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ABSTRACT The past decade has seen an explosion of the amount of digital information generated within

the healthcare domain. Digital data exist in the form of images, video, speech, transcripts, electronic health

records, clinical records, and free-text. Analysis and interpretation of healthcare data is a daunting task,

and it demands a great deal of time, resources, and human effort. In this paper, we focus on the problem

of co-morbidity recognition from patient’s clinical records. To this aim, we employ both classical machine

learning and deep learning approaches. We use word embeddings and bag-of-words representations, coupled

with feature selection techniques. The goal of our work is to develop a classification system to identify

whether a certain health condition occurs for a patient by studying his/her past clinical records. In more

detail, we have used pre-trained word2vec, domain-trained, GloVe, fastText, and universal sentence encoder

embeddings to tackle the classification of sixteen morbidity conditions within clinical records. We have

compared the outcomes of classical machine learning and deep learning approaches with the employed

feature representation methods and feature selection methods. We present a comprehensive discussion of

the performances and behaviour of the employed classical machine learning and deep learning approaches.

Finally, we have also used ensemble learning techniques over a large number of combinations of classifiers to

improve the single model performance. For our experiments, we used the n2c2 natural language processing

research dataset, released by HarvardMedical School. The dataset is in the form of clinical notes that contain

patient discharge summaries. Given the unbalancedness of the data and their small size, the experimental

results indicate the advantage of the ensemble learning technique with respect to single classifier models.

In particular, the ensemble learning technique has slightly improved the performances of single classification

models but has greatly reduced the variance of predictions stabilizing the accuracies (i.e., the lower standard

deviation in comparison with single classifiers). In real-life scenarios, our work can be employed to identify

with high accuracy morbidity conditions of patients by feeding our tool with their current clinical notes.

Moreover, other domains where classification is a common problem might benefit from our approach as

well.

INDEX TERMS Deep learning, machine learning, multimorbidity, natural language processing, classifiers,

word embeddings, healthcare.

I. INTRODUCTION

In the last years, we have observed a rise in life expectancy,

which has also increased the risk of long-term diseases such

as diabetes, cognitive impairment, and many other severe

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabah Mohammed .

health issues [1]–[4]. A further downside of a longer lifespan

is that people can be affected by more than one disease at

a time, leading to the likelihood of under-standard quality

of life. An individual with long-term diabetes, for example,

has a higher risk of hypertension, high cholesterol levels,

blockage of the arteries or veins. According to the World

Health Organization report [5], 40% of the population is
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exposed to at least one long-term health condition, and 25%

of the population suffers from multimorbidity in a developed

country. In addition, the report also emphasizes the directly

proportional relationship between the high incidence of mul-

timorbidity and middle and low-income countries because

they do not have funds that should be invested to enhance pri-

mary care of the population [6]. There is, therefore, the need

to continuously track medical information.

With the introduction of information technology systems,

more and more clinical records are constantly being pro-

duced, processed, and analyzed. The information encoded

by clinical reports could be used to provide new healthcare

services globally, addressing the problems related to people’s

social or economic status. As an example, clinical reports

contain a variety of information in the form of numbers

(e.g., laboratory results), images (e.g., x-ray), medical

descriptions (e.g., treatment history), or transcripts (e.g.,

motivational interviewing therapy sessions), which can be

used to create content-based services to assist patients and

medical practitioners.

The analysis and human interpretation of healthcare data

are challenging because of their dimension and unstructured

and heterogeneous formats. Hence, Artificial Intelligence

technologies are more massively applied to analyze health-

care big data [7]. For instance, they have been applied to tex-

tual clinical reports to perform tasks such as classification [8],

clustering [9], and recommendation [10]. The state-of-the-

art research in this direction has already yielded significant

results, and many challenges [11] are further explored with

the goal of assisting the healthcare personnel. They include

dynamic forecasting [12], personalized monitoring [13], and

individualized treatment recommendations [14] of patients,

especially those presenting multimorbidities as considered

more vulnerable. According to [5], given that 25% of the

world population is already suffering from multimorbidity,

its early identification is paramount for preventing the severe

health issues which can happen in the future to the patients.

Therefore, in our work, we aim at automatically identifying

the multimorbidity factors indicated in the patient’s clin-

ical records. The morbidity identification is of great sig-

nificance in assisting the healthcare personnel with several

downstream tasks involving the handling of large volumes

of electronic health records. For our experiments, we have

used a dataset that contains the clinical records of patients,

indicating the presence of one or more morbidity factors.

In addition, deep learning (DL) models and advanced word

embeddings representations have recently proven to be state-

of-the-art for many natural language processing (NLP) tasks

and are popularly used within many healthcare problems.

Hence, in order to exploit their advantages, we have focused

upon the representation of clinical records by methods such

as word embeddings and bag-of-words in combination with

feature selection techniques using classical machine learn-

ing (CML) and DL approaches. The work focuses on dis-

covering whether the patients are suffering from single or

multiple morbidity conditions by studying their past clinical

records. In the following, we will list more in detail the

contributions of our paper:

• We use CML and DL approaches for performing mor-

bidity detection within clinical notes.

• We experimentally compare five pre-trained word

embeddings and four bag-of-words representations cou-

pled with different feature selection algorithms.

• We compare the proposed DL approaches against

CML approaches with different bag-of-words feature

representations.

• We compare the proposed DL approaches against CML

approaches with word embeddings feature representa-

tions.

• Out of several CML and DL models we tested, we anal-

ysed their inclusion in an ensemble strategy to improve

single models’ performances.

• We prove that in the presence of small datasets,

single classifiers obtain unstable performances, whereas

ensemble approaches mitigate this instability and, at the

same time, increases the accuracy of the overall clas-

sification. Note that our ensemble approach’s compu-

tational cost affects only the training step, but not the

prediction phase.

• We provide a comprehensive discussion over the perfor-

mances of CML and DL approaches with each kind of

feature representation and the advantages of using the

ensemble strategy and under which constraints.

The remainder of the manuscript is organized as follows.

Section II presents the literature survey and related work.

Section III describes the motivations behind this work and

defines the problem statement we are tackling. It also includes

the details about the dataset description and the preprocess-

ing we have performed. Section IV discusses the differ-

ent types of feature representation methods we employed.

Section V details the classification models used for this

work. Section VI presents the experimental evaluation and

the obtained results. Section VII includes the observations

and trends of the classifiers’ behaviour and the ensemble

strategy we have come up with. Finally, Section VIII draws

the conclusion for the conducted experiments and obtained

results and shows the directions where we are headed.

II. RELATED WORK

This section briefly reviews the existing NLP and Artificial

Intelligence methods within the healthcare domain and how

the feature selection techniques and the word embedding

models have been employed.

A. ARTIFICIAL INTELLIGENCE IN HEALTHCARE

Today Artificial Intelligence and its sub-fields such as DL,

Text Mining, and in general, CML play an important role in

clinical decision-making, comprehension, predictive disease

detection, and therapy assistance [15]. DL healthcare appli-

cations made significant improvements in many areas, such

as the analysis of blood samples, the identification of heart

attacks, tumors, and so on [16]. DL models’ high-quality
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performances for healthcare problems have brought to

encouraging discussions and interest within the Artificial

Intelligence community.

