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ABSTRACT
Ensembles for unsupervised outlier detection is an emerging
topic that has been neglected for a surprisingly long time (al-
though there are reasons why this is more difficult than su-
pervised ensembles or even clustering ensembles). Aggarwal
recently discussed algorithmic patterns of outlier detection
ensembles, identified traces of the idea in the literature, and
remarked on potential as well as unlikely avenues for future
transfer of concepts from supervised ensembles. Comple-
mentary to his points, here we focus on the core ingredients
for building an outlier ensemble, discuss the first steps taken
in the literature, and identify challenges for future research.

1. INTRODUCTION
Outlier detection is the process of identifying those observa-
tions which deviate substantially from the remaining data.
Many definitions of outliers exist in the statistics literature,
usually tied to specific assumptions on the underlying data
distribution. The most common general definitions remain
rather vague, such as these classic examples:

“an observation which deviates so much from
other observations as to arouse suspicions that
it was generated by a different mechanism.” [30]

“An outlying observation, or ‘outlier,’ is one that
appears to deviate markedly from other members
of the sample in which it occurs.” [26]

“An observation (or subset of observations) which
appears to be inconsistent with the remainder of
that set of data” [8]

The point of all these definitions is the idea that any pro-
cess, whether it is a traffic network, web server traffic, credit
card data, sensor data in some scientific experiment, or the
human metabolism, offers characteristic observations that
could even be predicted if the process was well-understood.
Any unpredicted observation indicates a lack of understand-
ing of the particular process, or is produced by a different
process (such as a traffic accident, a network intrusion at-
tack, credit card fraud, sensor failure, or a disease affecting
human health), and therefore probably is worth further in-
vestigation.

Outlier detection algorithms aim to automatically identify
those valuable or disturbing observations in large collections
of data. Because there is no rigid definition of which obser-
vation exactly is an outlier, every algorithm is based on a
model that is relying on certain assumptions of what qual-
ifies as an outlier. Clearly, the applicability of each model
depends on the nature of the data. Sophisticated algorithms
do not only label observations as outlier or inlier, but assign
scores to observations, representing degrees or probabilities
of outlierness. Some popular models are based on the dis-
tance between objects [37; 60; 4; 74], or on the density of
the neighborhood of an object [9; 56; 34; 38; 42], or based
on the variance of angles between object vectors [42; 58],
or on other principles of outlierness in various domains [12;
13; 3]. These methods represent different attempts to make
the rather vague intuition about what outliers are more con-
crete, typically in an implicit, procedural way [65].

Because every model is specialized for different characteris-
tics of observations and therefore fits only to some aspects of
the “whole truth”, it might be a good idea to integrate vari-
ous different outlier detection results, producing a consensus
of judgements. The key idea of such an approach, which is
called an “ensemble”, is that the combination of individual
judgements, or outlier detection results, is beneficial if those
judgements do not contain all the same errors. One might
think of it as a majority vote of a jury (as in Condorcet’s
Jury theorem [47]): One or another judgement about an
observation might be wrong, but the majority might still
be right, as long as the judgements are, overall, somewhat
reliable and every member decides independently from the
others.

Aggarwal [2] recently proposed a categorization of ensemble
approaches to outlier detection by algorithmic patterns or
strategies. He distinguishes “sequential ensembles” vs. “in-
dependent ensembles”, and “model-centered ensembles” vs.
“data-centered ensembles”. This is helpful for identifying
aspects of the ensemble approach in the literature. Accord-
ingly, he points out that before the first paper was explicitly
talking about “outlier ensembles” [45], traces of the very
idea of combining different models have appeared earlier
in the literature, and also several times later without dis-
cussing a potential relationship to ensemble techniques ex-
plicitly. When reading the literature through these glasses
of ensembles, we can undoubtedly find many hints on the
ensemble idea without explicit discussion. However, not ev-
erybody has to wear these glasses. To discuss the problem
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of, e.g., subspace outlier detection based on the combination
of several models [36; 51; 52] without discussing ensemble
techniques is perfectly fine. In fact, the subspace outlier
problem is a hard problem in its own right and the typical
conference paper cannot accommodate a broader discussion
for reasons of space restrictions.

Furthermore, the subspace outlier problem could be seen as
a problem analogous to the multiview or alternative cluster-
ing problem [77] where it is not intended to find the con-
sensus clustering; instead, different clustering solutions in
different subspaces can each be interesting, valid solutions.
Likewise, different outliers in different subspaces could each
be meaningfully reported. This is reflected in recent research
addressing the explanation of subspace outliers [14]. Seen
this way, subspace outlier detection would even be orthogo-
nal to the “ensemble” or “consensus” idea.

Nevertheless, discussing the subspace outlier problem while
taking into account reasoning on ensemble techniques would
seem promising of finding more principled solutions to the
subspace outlier problem [76]. Likewise, it would seem that
ensemble techniques such as feature bagging [45], i.e., using
different subspaces as a means to learn diverse models, could
also benefit from insights in the area of subspace outlier
detection.

