statistical significance are given in Figure 4.6. The ensembles for predicting

multiple targets simultaneously saturate at 50 trees, while the ensembles for separate

prediction of the targets require more trees: 75 for random forests and 250 for bagging.

Considering these results, we select the ensembles sizes of 50 and 1000 (maximal number

of trees) and compare the algorithms.

The results from the statistical analysis of the predictive performance (µF − score)
are shown in Figure 4.7. The statistical tests reveal that there is no statistically significant

52 EXPERIMENTAL DESIGN AND RESULTS

8 7 6 5 4 3 2 1

MTBag1000@3.45

MTBag500@3.51

MTBag250@3.61

MTBag100@3.97

MTBag75@4.07MTBag50@4.58

MTBag25@5.44

MTBag10@7.37

Critical Distance = 1.367

8 7 6 5 4 3 2 1

MTRF250@3.47

MTRF1000@3.49

MTRF100@3.73

MTRF500@3.79

MTRF75@4.25

MTRF50@4.29MTRF25@5.86

MTRF10@7.12

Critical Distance = 1.367

(a) Bagging for multiple targets (b) Random forests for multiple targets

8 7 6 5 4 3 2 1

STBag1000@2.81

STBag500@3.38

STBag250@3.5

STBag75@4.19

STBag100@4.40STBag50@4.81

STBag25@5.69

STBag10@7.20

Critical Distance = 1.367

8 7 6 5 4 3 2 1

STRF1000@3.25

STRF500@3.37

STRF100@3.52

STRF250@3.81

STRF75@4.29STRF50@4.81

STRF25@5.81

STRF10@7.16

Critical Distance = 1.367

(c) Bagging for single target (d) Random forests for single target

Figure 4.6: Average rank diagrams (with the critical distance at a significance level of 0.05)

for detection of the saturation points for the prediction of multiple discrete targets. The

differences in performance of the algorithms connected with a red line are not statistically

significant. The number after the name of an algorithm indicates its average rank. The

abbreviations are the same as in Figure 4.5.

difference in the performance of the ensemble methods and that all ensemble methods

perform statistically significantly better than the corresponding single trees. When the

ensembles have 50 trees (Figure 4.7(a)), bagging for predicting multiple targets simulta-

neously is the best performing method (average rank 2.59): the remaining methods have

slightly smaller and very similar average ranks (ranging from 3.0 to 3.11), with random

forest for separate prediction of the targets having the largest average rank. The situation

is similar with 1000 trees (Figure 4.7(b)), with the difference that now random forests

for simultaneous prediction are the worst performing method (average rank 3.26) and the

other three methods have essentially the same average ranks (from 2.71 to 2.75), with

random forests for separate prediction being the best performing method. This confirms

the conclusions of the analysis of with the saturation curves: adding trees helps more for

ensembles that predict the targets separately than for ensembles that predict the targets

simultaneously.

At the end, we compare the ensembles in terms of efficiency: running times (Fig-

ure 4.8(a)) and model sizes (Figure 4.8(b)). Concerning the running time, we can only

state that the random forests for predicting multiple targets simultaneously significantly

Results and discussion 53

6 5 4 3 2 1

MTBag@2.59

STBag@3.0

MTRF@3.07

STRF@3.11MTCT@4.33

STCT@4.90

Critical Distance = 0.982

6 5 4 3 2 1

STRF@2.71

MTBag@2.73

STBag@2.75

MTRF@3.26MTCT@4.58

STCT@4.97

Critical Distance = 0.982

(a) ensembles with 50 trees (b) ensembles with 1000 trees

Figure 4.7: Average ranks diagrams (with the critical distance at significance level of

0.05) for prediction of multiple discrete targets. The differences in performance of the

algorithms connected with a red line are not statistically significant. The number after

the name of an algorithm indicates its average rank. The abbreviations are the same as

in Figure 4.5, with the addition of a single predicting clustering tree for multiple discrete

targets – MTCT and predictive clustering trees for each single discrete target – STCT .

outperform bagging for predicting the multiple targets separately. As for the size of the

models, we can note the following: (1) bagging for predicting multiple targets simulta-

neously significantly outperforms both ensemble methods for separate prediction of the

targets and (2) random forests for predicting multiple targets simultaneously significantly

outperform random forests for separate prediction of the targets.

4 3 2 1

MTRF@1.0

STRF@2.44MTBag@2.56

STBag@4.0

Critical Distance = 1.563

4 3 2 1

MTBag@1.22

MTRF@2.0STBag@2.89

STRF@3.89

Critical Distance = 1.563

(a) Time efficiency (b) Size of the models

Figure 4.8: Efficiency of the ensembles for prediction of multiple discrete targets. The

size of the ensembles is 50 trees.

We further investigate the running times and model size ratios. Random forests for

predicting multiple targets simultaneously are ∼2.3 times faster to construct and have
∼2.1 times smaller models than random forests for separate prediction of the targets.
Also, they are ∼5.6 times faster and have ∼1.14 times larger models than bagging for
predicting multiple targets simultaneously. Furthermore, bagging for predicting multiple

targets simultaneously is∼2.5 times faster and has∼1.9 times smaller models than bagging
for separate prediction of multiple targets.

In summary, the predictive performances of the ensemble methods for predicting multi-

ple targets simultaneously and the ones for separate prediction are not statistically signif-

54 EXPERIMENTAL DESIGN AND RESULTS

icantly different. However, the ensemble methods for predicting multiple targets simulta-

neously are better when the number of trees in the ensemble is smaller. Furthermore, they

should be preferred if the efficiency of the classifier is an issue. The ensemble methods for

simultaneous prediction are faster (especially random forests) and produce smaller models

(especially bagging) than the ensemble methods for separate prediction.

4.2.3 Hierarchical multi–label classification

In this subsection, we present the results for the task of hierarchical classification in a

similar way as for the task of predicting multiple targets. We asses the performance of the

algorithms using the area under the average precision-recall curve (AUPRC) as suggested

by Vens et al. (2008). The results are presented with saturation curves (Figure 4.9),

statistical tests (Figure 4.11) and efficiency figures (Figure 4.12).

0.8

0.81

0.82

0.83

0.84

0.85

0.86

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

0.84

0.85

0.86

0.87

0.88

0.89

0.9

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

(a) SCOP-GO (b) ImCLEF07D (c) Overall

Figure 4.9: Saturation curves for hierarchical multi–label classification. These curves

are obtained by averaging the AUPRC values for all of the target variables. Larger

AUPRC values mean better predictive performance. The algorithm names are abbreviated

as follows: random forests for hierarchical multi–label classification – HMCRF , random

forests for hierarchical single-label classification – HSCRF , bagging for hierarchical multi–

label classification – HMCBag and bagging for hierarchical single-label classification –

HSCBag.

The saturation curves for the different domains (functional genomics, image annotation

and text classification) show different behavior, thus we discuss the curves for each domain

separately. In the domain of functional genomics, the ensembles for HMC outperform the

ensembles for HSC when the target hierarchy is organized as a DAG (for instance, see the

saturation curve for the SCOP-GO dataset in Figure 4.9(a)). Moreover, random forests

for HMC are the best performing method. The ensembles for HMC also outperform the

Results and discussion 55

ensembles for HSC on the domain of image annotation/classification (for instance, see the

saturation curve for the ImCLEF07D dataset in Figure 4.9(b)). On these datasets, bagging

for HMC is the best performing method. The situation is different in the text classification

domains. Here, the ensembles of HSC outperform the ensembles of HMC. We hypothesize

that this is because of the large number of descriptive variables. The performance of

ensembles of HMC on text classification datasets should be further investigated.

Next, we relate the performance to the properties of the datasets. First, on the datasets

that have on average more than 5 labels per instance (L > 5), random forests perform

better than bagging in both cases (HMC and HSC). On the datasets with less than 3 labels

per instance (L < 3), bagging for HMC is better than random forests for HMC. Next, on

the datasets with larger hierarchies (|H| > 300), the ensembles for HMC outperform the
ensembles of HSC. On the datasets with smaller hierarchies (|H| < 100) random forests
perform better than bagging. The ensembles for HMC also outperform the ensembles for

HSC when the number of descriptive attributes is smaller than 1000. There are no clear

advantages of any one ensemble method on the datasets based on the number of instances

available for training.

The overall saturation curve (Figure 4.9(c)) shows the performance of the algorithms

averaged over all datasets from the three domains. The best performing method is ran-

dom forests for HMC and the worst performing method is bagging for HSC. To further

investigate the differences in performance, we perform statistical analysis for each method

separately across all ensemble sizes. We do this to determine the saturation point, i.e,

to check when adding extra trees to the ensemble does not statistically significantly im-

prove predictive performance any more. The results from Friedman and Nemenyi tests

for assessment of the statistical significance of the difference in performance are shown in

Figure 4.10. The ensembles for HMC and random forests for HSC saturate after 50 trees,

while bagging for HSC saturates after only 25 trees. We further compare the performance

of the ensembles at 50 trees and 100 trees.

The average ranks diagram for the ensembles with 50 trees (Figure 4.11(a)) shows

that the performance of the ensembles is not statistically significantly different. Note

that the best performing method is random forests for HSC (average rank 2.25) and the

worst performing method is bagging for HSC (average rank 2.85). Similarly, there is no

statistically significant difference in performance when the ensembles contain 100 trees.

Again, bagging for HSC (average rank 2.9) is the worst performing method, but bagging

for HMC (average rank 2.2) is now the best performing method. In both cases, the

ensemble methods significantly outperform single predictive clustering trees.

Finally, we compare the algorithms by their efficiency when they contain 50 trees

56 EXPERIMENTAL DESIGN AND RESULTS

5 4 3 2 1

HMLCBag100@1.6

HMLCBag75@2.15

HMLCBag50@2.4HMLCBag25@3.9

HMLCBag10@4.95

Critical Distance = 1.929

5 4 3 2 1

HMLCRF100@1.65

HMLCRF75@2.25

HMLCRF50@2.4HMLCRF25@3.7

HMLCRF10@5.0

Critical Distance = 1.929

(a) Bagging for HMC (b) Random forests for HMC

5 4 3 2 1

HSLCBag75@2.1

HSLCBag100@2.1

HSLCBag50@2.5HSLCBag25@3.7

HSLCBag10@4.6

Critical Distance = 1.929

5 4 3 2 1

HSLCRF100@1.65

HSLCRF75@2.0

HSLCRF50@2.6HSLCRF25@3.85

HSLCRF10@4.9

Critical Distance = 1.929

(c) Bagging for HSC (d) Random forests for HSC

Figure 4.10: Average rank diagrams (with the critical distance at a significance level of

0.05) for detection of the saturation points for hierarchical multi-label classification. The

differences in performance of the algorithms connected with a red line are not statistically

significant. The number after the name of an algorithm indicates its average rank. The

abbreviations are the same as in Figure 4.9.

6 5 4 3 2 1

HSLCRF@2.25

HMLCBag@2.4

HMLCRF@2.5

HSLCBag@2.85HSLCPCT@5.4

HMLCPCT@5.6

Critical Distance = 2.384

6 5 4 3 2 1

HMLCBag@2.2

HSLCRF@2.35

HMLCRF@2.55

HSLCBag@2.9HSLCPCT@5.4

HMLCPCT@5.6

Critical Distance = 2.384

(a) ensemble with 50 trees (b) ensemble with 100 trees

Figure 4.11: Average ranks diagrams (with the critical distance at a significance level

of 0.05) for hierarchical multi–label classification. The difference in performance for the

algorithms connected with a red line is not statistically significant. The number after the

name of an algorithm indicates its average rank. The abbreviations are the same as in

Figure 4.9 with the addition of a single predictive clustering tree for hierarchical multi–

label classification – HMCPCT and predictive clustering trees for hierarchical single–label

classification – HSCPCT .

(running times in Figure 4.12(a) and model sizes in Figure 4.12(b)). Random forests

for HMC are statistically significantly faster than both bagging for HMC and HSC, while

random forests for HSC are significantly faster than bagging for HSC. The models of

Results and discussion 57

bagging of HMC are statistically significantly smaller than the models from the ensembles

for HSC. The models of random forests for HMC are statistically significantly smaller than

the models of the random forests for HSC.

We further investigate the speed up and size of the models ratios. The random forests

for HMC are ∼6.4 times faster and have ∼4.6 times smaller models than the random
forests for HSC. Similarly, bagging for HMC is ∼6.4 times faster and has ∼3.2 times
smaller models than bagging for HSC. Random forests for HMC are ∼7.8 times faster and
produce models of comparable size to those of bagging for HMC. All in all, in terms of

efficiency, random forests for HMC outperform the rest of the ensemble methods.

4 3 2 1

HMLCRF@1.0

HSLCRF@2.3HMLCBag@2.8

HSLCBag@3.9

Critical Distance = 1.483

4 3 2 1

HMLCBag@1.1

HMLCRF@1.9HSLCBag@3.0

HSLCRF@4.0

Critical Distance = 1.483

(a) Time efficiency (b) Size of the models

Figure 4.12: Efficiency of the ensembles for hierarchical multi–label classification. The

size of the ensembles is 50 trees.

To summarize, the difference in predictive performance between ensembles for HMC

and ensembles for HSC is not statistically significant. However, on several datasets, the

ensembles for HMC outperform the ensembles for HSC. Moreover, the ensembles for HMC

are more efficient than the ensembles for HSC. Finally, the ensembles for HMC lift the

predictive performance of a single predictive clustering tree.