The use of DL techniques to identify multimorbidity in

clinical reports have been extensively studied in recent years.

For instance, DL models in [17] were fed by word and

entity embeddings to the following two layers, Convolu-

tional Neural Network (CNN) and second Max Pooling. The

model improved the results that were obtained during the

i2b21 obesity challenge in 2008. Another work [18] pro-

posed DL based approaches for morbidity status identifica-

tion. It was focused on automatic learning from the clinical

records and feature discovery to disengage hand-crafted fea-

ture selection using single and multi-channel CNN models.

The single-channel CNN model used an embedding layer to

train the model, whereas the multi-channel model employed

multiple CNN models in parallel, as an ensemble of CNN

models, where each used different hyper-parameters. One

more work [19] investigated the performances of long-short

term memory (LSTM) networks for entity recognition based

on character and word-level representations. The proposed

LSTM model outperformed traditional state-of-the-art meth-

ods, such as the conditional random field for entity recog-

nition. Authors in [20] uncovered the implementation of

sentiment analysis techniques for patient discharge sum-

maries classification. The proposed hybrid model used a

semi-supervised technique based on the vector space model

and statistical methods in conjunction with extreme learn-

ing machine auto-encoder. The goal was to examine and

evaluate the treatment quality based on the discharge sum-

maries. In [21], the authors tackled a multi-label binary

text classification problem using the rule-based classifier

and orthogonal machine learning strategies. The work eval-

uated the performances of long short-term memory against

logistic regression employing pre-trained BioWordVec and

domain-trained word embeddings representations. The work

presented in [22] investigated the DL approaches, which

used pre-trained language models on relation extraction from

clinical records. Authors applied pre-trained and fine-tuned

Bidirectional Encoder Representations from Transformers

(BERT), showing that the fine-tune method (FT-BERT) per-

formed better than the feature-based method (FC-BERT).

All the works mentioned above were focused on just DL or

CML techniques. In fact, to the best of our knowledge, there

are not many existing papers available in the literature within

the healthcare domain where CML and DL techniques have

been extensively compared. We address this by presenting a

paper where we carried out an extensive set of experiments

usingDL and CML techniques with different combinations of

feature representation models and word embeddings. More-

over, we employed ensemble strategies to further increase

single models’ accuracy and tested several combinations

of CML and DL approaches with different feature repre-

sentation techniques. The best heterogeneous ensembles we

1https://www.i2b2.org/NLP/Obesity/

obtained at the end of the process exploited the pros of each

constituent. Our target was a multi-classification task (i.e.,

identifying several morbidity factors) within the healthcare

domain. We wanted to conduct one more analysis: how each

CML and DL method behaved within the underlying domain

using a small set of clinical notes.

B. WORD EMBEDDINGS MODELS

Clinical records are mostly in the form of free-text, which are

unstructured, contain typographical errors, and are comprised

of healthcare domain-specific terminologies [23]. The repre-

sentation of these clinical records in a way that they can be

used effectively by CML and DL approaches remains one of

the top challenges within the healthcare domain. To exploit

the hidden semantics within the clinical notes, using word

embeddings is a must. The work in [24] provides a guide for

training word embeddings on clinical text data. It discusses

the different types of word representations, clinical text cor-

pora, available pre-trained clinical word vector embeddings,

intrinsic and extrinsic evaluation, applications, and limita-

tions of these approaches. Authors in [25] leveraged the

infused elementary distance matrix to update the topic distri-

butions for calculating the corresponding optimal transports.

This strategy provides the update of word embeddings with

robust guidance, improving the algorithmic convergence.

As an initial study, the paper [26] presented a comparative

analysis of CML and DL approaches with different types

of feature representations such as Term Frequency-Inverse

Document Frequency (TF-IDF) and word embeddings.

Concerning previous works, in our approach, we have

used five-word embeddings, namely pre-trained word2vec,

domain-trained, GloVe, fastText, and USE, to model the input

datasets with and without the stop words. One of the pur-

poses was also to observe the impact of stopwords within

the considered domain. The removal of stopwords can often

lead to a different outcome, as it changes the context and

the meaning of a sentence. For instance, using stopwords

removal, the sentence The patient is not stablemight turn into

The patient is stable, thus changing the meaning of the initial

sentence.

The literature suggests several interestingworks that utilize

state-of-the-art word embeddings and bag-of-words repre-

sentations. However, not many have discussed the impact

of different feature representation approaches for imbal-

anced datasets. To bridge this knowledge gap, we have used

word embeddings and sentence embeddings generated by

USE, along with different kinds of bag-of-words representa-

tions. We have also provided a detailed discussion about the

impact of stopwords in word embeddings, observed from the

performed experiments.

C. FEATURE SELECTION

Feature engineering inNLP involved creating specific numer-

ical functions to represent salient aspects of the text, such

as the nouns and pronouns ratio. This approach often

required significant domain knowledge and effort to identify
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meaningful features. Feature selection is extensively used

to reduce data by eliminating irrelevant and superfluous

attributes from the dataset [27], [28]. This technique enhances

the data interpretation, improves data visualization, reduces

training time of learning algorithms, and improves prediction

performances [29]. The work in [30] mentions the effective-

ness of feature selection algorithms in several applications

and highlights the challenges faced due to the unique char-

acteristics of data. In work performed in [31], the authors

aimed to achieve an affordable, fast, and objective diagnosis

of the genetic variant of oligodendroglioma by combining the

feature selection with ensemble-based classification. In addi-

tion, the work in [32] presented a method called FREGEX,

which is based on regular expressions to extract features from

biomedical, clinical notes. It was used as a substitute for

the n-grams based feature selection method and employed

the algorithms Smith-Waterman and Needleman-Wunsch for

sequence alignment. The three datasets used to evaluate the

proposed method’s performances were manually annotated

and contained information on smoking habits, obesity, and

obesity types. The features extracted by FREGEX based

on regular expressions improved the performance of SVM

and Naive Bayes based classifiers. The work in [33] used

a modified differential evolution algorithm to perform fea-

ture selection for cardiovascular disease and optimization

of selected features. It also evaluated several performance

measures for the prediction of heart disease to combine the

modified differential evolution algorithmwith a feed-forward

neural network and fuzzy analytical hierarchy process.

In our work, we have used three feature selection

algorithms with both CML and DL approaches to exploit

the advantages in identifying the features necessary for dis-

tinguishing the morbidity classes, as well as in substantially

reducing the computation time for training the models. The

majority of existing works with healthcare data are confined

to using a few feature selection techniques, either with CML

or DL algorithms. To contribute to the body of knowledge,

we have applied multiple combinations of feature representa-

tion and selection.Moreover, we came upwith a set of ensem-

bles made of heterogeneous constituents that outperform the

single classifiers.We provided a detailed discussion about the

impact of the feature engineering process on the used dataset

for the multi-classification task.