Complementary to Aggarwal [2], we would like to discuss
here the specific challenges, the first steps taken so far in the
literature, and overall the important questions in research
regarding ensembles for outlier detection.

Transferring basic principles from supervised learning, the
two key principles of ensemble construction would be accu-
racy and diversity. Casting outlier detection as an unsu-
pervised problem, however, there is nothing known about
the accuracy of individual outlier detectors during learn-
ing. This is a very fundamental problem and, as Aggar-
wal [2] pointed out, probably one of the main reasons why
the state of the art in research on ensembles for unsuper-
vised outlier detection is not very advanced. But obviously
this problem would also affect ensemble clustering where
we have a lot more of research presented in the literature.
Therefore, we should have a closer look on the differences
between ensemble clustering and ensemble outlier detection
beyond their common characteristic of being unsupervised
ensembles. How to assess the diversity of outlier detection
results does not have a straightforward answer either, but
at least it found some attention recently.

In the remainder of this paper, we will first have a look at
the research area of ensemble clustering in Section 2, detail-
ing why ensembles for outlier detection are quite a different
issue. We will discuss the crucial research questions for out-
lier detection ensembles, reflecting the literature as sparse
as it is so far, in Section 3, Section 4, and Section 5. Com-
mon approaches to assess the accuracy of outlier detection
results are far from satisfying. We sketch the problem in
Section 3. The diversity of models, besides their accuracy,
is the most important ingredient for ensemble construction.
We will discuss the issue of diversity of models for outlier
detection in Section 4. Another central question is how to
actually construct the ensemble, i.e., how to combine the
models. The challenges in combining different models and
preliminary findings in the literature will be discussed in
Section 5. Finally, we summarize our positions in Section 6.

2. ENSEMBLE CLUSTERING,
ENSEMBLE OUTLIER DETECTION
— WHAT IS THE DIFFERENCE?

Using ensemble techniques to improve classification is based
on a sound theory [16; 70; 10; 44; 62]. In the unsupervised
area of clustering, using ensemble techniques has at least a
history of many empirical studies [67; 25; 55; 24; 33]. Fur-
thermore, the idea of using several different clustering results
is important not only in ensemble clustering as an explicit
technique but also in related approaches such as multi-view
clustering, subspace clustering, and alternative clustering
[11; 59; 31; 50; 77]. The ensemble idea has also been used
when clustering evaluation measures are combined [72].

By a simple transfer of ideas from these research results in
the area of ensemble clustering (and related areas), we can
assume that a combination of outlier detection models would
also show potential to improve considerably over the com-
bined individual models. Also, we can assume, by analogy,
that diversity of models would be helpful in outlier detection
as it is in clustering or classification.

Surprisingly, for outlier detection there have not been many
attempts to use ensemble techniques for improvement in a
principled way, let alone investigations of the theoretical ba-
sis of doing so. When comparing the tasks of outlier detec-
tion and clustering, we can name several reasons for this sur-
prising fact — reasons, that, at the same time, highlight the
research issues that are different for the design of ensemble
methods for outlier detection than for ensemble clustering.

1. The first issue is the question of how to measure ac-
curacy (or some other index of quality) of the result
of an unsupervised data mining task. In the case of
clustering, we distinguish external and internal valid-
ity measures.

• External measures would assess how well some
clustering reflects an externally given ground truth
(gold standard) partition, using similarity mea-
sures such as the Rand-index [61] or the adjusted
Rand-index (ARI) [32], or other pair counting
approaches [57], essentially counting the number
of agreements and disagreements regarding the
membership of pairs of objects to clusters in the
ground truth and the clustering solution. Other
similarity measures compare partitions by map-
ping sets, important examples being entropy-based
measures such as (normalized) mutual informa-
tion [67; 48].

Although the approach to assess clustering qual-
ity by comparison with some given ground truth
of known classes is debatable [22], there is prob-
ably no better approach available to assess clus-
tering quality w.r.t. external knowledge.

• Internal measures evaluate the quality of some
clustering result according to certain assumptions
on what constitutes a good clustering, for exam-
ple, compactness and separation of clusters as,
e.g., in the Silhouette coefficient [35], or density-
connectivity within and density-separation between
clusters as, e.g., in DBCV [49]. Many of these in-
ternal measures can also be used to rank different
solutions relatively to each other and are therefore
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also called “relative validity measures” [71]. This
way, potential members for a clustering ensemble
could be selected based on their relative quality,
regardless of any information on the ground truth
[20; 53].

Quality assessment for outlier detection models is quite
different since outlier detection models are not parti-
tioning but ranking the data. We will elaborate on
variants of quality assessment in outlier detection in
Section 3.

2. The second issue that is important for building good
ensembles but, at the same time, is quite different for
outlier detection and for clustering, is the diversity of
models. For clustering, assessment of diversity again
can make use of numerous similarity measures such
as external validity measures. The effect of diversity
of models, and different ways of designing better en-
sembles making use of diverse components, has been
studied extensively in the literature on ensemble clus-
tering [43; 28; 27; 20; 6].

