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ABSTRACT

Using a recently developed method of computing climatically relevant singular vectors (SVs), the error

growth properties of ENSO in a fully coupled global climate model are investigated. In particular, the

authors examine in detail how singular vectors are influenced by the phase of ENSO cycle—the physical

variable under consideration as well as the error norm deployed. Previous work using SVs for studying

ENSO predictability has been limited to intermediate or hybrid coupled models.

The results show that the singular vectors share many of the properties already seen in simpler models.

Thus, for example, the singular vector spectrum is dominated by one fastest growing member, regardless of

the phase of ENSO cycle and the variable of perturbation or the error norm; in addition the growth rates

of the singular vectors are very sensitive to the phase of the ENSO cycle, the variable of perturbation, and

the error norm. This particular CGCM also displays some differences from simpler models; thus subsurface

temperature optimal patterns are strongly sensitive to the phase of ENSO cycle, and at times an east–west

dipole in the eastern tropical Pacific basin is seen. This optimal pattern also appears for SST when the error

norm is defined using Niño-4. Simpler models consistently display a single-sign equatorial signature in the

subsurface corresponding perhaps to the Wyrtki buildup of heat content before a warm event. Some

deficiencies in the CGCM and their possible influences on SV growth are also discussed.

1. Introduction

There are generally several forms of errors that limit

the skill of ENSO dynamical prediction. They include

initial-condition errors and physical-process parameter-

ization model errors as well as unpredictable stochastic

forcing by transients in both atmosphere and ocean.

Given this, it is of interest in the study of predictability

to describe and measure the instabilities of the particu-

lar dynamical system under consideration. The usual

method for such an analysis is via a linearized version of

such dynamical systems. This is thought to be of par-

ticular relevance for ENSO because there is much evi-

dence that the system may be only weakly nonlinear in

behavior (e.g., Penland and Sardeshmukh 1995; Moore

and Kleeman 1998; Tang et al. 2001)

Two common methods often used to explore error

growth of a dynamical system include normal mode and

Lyapunov vector analysis (see, e.g., Palmer 1999). It has

been argued in the literature (e.g., Moore and Kleeman

1999; Chen et al. 1997; Chang et al. 1996; Penland and

Sardeshmukh 1995; Thompson and Battisti 2000, 2001)

however that the ENSO system may be significantly

nonnormal and in that circumstance singular vectors

(SVs) are a better indication for short-term (several

months) error growth. We adopt this approach here.

The earliest work using SVs to explore the growth of

initial condition errors was documented in Lorenz

(1965). Over the last decade or so, there has been in-

tensive study of ENSO predictability using SV analysis:

by constructing a statistical model analogous to the
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original Zebiak and Cane (1987, hereafter ZC) model,

Blumenthal (1991) and Xue et al. (1994) studied the

optimal growth of initial errors in the ZC model and

found that the pattern of SST perturbation favorable to

the optimal error growth is very similar to the model

ENSO pattern, and that the largest growth rate occurs

during spring. Chen et al. (1997) used the Battisti

(1988) version of the ZC model to calculate SV and

found that the optimal perturbation pattern consists of

an east–west dipole in the entire tropical Pacific basin

superimposed on a north–south dipole in the eastern

tropical Pacific. Xue et al. (1997a,b) and Thompson

(1998) also obtained results similar to those in Chen et

al. (1997) using the ZC model and the Battisti (1988)

coupled model, respectively. Fan et al. (2000) used a

different intermediate complexity coupled model from

the ZC and Battisti models and found that optimal er-

ror growth depends critically on the seasonal cycle and

ENSO phase as well as the lead time of prediction. The

optimal perturbation pattern of SST has the largest

anomalies in the eastern Pacific for the prediction of

lead time of 12 months whereas the western Pacific is

the most important for the lead time of 3 months.

Moore and Kleeman (1996, 1997a,b) extensively exam-

ined the dynamics of error growth and predictability in

an intermediate-complexity coupled model via analyz-

ing SVs that were computed using a linear-tangent

coupled model and its adjoint. They found that the con-

ditions for error growth are favorable in the central

Pacific where SSTs are warm, and where changes in

SST are sensitive to anomalies of oceanic thermocline.

The error growth is also seasonally and ENSO cycle

dependent with the largest growth during the spring

and the onset of El Niño and the smallest growth during

La Niña.