III. PROBLEM FORMULATION, DATASET, AND

PREPROCESSING

This section provides the formulation of the problem we

addressed, the used dataset, and the related preprocessing

steps we have applied for the employed CML andDLmodels.

A. PROBLEM FORMULATION

As mentioned in the introduction, in this paper, we tackle a

multi-label classification problem. For each patient, we have

his/her clinical records and a list of morbidity conditions

that he/she may suffer from. Thus, we aim at identifying the

presence or absence of morbidity conditions in the patients by

analyzing their clinical records using bag-of-words and word

embeddings in conjunction with CML and DL approaches.

Several approaches exist to tackle the multi-label

problem [34]. A straightforward and widely used one is

to decompose the multi-label problem into multiple binary

classification tasks. This technique is named binary rele-

vance method in the literature [35]. Another approach is to

transform the multi-label problem into a single-label multi-

class classification problem in which the classes are all label

combinations. However, since we address the recognition

of 16 morbidities in our work, the number of possible classes

(i.e., co-morbidities) would be 216 = 65, 536. We discarded

this approach since we believe that the number of classes

would be too large with respect to the size of our training

set. Other more complex solutions exist, including using a

multi-label ensemble classifier built from a committee of

(single-label) multi-class classifiers or the use of customized

machine learning algorithms adapted to the multi-label

problem.

However, since our study’s primary goal is to provide a

comprehensive comparison of different ML approaches and

feature extraction techniques, we believe that using a widely

adopted and simple classification strategy is the most appro-

priate. For this reason, in this work, we adopt the binary rele-

vancemethod, and we transform themulti-label classification

task into sixteen binary classification problems.

B. DATASET DESCRIPTION

We performed our research study on the n2c22 dataset

released for the i2b2 obesity and co-morbidity detection

challenge in 2008. The dataset was completely anonymized

by replacing personal and sensitive information of patients

with surrogates. The dataset contains clinical records of

patients, and these records indicate that patients may have

one or more morbidity conditions from a range of sixteen

morbidity conditions (diseases). The sixteen morbidity con-

ditions are Asthma, CAD, CHF, Depression, Diabetes, Gall-

stones, GERD, Gout, Hypercholesterolemia, Hypertension,

Hypertriglyceridemia, OA, Obesity, OSA, PVD, and Venous

Insufficiency.

Originally the n2c2 dataset contained six documents, out

of which four were Training Textual Judgments, Training

Intuitive Judgments, Test Textual judgments, and Test Intu-

itive Judgments. They all were annotated. The remaining two

documents, namely Training Obesity Patients Records and

Test Obesity Patients Records, contained the clinical records

and a unique id associated with them. The textual judgment

documents contain all the sixteen morbidity conditions, and

within each morbidity condition, there is a specific number

of ids and labels associated with them. The labels in textual

judgment documents can obtain values in {Y, N, U, Q},

where ‘‘Y’’ means yes, the patient has the morbidity,

‘‘N’’ means no, the patient does not have the morbidity,

‘‘U’’ means the morbidity is not mentioned in the record,

2https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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and ‘‘Q’’ stands for questionable whether the patient has the

morbidity. Besides, intuitive judgment documents represent

clinical records where domain experts (doctors) were able

to infer if those were indicative of having one or more mor-

bidity conditions for the underlying patients. Hence, possible

intuitive judgments are limited to labels ‘‘Y,’’ ‘‘N,’’ and ‘‘Q’’

because ‘‘U’’ is irrelevant as an intuitive judgment. The length

of the clinical records is in the range of 500 to 1200 words.

A sample of each of the six annotated documents of the

morbidity condition Asthma is shown in Table 1.

TABLE 1. Sample data of class Asthma.

As each clinical record may have multiple associated

morbidities, as mentioned earlier, we chose to tackle the

multi-class classification problem as several binary classifi-

cation problems. To do this, we have extracted all the clinical

records having labels ‘‘Y’’ or ‘‘N’’ from the textual and

intuitive judgment documents.

1) DATA PREPROCESSING

The dataset used for our experiments contained abbreviations,

some typos, and punctuation, and some preprocessing steps

were thus necessary. In the scope of our work, we have used

two types of feature representations, namely bag-of-words

and word embeddings. On the one hand, for bag-of-words,

we have employed TF-IDF, whose vector representation

relies on the word’s occurrence frequency. On the other

hand, the word embeddings’ working principle is based upon

capturing the semantic relationships among words. The

works in [36], [37] discuss the process and impact of doc-

ument preprocessing in NLP tasks. Accordingly, the prepro-

cessing steps we have performed for transforming our input

dataset to be used with the bag-of-words models are reported

below:

• Lower-casing the text to represent the same words of

different cases such as Asthma and asthma as one,

i.e., asthma.

• Tokenization of text to build a function f , where for

each word w, the function f is associated with an integer

index i.

• Punctuation and numeric values removal from the text.

• Lemmatization of the tokens.

• TF-IDF matrix generation from input data to transform

each clinical note into a feature vector.

In order to study the impact of stopword removal for the

experiments with word embeddings representation, we have

preprocessed the input data to generate two sets of feature

vectors. One set of feature vectors contains the stopwords,

while the other set does not. In the second case, stopword

removal has been performed by using the NLTK3 library.

Furthermore, these two feature vectors are separately used to

train the CML models to observe the impact of stopwords on

the classifier’s performance.

2) STOPWORDS AND THEIR IMPACT IN TEXT

PREPOCESSING

Stopwords are those words that commonly occur in a text.

There are both advantages and disadvantages in includ-

ing or excluding stopwords while preprocessing the data. The

use of stopwords is debatable, and it is difficult to define one

standard protocol that can be applied to all datasets. There-

fore, the impact of stopwords is very much dependent on the

data type and nature of the task at hand. A general observa-

tion in this context is that removing stopwords reduces the

data size, the model’s training time and can also improve

the model’s performance because stopwords removal may

leavemeaningful tokens in the dataset. In addition, stopwords

such as negations in sentences are important indications for

inferring certain behavior types in the context of sentiment

analysis [38], [39] and motivational interviewing, empathetic

conversations, etc., in therapeutic scenarios. For example,

the following two sentences: ‘‘The patient is not stable.’’

‘‘The patient is not happy.’’ The removal of the stopword

not changes these to sentences that convey precisely the

opposite meaning and emotion as compared to the original.

Therefore, from these observations, it can be inferred that

for tasks such as spam filtering, auto-tag generation, text,

genre, language, and caption classification, removing stop-

words is likely not going to degrade the classification model’s

performance. On the other hand, for tasks such as machine

translation, text summarization, identification of change

talk and sustain talk in motivational interviewing, patient’s

3https://www.nltk.org/
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treatment recommendations, the removal of stopwords can

lead to underperformances of the training model. In this con-

text, the authors in [40] observed a decrease in performances

of SVM classification models from 70.76% to 55.26% for the

task of automatic annotation of clinical text fragments based

on codebooks having a large number of categories. Similarly,

authors in [41], [42] also reported the underperformance of

the employed classification models for text classification as

a consequence of removing the stopwords. In the case of

the DL models, we have used BiLSTM layers, which han-

dle the long-term dependencies and have the capability to

store information for a long duration. Therefore, given the

presence of several tokens in our dataset behaving as the

negationmentioned above and the ability of DL approaches in

conjunction with word embeddings representations to tackle

the contextual relationship of the words, we performed the

experiments with the DL approaches only with the input

dataset containing the stopwords.