The similarity of outlier detection models, again, not
being partitions but rankings of the data, cannot rely
on the same means. We will discuss first approaches
addressing this aspect of ensembles for outlier detec-
tion in Section 4.

3. The third issue, when given individual models (that
are, hopefully, accurate and diverse), is how to com-
bine these models. For ensemble clustering, this re-
quires some matching of partitions, e.g., using similar-
ity measures (again, as those available from external
validity measures) or more refined methods of deriving
some consensus partition [67; 19; 5; 69; 68; 21; 25; 55].

The combination of outlier detection results, i.e., rank-
ings, requires different techniques than the combina-
tion of partitions studied in ensemble clustering. We
discuss the issues particularly involved in combining
outlier detection models and the approaches presented
so far in the literature in Section 5.

3. ACCURACY (QUALITY) OF RESULTS

3.1 External Evaluation
If given a ground truth dataset where we know, for each
object, whether it actually is an outlier or not, two ways
of measuring the quality of the outlier detection result are
commonly used in the literature [76].

The first, more widely used measure of success is based on
receiver operating characteristic (ROC) curves. ROC curves
plot the true positive rate against the false positive rate.
The resulting, monotone curves are usually turned into a
measure by computing the area under this curve (AUC).
This allows to display several results in a single graph and
to compare the results numerically.

For a random ranking result, both rates (true positive rate
and false positive rate) will grow at the same rate, resulting
in an area that approximately fills half of the space. For a
perfect result, returning all outliers first and only then re-
turning the inliers (i.e., we have 100% true positives before
we even get the first false positive), the area under the cor-
responding curve will cover the available space completely,

i.e., the maximal ROC AUC value is 1.0. Intuitively, the
ROC AUC value can be seen as the probability that a pair
of two randomly chosen objects, one positive example (out-
lier) and one negative example (inlier), is sorted correctly
(i.e., the outlier is ranked before the inlier) [29]. ROC curves
and ROC AUC analysis inherently treat the class imbalance
problem by using the relative frequencies which makes them
particularly popular for evaluation of outlier detection.

Sometimes, additionally or alternatively to ROC analysis,
the precision of the result is assessed for a given number k
of top outliers: How many of the top k ranked data objects
are actually outliers? This is known as “precision at k”. As
an evaluation measure, this is a bit more problematic, as it
involves a parameter.

Both quality measures require data with known, annotated
outliers, or, to put it in terms of classification, a binary,
yet typically highly imbalanced classification task (very few
outliers vs. many inliers).

Although the task of outlier detection is practically ubiq-
uitous, these practical tasks are tasks because the ground
truth is unknown. There is nothing like established bench-
mark data sets in this field, required to study and compare
the behavior of algorithms for outlier detection. What peo-
ple do, for example, is using classification data sets such as
available in the UCI repository [7]. To prepare an outlier de-
tection task from such classification tasks, one can, e.g., pick
some class as outlying and keep only a small sample of this
outlier class while the other classes remain complete and
are treated as inliers. This procedure is sometimes called
“down sampling” and has been used, with different variants,
in many studies designing new outlier detection methods [1;
73; 42; 74; 36; 15; 14]. A recent study is dedicated to develop
a more systematic approach [18], but this is also merely a
wider step in the same direction — a direction that probably
is debatable.

Let as note, however, that all these problems regarding ex-
ternal evaluation are not specific for outlier detection en-
sembles but are inflicting the research on outlier detection
in general.

3.2 Internal Evaluation
To the best of our knowledge, there are no insights whatso-
ever in the literature on outlier detection regarding internal
validation measures.

3.3 Challenges
As challenges for future research on the aspect of quality
assessment of outlier detection results, we see the following
issues and questions for research:

• Defining useful, publicly available benchmark data in a
principled way for outlier detection tasks would allow
for a more objective study of progress in the field. This
is, however, a general challenge in outlier detection not
restricted to improving the field on ensemble methods
for outlier detection.

• It will be very useful to identify meaningful criteria
of internal evaluation of outlier detection rankings.
Again, this is important for the progress of research
on outlier detection in general. But internal evalua-
tion criteria can be expected to have significant impact
in particular on the research in ensemble methods for
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outlier detection, as this might allow to develop simi-
lar ideas for outlier detection ensembles as mentioned
above for better clustering ensembles based on relative
validity criteria.

Actually, since the effectiveness of internal criteria them-
selves will need to be evaluated, the first challenge posed
above, namely, to provide better, more principled and ob-
jective possibilities for external evaluation of results, will be
an important prerequisite for the second challenge.