4.2.4 Summary of the results

Let us summarize the findings from the empirical evaluation of the proposed methods. To

begin with, the results show that ensembles lift the predictive of a single classifier also if the

output/target is structured. Next, we construct learning curves for the ensemble methods

(for the ensembles predicting both the structured output and the sub-components). The

learning curves help to determine the number of base classifiers in an ensemble that offers

optimal predictive performance and efficiency of the ensemble. We then compare the

performance (predictive power and efficiency) of the ensembles that predict the complete

structured output and the ensembles that predict components of the outputs.

We performed the empirical evaluation over a wide range of datasets. In particular,

we used 13 datasets with multiple continuous target variables (multi-target regression), 9

datasets with multiple discrete target variables (multi-target classification) and 10 datasets

58 EXPERIMENTAL DESIGN AND RESULTS

with hierarchical multi-label classification problems. We summarize the main findings of

the experimental evaluation as follows:

• The ensembles for predicting structured outputs (i.e., ensembles of PCTs) lift the
predictive performance of a single PCT. The difference in performance is statistically

significant at 0.05. Previously this was only shown for the applications where the

target is a single continuous or discrete variable. This finding is valid for the three

machine learning tasks that we consider in this thesis. This suggests that the non-

trivial relations that might exist between the sub-components of the structure are

included when combining predictions of several classifiers or when injecting some

source of randomness in the learning algorithm.

• The learning curves show that the predictive performance of the ensembles is not
increasing significantly after adding the 50-th PCT to the ensemble. This means that

constructing an ensemble of 50 trees is a reasonable compromise (for the majority of

the domains) between the predictive performance and the efficiency. Furthermore,

the learning curves show that on the majority of the domains the ensembles of

PCTs have better predictive performance than the ensembles that predict the sub-

components. This is especially the case when the ensembles contain fewer PCTs.

• The differences in the predictive performances of ensembles of PCTs and ensembles
of trees predicting sub-components of the output are not statistically significant

at 0.05 in any of the tasks. However, the ensembles of PCTs often have better

predictive performance (i.e., smaller average ranks) than the ensembles of trees

predicting the sub-components of the output.

• We assess the efficiency of the proposed methods through the time needed to con-
struct the classifiers and the size of the trees in the ensembles. The ensembles of

PCTs are more efficient than ensembles of trees predicting the sub-components of

the output on all tasks using both efficiency measures. In particular, random forests

of PCTs outperform all other ensembles in terms of time consumption and size of

the trees in the ensemble for predicting multiple continuous target variables. Bagging

of PCTs has the smallest models when predicting multiple discrete target variables

and hierarchical multi–label classification.

59

5 Further developments

In the previous chapters, we presented an extension for predicting structured outputs of the

most widely used ensemble techniques in context of decision trees: bagging and random

forests. We considered three typical types of structured outputs: multiple continuous

variables, multiple discrete variables and multiple labels that are organized into a hierarchy.

All of these support Euclidean distances and hence closed-form prototypes are based on

averaging and majority voting.

In this chapter, we further discuss the extensions of the proposed approach for ad-

ditional types of structured outputs (such as time series). We also discuss additional

distances for hierarchical multi-label classification. In both case, closed-form prototype do

not exist, which means medoids have to be used as prototypes and the combination of the

predictions of individual PCTs in an ensemble need to be modified accordingly.

We next show how the random forests approach can be exploited to obtain feature

rankings for structured outputs. We present a case study for biomarker discovery. In this

case study, we compare the ranking obtained for structured outputs (in particular, multiple

discrete targets) with a ranking obtained for a single target.

The last section of this chapter outlines a novel algorithm for ensemble learning that

is based on beam search. The ensemble obtained in this way has two properties: inter-

pretability and controlled diversity. The interpretability of an ensemble is an interesting

research topic in the ensemble learning community. Several approaches exist that deal with

the problem of obtaining a model that is representative for the whole ensemble (Assche,

2008; Bauer and Kohavi, 1999; Craven, 1996; Domingos, 1998; Ferri et al., 2002; Geurts,

2001; Kargupta et al., 2006; Triviño-Rodriguez et al., 2008). Another interesting research

topic is the notion of diversity in the ensembles and its influence/connection to the pre-

dictive performance of the ensemble (Bernard et al., 2009; Brown and Kuncheva, 2010;

Brown et al., 2005; Carney and Cunningham, 2000; Giacinto and Roli, 2001; Hansen and

Salamon, 1990; Kuncheva, 2004; Kuncheva and Whitaker, 2003). All in all, we suggest

an approach that unifies the two aforementioned research topics and provide insights how

the beam search can be further explored and exploited.

60 FURTHER DEVELOPMENTS

5.1 Predicting other structured outputs

The approaches that we described in Chapter 3 can be easily extended for handling other

types of structured outputs. To adequately adjust the algorithms, the only requirement

is that a distance can be defined for the given structured output. This means that the

variance and prototype functions for induction of PCTs (Chapter 3 and Section 5.3) will

now use the new distance measure.

The construction of the ensembles will change in the part of the voting scheme (Sec-

tion 3.2.6). The new voting scheme will employ the prototype function which uses the new

distance. When the distances does not allow for a closed-form prototype, it will return the

medoid of the individual predictions. This is different as compared to the voting schemes

we used in Chapter 3 which are based on averaging. This is because the distance (for

regression and HMLC) is Euclidean and the mean is a closed-form prototype. The feature

ranking will additionally require a quality criterion for the prediction of the specific struc-

tured outputs. In the following, we will shortly describe several extensions of the proposed

algorithms: the use of additional distances for HMLC and predicting time series, as well

as calculating prototype and voting for those.

5.1.1 Distances for hierarchical classification

In Chapter 3, we described PCTs for hierarchical multi-label classification. By default, they

use weighted Euclidean distance to calculate the variance and the prototype. However, we

have also investigated the predictive performance of other distance measures on datasets

from functional genomics (Aleksovski et al., 2009).

The distances that can currently be used for hierarchical multi-label classification using

PCTs are:

• weighted Jaccard distance: The distance between two examples is the ratio between
the sum of the weights of their joint annotations and the sum of the weights of

all their annotations (Jaccard, 1901; Tan et al., 2005). As in the case of weighted

Euclidean distance, the same exponential weighting scheme can be used.

• SimGIC: The distance between two examples is the ratio between the sum of the
information contents of their joint annotations and the sum of the information con-

tents of all their annotations (Pesquita et al., 2007).

• ImageCLEF: The distance takes into account the depth and the difficulty of the
predictive problem (the so-called ‘branching factor’) at which an error has occurred

(Tommasi et al., 2010).

Predicting other structured outputs 61

The distances were extended for handling hierarchies organized as DAGs similarly as

for the weighted Euclidean distance. The variations of the PCT algorithm using the

different distances to select tests in the internal nodes were compared over several gene-

function prediction datasets. The overall conclusion of the experimental comparison was

that there is no statistically significant difference in the performance of the algorithms.

The statistical significance was assessed using Friedman test for multiple hypothesis testing

(Demšar et al., 2006; Friedman, 1940).

5.1.2 Time series

A time series is a sequence of data points measured at successive time points at uniform

or variable time intervals. The selection of a distance/similarity measure for time series

depends on the application at hand and the form of the time series (equal/different lengths,

sampled at uniform/non-uniform intervals, etc). For an extensive list of the distances for

time series see the survey by Liao (2005).

In the CLUS system, four distance measures can be used in the context of predicting

time series (Slavkov et al., 2010b): Euclidean distance, Pearson’s correlation coefficient,

Qualitative distance measure (Todorovski et al., 2002) and Dynamic time warping distance

(Sakoe and Chiba, 1978). Depending of the application domain, one can choose which

distance measure should be used. The prediction of time series using PCTs has been used

in two studies from different domains: molecular biological (clustering time series of gene

expression levels) and agriculture (clustering time series of crop and weed cover).

Slavkov et al. (2010b) applied the approach to time series data concerning the changes

in the expression level of yeast genes in response to a change in environmental conditions.

Their evaluation shows that PCTs are able to cluster genes with similar responses, and

to predict the time series response of a gene based on the description of the gene. Next,

Debeljak et al. (2011) use PCTs with the dynamic time warping distance to predict time

series of crop and weed cover at agricultural sites throughout the United Kingdom. The

time series in this case study are irregular both in terms of length and intervals between

points. Both case studies offered interesting and insightful results for the respective do-

mains. This is a unique approach that performs clustering of time series and simultaneously

provides descriptions of the clusters.

5.1.3 Prototypes and voting

The ensembles of PCTs we considered in Chapter 3, namely, ensembles of MTRTs and

PCTs for HMC, use Euclidean distances for the target datatypes. For these, closed-form

62 FURTHER DEVELOPMENTS

prototypes based on averaging the values of the targets over the examples in a leaf exist

and were used. For MTCTs, the majority class for each of the targets is selected as the

value of the respective component of the prediction.

The same approach can be and is taken for combining the predictions of individual

trees in an ensemble. For continuous targets (and also for HMC), averaging is used. For

discrete targets, the class probability distribution vote is used (or one can decide to use

majority vote).

For the datatype/distance combinations considered in the above subsections, no closed-

form prototypes exist, namely, for hierarchies and time series with distances other than the

weighted Euclidean. In this case, to make a prediction in a leaf, we take the medoid over

the structured output values in the leaf with respect to the appropriate distance measure.

5.2 Feature ranking for structured outputs

In this section, we describe how the random forest mechanism can be further exploited

to calculate the importance of the variables, i.e., to obtain a feature ranking. Breiman

(2001a) introduced and described the approach for feature ranking for a single (continuous

or discrete) target variable. We extend this approach, so that it can perform feature

ranking for arbitrary structured output. To this end, we use predictive clustering trees (see

Chapter 3) and adequate error measures for the given structured outputs.

Here, we first present the algorithm itself (Table 5.1). We then describe several error

measures that can be used for structured outputs. Finally, we present a case study where

we use feature ranking for biomarker discovery.

5.2.1 Feature ranking using random forests

The proposed approach for feature ranking using random forests is presented in Table 5.1.

It is based on internal out-of-bag estimates of the error and noising of the descriptive

variables. The rationale behind this approach is that if a variable is important for the

target, then noising its values should produce an increase in the error. To create each tree

from the forest, the algorithm first creates a bootstrap replicate of the training set (line 4,

from the Induce RF procedure, Table 5.1). The samples that are not selected for the

bootstrap replicate are called out-of-bag (OOB) samples (line 7, procedure Induce RF).

These samples are used to evaluate the performance of each tree from the forest.

Suppose that there are D descriptive variables. After each tree from the forest is

built, the values of the descriptive attributes for the OOB samples are randomly per-

Feature ranking for structured outputs 63

muted attribute-by-attribute thus obtaining D noised/permuted OOB samples (line 3 from

Update Imp procedure). The predictive performance of each tree Ti is evaluated on the

original OOB data (ErrOOBi = Evaluate(Ti , EOOBi)) and the permuted versions of the

OOB data (Errj i = Evaluate(Ti , Randomize(EOOBi , j))). Tthe importance of the j-th

variable (Ij) is then calculated as the relative increase of the error that is obtained when its

values are randomly permuted (Equation 5.1). The importance is averaged over all trees

in the forest. The variable importance is calculated using the following equation:

Ij =
1

k
·
k
∑

i=1

Errj i − ErrOOBi
Err(OOBi)

(5.1)

where k is the number of bootstrap replicates (or size of the random forest) and Ij is the

importance of the j-th descriptive variable (0 < j ≤ D).

Table 5.1: The algorithm for feature ranking via random forests. E is the set of training

examples, k is the number of trees in the forest, D is the number of descriptive variables

and f (D) is the size of the feature subset that is considered at each node during tree

construction.

procedure Induce RF(E, k, f (D))

returns Forest, Importances

1: F = ∅
2: I = ∅
3: for i = 1 to k do

4: Ei = Bootstrap sample(E)

5: Ti = PCT (Ei , f (D))

6: F = F
⋃

Ti

7: EOOB = E \ Ei
8: Update Imp(EOOB, Ti , I)

9: I = Average(I, k)

10: return F, I

procedure Update Imp(EOOB, T, I)

1: ErrOOB = Evaluate(T,EOOB)

2: for j = 1 to D do

3: Ej = Randomize(EOOB, j)

4: Errj = Evaluate(T,Ej)

5: Ij = Ij +
1
k
· Errj−ErrOOB

ErrOOB

6: return

For each type of structured output, the algorithm requires an appropriate error measure.

To begin with, we use the average misclassification rate for multi-target classification,

where the target structure is a tuple of discrete variables. In the case of predicting a tuple

of continuous variables (multi-target regression), we use the average relative root mean

squared error (RRMSE). If the target is a time series, we use the root mean squared error

(RMSETS), where the error is calculated according to a distance measure on time series

data. In the case of hierarchical multi-label classification, we propose to use (1−AUPRC)

64 FURTHER DEVELOPMENTS

as error measure. All in all, based on the application at hand and the type of structured

output, one can easily update these measures to be more suitable for performing the task

at hand.

The proposed approach for feature ranking generates a single ordered list of features

valid for the structured output as a whole. A less desirable alternative is to generate several

rankings, one for each component of the structured output (if it is possible to decompose

the output at all), and then use some complex aggregation function to produce a single

ranking valid for the complete structured output (for example, see (Jong et al., 2004;

Saeys et al., 2008; Slavkov et al., 2010a)).