3) TRANSFORMING INPUT DATA FOR TRAINING OF DL

MODELS

We have used the DL models with bag-of-words and word

embeddings representations described in Section IV-B. The

DL models require the input data to be in integer encoded

format, where each word is represented by a unique integer.

Thus, each word can be mapped to the corresponding word

vector using the embeddings layer. In addition to integer

encoding, we have also padded the data to have symmetrical

length throughout. The steps of encoding and padding the

input data are mentioned below:

• Encoding the input texts into numeric integer represen-

tations using vocabulary-index relation. For instance,

consider the sentence s: the patient is asthmatic, and

a function f that maps the to ‘‘5’’, patient to ‘‘34’’,

is to ‘‘10’’ and asthmatic to ‘‘87’’. Then, the resulting

integer-encoded sentence sencoded will be [5, 34, 10, 87].

• Padding each of the input text (integer encoded) to a

length equivalent to (average + standard deviation) num-

ber of tokens. Most clinical texts are around the aver-

age length for our dataset, and the very few remaining

clinical texts are too long. Therefore, we have limited

the number of tokens for each text sequence in order to

reduce computational cost as well as keeping the dimen-

sion of input text reasonable. For our work, we have

computed the padding length equal to the sum between

the average and the standard deviation of the number

of tokens each input text had. This formula has been

found empirically on our data and turned out to be a

good trade-off between the size of the padding and the

length of the document. For example, for four clinical

records with 25, 39, 44, and 80 tokens, respectively,

the average length is avg = 47, and the standard devia-

tion is std = 20.29. Hence, the length that we consider

for padding is 67. Also, in the presence of very long

clinical notes, which comprise 3.12%of the total dataset,

we have broken them down into more notes with the

same annotations. Although this last preprocessing step

slightly augmented the dataset, it did not change the

sixteen classes’ unbalanceness distribution. In Table 2,

we show the number of clinical notes and percentage of

occurrences of each class before and after the prepro-

cessing step.

TABLE 2. Percentage of occurrences of each class and number of clinical
notes before and after the preprocessing step.

IV. FEATURES REPRESENTATIONS

We have used bag-of-words TF-IDF and word embeddings

representations to generate feature vectors. On the one hand,

TF-IDF has served as a baseline for many NLP tasks [43] for

decades and has proven to be very useful. On the other hand,

word embeddings are the current state-of-the-art due to their

innate capability of capturing the semantics and contextual

information for textual features representation of words and

text sequences [44], [45].

A. TF-IDF

TF-IDF is a feature extraction technique that calculates the

weight for each word based on its frequency within a docu-

ment. In document d , TF defines the occurrence of a word w.

In the entire document, IDF measures the rarity of a word w.

Equation (1) shows the TF-IDF formula ofw in a document di
where cwi is the frequency of the word w in the i-th document

di, |di| is the size of the document expressed as the number

of words, n is the number of documents in the collection, and

nw is the number of documents where the word w occurs at

least once. TF-IDF values are usually normalized in the range

[0,1].

TF − IDF(w, di) =
cwi
|di|

· log
n

nw
(1)

To generate the feature vectors using bag-of-words TF-IDF

representation, we have used the TF-IDF Vectorizer4 from

the scikit-learn library. We have performed the experiments

4https://tinyurl.com/y8jqmscd
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with four types of feature vectors using the TF-IDF represen-

tations: All Features (where feature selection is not applied)

and the ones obtained by applying three feature selection

algorithms: ExtraTreesClassifier, InfoGainAttributeEval,

and SelectKBest. The reason for limiting the number of

features is to reduce the computational time for training the

models by keeping only those features that contribute most in

distinguishing the instances of the different classes. Feature

selection also has the effect of disregarding those terms that

are irrelevant and may confuse the classifier or determine

overfitting.

• ExtraTreesClassifier is essentially an ensemble learn-

ing method that conceptually shares a similar working

principle as that of Random Forest. The only difference

is the method for constructing decision trees. For a given

set of m features, which are selected randomly from

the features set of the input data, ExtraTreesClassifier5

selects the top features based on their importance (it can

be typically calculated by the Gini Index [46]). These

random samples of features are further used to create

decision trees which are mutually correlated. This pro-

cess helps to minimize the chances of overfitting and

ranks the features in descending order.

• InfoGainAttributeEval is used for feature selection

based upon measuring how each feature contributes to

decreasing the overall entropy [47]. Entropy is basically

a measure of the impurity degree in the dataset. The data

is characterized as less impure when the entropy is closer

to zero. Hence, the usefulness of an attribute is identified

by its contribution to reduce the overall entropy. It can

be represented by:

InfoGain(Class,Attribute)

= H (Class) − H (Class|Attribute) (2)

where H is the information entropy.

• SelectKBest takes the score function as a parameter,

which is applied to a pair (m, y) where m corresponds to

the features of the input data and y to the corresponding

labels. The score function returns an array of scores, one

for each feature m[:, i] of m. SelectKBest6 then simply

retains the first k features of m with the highest scores.

The parameter vocabulary of the TF-IDF vectorizer should

be provided with a custom list of words (vocabulary) to use

the feature selection algorithms from the python library. This

custom vocabulary contains the words (features) in ranked

order provided by feature selection algorithms based upon

the features’ information gain. We have set the configuration

to max_features = 600 and vocabulary = custom_vocab,

where custom_vocab is the vocabulary of ranked features

selected by applying the feature selection algorithms. This

setting generates the feature vectors matrix of {n × 600}

dimension, where n is the number of text documents (clinical

notes).

5https://tinyurl.com/ybnzo8rh
6https://tinyurl.com/y5c7w6bo

B. WORD EMBEDDINGS

This section describes the general working principle of the

word embeddings followed by the details of all the word

embeddings used for our experiments: pre-trained word2vec,

domain-trained, GloVe, fastText, and USE embeddings. They

are reported below. Word embeddings are distributed repre-

sentations that model words’ properties into vectors of real

numbers in a predefined vector space, capturing features

and preserving their semantic relationships. As an outcome

of this representation, the words having similar meanings

have a similar representation. In Figure 1, we have pre-

sented the visualization of 300-dimensional word embed-

dings of 18586 words generated from our dataset using the

word2vec model in high dimensional space using Tensor-

board.7 From the visualization, one can note how the words

aremapped near to thosewhoseword embeddings have a sim-

ilar meaning. For instance, in the case of the word diabetes,

the words diabetic and insulinotherapy are represented in the

close semantic space, notable by their scores 0.772 and 0.777.