4. DIVERSITY OF MODELS
Typical unsupervised methods for outlier detection return
a score of “outlierness” for each object. When assuming a
fixed order of the objects in the dataset, an outlier detec-
tion result can be thought of as a vector consisting of the
outlier scores for each object [63]. This way, we can define
the space of all possible outlier detection results for a given
dataset, where each dimension represents the possible out-
lier scores of a particular observation. Let us, for the sake of
simplicity, consider some outcomes for two objects, resulting
in a two-dimensional plot as illustrated in Figure 1 (for n
objects, the space would be n-dimensional and not suitable
for visualization). The green circle represents the (usually
unknown) ground truth, while the red crosses are individual
results generated by somehow diverse outlier models.

Figure 1(a) shows how the combination of the six individ-
ual result vectors by the simple component-wise mean pro-
duces another result, represented by the blue X. This com-
bined result is, in this case, a better approximation of the
ground truth (green circle). All individual solutions are al-
ready quite accurate, that is, they are close to the ground
truth. This is a necessary condition for assembling these
individual solutions to make a good ensemble, which can be
illustrated by the following reasoning: It is known that the
ground truth is located somewhere in the result space, but
it could be anywhere. The generation of multiple individ-
ual, more or less accurate (i.e., at least better than random)
results restricts the space of where the true result most prob-
ably lies: if they are accurate to some extent, the true result
will be close to them. The motivation for combining the in-
dividual results by, for example, computing the mean score
for each observation is the expectation that the true result
will be somewhere between them. In fact, for combination
techniques like the mean, the convex hull of the individual
results already restricts the result space to an area where the
true result is expected to be, and where ensembles generate
their integrating results.

Figure 1(b) illustrates the limited effects of accuracy when
diversity is missing. It can easily be seen that, again, the in-
dividual results are quite accurate. However, the combined
result gets rather attracted towards the majority of the sin-
gle results. If the upper right, rather deviating, result would
not exist, the combined result would lie completely inside
the tight cluster of remaining results and would be even
more distant to the true result. This is the effect of miss-
ing diversity. All single results of that tight cluster make
the same error: They underestimate the outlier score for
the object that is represented by the x-axis. In comparison,
Figure 1(a) shows results which make different errors, each
of them over- and underestimating a score, resulting in an
accurate ensemble result.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Diverse results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Clustered results

Figure 1: Diverse and clustered outlier detection results.

Of course, diversity is not the only criterion. Ignoring accu-
racy and maximizing diversity would scatter the individual
results all across the result space without any restriction.
Both the true result and a combined result could reside any-
where in the complete result space, not necessarily being
close to each other.

Seeing the outlier detection results as vectors in a vector
space, spanned by the observations of a given dataset, as
depicted in Figure 1, allows us to see both components, ac-
curacy and diversity: accuracy of individual ensemble mem-
bers (red crosses) is represented by the absolute distances
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from the true result (green circle), while the diversity is re-
flected in the relative distances, taking into account also the
direction of deviation, from the true result. Clearly, both cri-
teria, accuracy and diversity, are antagonistic to a certain
degree. The more accurate the individual results are, the
tighter they are packed and therefore the less diverse they
are. And the more diverse the individual results are, the less
accurate most of them can possibly be. If we just transfer
the intuition on ensemble learning from supervised ensem-
bles, the essential requirement is that individual ensemble
members would commit errors different from the other en-
semble members whenever they are committing errors at
all. As long as they are correct they also should be in ac-
cordance with the other ensemble members. Let us note
that, interestingly, the vector space intuition of outlier de-
tection results would also allow us to talk about subspaces
(i.e., subsets of objects) where result vectors would cluster.
So maybe it is possible to transfer insights from subspace
clustering [41; 66; 77] to the area of outlier ensembles.

So far, this is an intuition basically transferred from su-
pervised ensemble learning without any further theoretical
understanding. Questions tackled in the literature are how
to induce diversity among models (Section 4.1) and how to
assess diversity along with the impact of diversity on the
ensemble performance (Section 4.2). If we are given diverse
models, another interesting question is if we can select some
of them to build better ensembles than if we selected all of
them. We sketch a greedy approach to this problem (Sec-
tion 4.3) and suggest challenges and issues for future re-
search w.r.t. to the diversity of models (Section 4.4).

4.1 Inducing Diversity
Mostly in analogy to methods for inducing diversity in clas-
sification ensembles [10] or clustering ensembles [24], there
have been studies on combining outlier scores (or rankings)
(1) learned in different subsets of attributes (i.e., different
subspaces), (2) learned on different subsets of objects, (3)
learned by randomized methods, (4) learned by the same
method but using different parametrization, and (5) learned
by different models.

1. Combining outlier scores or rankings learned on dif-
ferent subsets of attributes, the so-called “feature bag-
ging” was the first paper to explicitly discuss building
ensembles for outlier detection [45].