To compare rankings, e.g., two rankings generated with the alternative approaches

mentioned above, one can use testing error curves (Slavkov et al., 2010a). Testing error

curves are constructed as follows. Using the feature ranking, |D| classifiers (or in general
predictive models) are constructed (D is the number of descriptive attributes). The first

classifier is constructed using only the top ranked feature; the second classifier is con-

structed using the two top ranked features and so on. The curve plots on the x-axis the

number of features and on the y -axis the misclassification rate (or in general error).

5.2.2 Biomarker discovery using multi-target ranking

We applied the above approach to the problem of biomarker discovery for neuroblastoma,

a type of embryonal tumor (Kocev et al., 2008). We used the data from the micro array

study performed by Schramm et al. (2004) on 63 patients (samples). In this study, the

main interest is to find a set of biomarkers for the outcome of the disease (relapse or no

event). However, there are additional clinical parameters that are available, in addition to

the outcome, such as MYCN gene amplification and 1p chromosome deletion. It is known

that these genomic alterations are connected to the disease outcome.

Figure 5.1 depicts two testing error curves, one for the feature ranking when all three

variables are used as targets and one for the ranking when the target is only the disease

outcome. We can note from the curves that the multi-target ranking is better than the

one when only a single variable is used. To begin with, the multi-target classifiers that

are constructed using the top most ranked features exhibit better predictive performance

than the classifiers for the single target ranking. Note that this is especially important for

the domain of biomarker discovery, where the users are interested in the top 10-20 ranked

features/genes, so they can perform wet-lab experiments using the results of the ranking.

Furthermore, the Wilcoxon test that considers the complete testing error curves shows

that the classifiers from the multi-target ranking outperform the classifiers from the single

target ranking with p < 4 · 10−5. The Wilcoxon test on the testing error curves for the

Construction of ensembles of PCTs using beam search 65

0

5

10

15

20

25

30

E
rr
o
r
[%

]

1 25 50 75 100 5000 12625

Number of Markers

Multiple Targets

Single Target (Outcome)

Figure 5.1: Two testing error curves for feature ranking: one for all clinical parameters

simultaneously and one for disease outcome. The error rate is measured on the target

variable ‘disease outcome’.

other two variables, MYCN gene amplification and 1p chromosome deletion, showed that

there is no statistically significant difference between the performance of the multi-target

ranking and the performance of the single-target ranking. All in all, the proposed approach

can exploit the mutual information/dependence of the multiple targets and perform better

feature ranking (i.e., provide more reliable set of biomarkers).

The proposed approach has several advantages over the rankings obtained by learning

separate rankings for the components of the output. To begin with, it is general in terms of

the type of the output: it can handle various types of structured outputs and it can easily be

extended to arbitrary types of structured output. It can exploit the underlying dependencies

and relations that may exist between the components of the outputs. Furthermore, if

another variable/component is added to the structured output, then for learning of separate

rankings this will mean learning an additional ranking for the added variable/component.

On the other hand, the running time of the proposed approach of overall ranking will

increase only slightly. All in all, the proposed approach is efficient, general and can be

extended for arbitrary types of structured output.

5.3 Construction of ensembles of PCTs using beam search

Constraint-based data mining (Džeroski et al., 2010) is concerned with developing data

mining algorithms that can take into account user specified constraints. These constraints

66 FURTHER DEVELOPMENTS

make the process of data mining more declarative and increase the influence of the user

on the data mining results. Constraints for predictive models can involve error/accuracy

of the model, its size and its syntactic form.

The PCT approach has been also adapted to handle such constraints (Struyf and

Džeroski, 2006). It handles constraints on trees by first building a maximal tree, then

pruning it with an adapted version of the dynamic programming algorithm of Garofalakis

et al. (2003). This, however, may fail to find a tree satisfying a given set of constraints

even when one exists, due to the myopia of greedy search.

Here, we propose a new induction algorithm for PCTs (and trees in general) that uses

beam search (we call this implementation CLUS-BS) (Kocev et al., 2007a). The CLUS-BS

approach has three main advantages over the TDI algorithm. To begin with, it return set of

PCTs, instead of a single PCT. This is useful in some domains, where the domain experts

require multiple trees/solutions for the problem at hand. Next, many useful constraints

can be pushed into the induction algorithm. For instance, size constraints, such as ‘return

a tree with at most 15 nodes’, can be handled during the induction of the tree, i.e., during

the refinement of the trees from the beam and not in post-pruning, while the standard

approach handles this mostly during post-pruning (Garofalakis et al., 2003). Finally, this

approach is less susceptible to myopia than the standard greedy search.

However, the CLUS-BS approach tends to return trees that are similar to each-other1,

both syntactically (similar attributes appear in the internal nodes of the trees) and seman-

tically (the trees make equal predictions for the same instances). To overcome this, we

introduce an additional term in the heuristic score that calculates the similarity of the tree

to the other trees that are already in the beam. In this way, the induced beam will contain

trees that are less similar to each other and the user can control the level of diversity in

the beam (we call this implementation CLUS-BS-S).

The trees obtained using beam search (especially using CLUS-BS-S which favours their

diversity) can be regarded as an ensemble. Thus, CLUS-BS-S can be used for ensemble

learning where each tree from the beam can vote to obtain a joint prediction. Moreover,

the best ranked model from the beam can be selected as a representative for the whole

ensemble, and, thus, CLUS-BS and CLUS-BS-S can produce ‘interpretable’ ensembles.

Furthermore, using the diversity measure, we can investigate the connection between the

diversity of an ensemble of trees and its predictive performance. The latter question has

received a significant amount of attention from the ensemble learning community (Brown

1Note that this is to be expected having in mind the algorithm presented below in Table 5.2 and the

heuristic score from Equation 5.2. If a given tree has good predictive performance, then its refinements will

most probably also have good predictive performance.

Construction of ensembles of PCTs using beam search 67

and Kuncheva, 2010; Brown et al., 2005; Carney and Cunningham, 2000; Hansen and

Salamon, 1990; Kuncheva, 2004; Kuncheva and Whitaker, 2003).

In the remainder of this Section, we first describe the beam search induction algorithm.

Then, we present the heuristic score that we use to evaluate the trees and we show how

the similarity measure can be included in the score. Next, we discuss the results of the

experimental evaluation of the proposed approach. At the end, we conclude and give some

directions for further work.

5.3.1 Beam search induction of PCTs

We propose a new approach for induction of decision trees that uses a beam search strategy

(Kocev et al., 2007a). The algorithm is outlined in Table 5.2. The beam is a set of trees

(PCTs) that are ordered by their heuristic value, which is related to their accuracy/error

and size. The algorithm starts with a beam that contains precisely one PCT: a leaf covering

all the training data E.

Each iteration of the main loop creates a new beam by refining the PCTs in the current

beam. That is, the algorithm iterates over the trees in the current beam and computes

for each PCT its set of refinements (Fig. 5.2). A refinement is a copy of the given PCT

in which one particular leaf is replaced by a stub, which is depth one sub-tree (i.e., an

internal node with an attribute-value test and two leaves).

Note that a PCT can have many refinements: a PCT with L leaves yields L ·M refined
trees, with M the number of possible tests that can be put in a new node. In CLUS-BS,

M is equal to the number of attributes: CLUS-BS considers for each attribute only the

test with the best heuristic value. Note that the number of possible tests on a numeric

attribute A is typically huge: one test A < ai , for each possible split point ai . CLUS-BS

only constructs one refined tree for the split that yields the best heuristic value. This

approach limits the number of refinements of a given PCT and increases the diversity of

the trees in the beam.

For each generated refinement, CLUS-BS computes its heuristic value. The heuristic

function differs from the heuristic used in the TDI algorithm from Section 3.1. The

heuristic in the latter is local, i.e., it only depends on the instances local to the node that

is being constructed. In CLUS-BS, the heuristic is global and measures the quality of the

entire tree. The reason is that beam search needs to compare trees of arbitrary structure,

whereas TDI only needs to compare trees that differ in one node, i.e., to rank different

tests for the same tree node.

68 FURTHER DEVELOPMENTS

(a
)

(b
)

(c
)

A
<

a 0

y
es

n
o

fa
lse

tr
ue

A
<

a 0

y
es

n
o

C
<

c 0

y
es

n
o

B
in

{b
0
,b

1
}

y
es

n
o

tr
ue

fa
lse

fa
lse

tr
ue

A
<

a 0

y
es

n
o

D
in

{d
0
,d

1
,d

2
}

y
es

n
o

B
in

{b
0
,b

1
}

y
es

n
o

fa
lse

tr
ue

fa
lse

tr
ue

A
<

a 0

y
es

n
o

F
<

f 0

y
es

n
o

B
in

{b
0
,b

1
}

y
es

n
o

fa
lse

tr
ue

fa
lse

tr
ue

A
<

a 0

y
es

n
o B
in

{b
0
,b

1
}

y
es

n
o

fa
lse

fa
lse

tr
ue

A
<

a 0

y
es

n
o

E
<

e 0

y
es

n
o

fa
lse

tr
ue

fa
lse

A
<

a 0

y
es

n
o

K
<

k 0

y
es

n
o

fa
lse

tr
ue

tr
ue

Figure 5.2: Refining the trees in the beam. (a) A tree in the beam; (b) The refinements

of tree (a); (c) The refinements of the top-most tree in (b). Note that the refinements

(c) are only computed in a subsequent iteration of the search after the top-most tree of

(b) has entered the beam.

Construction of ensembles of PCTs using beam search 69

Table 5.2: The CLUS-BS beam search algorithm for induction of predictive clustering

trees.
procedure CLUS-BS(E,k)

1: i = 0

2: Tleaf =leaf(centroid(I))

3: h = Heuristic(Tleaf , E)

4: beam0 = {(h, Tleaf)}
5: repeat

6: i = i + 1

7: beami = beami−1

8: for each T ∈ beami−1 do
9: R = Refine(T,E)

10: for each Tcand ∈ R do
11: h = Heuristic(Tcand, E)

12: hworst = maxT∈beamiHeuristic(T,E)

13: Tworst = argmaxT∈beamiHeuristic(T,E)

14: if h < hworst or |beami | < k then
15: beami = beami ∪ {(h, Tcand)}
16: if |beami | > k then
17: beami = beami \ {(hworst, Tworst)}
18: until beami = beami−1

19: return beami

procedure Refine(T,E)

1: R = ∅
2: for each leaf l ∈ T do
3: El = Instances(E,l)

4: for each attribute a do

5: t = best test on a

6: {E1, E2} = Partition(t, El)
7: l1 = leaf(centroid(E1))

8: l2 = leaf(centroid(E2))

9: n = node(t,{l1, l2})
10: Tr = replace l by n in T

11: R = R ∪ {Tr}
12: return R

The heuristic that we propose to use is:

h(T,E) =

(

∑

leaf ∈ T

|Eleaf |
|E| Var(Ileaf)

)

+ α · size(T) , (5.2)

with E all training data and Eleaf the examples sorted into a specific leaf. It has two

components: the first one is the average variance of the leaves of the PCT weighted by

size, and the second one is a size penalty. The latter biases the search to smaller trees

and can be seen as a soft version of a size constraint. The size function that we use

throughout the paper counts the total number of nodes in the PCT (both the internal

nodes and the leaves).

After the heuristic value of a tree is computed, CLUS-BS compares it to the value of

the worst tree in the beam. If the new tree is better, or if there are fewer than k trees in

the beam (k is the beam width), then CLUS-BS adds the new PCT to the beam: if this

70 FURTHER DEVELOPMENTS

causes the beam width to exceed the prescribed beam size, CLUS-BS removes the worst

tree from the beam. The algorithm ends when the beam no longer changes. This occurs

either if none of the refinements of a tree in the beam is better than the current worst

tree, or if none of the trees in the beam yields any valid refinements. This is the point in

the algorithm where the user constraints can be used to prune the search: a refinement is

valid in CLUS-BS if it does not violate any of these constraints.

Note that Equation 5.2 is identical to the heuristic used in the TDI algorithm from

Section 3.1 if we assume that there are no constraints, α = 0 and k = 1. In this case, the

tree computed by CLUS-BS will be identical to the tree constructed with TDI. The only

difference with TDI is the order in which the leaves are refined: TDI refines depth-first,

whereas CLUS-BS with a beam width of one refines best-first.

Preliminary experiments have indicated a possible disadvantage of the proposed ap-

proach for induction of PCTs. Namely, the beam tends to fill up with small variations of

the same PCT, i.e., trees that differ only in a single node. To alleviate this, we modify the

heuristic score (Equation 5.2) to include also a similarity term. We discuss this similarity

term in the next section.

5.3.2 Diversity in the beam

The diversity of the predictive models in ensembles is of recognized importance in the

area of ensemble learning. Unfortunately, there is no ‘uniquely agreed definition’ (Brown

and Kuncheva, 2010) of diversity. Many different diversity measures have been proposed

(Kuncheva and Whitaker, 2003) with one single goal: to increase the predictive perfor-

mance of the ensembles by balancing the accuracy of the base classifiers with their diversity.

Several studies have been performed concerning the clarification and quantification of the

role of the diversity in ensemble learning (Brown and Kuncheva, 2010; Brown et al., 2005;

Carney and Cunningham, 2000; Kuncheva, 2004; Kuncheva and Whitaker, 2003).

However, there is no unifying theory behind the different diversity measures or rec-

ommendations for which measure to use under what circumstances. Here, we propose

to use Euclidean measures between the tree predictions for all of the machine learning

tasks. This approach is applicable in a straightforward manner for the regression tasks.

For the classification tasks, we propose to use the average distance between the probability

distributions of the classes predicted for each example.