• Pre-trained Word2Vec Word2Vec is an algorithm

invented by Google for training word embeddings that

relies on the distributional hypothesis [48]. The distri-

butional hypothesis uses skip-gram or Continuous Bag

of Words (CBOW) algorithms. In the CBOW model,

for a given context, the objective is to predict the focal

word. The CBOWmodel with a softmax loss function is

essentially a log-linear classification model. The aim is

to determine the most likely parameters of the embed-

ding vectors, which can be represented by Equation 3:

P(wf |wc) =
exp(wTf wc)∑V
i=1 exp(w

T
f wc)

(3)

where w_c is the context (one or more words), w_f is

the focal word, and V is the vocabulary size. On the

other hand, the skip-gram model can be considered as

a complementary model to the CBOW model in terms

that its objective involves predicting a context word

given a single focal word [24]. The skip-gram model is

represented by Equation 4:

P(wf |wc) =

C∑

c=1

exp(wTf wc)∑V
i=1 exp(w

T
f wc)

(4)

The Word2Vec algorithm aims to detect the meaning

and semantic relations by studying the co-occurrences

among words in a given corpus. We have used the

pre-trained Word2Vec8 model, which is trained on the

part of the Google News dataset (about 100 billion

words). This pre-trained model contains vectors of

three million words and phrases, which are represented

in 300-dimensional space.

• Domain-trained Word2Vec The domain-trained word

embeddings are generated by using the Word2Vec algo-

rithm on the n2c2 dataset. The rationale of using these

7https://projector.tensorflow.org/
8https://code.google.com/archive/p/word2vec/
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FIGURE 1. Visualizing the semantic relationships between words by Word2Vec word embeddings representation.

embeddings is their advantage in representing the out-

of-vocabulary words due to training on the target domain

(in our case, healthcare). We have generated the word

embeddings of 300 dimensions with 10 epochs and a

window size of 5 by using the Gensim9 library.

• GloVe generator algorithm was developed as an

open-source project at Stanford in 2014 [49]. For a

given context, to identify how frequently the words

appear, GloVe utilizes a statistics-based matrix to com-

pute the vectors’ scores based on the co-existence of

words within the context. Unlike the Word2Vec algo-

rithm, GloVe uses both the skip-gram model, which is

a local context window, and the latent semantic analysis

method, which belongs to the global matrix factorization

methods. For our work, we have used the pre-trained

GloVe6B10 embeddings model, trained by the Stanford

NLP Group on 600 billion tokens of Wikipedia11 and

Gigaword12 with dimension 300.

• fastText One drawback of Word2Vec and GloVe algo-

rithms is the fact that they are not able to handle

out-of-vocabulary words. To overcome this limitation,

Facebook proposed fastText,13 which is essentially an

extension of theWord2Vec algorithm [50]–[52].FastText

extends the Word2Vec skip-gram model by consider-

ing internal sub-word information. Basically, words are

represented as n-gram of characters instead of learning

vectors for words directly. For instance, for n = 3,

the word apple consists of app, ppl, and ple. FastText

9https://radimrehurek.com/gensim/
10https://nlp.stanford.edu/projects/GloVe/
11https://dumps.wikimedia.org/enwiki/
12https://catalog.ldc.upenn.edu/LDC2011T07
13https://fastText.cc/docs/en/english-vectors.html

does not consider the internal structure of the word and

represents a bag-of-words model with a sliding window

over a word. Also, as long as the characters are con-

tained in the window, it is unaffected by the order of

the in-grams. This approach helps the model to compute

word representations of out-of-vocabulary words and

allows the model to understand suffixes and prefixes

because it is very likely that some of the n-grams also

appears in other words.

• Universal Sentence Encoder (USE). While the com-

mon practice with the word embeddings focuses on

representing the word, the technique to represent the

sentence through a single vector is unclear. To address

this, Google introduced pre-trained embeddings mod-

els known as USE, which are optimized to train with

a longer text sequence than a single word such as

phrases, sentences, and short paragraphs [53], [54]. The

pre-trained USE14 model is trained on several domains

with a variety of data sources to dynamically accom-

modate a wide variety of natural language understand-

ing tasks. It transforms the text into high-dimensional

vectors by performing an encoding. It comes with two

variations, i.e., one trained with transformer encoder and

the other trained with the deep averaging network. For

our work, we have used the deep averaging network

pre-trained USE, which takes variable-length English

texts as input and outputs 512-dimensional vectors.

V. CLASSIFICATION MODELS

We have used two types of classification models based

on CML and DL approaches with each type of feature

14https://tfhub.dev/google/universal-sentence-encoder/4
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representation mentioned in Section IV. Figure 2 shows the

generalized architecture of the pipeline used for the classifi-

cation of clinical records using TF-IDF representations with

CML and DL approaches.

FIGURE 2. The architecture of the pipeline for morbidity detection in
clinical records using TF-IDF representations with CML and DL
approaches.

The pipeline consists of training and testing phases. Prior to

the training stage, we preprocess the clinical records, as men-

tioned in Section III-B1. After that, classifiers are trained

on the feature vectors derived from the training samples.

After creating feature vectors, the previously trained classi-

fiers predict each clinical record label in the testing sample.

Finally, the performances of different classifiers are evaluated

by calculating standard metrics such as precision, recall, and

F-1 score. In the following sections, we will list the CML

algorithms used for our experiments, followed by the DL

models and their architectures.

A. CLASSICAL MACHINE LEARNING MODELS

Experimental results reported in this paper were obtained

using standard implementations of CML algorithms provided

by the Weka toolkit using Python Weka-Wrapper15 interface

with JavaVirtualMachine16 environment.We have employed

Support Vector Machine (SVM) [55], k-Nearest Neighbours

(kNN) [56], Naive Bayes [57], Random Forest [58], Random

Tree [59], J-48 [60] and J-Rip [61].

B. DEEP LEARNING MODELS

We have used DL models with two types of representations,

one with word embeddings and the other with bag-of-words.

1) DEEP LEARNING MODELS USED WITH WORD

EMBEDDINGS

The DL model we used for word embeddings representations

is the networkwith an embeddings layer, twoBiLSTM layers,

a dense layer followed by an output layer for the binary

15https://pypi.org/project/python-weka-wrapper/
16https://pypi.org/project/javabridge/

FIGURE 3. The architecture of DL models to use word embeddings
representation.

classification task. Figure 3 presents the related architecture.

The embeddings layer is initialized by the following four

inputs:

• input_dim (size of the vocabulary);

• output_dim: (dimension of the dense embeddings);

• weights (embeddings_matrix), and

• input_length (length of input sequences).

The input_dim represents the length (V ) of the unique

vocabulary made from our input data (clinical records).

The input matrix (integer encoded vectors) has dimension

{n × m}, with n equal to the number of clinical records

and input_length corresponding to m, which is the maximum

number of tokens considered for each text. The embed-

dings_matrix is the vector representation of the correspond-

ing words of the vocabulary and has dimension {V × x},

where x represents the output_dim. Specifically, output_dim

for all the embeddings is 300 except USE, which has a value

of 512. The output of the embeddings layer is passed to two

hidden layers that implement BiLSTM neural networks [62].