Some meta methods that specialize on subspace out-
lier detection, such as HiCS [36] or OutRank [51], do
in fact also combine models learned in different sub-
spaces. However, their subspaces are not selected ran-
domly but from the point of view of detecting subspace
outliers. From an ensemble point of view this restric-
tion could be a disadvantage by introducing a bias.
This bias is meaningful and of course intended under
the assumption of noisy subspaces that ought to be ex-
cluded from the feature bagging procedure. Although
these subspace methods are not discussed as an en-
semble framework, in effect they could be understood
and probably discussed more deeply in an ensemble
context, as pointed out earlier [76; 2].

2. The orthogonal approach, combining models learned
on different subsets of objects [75], has the advantage
of a considerable speed-up as it works well in particular

with small sample rates, e.g., using only 10% of the ob-
jects for the density estimates. The typical complexity
of outlier detection methods is in O(n2) due to kNN
queries. Hence a common ensemble, such as feature
bagging, would be in O(s·n2) for s ensemble members.
The subsampling ensemble, however, has to perform,
for each data object (n), a kNN query on a subsample
only (i.e., m · n for sample rate 0 < m < 1). Repeated
on s subsamples, this results in O(n · mn · s). For
example, with a sample rate of 10% and an ensemble
size of 10 members, the ensemble requires roughly the
same runtime as a single base learner on the full data
set while the runtime of a standard ensemble (combin-
ing models learned on the complete dataset) would be
roughly 10 times the base learner’s runtime.

3. The approach of “isolation forests” [46] designs a ran-
domized method leading to diversity. The effect of ran-
domized methods is, however, complemented in this
method by the effect of random subsamples of the
dataset. On each subsample, a binary tree (called
“isolation tree”) is built splitting randomly selected
attributes at randomly selected split points up to a
specified depth or until a given subset at some node
cannot be split (because it has only one element). The
path length for an object in the tree is expected to be
shorter in areas of lower density. Hence, the ensemble
(the forest) is essentially an aggregate of randomized
density estimates.

The speed-up effect of the subsampling is not as promi-
nent in the approach of isolation forests as in the more
general approach for methods based on kNN queries
[75] since no kNN queries are required for building the
binary trees anyway. A possible effect of using sub-
samples here is that the trees, because these subsam-
ples are unlikely to contain many outliers, are built
faster and describe the dataset in a more concise way.
The effect of inducing diversity by drawing subsam-
ples appears to be less important for the success of
this method than the effect of the randomization of
attribute and split point selection [46, Fig. 18].

4. Combining models learned using different parameters
has been proposed as an ensemble method by Gao
and Tan [23], although Aggarwal [2] identified traces
of this idea in earlier papers without an explicit dis-
cussion of the ensemble idea. For example, for LOF
[9] as well as for LOCI [56], the authors suggested to
try different parameters (controlling the granularity of
neighborhood analysis; in LOCI, the combination of
different granularity is even inherent to the method)
and to use the granularity that optimally enhances the
outlierness. Following this model, a recent generalized
KDE-based method [64] also combines models learned
for different parameters to an ensemble approach.

5. Combining outlier scores of different algorithms (i.e.,
combinations of different models of what constitutes
an outlier) has been explored in several studies [54;
40; 63].

When combining scores from different models, normal-
ization and unification of the scores that can scale very
differently and sometimes are even inverted (i.e., some

SIGKDD Explorations Volume 15, Issue 1 Page 15



methods represent outliers by large scores, some meth-
ods represent outliers by small scores) becomes essen-
tial (although normalization should be considered for
combination of scores from different subspaces or dif-
ferent parameters as well, depending on the properties
of the model).

The first of these studies [54] used a generic normal-
ization, the second [40] studied the properties of distri-
butions of scores for different methods and, thus, was
able to use specialized normalization procedures. The
third [63] proposed a greedy combination procedure
based on an assessment of diversity of models.

Overall, these studies highlight three important aspects for
outlier ensembles: assessment of diversity, normalization of
scores, and combination procedures, which we discuss in Sec-
tions 4.2, 5.1, and 5.2, respectively.

The greedy combination strategy [63] also raises an inter-
esting challenge for outlier ensembles: how to choose good
ensemble members or how to train improved ensemble mem-
bers based on previously learned and evaluated models in
the absence of a ground truth for evaluation. This challenge
has also been noted by Aggarwal [2]. The heuristic of the
greedy ensemble will be discussed in Section 4.3.

At first sight, thinking about the transfer of techniques from
classification or clustering ensembles, it may seem that with
the five mentioned categories of heuristics for inducing di-
versity the obvious opportunities have been studied in the
literature. However, all these studies leave room for deeper
understanding of these heuristics and there are probably
more methods for inducing diversity waiting to be explored
that perhaps do not have a counterpart in classification or
clustering ensembles. For example, diverse models could be
learned by using different distance measures. This has only
been studied partly [63], assessing the resulting diversity of
models but not the quality of ensembles combining these
models.

4.2 Assessing Diversity
Having seen different methods for inducing diversity that
are known from classification or clustering ensembles, the
question arises how well these methods work in the context
of outlier detection. This question was addressed by a re-
cent study [63], proposing the vector space of outlier scores
that we sketched above and weighted Pearson correlation as
a similarity measure for these score vectors. This study dis-
cussed two use cases of such an assessment of diversity: (1)
studying the suitability of methods for inducing diversity
and (2) selecting the most diverse models for combination.
The latter we discuss in Section 4.3, as mentioned earlier.
Let us discuss the first aspect now.