We propose to calculate the distance between the prediction of the trees as follows:

d(T1, T2, E) =
1

η
·
√

∑

t∈E dp(p(T1, t), p(T2, t))
2

|I| , (5.3)

Construction of ensembles of PCTs using beam search 71

with η a normalization factor, |E| the number of training instances, p(Tj , t) the prediction
of tree Tj for instance t, and dp a distance function between predictions. In Equation 5.3,

η and dp depend on the learning task. For regression tasks, dp is the absolute difference

between the predictions, and η = M − m, with M = maxt∈E,j∈{1,2} p(Tj , t) and m =
mint∈E,j∈{1,2} p(Tj , t). This choice of η ensures that d(T1, T2, E) is in the interval (0, 1).

For classification tasks, the distance is calculated similarly as for the regression with dp is

now the sum of absolute differences between the probabilities for each class predicted for

the instance by the two trees.

In addition, we also consider disagreement measure for classification. Here, the η

parameter is set to 1 and dp = δ with

δ(a, b) =

{

1 if a 6= b
0 if a = b

(5.4)

The proposed distance measure between the predictions of the PCTs can be easily

extended for predicting structured outputs. For predicting multiple targets, both discrete

and continuous, the average distance per target variable can be used. In the context of

hierarchical multi-label classification, a similar (weighted) average can be calculated for

each of the nodes in the hierarchy. Some other distances for hierarchies of labels can also

be used (Aleksovski et al., 2009).

Using these definitions of distances between trees, the heuristic score for the trees

(updated version of Equation 5.2) can be calculated as follows:

hs(T, beam, E) =

(

∑

leaf ∈ T

|Eleaf |
|E| Var(Eleaf)

)

+ α · size(T) + β · sim(T, beam, E) (5.5)

where the first two terms are the same as in the Equation 5.2, β is a user defined pa-

rameter that controls the influence of the beam diversity on the total heuristic score and

sim(T, beam, E) is the similarity score. Note that the heuristic score of each tree that is

already in the beam is updated when new tree candidate (Tcand) is produced. The updating

doesn’t require extra processing time, since in any case we need to calculate the distance

of each tree from the beam to the candidate tree. The similarity score of each tree T

(including the candidate tree Tcand) is calculated as:

sim(T, beam, E) = 1−
d(T, Tcand , E) +

∑

Ti∈beam
d(T, Ti , E)

|beam| (5.6)

where T is a tree in the beam or candidate tree (Tcand), E is the training set and d(Ti , Tj , E)

is the distance as defined in Equation 5.3.

72 FURTHER DEVELOPMENTS

Since the heuristic value of a tree now also depends on the other trees in the beam,

it changes when a new tree is added. Therefore, each time that CLUS-BS-S considers

a new candidate tree, it recomputes the heuristic value of all trees already in the beam

using Equation 5.5. The heuristic score for the trees already in the beam is updated only

with the term for the similarity, while the term for the predictive performance remains

the same. To make the calculations more efficient, one can exploit some properties of

the distance measures, such as symmetry d(Ta, Tb, E) = d(Tb, Ta, E) and reflexiveness

d(Ta, Ta, E) = 0.

5.3.3 Empirical evaluation

We experimentally evaluated the proposed approaches (CLUS-BS and CLUS-BS-S) using

16 datasets (8 classification and 8 regression) from the UCI repository (Asuncion and

Newman, 2007). We used the disagreement measure for the classification datasets and

the absolute difference between the predictions for the regression datasets (as described

above). We set the beam size k to 10, the soft-size constraint influence α to 0.00001 and

the influence of the diversity β to 1. The performance of the algorithms was compared

over a range of hard size constraints varying from 5 to 51 and no size constraints. The

performance of the algorithms was assessed by 10-fold cross-validation. A more detailed

description of the experiments, results and discussion can be found in (Kocev et al., 2007a).

The results show that CLUS-BS yields models of comparable accuracy to a standard

TDI algorithm. CLUS-BS wins1 on 5 classification and 3 regression tasks. TDI wins on 2

classification and no regression tasks. This confirms that CLUS-BS yields more accurate

models, which can be explained by the fact that it is less susceptible to myopia. There is

no clear correlation between the number of wins and the value of the size constraint.

CLUS-BS-S wins over TDI on 6 classification and 4 regression tasks and loses on 13

classification and 1 regression tasks. CLUS-BS-S performs, when compared to CLUS-BS,

worse on classification data than on regression data. This is because the heuristic (used in

CLUS-BS-S) trades off accuracy for diversity. If a given tree in the beam is accurate, then

new trees will be biased to be less accurate because the similarity score favors trees with

different predictions. For classification problems, this effect is more pronounced because

a ‘0/1’ distance between predictions is used, whereas in the regression case a continuous

distance function is used. The latter makes it ‘easier’ to have different predictions that

are still reasonably accurate. Also, this effect is stronger for larger size constraints (the

majority of the losses of CLUS-BS-S are for SC31, SC51 and NoSC), because the relative

1The statistical significance of the results was assessed using the paired t-test. A win was considered

statistically significant if the corresponding p value was smaller than 0.05.

Construction of ensembles of PCTs using beam search 73

contribution of the similarity score to the heuristic is greater for larger size constraints.

The losses are in the range of 1-2% accuracy, so for the majority of domains this is not a

serious problem.

The results regarding the diversity in the beam show that CLUS-BS-S trades off ac-

curacy for beam diversity. The beam diversity for CLUS-BS-S is always larger than that

of CLUS-BS. Moreover, the variance of the accuracies of the trees in the beam increases

with the beam diversity. Additionally, the trees produced by CLUS-BS-S not only produce

different predictions, but are also syntactically different from the trees constructed with

CLUS-BS.

We plan to further extend this work along several dimensions. To begin with, we will

consider introduction of the diversity during the test selection in the tree building process,

i.e., during the generation of the refinements. This can be done in a computationally

efficient way if the distance measures are Euclidean. Second, we will investigate the

influence of the beam size on the performance. Next, we will perform experiments for

different values of the β parameter to gain more insight into the trade-off between the

predictive performance and beam similarity. Finally, we will combine the trees in the beam in

an ensemble and comment on the influence of the diversity of the trees in the ensemble on

the performance of the ensemble. Moreover, the ensemble that is obtained in this way can

be interpreted by selecting the top ranked tree (since in the beam the trees are ordered by

their performance). All in all, the proposed approach will offer further understanding about

the influence of the diversity in the ensemble to its accuracy and ensemble interpretability.

75

6 Case studies

In this chapter, we present three case studies that use ensembles for predicting structured

outputs. The case studies are from three domains: ecological modelling (modelling vege-

tation condition), image annotation (annotation of medical X-ray images) and functional

genomics (predicting the functions of a gene). In these case studies, two machine learning

tasks are addressed: predicting multiple continuous variables (vegetation condition) and

hierarchical multi–label classification (image annotation and functional genomics).

In addition to these case studies, we have used ensembles for predicting structured

outputs to construct habitat models for the diatoms in lake Prespa, Macedonia (Kocev

et al., 2010). The habitat for the diatoms was described using several environmental

variables, and the communities were described by the abundance of diatom species at

the given sites. The predictive performance of the obtained habitat models (PCTs for

predicting multiple continuous variables) was not high: We used ensembles to test whether

the performance of the PCTs can be significantly lifted. Although the ensembles do lift the

predictive performance of the PCTs in this setting, the conclusion was that the predictive

performance is limited by the size of the dataset and the selection of the descriptive

(environmental) variables and not by the learning paradigm (in our case PCTs).

The case studies presented here demonstrate the wide range of possible applications

of the proposed algorithms and extensions. We show that the ensembles for predicting

structured outputs have competitive predictive performance (and even better in come

cases) as compared to the state-of-the-art approaches used in the respective application

domains. In addition, the ensembles for predicting structured outputs are more efficient,

having smaller running times and producing smaller models.

In the next sections, we present the three applications as follows. First, in Section 6.1,

we describe the use of PCTs and ensembles of PCTs for prediction of the vegetation

condition in the state of Victoria, Australia, from GIS and remote-sensed data. Next, in

Section 6.2, we present the application of PCT ensembles to the annotation of medical

X-ray images. Finally, in Section 6.3, we compare ensembles (in particular bagging) of

PCTs for predicting the functions of a gene to state-of-the-art approaches to predicting

gene function used in functional genomics.

76 CASE STUDIES

6.1 Predicting vegetation condition

In this section, we present a study concerned with modelling the condition of remnant

indigenous vegetation. To this end, we use ensembles for predicting structured outputs

(in particular, predicting multiple continuous variables). The condition of the vegetation is

described by multiple (habitat hectares) scores that reflect the structural and compositional

attributes of a wide variety of plant communities at a given site. Multiple sites were

manually assessed, in terms of these scores, and subsequently described with GIS and

remote-sensed data.

From the data, we learned a (pruned) PCT and ensembles of PCTs. We compare

their performance with that of linear regression, regression trees (that predict individual

numeric variables) and ensembles of regression trees. The pruned PCT was constructed

to extract knowledge from the data. The goal was to better understand the resilience of

some indigenous vegetation types and the relative importance of biophysical and landscape

attributes that influence their condition.

From the learned models, we can conclude that the most important variables influencing

all scores are those related to tree cover. This holds also for scores that do not depend

directly on the presence of tree cover. Land cover is also of high importance, with dense

forest cover yielding high scores. Finally, climate (including the variability of weather

conditions) also plays an important role.

The ensembles of PCTs were used to generate maps of the condition of the indigenous

vegetation: They were selected because of their high predictive power and efficiency. We

compared their performance with the performance of the ensembles of regression trees.

In terms of predictive performance, the difference between the two methods was not

statistically significant at the confidence level 0.05. However, if we also consider the

efficiency (time needed to construct the classifier and size of the underlying models), the

random forests of PCTs should be preferred.

The usefulness of models of vegetation condition is twofold. First, they provide an

enhanced knowledge and understanding of the condition of different indigenous vegetation

types, and identify possible biophysical and landscape attributes that may contribute to

vegetation decline. Second, these models may be used to map the condition of indigenous

vegetation across extensive areas (in this case study, we generated a map for the whole

area of Victoria state, Australia) with some predictive confidence using easily obtained

remotely acquired data together with adequate field data, these maps can be used in

support of biodiversity planning, management and investment decisions.

Hierarchical annotation of medical images 77

6.2 Hierarchical annotation of medical images

Hierarchical multi-label classification (HMC) problems are encountered increasingly often

in image annotation. However, flat classification machine learning approaches are pre-

dominantly applied in this area, in particular collections of SVMs. In this case study, we

propose to exploit the annotation hierarchy in image annotation by using ensembles of

PCTs for HMC.

We apply the ensembles of PCTs for HMC to two benchmark tasks for hierarchical

annotation of medical (X-ray) images and an additional task for photo annotation. We

compare it to a collection of SVMs (trained with a χ2 kernel), the best-performing and

most-frequently used approach to (hierarchical) image annotation. Our approach achieves

better results than the competition on all of these: For the two medical image datasets,

these are the best results reported in the literature so far1. Our approach has superior

performance, both in terms of accuracy/error and especially in terms of efficiency.

We explore the relative performance of ensembles of PCTs for HMC and collections

of SVMs under a variety of conditions. Along one dimension, we consider three different

datasets. Along another dimension, we consider two ensemble approaches, bagging and

random forests. Furthermore, we consider several state-of-the-art feature extraction ap-

proaches and combinations thereof. Finally, we consider two types of feature fusion, i.e.,

low- and high-level fusion.

Ensembles of PCTs for HMC perform consistently better than SVMs over the whole

range of conditions explored above. The two ensemble approaches perform better than

SVM collections on all three tasks, with random forests being more efficient than bagging

(and the most efficient overall). The relative performance holds for different image descrip-

tors and their combinations. The relative performance also holds for both low-level and

high-level fusion of the image descriptors, the former yielding slightly better performance.

We can thus conclude that for the task of hierarchical image annotation, ensembles of

PCTs for HMC are a superior alternative to using collections of SVMs.

At the end, we emphasize the scalability of our approach. Decision trees are one of the

most efficient machine learning approaches and can handle large numbers of examples. The

ensemble approach of random forests scales very well for large numbers of features. Finally,

trees for HMC scale very well as the complexity of the annotation hierarchy increases,

being able to handle very large hierarchies organized as trees or directed acyclic graphs.

Combining these, our approach is scalable along all three dimensions.

1Annotation results for these images can be found at the ImageCLEF competition web site (http:

//www.imageclef.org/2009/medanno) for the Medical Image Annotation Task or in the edited volume

describing the competitors ((Tommasi et al., 2010) and the references thereof).

http://www.imageclef.org/2009/medanno
http://www.imageclef.org/2009/medanno

78 CASE STUDIES

6.3 Predicting gene function

The completion of several genome projects in the past decade has generated the full

genome sequence of many organisms. Identifying open reading frames (ORFs) in the

sequences and assigning biological functions to them has now become a key challenge in

modern biology. This last step is often guided by automatic discovery processes which

interact with the laboratory experiments.

This case study considers three model organisms: Saccharomyces cerevisiae (yeast),

Arabidopsis thaliana (cress) andMus musculus (mouse) which are well studied organisms in

biology. It is still a challenge, however, to develop methods that assign biological functions

to the ORFs in these genomes automatically. Different machine learning methods have

been proposed to this end, but it remains unclear which method is to be preferred in terms

of predictive performance, efficiency and usability.