LSTM is a particular kind of recurrent neural network that

can store the history of the input data and has already proven

to be able to find patterns in data where the sequence of the

information matters [63]. By using the bidirectional version,

the models can learn from the input data both backward and

forward. Finally, the output of the BiLSTM layer is fed to a

fully connected dense layer to predict the labels.

2) DEEP LEARNING MODELS USED WITH BAG-OF-WORDS

REPRESENTATION

For the bag-of-words model, in conjunction with the

employed feature selection algorithms, we used TF-IDF

representation. The differences between the neural network
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model used here with that described in the previous paragraph

are the following:

• Firstly, the one described here does not have an embed-

dings layer, and the input is directly fed to the BiLSTM

layer.

• Secondly, the input data do not undergo the preprocess-

ing steps such as integer encoding and padding when

used with TF-IDF representation.

The input to the BiLSTM layer, in this case, is the TF-IDF

matrix, which is generated by the TF-IDF vectorizer and has

dimension {n × 600}, with n the number of text documents

(clinical records). Figure 4 presents the architecture of the DL

network used with TF-IDF representation.

FIGURE 4. The architecture of DL models to use TF-IDF representation.

VI. EXPERIMENTS AND RESULTS

The server specifications we have used to develop our meth-

ods and run the experiments are summarized in Table 3.

TABLE 3. Server specifications.

We have conducted our experiments with CML and

DL approaches using the bag-of-words applied to feature

selection algorithms and word embeddings representations.

We have also employed ensemble learning over a large num-

ber of combinations of classifiers to improve the single model

performances and obtain stable results.

We used 10-fold cross-validation as an experimen-

tal design [64] to ensure the robustness of performance

estimation and avoid the bias of our single models. The

performances of different classifiers and feature representa-

tions were measured in terms of F-1 score (F-1) using micro

and macro averaging over 10 folds provided by the scikit-

learn17 library. The formulas to calculate precision, recall,

and F-1 score are given by:

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

F1 = 2 ×
Precision× Recall

Precision+ Recall
(7)

where TP, FP, and FN represent true positive, false pos-

itive, and false negative of each label, respectively. The

experiments that have been carried out can be divided into

three groups for ease of understanding, which are mentioned

below:

• In the first set of experiments, CML and DL approaches

were used with bag-of-words representations coupled

with feature selection algorithms using TF-IDF repre-

sentation, as mentioned in Section IV-A.

• In the second set of experiments, we used CML and

DL approaches with word embeddings generated by

pre-trained models of word2vec, domain-trained with

word2vec, GloVe, fastText, and USE embeddings. The

feature vectors generated by these pre-trained word

embeddings to train CML classifiers were generated

from the same input data by either keeping the stop-

words or removing them. The purpose of generating two

sets of feature vectors was to study the relatedness of

stopwords with the context of the text and their impact

on the classifier’s performance. The DL models were

trained only with the feature vectors of the input data

with stopwords as the standard experiment.

• As the last set of experiments, we implemented ensem-

ble learning techniques on a large number of com-

binations of classifiers to improve the single model

performances.

The following subsections describe the three sets of

experiments.

A. EXPERIMENTAL RESULTS WITH BAG-OF-WORDS

COUPLED WITH FEATURE SELECTION ALGORITHMS

This section provides the details of the experiments per-

formed with CML and DL approaches with bag-of-words

coupled with feature selection algorithms using TF-IDF rep-

resentations. TF-IDF evaluates the importance of a feature

based on its frequency. Identifying features that contribute

the most to distinguish the classes is useful for improv-

ing the models’ performances. Thus we have adopted three

feature selection algorithms, namely ExtraTreesClassifier,

InfoGainAttributeEval, and SelectKBest, along with the All

Features. Table 4 depicts the results of CML classifiers with

17https://tinyurl.com/y4mt646z
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TABLE 4. Performances of CML classifiers with all features using TF-IDF representations.

TABLE 5. Performances of CML classifiers with feature selection algorithm ExtraTreesClassifier using TF-IDF representations.

TABLE 6. Performances of CML classifiers with feature selection algorithm SelectKBest using TF-IDF representations.

All Features using TF-IDF representations. Tables 5, 6, and 7

illustrate the results of CML Classifiers with feature selec-

tion algorithms ExtraTreesClassifier, SelectKBest, and Info-

Gain, respectively. Finally, Table 8 includes the results of

the DL models with the four bag-of-words applied to fea-

ture selection algorithms using TF-IDF representations. The

key observations from the performed experiments are listed

below:
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TABLE 7. Performances of CML classifiers with feature selection algorithm InfoGain using TF-IDF representations.

TABLE 8. Performances of DL models with bag-of-words coupled with feature selection algorithms using TF-IDF representations.

• In general, the feature selection algorithms have

improved the performance of CML classifiers (typ-

ically by 1%). The two best-performing classifiers

with All Features are SVM and Random Forest with

98.45 and 98.1 micro F-1 scores, respectively (as shown

in Table 4). The use of the ExtraTreesClassifier as

the feature selection algorithm has improved the micro

F-1 score of Random Forest to 98.82 and SVM to 99.26

(shown in Table 5), which is the best performance of

CML classifiers among all the experiments.

• In contrast, the Naive Bayes classifier used with All

Features has performed the best with a Micro F-1 score

of 89.31 (as shown in Table 4) than with any feature

selection algorithms.

• In the case of DL approaches, All Features using

TF-IDF has been outperformed by the feature selection

algorithms achieving up to 13% of F-1 score (shown

in Table 8).

• The reason for the low performance of DL models

with All Features using TF-IDF is because that TF-IDF

selects the features based on the frequency of the words,

not useful to distinguish the morbidity classes. Feature

selection algorithms identify themost important features

that allow the DL models to learn the context of clinical

records, and this results in further improvement of the

classification performances.

• From our experimental results, it turned out that the

adoption of feature selection algorithms has shownmore

benefit on DL models than on CML algorithms. In fact,

with All Features, the micro F-1 score of DLmodels was

76.47, whereas, with the usage of ExtraTreesClassifier,

it has improved to 89.63 (as shown in Table 8).

• As far as the computational time and resource require-

ments are concerned, the CML models have proven to

be computationally faster and less demanding for what

resources are concerned. The training time of the CML

models seen so far was up to 600 seconds; that of the

DL models was much higher (a couple of hours) using

the same machine mentioned in Table 3 (DL approaches

employed both the CPU and the GPU whereas the CML

models just the CPU).

B. EXPERIMENTAL RESULTS WITH WORD EMBEDDINGS

In this other group of experiments, we have trained the

CML and DL approaches with the embeddings generated

by the pre-trained word2vec, domain-trained with word2vec,
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TABLE 9. Performances (averaged over all the morbidity classes) of CML classifiers with word Embeddings when input data contain stopwords.

TABLE 10. Performances (averaged over all the morbidity classes) of CML classifiers with Word Embeddings when input data do not contain stopwords.