The idea of using a weighted similarity measure, such as
weighted Pearson, to compare score vectors, is motivated by
the relative importance of outlier scores while differences in
inlier scores should not matter that much. Given a ground
truth (i.e., using some dataset with known outliers), the
weights for the similarity measure comparing score vectors
can be adjusted to this ground truth. Studying some meth-
ods, some distance measures, and some datasets using such a
weighted similarity measure, the findings reported by Schu-
bert et al. [63] are:

• Outlier score vectors are usually similar (strongly cor-
related) between the same model just using different

parameters (e.g., different values of k for the neigh-
borhood size, i.e., different granularity). Hence, this
method of inducing diversity is probably not a good
idea for building ensembles as long as the model used
is not known to be an “unstable learner” w.r.t. its pa-
rameter. The classic models LOF [9], kNN outlier [60],
and kNN weight [4], among others, are shown experi-
mentally to be rather stable w.r.t. neighborhood size.

• Different distance measures can have a stronger im-
pact on diversity on some datasets. But there are also
examples where all Lp norms result in strongly corre-
lated results while results based on vector-length in-
variant distance measures (such as the cosine distance
and other correlation measures) again are correlated
strongly with each other but not with the Lp-norm-
based results. Using different distance measures hence
seems to be promising although the suitability of some
distance measure is highly dataset dependent.

• Different models (algorithms) fall into families that
learn similar results. For example, the results of LOF
[9] and of the LOF variant LoOP [38] seem highly cor-
related, and the results of the kNN model [60] and the
kNN weight model [4] are strongly correlated as well
(on the datasets studied), but LOF or LoOP (both
being local methods) and kNN or kNN weight (both
being global methods [65]) are not strongly correlated.
Combining models from different families might have
a large potential to lead to improved ensembles.

• Feature bagging [45] apparently has the potential to
lead to very uncorrelated results and, thus, to im-
proved ensembles.

The finding of weakly correlated results by feature bagging
is also reflected in the finding of feature bagging being rather
unstable [75]. From the perspective of building ensembles,
instability is not necessarily a bad thing although the com-
bination of very different models is not bound to lead to a
good ensemble. Diversity, after all, is only one aspect be-
sides accuracy and too much of diversity is bound to limit
accuracy.

4.3 Model Selection
Aggarwal [2] pointed out that analogues of “boosting” or
“bucket of models” — established concepts for supervised
ensemble learning — are unlikely to be developed for unsu-
pervised outlier detection. We pointed out (Section 3), that
internal validity measures for outlier detection results are
still missing in the literature and would be very important.
Yet this does not mean that model selection is impossible:
at least a greedy heuristic, optimizing diversity in an en-
semble, has been discussed recently [63]. This rather crude
heuristic (see a sketch in Algorithm 1) relies on an accuracy
estimate based on all learned potential ensemble members.
The method first takes the union of the top k points of all
results as preliminary outliers for determining weights for
the similarity measure (weighted Pearson), assessing the di-
versity between results. Then the ensemble is composed,
starting with the result that is closest to this consensus re-
sult. Next the remaining outlier detectors are sorted by
the lowest correlation to the result of the current ensemble
(initially, the ensemble consists only of one outlier detec-
tor) and test if including the next detector would improve
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Algorithm 1: Greedy Model Selection

/* individual outlier detectors: */

I := list of individual outlier detectors;
K := union of top-k outliers ∀I;
/* K are the preliminary ‘outliers’ */

v := target vector;
/* (vi = 1 if object i ∈ K, vi = 0, otherwise) */

E := ∅ ensemble;
sort I by weighted Pearson correlation to v;

/* weights: 1
2|K| (outliers), 1

2(n−|K|) (inliers) */

E := E
⋃

getFirst(I);
p := current prediction of E;
sort I by weighted Pearson to p (decreasing order);
while I 6= ∅ do

i = getFirst(I);
if weightedPearson(E

⋃
i, v) > weightedPearson(E, v)

then
E := E

⋃
i;

p := current prediction of E;
sort I by weighted Pearson to p (decreasing order);

end

end
return E ;

the correlation of the ensemble result with the (preliminary)
target vector (i.e., the estimated ground truth). If yes, this
detector is included in the ensemble and the list of remain-
ing detectors is reordered. If no, the detector is discarded
and the algorithm continues with the next detector. Note
that the whole process works in a completely unsupervised
manner in that no actual ground truth is used.

This heuristic is based on the assumption that the union of
the complete set of individual outlier detectors is somehow
accurate but can be improved by dropping those detectors
that are strongly correlated with others. This assumption
serves to overcome the limitations of unsupervised ensem-
ble learning by unavailability of training data. Although we
cannot see — so far — analogues of boosting for unsuper-
vised learning either, very likely better heuristics than this
greedy model selection are possible. In terms of the issue of
accuracy (Section 3), this heuristic is using internally con-
structed means of validation as if it were externally available
ground truth.