Here, we present the use of predictive clustering trees for HMC in functional genomics,

i.e., to predict gene functions for each of the three organisms. The learner produces a single

tree that predicts, for a given gene, its biological functions from a function classification

scheme, such as FunCat or the Gene Ontology. Preliminary studies in using PCTs for

HMC to predict gene function were conducted by Struyf et al. (2005) and Blockeel et al.

(2006), but were of limited scope: smaller number of datasets, organisms and classification

schemes for gene functions were used.

The study also presents a tree-based ensemble learner for HMC. While tree-based

ensembles for multi-target prediction were published earlier (Kocev et al., 2007b), this is the

first publication describing ensembles of trees for HMC and their implementation CLUS-

ENS-HMC. The empirical evidence shows that this learner outperforms several state-of-

the-art methods on the datasets from the three model organisms.

This case study reveals several advantages of using the proposed approach over other

approaches for prediction of gene functions. To begin with, we show that PCTs for

HMC outperforms an existing decision tree learner (C4.5H/M, (Clare, 2003)) in terms of

predictive performance. Next, we show that the predictive performance boost, obtained

in regular classification tasks by using ensembles, carries over to the HMC context. Then,

by constructing an ensemble of PCTs, our method outperforms a statistical learner based

on SVMs for Saccharomyces cerevisiae, both in predictive performance and in efficiency.

Finally, this ensemble learner is competitive to statistical and network based methods for

Mus musculus data. To summarize, individual PCTs for HMC can give additional biological

insight in the predictions, while ensembles of PCTs for HMC yields state-of-the-art quality

(predictive performance) for gene function prediction.

Summary of the case studies 79

6.4 Summary of the case studies

We applied the developed ensembles of PCTs to three application domains. In the case

studies, the ensembles of PCTs were compared to the state-of-the-art approaches used in

the respective domains. We summarize the conclusions from the case studies as follows:

• Prediction of vegetation condition: We used two scenarios for assessing the con-
dition of the indigenous vegetation using easily obtained remote sensed data. The

first scenario was concerned with knowledge extraction: we constructed a pruned

PCT for predicting multiple continuous targets. The PCT helped to better under-

stand the resilience of some indigenous vegetation types and the relative importance

of the biophysical and landscape attributes that influence their condition. For the

second scenario, in which high predictive power was required, we constructed ensem-

bles (especially random forests) of PCTs to generate maps of the condition of the

indigenous vegetation across the Victoria state, Australia. These maps can support

biodiversity planning, management and investment decisions.

• Hierarchical annotation of medical images: We applied the ensembles of PCTs for
HMC on two benchmark tasks for hierarchical annotation of medical (X-Ray) im-

ages and an additional task for general photo annotation. The ensembles of PCTs

outperformed, on all three tasks, a collection of SVMs with χ2 kernel (the best-

performing and most-frequently used approach in image annotation). Moreover, for

the medical images, the ensembles of PCTs produced the best results reported in

the literature. Ensembles of PCTs (especially random forests) are also more efficient

than the collection of SVMs.

• Prediction of gene functions: We used ensembles of PCTs for prediction of the gene
function in three organisms: Saccharomyces cerevisiae, Arabidopsis thaliana andMus

musculus. The genes were annotated with functions from the FunCat catalogue of

functions (tree-shaped hierarchy) and the Gene ontology (DAG shaped hierarchy).

The extensive experimental evaluation showed that bagging of PCTs outperforms a

statistical learner based on SVMs for the Saccharomyces cerevisiae genes, both in

terms of predictive performance and efficiency. For the two other organisms bagging

of PCTs is competitive to the state-of-the-art approaches in the area of functional

genomics.

81

7 Conclusions and further work

In this thesis, we have developed and evaluate methods for learning ensembles for predicting

structured outputs. Each of the proposed methods constructs a single model to make a

prediction for the whole structure simultaneously. The proposed methods are general

with respect to the type of the output: they can handle multiple target variables and

hierarchically structured classes (tree-shaped and DAGs). They are also scalable to a wide

range of datasets with different numbers of examples and descriptive variables and different

types and sizes of structured outputs.

In the remainder of this chapter, we first summarize the results of the empirical eval-

uation of the proposed method and the case studies. Then, we discuss how the proposed

methods can be further improved and applied.

7.1 Conclusions

The methods we propose in this thesis further extend the predictive clustering framework

in the context of ensemble learning. They contribute in the areas of ensemble learning,

predicting structured outputs and the respective application domains of the case studies:

vegetation condition assessment, image annotation and functional genomics.

First, we have developed methods for learning ensembles for predicting structured out-

puts. The methods are extending the predictive clustering framework in the context of

ensemble learning.

The random forests of PCTs, as a side-product, can provide also a feature ranking.

In this thesis, we suggested that this can be used to obtain feature ranking for arbitrary

structured outputs. The feature ranking obtained this way exploit some underlying con-

nections and relations that exist between the sub-components of the outputs. We show

this on a small case study for bio-marker discovery where the proposed approach offers

better feature ranking than the feature ranking for the sub-components.

We also proposed a novel ensemble learning algorithm that is based on the beam–

search strategy. This algorithm tackles two issues that are actively researched by the

community: ensemble diversity and ensemble interpretability. With the proposed algorithm,

82 CONCLUSIONS AND FURTHER WORK

we can explicitly control the diversity of the trees that are in the ensemble. Thus, we can

investigate the influence of the diversity of an ensemble on its predictive performance.

Furthermore, the beam-search keeps the trees sorted by a heuristic score. The best tree

from the heuristic score can be thus used as a representative for the ensemble. The

ensemble constructed using the proposed approach will be diverse and interpretable.

We applied the developed ensembles of PCTs to three application domains. In the

case studies, the ensembles of PCTs were compared to the state-of-the-art approaches

used in the respective domains. We summarize the conclusions from the case studies as

follows:

• Predicting the vegetation condition: The obtained PCT models contributed for bet-
ter understanding of the resilience of some indigenous vegetation types and the

relative importance of the biophysical and landscape attributes that influence their

condition. In addition, the ensembles of PCTs were used to generate maps of the

condition of the indigenous vegetation across the Victoria state, Australia, for sup-

port the biodiversity planning, management and investment decisions.

• Hierarchical classification of medical images: The ensembles of PCTs for HMC out-
perfromed a collection of SVMs (the most-frequently used classifier in image anno-

tation). The annotation results produced by the PCT ensembles are the best results

reported in the literature for the used medical X-ray images database. Ensembles

of PCTs (especially random forests) are also more efficient than the collection of

SVMs.

• Prediction of gene functions: We applied bagging of PCTs for prediction of the gene
function in three organisms: Saccharomyces cerevisiae, Arabidopsis thaliana andMus

musculus. The genes were annotated with functions from the FunCat catalogue of

functions (tree-shaped hierarchy) and the Gene ontology (DAG shaped hierarchy).

The extensive experimental evaluation showed that bagging of PCTs is competitive

to the state-of-the-art approaches in the area of functional genomics on all three

organisms.

7.2 Further work

In this thesis, we presented several methods for learning ensembles that can be used for

prediction of three types of structured outputs: multiple continuous variables, multiple

discrete variables and hierarchical multi–label classification. One line of further work is

to extend the proposed approach for other types of structured outputs (e.g., the ones

Further work 83

we discuss in Section 5.1). Also, other distance measures for structured types can be

implemented, thus making the algorithms more flexible and applicable to new domains.

Another line of further work is to evaluate the feature ranking approach for structured

outputs (discussed in Section 5.1) on a larger scale. The small case study presented

here (dealing with multi-target classification) showed that this approach is interesting: It

needs further investigation in scenarios where the output is multiple continuous variables

or classes organized in a hierarchy or time series.

A third line of further work is to investigate the beam search tree induction in the

context of learning a diverse and interpretable ensemble. This ensemble learning method

should be first evaluated in a large study. Then, it can be extended for predicting structured

outputs.

Finally, the proposed approach can find many further uses in the application domains al-

ready considered here and broader. In image annotation, it can be used for visual codebook

construction and large scale image retrieval, as described below. In assessing the state

of the environment from remote sensing, other applications are also possible, such as si-

multaneous prediction of several forest properties (forest height and density) (Stojanova

et al., 2010). Many further applications are possible in relating environmental parameters

to community structure: Besides considering other ecosystems than lakes, community

structure can be viewed as a sub-hierarchy of the taxonomy of living organisms, and the

corresponding learning problems as a problem of HMC.

For the construction of a visual codebook, in the area of image annotation, typically

k-means clustering is used. Marée et al. (2007); Moosmann et al. (2008) proposed to use

decision trees for predicting a single target variable to this aim, since the decision trees are

much faster and more efficient than k-means clustering. Their approach, in addition to

better efficiency, offers also better predictive performance. Predictive clustering trees (and

ensembles thereof) can be used for visual codebook construction since they can exploit the

dependencies between the multiple image classes and thus offer even more discriminative

codebooks.

Marée et al. (2009) suggested to further exploit decision trees in the context of image

retrieval. Typically, in image retrieval, the hierarchical search structure is constructed using

approximate or hierarchical k-means algorithm (Philbin et al., 2007). However, predictive

clustering trees can be also used to represent such hierarchical search structures. The

suggested approach will offer faster image retrieval because the construction of a predictive

clustering tree is much faster than k-means clustering.

85

8 References

ADIAC (2008). Automatic diatom identification and classification. http://rbg-

web2.rbge.org.uk/ADIAC/.

Aleksovski, D., Kocev, D., and Džeroski, S. (2009). Evaluation of distance measures

for hierarchical multi-label classification in functional genomics. In ECML/PKDD 2009

Workshop on Learning from Multi-Label Data, pages 5–16.

Ali, K. and Pazzani, M. (1996). Error reduction through learning multiple descriptions.

Machine Learning, 24(3), 173–202.

Allwein, E. L., Schapire, R. E., and Singer, Y. (2000). Reducing multiclass to binary:

A unifying approach for margin classifiers. Journal of Machine Learning Research, 1,

113–141.

Ando, R. K., Zhang, T., and Bartlett, P. (2005). A framework for learning predictive

structures from multiple tasks and unlabeled data. Journal of Machine Learning Research,

6, 1817–1853.

Argyriou, A., Evgeniou, T., and Pontil, M. (2008). Convex multi-task feature learning.

Machine Learning, 73, 243–272.

Assche, A. V. (2008). Improving the applicability of ensemble methods in data mining.

Ph.D. thesis, Department of Computer Science, Katholieke Universiteit Leuven, Leuven,

Belgium.

Asuncion, A. and Newman, D. (2007). UCI - machine learning repository.

http://www.ics.uci.edu/ mlearn/MLRepository.html.

Bakır, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., and Vishwanathan,

S. V. N. (2007). Predicting structured data. Neural Information Processing. The MIT

Press.

Bakker, B. and Heskes, T. (2003). Task clustering and gating for bayesian multitask

learning. Journal of Machine Learning Research, 4, 83–99.

86 REFERENCES

Banfield, R. E., Hall, L. O., Bowyer, K. W., and Kegelmeyer, W. P. (2007). A comparison

of decision tree ensemble creation techniques. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 29(1), 173–180.

Barutcuoglu, Z., Schapire, R. E., and Troyanskaya, O. G. (2006). Hierarchical multi-label

prediction of gene function. Bioinformatics, 22(7), 830–836.

Bauer, E. and Kohavi, R. (1999). An empirical comparison of voting classification algo-

rithms: Bagging, boosting, and variants. Machine Learning, 36(1), 105–139.

Baxter, J. (2000). A model of inductive bias learning. Journal of Artificial Intelligence

Research, 12, 149–198.

Ben-David, S. and Borbely, R. S. (2008). A notion of task relatedness yielding provable

multiple-task learning guarantees. Machine Learning, 73(3), 273–287.

Bernard, S., Heutte, L., and Adam, S. (2009). On the selection of decision trees in

random forests. In IJCNN’09: Proceedings of the 2009 international joint conference on

Neural Networks, pages 790–795. IEEE Press.

Berthold, M. R. and Hand, D. J., editors (2003). Intelligent Data Analysis: An Introduc-

tion. Springer Verlag.

Bishop, C. (2007). Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer.

Blockeeel, H., Džeroski, S., and Grbović, J. (1999). Simultaneous prediction of multiple

chemical parameters of river water quality with tilde. In Proceedings of the 3rd European

Conference on PKDD - LNAI 1704 , pages 32–40. Springer.

Blockeel, H. (1998). Top-down induction of first order logical decision trees. Ph.D.

thesis, Katholieke Universiteit Leuven, Leuven, Belgium.

Blockeel, H. and Struyf, J. (2002). Efficient algorithms for decision tree cross-validation.

Journal of Machine Learning Research, 3, 621–650.

Blockeel, H., Raedt, L. D., and Ramon, J. (1998). Top-down induction of clustering

trees. In Proceedings of the 15th International Conference on Machine Learning, pages

55–63. Morgan Kaufmann.

Blockeel, H., Bruynooghe, M., Džeroski, S., Ramon, J., and Struyf, J. (2002). Hierar-

chical multi–classification. In KDD-2002 Workshop Notes: MRDM 2002, Workshop on

Multi-Relational Data Mining, pages 21–35.

87

Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., and Clare, A. (2006). Decision

trees for hierarchical multilabel classification: A case study in functional genomics. In

Knowledge Discovery in Databases: PKDD 2006 - LNCS 4213 , pages 18–29. Springer

Berlin / Heidelberg.

Boutell, M., Luo, J., Shen, X., and Brown, C. (2004). Learning multi-label scene classi-

fication. Pattern Recognition, 37(9), 1757–1771.