TABLE 11. Performances of DL models with Word Embeddings.

fastText, GloVe, and USE models. The results of the exper-

iments are summarized in Tables 9, 10, 11. In particular,

Tables 9 and 10 present the results of CML classifiers using

word embeddings representation with the input data without

the removal of stopwords (raw) and with the input data not

containing the stopwords (pre-processed), respectively. The

best performances of CML classifiers with word embeddings

representations extracted from Tables 9 and 10 are shown

in Figure 7. Moreover, for ease of understanding, Figure 8

represents the performance of the CML and DL classifiers

with bag-of-words coupled with feature selection algorithms.

Figure 9 shows the CML and DL classifiers’ plot with word

embedding representation. The winning configurations are

highlighted for each kind of used representation.

The key observations from the performed experiments are

listed below:

• The CML classifiers have performed only slightly better

(less than 1% of difference) with embeddings when the

input data do not contain the stopwords. The case when

the input data contain the stop words has lower perfor-

mances, where the domain-trained andUSE embeddings

are the exceptions.

• Given the small size of the used dataset and the mini-

mal difference between the two kinds of CML models

(with and without stopwords), we cannot draw any con-

clusions related to improvements or not derived from

the presence of stopwords in the dataset. However,

we believe that, given the technical terminology used

within the clinical notes, stopwords should not play an

important role when preprocessing the dataset. A more

detailed analysis of them is out of the scope of the paper

and will be investigated in a future direction.

VOLUME 9, 2021 7119



V. Kumar et al.: Ensembling CML and DL Approaches for Morbidity Identification From Clinical Notes

• In the case of DL models, the use of word embeddings

has further improved their performance with respect to

the bag-of-words representation coupled with feature

selection algorithms. The best performance of the DL

model is observed when GloVe word embeddings are

employed with 94.3 average micro F-1 scores (Table 11)

against the average micro F-1 score of 89.63 when used

with bag-of-words representation (Table 8). Besides,

the former corresponds to the best performance of DL

models for all sets of experiments.

• Generally, it is expected that the domain-specific word

embeddings will perform better (due to the absence of

out-of-vocabulary words) than pre-trained word embed-

dings, but it does not happen if the training data is small.

The small amount of data in fact, jeopardizes the chances

of learning the subtle peculiarities of the domain and

will lead to the high variance estimation of the model’s

performance. For such a reason, the performances of the

DL models with domain-trained embeddings are worse

than those of the other four pre-trained embeddings.

In contrast to the DL models, the performance of CML

models using domain-specific word embeddings is only

slightly affected by the small size of the dataset.

• Regarding the computational time, the CML models

have again turned out to be computationally fast and

less resource exhaustive as compared to the DL models.

The training time of the CML models ranges between

80 and 600 seconds. The reason for the reduced train-

ing time with respect to the CML models employing

bag-of-words is the lower dimension of the embed-

ding vectors (typically 300-dimensional for all types of

word-embeddings except USE, which has 512).

• Different from the CML classifiers, the training time

of the DL classifiers has increased up to 40 hours. The

reason for this higher computational cost lies within the

employment of new layers of deep neural networks.

The comparison of the training time between the CML and

DLmodels are presented in Figures 5 and 6. Finally, Table 11

presents the results of DL models with the word embeddings

representation.

C. EXPERIMENTAL RESULTS WITH ENSEMBLE APPROACH

In this final group of experiments, we will discuss the ensem-

ble approach we have employed. Ensemble learning works

by first training each single machine learning model and

then combining the predictions of them. The rationale behind

ensemble learning is to take the best from a given set of algo-

rithms by combining their outputs. Given the large number of

classifiers employed in our study, it was not feasible to exper-

iment with all possible combinations of machine learning

algorithms. For this reason, we selected the most effective DL

and CML algorithms for experimenting with the ensemble

approach. We performed our experiments with the BiLSTM

based DL model and 8 CML algorithms. We used the four

bag-of-words models with feature selection and the five types

of word embeddings for each of them. Hence, we considered

FIGURE 5. The training time of CML models with different
representations.

FIGURE 6. The training time of DL models with different representations.

9 × 9 = 81 classification models totally. Considering the

formula 2a− (a+1), with a ≥ 2 equal to the number of mod-

els, for calculating the total number of possible ensembles

constituted, in our case we have a = 81. This would account

for a total of (281 − 82) possible combinations. It would be

unfeasible to compute all the possible ensembles resulting

from the formula above. Therefore, we have limited the num-

ber of models for generating the configurations of ensembles.

We hypothesized that combining CML and DL classifiers in

the same ensemble configuration would increase the model’s

stability without decreasing accuracy. Hence, we included the

6 top-performing CML models and the 5 top-performing DL

models in our pool of classifiers to be included in the ensem-

ble configurations. We used r out of 11 classifiers for each

configuration, with r being an odd integer number between

3 and 11. Using an odd number of classifiers, we could

straightforwardly apply the majority voting technique. The

choice of using 11 classifiers corresponded to 1013 different
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FIGURE 7. Best performances of CML classifiers using embeddings with and without stopwords taken from Tables 9 and 10.

ensemble configurations, which we believe is a reasonable

number for our experiment. The classifiers selected for the

ensemble configurations are listed below:

• Random Forest classifier used with SelectKBest feature

selection algorithm.

• SVM classifier used with ExtraTreesClassifier feature

selection algorithm.

• kNN classifier (where k = 1) used with ExtraTreesClas-

sifier feature selection algorithm.

• kNN classifier (where k = 1) used with fastText word

embeddings representation.

• Random Forest classifier used with USE word embed-

dings representation.

• Random Forest classifier used with fastText word

embeddings representation.

• DL model used with USE word embeddings

representation.

• DL model used with GloVe word embeddings represen-

tation.

• DL model used with fastText word embeddings

representation.

• DL model used with InfoGain feature selection

algorithm.

• DL model used with ExtraTreesClassifier feature

selection algorithm.

We computed the performances of all the above-mentioned

1013 ensemble combinations, and the results of the six best

performing combinations among them are discussed in the

following. Out of the top six ensemble models, ensembles 1,

3, and 5 consist of five classification models, while 3 classi-

fication models constitute ensembles 2, 4, and 6. The results

of the ensembles are summarized in Table 12.

The structure of the top six ensemble combinations is listed

below:

• Ensemble-1. The number of constituting classi-

fiers for Ensemble-1 is 5, which are: DL models

with (fastText and GloVe) word embeddings, SVM with

ExtraTreesClassifier algorithm, Random Forest with

SelectKBest algorithm, kNN(k = 1) with fastText word

embeddings.

• Ensemble-2. The number of constituting classifiers

for Ensemble-2 is 3, which are: DL model with

GloVe word embeddings, SVM with ExtraTreesClassi-

fier, kNN(k = 1) with fastText word embeddings.

• Ensemble-3. The number of constituting classifiers

for Ensemble-3 is 5, which are: DL models with

(fastText and GloVe) word embeddings, SVM with

ExtraTreesClassifier algorithm, kNN(k = 1)ich are: DL

model with GloV with ExtraTreesClassifier algorithm,

kNN(k = 1) with fastText word embeddings.