However, all such studies on the optimal error

growth of ENSO prediction with SV analysis have been

to date limited to intermediate or hybrid (simple atmo-

sphere and OGCM) coupled models. There has been

no analysis for ENSO predictability using SVs for a

coupled GCM (CGCM), which potentially represents

the most realistic physics and dynamics of the observed

system. Besides costly computation, a major obstacle

that prevents the application of SVs in CGCMs is the

fact that the fastest growing modes in such models are

invariably due to weather instabilities that are unre-

lated to the climatically relevant coupled instabilities.

Recently a filtering methodology for focusing on the

climatically relevant part of the singular vector spec-

trum has been proposed in Kleeman et al. (2003). This

defines the climate response as essentially the ensemble

mean response where such an ensemble is generated by

very small variations in the atmospheric initial condi-

tions. Such an approach effectively filters out the atmo-

spheric noise but retains the coupled response. This

new framework, which we explain further in the next

section, enables us to extend previous SV analyses to

realistic CGCMs.

In this paper, our particular focus is on investigating

the influence of the phase of ENSO cycle and pertur-

bation variables on the error growth. The paper is struc-

tured as follows: Section 2 briefly introduces the theo-

retical framework used to calculate SV in a CGCM.

Section 3 describes the coupled general circulation

model under study. Section 4 discusses the choice of the

variables that are perturbed at the initial time and the

prescribed reference trajectories that are used as the

basic state to derive linear operators as well as the error

norms used to measure prediction error. Section 5 pre-

sents primary features of SVs and the influence of

phase of ENSO cycle on error growth under three cho-

sen error norms. Finally a summary and discussion can

be found in section 6.

2. A theoretical framework for calculating

climatically relevant singular vectors for a

CGCM

a. Singular vectors

A general dynamical system may be written com-

pactly as

��t� � F���t���, �1�

where � is a vector representing system state, and F is

nonlinear operator. For a small perturbation �, Eq. (1)

can be written as

��t� � ���t� � F���t�� � ��. �2�

Subtracting Eq. (1) from Eq. (2), we have

���t� � R�, �3�

where the linear operator R in Eq. (3) is the first-order

derivative of F with respect to � (at the time of t�). It

is often called the propagator of Eq. (1) and gives the

time evolution of the dynamical system.

Error growth is evidently dependent on the particu-

lar measure or norm used to define it. Singular vectors

are often sensitive to this choice of error norm. Moore

and Kleeman (1996) used energy and enstrophy norms

when they calculated SVs whereas other workers have

often used the L2 norm (e.g., Chen et al. 1997; Xue et al.

1997a,b; Thompson 1998; Kleeman et al. 2003). In this

work, we adopt the quadratic norm, that is, the predic-
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tion error is defined by ��
T
P

T
P��,1 where the T is

transpose, and the P is a matrix of weights. It is straight-

forward to choose large weights for P in regions where

we desire to analyze error growth. By definition, we can

derive the optimal initial patterns (SVs) giving the larg-

est final error response in our area of interest.

The amplification of the initial perturbation � over

t 	 t� is, therefore,

�
2 �

��
T
P

T
P��

�



�
�

�


R

T
P

T
PR�

�



�
. �4�

The vector � that maximizes �2 in Eq. (4) is the

first eigenvector of R
T
P

T
PR. The projection operator

P yields weighted vectors such that R̃ � PR. Therefore,

the eigenvalues and eigenvectors E of R
T
P

T
PR can be

obtained from a singular value decomposition (SVD) of

R̃ (Strang 1988). The first singular value and the corre-

sponding SV represent the greatest error growth rate

and the optimal forcing patterns in initial state—the

most rapidly evolving and changing modes.

Denoting by �1 and S1 the first singular value and the

first SV, we have (Xue et al. 1997a; Fan et al. 2000)

�1S1 � R̃E1.

Hence �1S1, derived by applying the propagator to the

initial pattern, is the corresponding final pattern, where

S is the left vector of SVD of R̃.

b. Calculation of the linear propagator R

Traditionally, there are two methods to calculate the

linear propagator R. One uses the tangent-linear and

adjoint model of Eq. (1) to precisely obtain R and its

singular vectors (e.g., Moore and Kleeman 1996, 1997a

b, 1998) and the other is to derive the R through per-

turbing the forward model Eq. (1) (e.g., Lorenz 1965;

Chen et al. 1997; Xue et al. 1994, 1997a; Fan et al. 2000).