Bratko, I. (2000). Prolog Programming for Artificial Intelligence. Addison Wesley, 3rd

edition.

Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123–140.

Breiman, L. (1996b). Bias, variance and arcing classifiers. Technical Report TR 460,

Statistics department, University of Berkeley, CA.

Breiman, L. (2001a). Random forests. Machine Learning, 45(1), 5–32.

Breiman, L. (2001b). Using iterated bagging to debias regressions. Machine Learning,

45(3), 261–277.

Breiman, L. and Friedman, J. (1997). Predicting multivariate responses in multiple linear

regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

59(1), 3–54.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. J. (1984). Classification and

Regression Trees. Chapman & Hall/CRC.

Brown, G. and Kuncheva, L. (2010). GOOD and BAD diversity in majority vote en-

sembles. In Proc. Multiple Classifier Systems (MCS’10) – LNCS 5997 , pages 124–133.

Springer–Verlag.

Brown, G., Wyatt, J., Harris, R., and Yao, X. (2005). Diversity creation methods: A

survey and categorisation. Journal of Information Fusion, 6(1), 5–20.

Brown, P. J. and Zidek, J. V. (1980). Adaptive multivariate ridge regression. The Annals

of Statistics, 8(1), 64–74.

Cai, F. and Cherkassky, V. (2009). Svm+ regression and multi-task learning. In Interna-

tional Joint Conference on Neural Networks (IJCNN), pages 418–424.

Caponnetto, A., Micchelli, C. A., Pontil, M., and Ying, Y. (2008). Universal multi–task

kernels. Journal of Machine Learning Research, 9, 1615–1646.

88 REFERENCES

Carney, J. G. and Cunningham, P. (2000). Tuning diversity in bagged ensembles. Inter-

national Journal of Neural Systems, 10(4), 267–279.

Caruana, R. (1997). Multitask learning. Machine Learning, 28, 41–75.

Ceci, M. and Malerba, D. (2007). Classifying web documents in a hierarchy of categories:

a comprehensive study. Journal of Intelligent Information Systems, 28, 37–78.

Chen, Y. and Xu, D. (2004). Global protein function annotation through mining genome-

scale data in yeast saccharomyces cerevisiae. Nucleic Acids Research, 32(21), 6414–

6424.

Clare, A. (2003). Machine learning and data mining for yeast functional genomics. Ph.D.

thesis, University of Wales Aberystwyth, Aberystwyth, Wales, UK.

Clare, A. and King, R. D. (2003). Predicting gene function in Saccharomyces cerevisiae.

Bioinformatics, 19(S2), 42–49.

Costa, E., Lorena, A., Carvalho, A., Freitas, A., and Holden, N. (2007). Comparing sev-

eral approaches for hierarchical classification of proteins with decision trees. In Advances

in bioinformatics and computational biology – LNBI 4643 , pages 126–137. Springer-

Verlag Berlin/Heidelberg.

Craven, M. W. (1996). Extracting comprehensible models from trained neural networks.

Ph.D. thesis, University of Wisconsin – Madison, Wisconsin, USA.

Debeljak, M., Squire, G. R., Kocev, D., Hawes, C., Young, M. W., and Džeroski, S.

(2011). Analysis of time series data on agroecosystem vegetation using predictive clus-

tering trees. Ecological Modelling, x(y), To appear.

Demšar, D., Debeljak, M., Džeroski, S., and Lavigne, C. (2005). Modelling pollen dis-

persal of genetically modified oilseed rape within the field. In The Annual Meeting of the

Ecological Society of America.

Demšar, D., Džeroski, S., Larsen, T., Struyf, J., Axelsen, J., Bruns-Pedersen, M., and

Krogh, P. H. (2006). Using multi-objective classification to model communities of soil.

Ecological Modelling, 191(1), 131–143.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research, 7, 1–30.

89

Dietterich, T. G. (2000a). Ensemble methods in machine learning. In Proc. of the

1st International Workshop on Multiple Classifier Systems - LNCS 1857 , pages 1–15.

Springer.

Dietterich, T. G. (2000b). An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning,

40(2), 139–157.

Dimitrovski, I., Kocev, D., Loskovska, S., and Džeroski, S. (2008). Hierchical annotation

of medical images. In Proceedings of the 11th International Multiconference - Information

Society IS 2008 , pages 174–181. IJS, Ljubljana.

Domingos, P. (1998). Knowledge discovery via multiple models. Intelligent Data Analysis,

2(1-4), 187–202.

Domingos, P. (2000). A unified bias-variance decomposition and its applications. In

Proceedings of the Seventeenth International Conference on Machine Learning, pages

231–238.

Domingos, P. and Pazzani, M. (1997). On the optimality of the simple bayesian classifier

under zero-one loss. Machine Learning, 29(2), 103–130.

Džeroski, S. (2007). Towards a general framework for data mining. In S. Džeroski

and J. Struyf, editors, Knowledge Discovery in Inductive Databases, 5th International

Workshop, KDID 2006, Revised Selected and Invited Papers, volume 4747, pages 259–

300.

Džeroski, S. and Ženko, B. (2004). Is combining classifiers with stacking better than

selecting the best one? Machine Learning, 54(3), 255–273.

Džeroski, S., Demšar, D., and Grbović, J. (2000). Predicting chemical parameters of

river water quality from bioindicator data. Applied Intelligence, 13(1), 7–17.

Džeroski, S., Panov, P., and Ženko, B. (2009). Ensemble methods in machine learning. In

Encyclopedia of complexity and systems science, pages 5317–5325. Springer New York.

Džeroski, S., Goethals, B., and Panov, P. (2010). Inductive databases and constraint-

based data mining. Springer.

90 REFERENCES

Eisner, R., Poulin, B., Szafron, D., Lu, P., and Greiner, R. (2005). Improving protein

function prediction using the hierarchical structure of the gene ontology. In IEEE Sympo-

sium on Computational Intelligence in Bioinformatics and Computational Biology , pages

1–10.

Elisseeff, A. and Weston, J. (2001). A kernel method for multi-labelled classification. In

In Advances in Neural Information Processing Systems 14 , pages 681–687. MIT Press.

Evgeniou, T., Micchelli, C. A., and Pontil, M. (2005). Learning multiple tasks with kernel

methods. Journal of Machine Learning Research, 6, 615–637.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). The kdd process for extracting

useful knowledge from volumes of data. Communications of the ACM, 39, 27–34.

Ferri, C., Hernández-Orallo, J., and Raḿırez-Quintana, M. J. (2002). From ensemble

methods to comprehensible models. In Discovery Science – LNCS 2534 , pages 223–234.

Springer Berlin/Heidelberg.

Freund, Y. and Mason, L. (1999). The alternating decision tree learning algorithm.

In Proceedings of the Sixteenth International Conference on Machine Learning, pages

124–133. Morgan Kaufmann Publishers Inc.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In

Proc. of the Thirteenth International Conference on Machine Learning - ICML, pages

148–156. Morgan Kaufman.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem

of m rankings. Annals of Mathematical Statistics, 11, 86–92.

Garofalakis, M., Hyun, D., Rastogi, R., and Shim, K. (2003). Building decision trees

with constraints. Data Mining and Knowledge Discovery , 7(2), 187–214.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the

bias/variance dilemma. Neural Computation, 4(1), 1–58.

Geurts, P. (2001). Dual perturb and combine algorithm. In Proceedings of AISTATS

2001, 8th International Workshop on Artificial Intelligence and Statistics, pages 196–201.

Geurts, P., Ernst, D., and Wehenkel, L. (2006a). Extremely randomized trees. Machine

Learning, 36(1), 3–42.

91

Geurts, P., Wehenkel, L., and D’Alché-Buc, F. (2006b). Kernelizing the output of tree–

based methods. In ICML ’06: Proceedings of the 23rd International Conference on

Machine Learning, pages 345–352. ACM.

Giacinto, G. and Roli, F. (2001). An approach to the automatic design of multiple

classifier systems. Pattern Recognition Letters, 22(1), 25–33.

Gjorgjioski, V., Džeroski, S., and White, M. (2008). Clustering analysis of vegetation

data. Technical Report 10065, Jožef Stefan Institute.

Greene, W. H. (2007). Econometric analysis. Prentice Hall, 6th edition.

Guan, Y., Myers, C. L., Hess, D. C., Barutcuoglu, Z., Caudy, A. A., and Troyanskaya,

O. G. (2008). Predicting gene function in a hierarchical context with an ensemble of

classifiers. Genome biology , 9(S1), S3+.

Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman & Hall.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844.

Huang, Y. S. and Suen, C. Y. (1995). A method of combining multiple experts for

the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 17, 90–94.

Ianakiev, K. and Govindaraju, V. (2000). Architecture for classifier combination using

entropy measures. In Multiple Classifier Systems - LNCS 1857 , pages 340–350. Springer

Berlin/Heidelberg.

Iman, R. L. and Davenport, J. M. (1980). Approximations of the critical region of the

friedman statistic. Communications in Statistics - Theory and Methods, 9(6), 571–595.

Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des alpes

et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles, (37), 547–579.

Jong, K., Mary, J., Cornuéjols, A., Marchiori, E., and Sebag, M. (2004). Ensemble

feature ranking. In ECML PKDD ’04: Proceedings of the European conference on

Machine Learning and Knowledge Discovery in Databases – LNCS 3202 , pages 267–

278. Springer-Verlag.

92 REFERENCES

Kampichler, C., Džeroski, S., and Wieland, R. (2000). Application of machine learning

techniques to the analysis of soil ecological data bases: relationships between habitat

features and collembolan community characteristics. Soil Biology and Biochemistry ,

32(2), 197–209.

Karalič, A. (1995). First Order Regression. Ph.D. thesis, Faculty of Computer Science,

University of Ljubljana, Ljubljana, Slovenia.

Kargupta, H., Park, B.-H., and Dutta, H. (2006). Orthogonal decision trees. IEEE

Transactions on Knowledge and Data Engineering, 18(8), 1028–1042.

Kittler, J., Hatef, M., Duin, R. P. W., and Matas, J. (1998). On combining classifiers.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239.

Klimt, B. and Yang, Y. (2004). The enron corpus: A new dataset for email classification

research. In ECML ’04: Proceedings of the 18th European Conference on Machine

Learning – LNCS 3201 , pages 217–226. Springer Berlin / Heidelberg.

Kocev, D., Struyf, J., and Džeroski, S. (2007a). Beam search induction and similarity

constraints for predictive clustering trees. In Proc. of the 5th International Workshop on

Knowledge Discovery in Inductive Databases KDID - LNCS 4747 , pages 134–151.

Kocev, D., Vens, C., Struyf, J., and Džeroski, S. (2007b). Ensembles of multi–objective

decision trees. In ECML ’07: Proceedings of the 18th European Conference on Machine

Learning – LNCS 4701 , pages 624–631. Springer Berlin / Heidelberg.

Kocev, D., Slavkov, I., and Džeroski, S. (2008). More in better: ranking with multiple

targets for biomarker discovery. In Proc. 2nd Intl Wshp on Machine Learning in Systems

Biology , page 133.

Kocev, D., Džeroski, S., White, M., Newell, G., and Griffioen, P. (2009). Using single-

and multi-target regression trees and ensembles to model a compound index of vegetation

condition. Ecological Modelling, 220(8), 1159–1168.

Kocev, D., Naumoski, A., Mitreski, K., Krstić, S., and Džeroski, S. (2010). Learning

habitat models for the diatom community in lake prespa. Ecological Modelling, 221(2),

330–337.

Kong, E. B. and Dietterich, T. G. (1995). Error-correcting output coding corrects bias

and variance. In Proceedings of the Twelfth International Conference on Machine Learn-

ing, pages 313–321.

93

Kuncheva, L. (2004). Combining Pattern Classifiers: Methods and Algorithms. Wiley-

Interscience.

Kuncheva, L. and Whitaker, C. (2003). Measures of diversity in classifier ensembles and

their relationship with the ensemble accuracy. Machine Learning, 51, 181–207.

Langley, P. (1996). Elements of machine learning. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA.

Lee, H., Tu, Z., Deng, M., Sun, F., and Chen, T. (2006). Diffusion kernel–based

logistic regression models for protein function prediction. OMICS: A Journal of Integrative

Biology , 10(1), 40–55.

Lehmann, T., Schubert, H., Keysers, D., Kohnen, M., and Wein, B. (2003). The irma

code for unique classification of medical images. In Medical Imaging 2003: PACS and

Integrated Medical Information Systems: Design and Evaluation, pages 440–451.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcv1: A new benchmark

collection for text categorization research. Journal of Machine Learning Research, 5,

361–397.

Liao, T. W. (2005). Clustering of time series data–a survey. Pattern Recognition, 38(11),

1857–1874.

Marée, R., Geurts, P., and Wehenkel, L. (2007). Random subwindows and extremely

randomized trees for image classification in cell biology. BMC Cell Biology , 8(Suppl 1),

S2.

Marée, R., Geurts, P., and Wehenkel, L. (2009). Content-based image retrieval by

indexing random subwindows with randomized trees. IPSJ Transactions on Computer

Vision and Applications, 1, 46–57.

Mason, L., Bartlett, P. L., and Baxter, J. (2000). Improved generalization through

explicit optimization of margins. Machine Learning, 38(3), 243–255.

McCarthy, J., Minsky, M., Rochester, N., and Shannon, C. (1955). A proposal

for the Dartmouth summer research project on artificial intelligence. http://www-

formal.stanford.edu/jmc/history/dartmouth/dartmouth.html.