• Ensemble-4. The number of constituting classifiers

for Ensemble-4 is 3, which are: DL model with fast-

Text word embeddings, SVMwith ExtraTreesClassifier,

kNN(k = 1) with fastText word embeddings.

• Ensemble-5. The number of constituting classifiers for

Ensemble-5 is 5, which are: DL models with (fast-

Text and GloVe) word embeddings, SVM with Extra-

TreesClassifier algorithm, Random Forest with fastText

word embeddings, kNN(k = 1) with fastText word

embeddings.

• Ensemble-6. The number of constituting classifiers for

Ensemble-6 is 3, which are: DL model with GloVe

word embeddings, Random Forest with SelectKBest

algorithm, kNN(k = 1) with fastText word embeddings.

To get the final predictions of the ensembles, we have used the

majority voting technique, generally used for these kinds of

tasks [65]. In this technique,multiplemodels are used tomake

predictions for each clinical record, and predictions by each
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TABLE 12. Performances of ensemble approaches.

TABLE 13. Average, best micro F-1 score and standard deviation of CML and DL classifiers and ensembles. results are averaged over all the morbidity
classes.

model are considered as a ‘‘vote.’’ For instance, for a doc-

ument (a clinical record), if three classifiers have predicted

the class of a sample as 1, 0, and 1, then the final predicted

label will be 1, as it secures more than half the votes. For

ease of understanding, we have summarized our experimental

results in Table 13. The first section of Table 13 presents

the average performances of the eight CML algorithms with

each of the four bag-of-words models coupled with feature

selection algorithms and the five-word embeddings. The sec-

ond section of Table 13 presents the average performances

of the nine DL models used with each of the two representa-

tions, i.e., the four bag-of-words models representations and

the five-word embeddings representations. Lastly, the third

section shows the average performances of all the ensemble

models we have tested with 3, 5, 7, and 9 constituents.

The comparison of the aforementioned performances has

been done in terms of the average micro F-1 score, best

micro F-1 score, and standard deviation. Note that values in

each row of the table are averaged over all the morbidity

classes and settings within the underlying model. The best

performer among them gives an F-1 score of 99.27, with an

average of 97.97 and a standard deviation of 0.96. From the

results, we can observe that the CML and DL classifiers’

performances are lower than the presented ensembles.

VII. DISCUSSION

Wehave analyzed the performance variations of CML andDL

classifiers with the different feature vector representations.

Firstly, we will discuss the performances of CML clas-

sifiers with word embeddings with or without stopwords.

The results indicate that the performances of CML classi-

fiers are slightly better when data do not include the stop-

words in general when used with different embeddings, with

domain-trained and USE embeddings being the exception.

Unlike the other word embeddings approaches that take a

word as an input to generate the feature vectors, the input

to USE is a sentence. Therefore, the embeddings produced

by USE for the sentence capture the context of the sentence
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FIGURE 8. Experimental results of CML and DL models with and without the employment of feature selection algorithms.

FIGURE 9. Experimental results of CML and DL models with word embeddings.

and the mutual relatedness of words within it. The removal of

stopwords can change themeaning of the sentence, negatively

impacting the predictions.

In the case of CML classifiers used with bag-of-words

representation, the performances of CML classifiers have

improved with the ExtraTreesClassifier feature selection

algorithm, i.e., SVMwith the F-1 score of 99.26, which is the

best performance for all the performed experiments. Overall,

the CML classifiers have performed better with the feature

selection algorithms.

Furthermore, in the case of DL approaches, the used fea-

ture selection algorithms have substantially improved the

model’s performance. The F-1 score of 76.25 with All Fea-

tures has increased to 89.63 when ExtraTreesClassifier is

adopted. In the case of the DL approaches used with different

word embeddings, GloVe has achieved the best results. In the

context of training time, the CML models have proven to

be computationally lighter and faster to train. Conversely,

the DL models have a long training time, which increases

while switching from experiments with bag-of-words to word

embedding representations.

Finally, the integration of CML and DL approaches by

employing the ensemble technique to produce ensemble

models has improved the single best classification model’s
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performances.While the best performances of the DLmodels

were achieved with GloVe word embeddings obtaining a

micro F-1 score of 94.3, the top 989 out of 1013 ensembles

got a higher score than it. Although the best ensemble score

of 99.27 is only slightly better than the best performance of

a single CML model, 99.26, the efficacy of ensemble models

can be appreciated by their high average and low standard

deviation values. The average micro F1 scores of ensembles

made of 3, 5, 7, and 9 classification models are greater than

the average of each single representation technique used for

experiments. In addition, while the CML classifiers suffer

from a high standard deviation value, the ensembles are much

more stable with a standard deviation, which decreases from

2.35 when using 3 classifiers to 0.27 when using 9 classi-

fiers. Despite being computationally intensive, the ensemble

method proved to be a viable technique. Indeed, for a highly

imbalanced and small dataset like the onewe used, the predic-

tion stability of the model is quintessential. In general, for the

minority class, the classificationmodels tend to achieve lower

precision or recall scores. Using the ensemble approach,

we can not only deal better with the prediction of the minority

class but also reduce the variance of predictions and thus the

generalization error.

VIII. CONCLUSION

We have used CML, and DL approaches to tackle the

multi-classification of clinical records by employing bag-of-

words using TF-IDF and word embeddings feature represen-

tation methods. We have conducted experiments to observe

how each method can contribute to morbidity identifica-

tion, leveraging various feature selection and pre-processing

techniques. The results show that the size of the dataset

is critical for DL models’ performances when the training

data is unbalanced. For our dataset, CML classifiers have

performed better than the DL models when used with the

word embeddings representations. For the DL approaches,

word embeddings representations have performed signifi-

cantly better than the TF-IDF representation of All Features

and feature selection algorithms. Finally, we have generated

ensemble models by coupling DL models and CML clas-

sifiers used with different representations and adopting the

majority voting strategy. The ensembles have proven to be

useful for the small dataset in mitigating the biased behavior

of a single classifier model as well as in improving the single

best model’s performance prediction stability. Althoughword

embeddings are powerful vector representation techniques,

the performances of DL models greatly depend upon the size

of the data. A small dataset prevents the BiLSTM layers

of the models from learning the fine peculiarities of input

data, which are important elements in ‘‘handling long-term

dependencies.’’ A large dataset can be a game-changer in

enhancing the DL model’s performance. In the context of

future work, techniques like data augmentation and state-

of-the-art word embeddings representations exploiting trans-

former architecture such as BERT, ELMO,XLNet, etc., could

be employed to deal with the constraints of small datasets

in order to improve the performances of DL models and the

overall ensemble. Moreover, a detailed analysis of the bene-

fits of removing or not the stopwords from the clinical notes

will be carried out to understand when they are useful or not

in the underlying domain. Last but not least, we would like

to apply the proposed approach to solve other multi-label

classification problems present in domains different from

health and analyze and compare the results against those

obtained by the study we have done in this paper.
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