4.4 Challenges
As challenges for future research on the aspect of diversity
for outlier ensembles, we see the following research ques-
tions:

• A thorough study of the heuristics to induce diversity
proposed so far, in more detail and in comparison with
each other, would be very interesting. As the heuris-
tics are rather different from each other, a decent and
fair comparison study is far from trivial. One could
study the diversity actually achieved by the methods
for inducing diversity, and the impact of diversity on
the performance of an ensemble.

• To identify yet other methods for inducing diversity
would probably lead to broader applicability and deeper
understanding of the impact of diversity and of the sta-
bility of base methods.

• To develop better measures of diversity of outlier score
vectors in the absence of ground truth would also be
crucial to help us understand the issues of diversity
and stability.

• Effective methods of choosing appropriate ensemble
members (i.e., those that are different from other en-
semble members) would also be desirable. Answers to
the previous issues would allow progress here as well.

5. COMBINATION OF MODELS
Having derived a couple of outlier detection results, or vec-
tors of outlier scores, that are – ideally – diverse and ac-
curate to some extent, the third central question is how
to combine them to derive a consensus or ensemble result.
The two issues we discuss here in particular are the require-
ment of score normalization for a meaningful combination
of scores (Section 5.1) and the different possibilities to com-
bine (normalized) score vectors (Section 5.2). Some prefer
to combine the rankings instead of the score vectors which
we will touch upon (Section 5.3). We suggest challenges and
issues for future research w.r.t. the combination of models
(Section 5.4).

5.1 Normalization of Scores
Any meaningful combination of score vectors relies heavily
on the scores provided by the individual outlier detectors
being comparable. This problem practically rules out the
combination of different base methods or, for many methods,
different parametrizations of the same method (e.g., differ-
ent k for a kNN-distance-based method, as the result with
the largest k would dominate the distance values). Even
when using the same method as base outlier detector and
identical parametrization, outlier scores obtained from dif-
ferent subspaces could vary considerably, if some subspaces
have largely different scales. The ensemble could then be
dominated by just one of the feature bags.

Several of the papers discussing outlier detection ensem-
bles focused on the issue of comparability of scores for score
combinations. The first approach was to use sigmoid func-
tions and mixture modeling to fit outlier scores, provided
by different detectors, into comparable probability values
[23]. The second approach was scaling by standard devia-
tion [54]. Finally, statistical reasoning about typical score
distributions by different methods enabled normalizations
tailored to particular properties of different methods [40].

Although the solutions provided so far probably leave room
for improvements, the important thing is to realize the prob-
lem and to use some normalization when combining outlier
scores. To provide a good estimate of the actual probability
of some object being an outlier is something valuable for
supporting the user in the interpretation of the individual
outlier detection result. For combination of several results
into an ensemble, this calibration is perhaps not equally im-
portant. But normalization of scores is important, to avoid a
bias of the decision to the individual result with the largest
scale. This distinction is somewhat analogous to the dis-
tinction between class probability estimates and classifica-
tion decisions based on these probability estimates that has
been emphasized for the understanding of the performance
of the näıve Bayes classifier [17]: the outlier scores need not
be good absolute outlier “probabilities” in order to make
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sense for a combination but their relative scale needs to re-
flect the actual ratio of outlierness for compared objects.

5.2 Combination of Score Vectors
Let us assume we are provided with accurate, diverse, and
normalized outlier scores, where normalization includes reg-
ularization [40], i.e., without loss of generality we can as-
sume that the larger score denotes “more” outlierness while
inliers should have been assigned small score values. Now
the question remains how to combine the scores. Aggar-
wal [2, Section 4.2] discusses this issue as well, mentioning
several interesting possibilities. As the most commonly used
methods he names the maximum and the average function
but which combination function is best remains an open
question. We do not intend to answer this question, but
rather to contribute to the debate. In our opinion, from the
point of view of ensembles, using the maximum of scores has
some decisive disadvantages whereas the average does seem
to make more sense.

To understand the disadvantage of using the maximum score,
consider Figure 2, depicting the result of the maximum func-
tion (blue X) as combination of the individual score vectors
(red crosses), in comparison to the average in Figure 1. The
maximum as a combination function results in the upper
bound of all individual scores and, hence, has a tendency to
overestimate the outlierness. This also means that a single
result that is far off, overestimating the scores for some ob-
jects, will determine the ensemble result (e.g., Figure 2(b)).
Errors for different objects, contributed by different individ-
ual outlier score vectors, can lead the maximum combination
actually more off while all individual outlier scores are not
too bad overall (e.g., Figure 2(a)) — remember that this is
a toy example for the rankings of two objects only. For a
realistic scenario with n� 2 objects, it would be even more
likely that some individual score vector is off for some single
object (i.e., in a one-dimensional subspace) and all the other
score vectors would not matter at all for this object.