Merz, C. J. (1999). Using correspondence analysis to combine classifiers. Machine

Learning, 36(1), 33–58.

94 REFERENCES

Micchelli, C. A. and Pontil, M. (2004). Kernels for multi–task learning. In Advances in

Neural Information Processing Systems 17 - Proceedings of the 2004 Conference, pages

921–928.

Mitchell, T. (1997). Machine learning. McGraw Hill.

Moosmann, F., Nowak, E., and Jurie, F. (2008). Randomized clustering forests for

image classification. IEEE Transactions on Pattern Analysis & Machine Intelligence,

30(9), 1632–1646.

Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., and Morris, Q. (2008). Genemania:

a real-time multiple association network integration algorithm for predicting gene function.

Genome biology , 9(S1), S4+.

Nemenyi, P. B. (1963). Distribution-free multiple comparisons. Ph.D. thesis, Princeton

University, Princeton, NY, USA.

Obozinski, G., Lanckriet, G., Grant, C., Jordan, M. I., and Noble, W. S. (2008). Con-

sistent probabilistic outputs for protein function prediction. Genome Biology , 9(S1),

S6+.

Opitz, D. and Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal

of Artificial Intelligence Research, 11, 169–198.

Panov, P. and Džeroski, S. (2007). Combining bagging and random subspaces to create

better ensembles. In Advances in Intelligent Data Analysis VII - LNCS 4723 , pages

118–129. Springer Berlin/Heidelberg.

Pérez, J. M., Muguerza, J., Arbelaitz, O., Gurrutxaga, I., and Mart́ın, J. I. (2004).

Behavior of consolidated trees when using resampling techniques. In Pattern Recogni-

tion in Information Systems, Proceedings of the 4th International Workshop on Pattern

Recognition in Information Systems, pages 139–148. INSTICC Press.

Pesquita, C., Faria, D., Bastos, H., Falcão, A. O., and Couto, F. M. (2007). Evaluating

go-based semantic similarity measures. In 10th Annual Bio-Ontologies Meeting (Bio-

Ontologies 2007), pages 37–40.

Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A. (2007). Object retrieval

with large vocabularies and fast spatial matching. In IEEE conference on Computer Vision

and Pattern Recognition, pages 1–8.

95

Quinlan, R. J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, 1

edition.

Raviv, Y. and Intrator, N. (1996). Bootstrapping with noise: An effective regularization

technique. Connection Science, 8, 355–372.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2009). Classifier chains for multi-

label classification. In Machine Learning and Knowledge Discovery in Databases - LNCS

5782 , pages 254–269. Springer Berlin/Heidelberg.

Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J. (2006). Kernel–based

learning of hierarchical multilabel classification models. Journal of Machine Learning

Research, 7, 1601–1626.

Saeys, Y., Abeel, T., and Peer, Y. (2008). Robust feature selection using ensemble

feature selection techniques. In ECML PKDD ’08: Proceedings of the European confer-

ence on Machine Learning and Knowledge Discovery in Databases – LNCS 5212 , pages

313–325. Springer-Verlag.

Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken

word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1),

43–49.

Schapire, R., Freund, Y., Bartlett, P., and Lee, W. S. (1997). Boosting the margin: A

new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5),

322–330.

Schramm, A., Schulte, J. H., Klein-Hitpass, L., Havers, W., Sieverts, H., Berwanger, B.,

Christiansen, H., Warnat, P., Brors, B., Eils, J., Eils, R., and Eggert, A. (2004). Predic-

tion of clinical outcome and biological characterization of neuroblastoma by expression

profiling. Oncogene, 24, 7902–7912.

Seni, G. and Elder, J. F. (2010). Ensemble methods in data mining: Improving accuracy

through combining predictions. Morgan & Claypool Publishers.

Silla, C. and Freitas, A. (2010). A survey of hierarchical classification across different

application domains. Data Mining and Knowledge Discovery , pages 1–42.

Skrjanc, M., Grobelnik, M., and Zupanic, D. (2001). Insights offered by data-mining

when analyzing media space data. Informatica (Slovenia), 25(3), 357–363.

96 REFERENCES

Slavkov, I., Ženko, B., and Džeroski, S. (2010a). Evaluation method for feature rankings

and their aggregations for biomarker discovery. In Proc. 3rd Intl Wshp on Machine

Learning in Systems Biology, JMLR: Workshop and Conference Proceedings 8 , pages

14–29. Microtome Publishing.

Slavkov, I., Gjorgjioski, V., Struyf, J., and Džeroski, S. (2010b). Finding explained

groups of time-course gene expression profiles with predictive clustering trees. Molecular

BioSystems, 6(4), 729–740.

Sokolova, M. and Lapalme, G. (2009). A systematic analysis of performance measures

for classification tasks. Information Processing & Management, 45(4), 427–437.

Sokolova, M., Japkowicz, N., and Szpakowicz, S. (2006). Beyond accuracy, f-score and

roc: a family of discriminant measures for performance evaluation. In AI 2006: Advances

in Artificial Intelligence - LNCS 4304 , pages 1015–1021. Springer Berlin / Heidelberg.

Stojanova, D. (2009). Estimating Forest Properties from Remotely Sensed Data by

using Machine Learning. Master’s thesis, Jožef Stefan International Postgraduate School,

Ljubljana, Slovenia.

Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., and Džeroski, S. (2010). Estimating

vegetation height and canopy cover from remotely sensed data with machine learning.

Ecological Informatics, 5(4), 256–266.

Struyf, J. and Džeroski, S. (2006). Constraint based induction of multi-objective re-

gression trees. In Proc. of the 4th International Workshop on Knowledge Discovery in

Inductive Databases KDID - LNCS 3933 , pages 222–233. Springer.

Struyf, J., Džeroski, S., Blockeel, H., and Clare, A. (2005). Hierarchical multi-

classification with predictive clustering trees in functional genomics. In Progress in Arti-

ficial Intelligence - LNCS 3808 , pages 272–283. Springer Berlin/Heidelberg.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining. Addison

Wesley.

Thrun, S. and Pratt, L. (1998). Learning to learn. Kluwer Academic Publishers.

Tian, W., Zhang, L. V., Taşan, M., Gibbons, F. D., King, O. D., Park, J., Wunderlich,

Z., Cherry, J. M., and Roth, F. P. (2008). Combining guilt–by–association and guilt–

by–profiling to predict saccharomyces cerevisiae gene function. Genome biology , 9(S1),

S7+.

97

Todorovski, L., Cestnik, B., Kline, M., Lavrač, N., and Džeroski, S. (2002). Qualitative

clustering of short time-series: A case study of firms reputation data. In ECML/PKDD’02

Workshop on Integration and Collaboration Aspects of Data Mining, Decision Support

and Meta-Learning, pages 141–149.

Tommasi, T., Caputo, B., Welter, P., Güld, M., and Deserno, T. (2010). Overview of the

clef 2009 medical image annotation track. In Multilingual Information Access Evaluation

II. Multimedia Experiments – LNCS 6242 , pages 85–93. Springer Berlin/Heidelberg.

Triviño-Rodriguez, J., Ruiz-Sepúlveda, A., and Morales-Bueno, R. (2008). How an en-

semble method can compute a comprehensible model. In Data Warehousing and Knowl-

edge Discovery – LNCS 5182 , pages 368–378. Springer Berlin/Heidelberg.

Trohidis, K., Tsoumakas, G., Kalliris, G., and Vlahavas, I. (2008). Multilabel classification

of music into emotions. In Proc. 9th International Conference on Music Information

Retrieval (ISMIR 2008), pages 325–330.

Valentini, G. (2003). Ensemble methods based on bias-variance analysis. Ph.D. thesis,

Universita‘ di Genova, Genova, Italy.

Valentini, G. and Re, M. (2009). Weighted true path rule: a multilabel hierarchical

algorithm for gene function prediction. In Proceedings of the 1st International Workshop

on Learning from Multi-Label Data, pages 133–146.

Vens, C., Struyf, J., Schietgat, L., Džeroski, S., and Blockeel, H. (2008). Decision trees

for hierarchical multi-label classification. Machine Learning, 73(2), 185–214.

Ženko, B. (2007). Learning predictive clustering rules. Ph.D. thesis, Faculty of Computer

Science, University of Ljubljana, Ljubljana, Slovenia.

Wernecke, K. D. (1992). A coupling procedure for discrimination of mixed data. Bio-

metrics, 48(2), 497–506.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. (2007). Multi-task reinforcement learning:

a hierarchical bayesian approach. In ICML ’07: Proceedings of the 24th international

conference on Machine learning, pages 1015–1022. ACM.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(1), 241–259.

Yang, Q. and Wu, X. (2006). 10 challenging problems in data mining research. Interna-

tional Journal of Information Technology & Decision Making, 5(4), 597–604.

99

Appendix 1:

Complete results

We give complete results for the three considered tasks: predicting of multiple continuous

targets, predicting of multiple discrete targets and hierarchical multi-label classification.

For each task, we give the saturation curves, statistical tests for the predictive performance

and efficiency over all ensemble sizes.

The results are from the Friedman test for multiple hypothesis testing and post-hoc

Nemenyi test. The average rank diagrams are obtained using the critical distance at a

significance level of 0.05. The differences in performance of the algorithms connected

with a red line are not statistically significant. The number after the name of an algorithm

indicates its average rank. The algorithm names are abbreviated as follows:

• MTRT: Multi-target regression tree

• STRT: Single-target regression tree

• MTRF: Multi-target random forest

• STRF: Single-target random forest

• MTBag: Multi-target bagging

• STBag: Single-target bagging

• HMCPCT: PCT for HMC

• HSCPCT: PCT for HSC

• HMCRF: Random forest of PCTs for HMC

• HSCRF: Random forest of PCTs for HSC

• HMCBag: Bagging of PCTs for HMC

• HSCBag: Bagging of PCTs for HSC

100 Appendix 1: Complete results

8.1 Prediction of multiple continuous targets

8.1.1 Saturation curves

Collembola EDM Forestry-Kras

0.91

0.92

0.93

0.94

0.95

0.96

0.97

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

0.54

0.545

0.55

0.555

0.56

0.565

0.57

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

Forestry-Slivnica-LandSat Forestry-Slivnica-IRS Forestry-Slivnica-SPOT

0.42

0.44

0.46

0.48

0.5

0.52

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

0.28

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345

0.35

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

Sigmea real Soil quality Solar-flare 1

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

0.7

0.71

0.72

0.73

0.74

0.75

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

1.04

1.06

1.08

1.1

1.12

1.14

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

101

Solar-flare 2 Vegetation clustering Vegetation condition

1.0

1.01

1.02

1.03

1.04

1.05

1.06

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

0.69

0.7

0.71

0.72

0.73

0.74

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

0.6

0.605

0.61

0.615

0.62

0.625

0.63

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

Water quality Overall

0.89

0.9

0.91

0.92

0.93

0.94

0.95

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

0.69

0.695

0.7

0.705

0.71

0.715

0.72

R
R
M
S
E

50 100 150 200 250

Size of ensemble

MTBag

STBag

MTRF

STRF

102 Appendix 1: Complete results

8.1.2 Statistical tests for predictive performance

Ensemble size: 10 Ensemble size: 25

6 5 4 3 2 1

MTBag10@2.68

MTRF10@2.9

STRF10@3.08

STBag10@3.09MTRT@4.48

STRT@4.78

Critical Distance = 0.901

6 5 4 3 2 1

MTRF25@2.61

MTBag25@2.69

STRF25@2.73

STBag25@3.08MTRT@4.82

STRT@5.07

Critical Distance = 0.901

Ensemble size: 50 Ensemble size: 75

6 5 4 3 2 1

MTRF50@2.53

STRF50@2.61

MTBag50@2.81

STBag50@3.11MTRT@4.88

STRT@5.06

Critical Distance = 0.901

6 5 4 3 2 1

MTRF75@2.53

STRF75@2.68

MTBag75@2.83

STBag75@3MTRT@4.88

STRT@5.09

Critical Distance = 0.901

Ensemble size: 100 Ensemble size: 150

6 5 4 3 2 1

STRF100@2.54

MTRF100@2.66

MTBag100@2.76

STBag100@3.14MTRT@4.84

STRT@5.06

Critical Distance = 0.901

6 5 4 3 2 1

STRF150@2.57

MTRF150@2.58

MTBag150@2.85

STBag150@3.07MTRT@4.86

STRT@5.07

Critical Distance = 0.901

Ensemble size: 250

6 5 4 3 2 1

MTRF250@2.55

STRF250@2.63

MTBag250@2.76

STBag250@3.11MTRT@4.87

STRT@5.08

Critical Distance = 0.901

103

8.1.3 Statistical tests for efficiency

Time consumption

Ensemble size: 10 Ensemble size: 25 Ensemble size: 50

4 3 2 1

MTRF10@1.21

MTBag10@2.21STRF10@2.68

STBag10@3.89

Critical Distance = 1.254

4 3 2 1

MTRF25@1.04

MTBag25@2.39STRF25@2.64

STBag25@3.93

Critical Distance = 1.254

4 3 2 1

MTRF50@1.07

MTBag50@2.29STRF50@2.71

STBag50@3.93

Critical Distance = 1.254

Ensemble size: 75 Ensemble size: 100

4 3 2 1

MTRF75@1

MTBag75@2.5

STRF75@2.64

STBag75@3.86

Critical Distance = 1.254

4 3 2 1

MTRF100@1

MTBag100@2.5

STRF100@2.71

STBag100@3.79

Critical Distance = 1.254

Ensemble size: 150 Ensemble size: 250

4 3 2 1

MTRF150@1.07

MTBag150@2.29STRF150@2.71

STBag150@3.93

Critical Distance = 1.254

4 3 2 1

MTRF250@1.07

MTBag250@2.43STRF250@2.57

STBag250@3.93

Critical Distance = 1.254

Model size

Ensemble size: 10 Ensemble size: 25 Ensemble size: 50

4 3 2 1

MTRF10@1.36

MTBag10@1.64STRF10@3.43

STBag10@3.57

Critical Distance = 1.254

4 3 2 1

MTRF25@1.43

MTBag25@1.64STRF25@3.43

STBag25@3.5

Critical Distance = 1.254

4 3 2 1

MTRF50@1.39

MTBag50@1.64STRF50@3.43

STBag50@3.54

Critical Distance = 1.254

Ensemble size: 75 Ensemble size: 100

4 3 2 1

MTRF75@1.36

MTBag75@1.64STRF75@3.43

STBag75@3.57

Critical Distance = 1.254

4 3 2 1

MTRF100@1.36

MTBag100@1.64STRF100@3.43

STBag100@3.57

Critical Distance = 1.254

Ensemble size: 150 Ensemble size: 250

4 3 2 1

MTRF150@1.36

MTBag150@1.64STRF150@3.43

STBag150@3.57

Critical Distance = 1.254

4 3 2 1

MTRF250@1.36

MTBag250@1.64STRF250@3.43

STBag250@3.57

Critical Distance = 1.254

104 Appendix 1: Complete results

8.2 Prediction of multiple discrete targets

8.2.1 Saturation curves

EDM Emotions

0.78

0.79

0.8

0.81

0.82

0.83

0.84

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF
0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF

Scene Mediana

0.93

0.932

0.934

0.936

0.938

0.94

0.942

0.944

0.946

0.948

0.95

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF
0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF

Sigmea real Solar-flare 1

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF
0.94

0.945

0.95

0.955

0.96

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF

105

Thyroid Water quality

0.99

0.992

0.994

0.996

0.998

1.0

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF
0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF

Yeast Overall

0.83

0.835

0.84

0.845

0.85

0.855

0.86

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF
0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

F
-s
co
re

100 200 300 400 500 600 700 800 900 1000

Size of ensemble

MTBag

STBag

MTRF

STRF

106 Appendix 1: Complete results

8.2.2 Statistical tests for predictive performance

Ensemble size: 10 Ensemble size: 25

6 5 4 3 2 1

MTBag10@2.99

MTRF10@3.34

STRF10@3.42

STBag10@3.45MTCT@3.57

STCT@4.23

Critical Distance = 0.982

6 5 4 3 2 1

MTBag25@2.66

STBag25@3.07

STRF25@3.15

MTRF25@3.25MTCT@4.15

STCT@4.72

Critical Distance = 0.982

Ensemble size: 50 Ensemble size: 75

6 5 4 3 2 1

MTBag50@2.59

STBag50@3

MTRF50@3.07

STRF50@3.11MTCT@4.33

STCT@4.9

Critical Distance = 0.982

6 5 4 3 2 1

MTBag75@2.55

STBag75@2.88

STRF75@2.97

MTRF75@3.17MTCT@4.48

STCT@4.95

Critical Distance = 0.982

Ensemble size: 100 Ensemble size: 250

6 5 4 3 2 1

STRF100@2.67

MTBag100@2.69

MTRF100@3.11

STBag100@3.15MTCT@4.47

STCT@4.9

Critical Distance = 0.982

6 5 4 3 2 1

MTBag250@2.71

STBag250@2.85

STRF250@2.87

MTRF250@3.15MTCT@4.53

STCT@4.89

Critical Distance = 0.982

Ensemble size: 500 Ensemble size: 1000

6 5 4 3 2 1

MTBag500@2.64

STRF500@2.71

STBag500@2.84

MTRF500@3.23MTCT@4.63

STCT@4.95

Critical Distance = 0.982

6 5 4 3 2 1

STRF1000@2.71

MTBag1000@2.73

STBag1000@2.75

MTRF1000@3.26MTCT@4.58

STCT@4.97

Critical Distance = 0.982

107

8.2.3 Statistical tests for efficiency

Time consumption

Ensemble size: 10 Ensemble size: 25 Ensemble size: 50

4 3 2 1

MTRF10@1

MTBag10@2.56

STRF10@2.56

STBag10@3.89

Critical Distance = 1.563

4 3 2 1

MTRF25@1.22

STRF25@2.33

MTBag25@2.44STBag25@4

Critical Distance = 1.563

4 3 2 1

MTRF50@1

STRF50@2.44MTBag50@2.56

STBag50@4

Critical Distance = 1.563

Ensemble size: 75 Ensemble size: 100 Ensemble size: 250

4 3 2 1

MTRF75@1

STRF75@2.44MTBag75@2.56

STBag75@4

Critical Distance = 1.563

4 3 2 1

MTRF100@1

MTBag100@2.56

STRF100@2.56

STBag100@3.89

Critical Distance = 1.563

4 3 2 1

MTRF250@1

STRF250@2.44MTBag250@2.56

STBag250@4

Critical Distance = 1.563

Ensemble size: 500 Ensemble size: 1000

4 3 2 1

MTRF500@1

STRF500@2.44MTBag500@2.56

STBag500@4

Critical Distance = 1.563

4 3 2 1

MTRF1000@1

STRF1000@2.33MTBag1000@2.67

STBag1000@4

Critical Distance = 1.563

Model size

Ensemble size: 10 Ensemble size: 25 Ensemble size: 50

4 3 2 1

MTBag10@1.11

MTRF10@2.11STBag10@3

STRF10@3.78

Critical Distance = 1.563

4 3 2 1

MTBag25@1.22

MTRF25@1.89STBag25@3

STRF25@3.89

Critical Distance = 1.563

4 3 2 1

MTBag50@1.22

MTRF50@2STBag50@2.89

STRF50@3.89

Critical Distance = 1.563

Ensemble size: 75 Ensemble size: 100 Ensemble size: 250

4 3 2 1

MTBag75@1.22

MTRF75@1.89STBag75@3

STRF75@3.89

Critical Distance = 1.563

4 3 2 1

MTBag100@1.22

MTRF100@1.89STBag100@3

STRF100@3.89

Critical Distance = 1.563

4 3 2 1

MTBag250@1.22

MTRF250@1.89STBag250@3

STRF250@3.89

Critical Distance = 1.563

Ensemble size: 500 Ensemble size: 1000

4 3 2 1

MTBag500@1.22

MTRF500@1.89STBag500@3

STRF500@3.89

Critical Distance = 1.563

4 3 2 1

MTBag1000@1.22

MTRF1000@1.89STBag1000@3

STRF1000@3.89

Critical Distance = 1.563

108 Appendix 1: Complete results

8.3 Hierarchical multi-label classification

8.3.1 Saturation curves

ImCLEF07D ImCLEF07A

0.84

0.85

0.86

0.87

0.88

0.89

0.9

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

Diatoms Enron

0.4

0.45

0.5

0.55

0.6

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

Reuters WIPO

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

109

Expression-FunCat SCOP-GO

0.3

0.31

0.32

0.33

0.34

0.35

0.36

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

0.8

0.81

0.82

0.83

0.84

0.85

0.86

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

Sequence-FunCat Yeast-GO

0.34

0.36

0.38

0.4

0.42

0.44

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

Overall

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

10 20 30 40 50 60 70 80 90 100

Size of ensemble

HMLCBag

HSLCBag

HMLCRF

HSLCRF

A
U
P
R
C

110 Appendix 1: Complete results

8.3.2 Statistical tests for predictive performance

Ensemble size: 10 Ensemble size: 25

6 5 4 3 2 1

HSLCRF10@2.15

HMLCBag10@2.5

HMLCRF10@2.5

HSLCBag10@2.95HSLC@5.3

HMLC@5.6

Critical Distance = 2.384

6 5 4 3 2 1

HSLCRF25@2.2

HMLCBag25@2.4

HMLCRF25@2.5

HSLCBag25@2.9HSLC@5.4

HMLC@5.6

Critical Distance = 2.384

Ensemble size: 50 Ensemble size: 75

6 5 4 3 2 1

HSLCRF50@2.25

HMLCBag50@2.4

HMLCRF50@2.5

HSLCBag50@2.85HSLC@5.4

HMLC@5.6

Critical Distance = 2.384

6 5 4 3 2 1

HSLCRF75@2.2

HMLCBag75@2.4

HMLCRF75@2.55

HSLCBag75@2.85HSLC@5.4

HMLC@5.6

Critical Distance = 2.384

Ensemble size: 100

6 5 4 3 2 1

HMLCBag100@2.2

HSLCRF100@2.35

HMLCRF100@2.55

HSLCBag100@2.9HSLC@5.4

HMLC@5.6

Critical Distance = 2.384

111

8.3.3 Statistical tests for efficiency

Time consumption

Ensemble size: 10 Ensemble size: 25

4 3 2 1

HMLCRF10@1

HSLCRF10@2.2HMLCBag10@2.9

HSLCBag10@3.9

Critical Distance = 1.483

4 3 2 1

HMLCRF25@1

HSLCRF25@2.3HMLCBag25@2.8

HSLCBag25@3.9

Critical Distance = 1.483

Ensemble size: 50 Ensemble size: 75

4 3 2 1

HMLCRF50@1

HSLCRF50@2.3HMLCBag50@2.8

HSLCBag50@3.9

Critical Distance = 1.483

4 3 2 1

HMLCRF75@1.1

HSLCRF75@2.2HMLCBag75@2.7

HSLCBag75@4

Critical Distance = 1.483

Ensemble size: 100

4 3 2 1

HMLCRF100@1.1

HSLCRF100@2.2HMLCBag100@2.8

HSLCBag100@3.9

Critical Distance = 1.483

Model size

Ensemble size: 10 Ensemble size: 25

4 3 2 1

HMLCBag10@1.1

HMLCRF10@1.9HSLCBag10@3

HSLCRF10@4

Critical Distance = 1.483

4 3 2 1

HMLCBag25@1.2

HMLCRF25@1.8HSLCBag25@3

HSLCRF25@4

Critical Distance = 1.483

Ensemble size: 50 Ensemble size: 75

4 3 2 1

HMLCBag50@1.1

HMLCRF50@1.9HSLCBag50@3

HSLCRF50@4

Critical Distance = 1.483

4 3 2 1

HMLCBag75@1.1

HMLCRF75@1.9HSLCBag75@3

HSLCRF75@4

Critical Distance = 1.483

Ensemble size: 100

4 3 2 1

HMLCBag100@1.

HMLCRF100@1.9HSLCBag100@3

HSLCRF100@4

Critical Distance = 1.483

	1 Introduction
	1.1 General perspective
	1.2 Motivation
	1.3 Contributions
	1.4 Organization

	2 Background
	2.1 Machine learning tasks considered
	2.1.1 The task of predicting multiple targets
	2.1.2 The task of hierarchical multi-label classification

	2.2 Related work
	2.2.1 Ensemble learning
	2.2.2 Predictive clustering
	2.2.3 The task of predicting structured outputs

	3 Ensembles for predicting structured outputs
	3.1 PCTs for structured outputs
	3.1.1 PCTs for multiple target variables
	3.1.2 PCTs for hierarchical multi–label classification

	3.2 Ensembles of PCTs for predicting structured outputs
	3.2.1 Constructing ensembles of PCTs
	3.2.2 Bagging
	3.2.3 Random forests
	3.2.4 Random subspaces
	3.2.5 Bagging of subspaces
	3.2.6 Combining the predictions of individual PCTs

	3.3 Local prediction of structured outputs with PCTs and ensembles

	4 Experimental design and results
	4.1 Experimental design
	4.1.1 Experimental questions
	4.1.2 Descriptions of the datasets
	4.1.3 Evaluation measures
	4.1.4 Experimental setup

	4.2 Results and discussion
	4.2.1 Multiple continuous targets
	4.2.2 Multiple discrete targets
	4.2.3 Hierarchical multi–label classification
	4.2.4 Summary of the results

	5 Further developments
	5.1 Predicting other structured outputs
	5.1.1 Distances for hierarchical classification
	5.1.2 Time series
	5.1.3 Prototypes and voting

	5.2 Feature ranking for structured outputs
	5.2.1 Feature ranking using random forests
	5.2.2 Biomarker discovery using multi-target ranking

	5.3 Construction of ensembles of PCTs using beam search
	5.3.1 Beam search induction of PCTs
	5.3.2 Diversity in the beam
	5.3.3 Empirical evaluation

	6 Case studies
	6.1 Predicting vegetation condition
	6.2 Hierarchical annotation of medical images
	6.3 Predicting gene function
	6.4 Summary of the case studies

	7 Conclusions and further work
	7.1 Conclusions
	7.2 Further work

	8 References
	Appendix 1: Complete results
	8.1 Prediction of multiple continuous targets
	8.1.1 Saturation curves
	8.1.2 Statistical tests for predictive performance
	8.1.3 Statistical tests for efficiency

	8.2 Prediction of multiple discrete targets
	8.2.1 Saturation curves
	8.2.2 Statistical tests for predictive performance
	8.2.3 Statistical tests for efficiency

	8.3 Hierarchical multi-label classification
	8.3.1 Saturation curves
	8.3.2 Statistical tests for predictive performance
	8.3.3 Statistical tests for efficiency