This contradicts the very intuition of building ensembles.
Errors of each individual score vector for single objects are
strongly emphasized, and an error of a single ensemble mem-
ber assigning a high outlier score to some object cannot be
compensated for, even if all other detectors would be cor-
rect. This drawback counteracts one of the most funda-
mental benefits that one can expect from using an ensemble
method: the correction of errors committed by single ensem-
ble members. Let us note that keeping the maximum scores
from different outlier models, if these models are learned in
different subspaces, could be an approach to the problem
of “multiview” outliers that we mentioned in the introduc-
tion — and that is somehow orthogonal to the ensemble or
consensus idea.

On the other hand, using the average of scores has been theo-
retically advocated [75] for the combination of outlier scores
based on (local) density estimates (as used by many classic
methods such as LOF and its variants [9; 56; 38; 39] or the
kNN outlier model and its variants [60; 4; 74]).1 Building
the average of different density estimates allows to abstract
from the individual errors of these density estimates and,
instead, to reason about the expected error. This reasoning

1Note that the set of methods using local density estimates
is not restricted to the so-called local outlier detection meth-
ods. These are two different notions of “local”, as elaborated
by Schubert et al. [65].
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Figure 2: The maximum for score combination results in an
upper bound of the result vectors.

might open up possibilities to improve our theoretic under-
standing of the benefit of ensembles for outlier detection.

However, the choice of a particular combination function will
also remain application dependent. If the cost of missing a
single outlier is much higher than the cost for a high false
alarm rate, using the maximum combination is certainly
worth considering. On the other hand, in an application
scenario where the cost for false negatives is very high but
missing some outliers might not hurt too much, maybe even
the minimum as a combination method for score methods
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may be a good choice. This would mean that all individ-
ual methods would have to assign a high outlier score to an
object in order to actually count this object as an outlier.
If just one of the ensemble members assigns a small outlier
score, the minimum ensemble would use this smallest score
for this object.

5.3 Combination of Rankings
Combining rankings provided by outlier methods, ignoring
the actual outlier scores, could be seen as a particular way of
normalization. But there is a considerable amount of litera-
ture in databases and in information retrieval on the combi-
nation of rankings that opens up possibilities for transferring
known results from these areas to the particular problem of
outlier detection. The feature bagging method [45], for ex-
ample, was discussed in combination with a breadth-first
traversal rank combination, i.e., taking the top ranked ob-
ject from each individual ranking, then the second rank and
so on. This is almost equivalent to using the maximum as
score combination function2 and, thus, has the same pros
and cons.

Most methods, however, use the outlier scores and not only
the rankings. This might be motivated by the assumption
that the scores and their relative differences have at least
some meaning (an assumption that actually might be de-
batable, in particular for high dimensional data due to an
effect analogous to the concentration of distances [76]). See
also the discussion of normalization issues by Aggarwal [2,
Section 4.1].

5.4 Challenges
As challenges for future research on the aspect of combining
several outlier detection results to a consensus or ensem-
ble ranking or score vector, we see the following issues and
questions for research:

• Improved normalizations of outlier scores via a bet-
ter understanding of score distributions can possibly
improve interpretability of individual scores and, as a
consequence, can lead to a smoother combination of
outlier scores to an ensemble.

• Can scores actually be converted into “outlier proba-
bilities” [23; 40]? How would the success of such a con-
version be evaluated (the problem of “calibration”)?

• Should the calibration of outlier scores depend on the
application? With different costs of false negatives or
false positives, maybe the outlier scores should also get
a bias in the more important direction. This question
might have parallels in cost sensitive learning and the
application of problem dependent loss functions.

• What are the effects of different combination func-
tions? Which combination function is suitable for which
application scenario?

• How to transfer rank accumulation procedures known
in different areas such as databases and information
retrieval to outlier ranking with its particular require-
ments?

2Different from the maximum score combination, this
breadth-first rank combination introduces a discretization
and the resulting ranking depends on the order of the indi-
vidual rankings for the traversal.

• Can we improve our theoretical understanding of why
unsupervised ensembles actually work?

6. CONCLUSIONS
Aggarwal [2] discussed algorithmic patterns, identified traces
of the ensemble idea in the literature, and touched upon
more or less likely options for future transfer of concepts
from supervised ensembles for classification to ensembles for
unsupervised outlier detection. Complementing his overview,
we focused on the fundamental ingredients for success in
building ensembles for unsupervised outlier detection. These
are (1) learning accurate but (2) diverse models and (3) com-
bining these models (or a selection thereof). For all these
aspects, the literature provides not more than some first
steps and insights which we sketched in this paper. As we
point out, there are many opportunities to improve, for all
aspects, we listed some challenges and issues for future re-
search. It is our hope to stimulate research on the surpris-
ingly neglected but very interesting and promising topic of
ensembles for outlier detection.
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