Both methods have widely been applied to intermedi-

ate-complexity coupled models or hybrid coupled mod-

els for the study of climate predictability (e.g., Chen et

al. 1997; Moore and Kleeman 1996; Thompson and Bat-

tisti 2000, 2001). However, there is a fundamental ob-

stacle in applying either to a CGCM as discussed in the

introduction: For simplicity consider the first method

and consider the perturbation of the initial conditions

by a particular climate variable such as SST. It is known

that this response is very sensitive to initial conditions

in the sense that on climate time scales one will obtain

very different results using atmospheric initial condi-

tions differing only very slightly. This highly sensitive

response to initial conditions is not just confined to

atmospheric variables since one is dealing with a fun-

damentally coupled system. This effect is, of course, a

natural consequence of atmospheric chaos, but obvi-

ously it complicates the study of the climate response of

the dynamical system. An intuitively appealing unique

climate response is provided by an ensemble mean, that

is, take a whole series of sensitive responses to initial

conditions and simply average them. Interestingly the

“ensemble mean” propagator of a linear stochastic dif-

ferential equation with additive stochastic forcing is ex-

actly the propagator of the system without stochastic

forcing. In other words if we were able by some device

to remove the stochastic forcing, then the ensemble

mean response would provide the appropriate response

for the nonstochastically forced system. There are ob-

viously other ways in which a unique/climate response

could be defined, however the ensemble mean provides

in our view the most intuitively straightforward filtering

method (also see Wu et al. 2004). It also corresponds

with what happens in intermediate and hybrid coupled

models where the response is very close to unique

since the atmospheric component gives a unique re-

sponse to given oceanic forcing. One could also attempt

to construct the linearization of a CGCM [such models

are actually available for certain models, e.g., the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) system], however one is then faced with a

difficult filtering problem when considering the singular

vector spectrum since the atmospheric transients have

the fastest growth rates and will probably swamp the

slower growing climate vectors of interest.

The ensemble mean approach discussed presents

practical problems for a CGCM since the model state

space is of enormous dimension (typically at least 106)

and one needs to perturb the system with all dimen-

sions and many times for an ensemble. Obviously this is

impractical with present computational power. Fortu-

nately there is considerable evidence from simpler

coupled models that the effective state space for ENSO

is quite small. We used therefore a well-designed [see

Kleeman et al. (2003) for further discussion] reduced

space for perturbations. This earlier work showed that

the reduced space of correlation EOFs was the most

efficient. Previous work has also shown that conver-

gence of results is relatively rapid after 3–5 dimensions

and 20–30 ensemble members [Kleeman et al. (2003)

provides a detailed discussion on these points].

For calculating R of a dynamical system, one must

first choose a target (denoted by A, e.g., SST) of mea-

1 The error is originally defined by ��
TW��, where the W is a

matrix of weights. For a real symmetric W, it can be expressed

in terms of the Cholesky decomposition (Fan et al. 2000), that is,

W � P
T
P.
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suring prediction errors. Second, the variables that will

be perturbed at the initial time (also called perturbation

variables hereafter denoting by Tb
2 should be deter-

mined. The leading SV of A indicates what kind of the

uncertainty in Tb can lead to the fastest error growth for

predicting A. In this study, we always use SST to mea-

sure the prediction errors. Thus, the procedure of cal-

culating R and the SV is the same for all cases except

that the perturbation EOF modes are derived from an

individual perturbation variable.

The detailed procedure for obtaining R is similar to

that described in Kleeman et al. (2003) as follows:

(i) An ensemble of 30 predictions with lead time of

6 months is constructed by randomly perturbing the

initial Tb field with 30 “very small” random pat-

terns. The ensemble mean of a specific variable of

interest is denoted by �0(t) (i.e., SST in this study).

(ii) Each of the leading three correlation–EOF modes

ei, of Tb (i � l, 2, 3) are added (with a multiplication

factor of 0.1 to ensure linearity) in turn to the initial

condition described in (i) and a new ensemble of 30

predictions is produced. The corresponding en-

semble means are denoted by �i(t).

(iii) A reduced-state space matrix version rij of the

propagator R can be obtained from the equation

Rei � ��i�t� � �i�t� 	 �0�t� � �
j�1

3

rijej � Residual,

i � 1, 2, 3. �5�

It has been found that the residual is generally very

small (Kleeman et al. 2003). The climatically relevant

singular vectors for CGCMs are thus obtained by SVD

for R̃ as aforementioned. The singular vectors of R̃ are

then projected back to real Tb space using the EOF

basis vector expansion.

3. The coupled model

The coupled model used here is the Global Modeling

and Assimilation Office Coupled General Circulation

Model version 1 (GMAO CGCMv1), developed at the

National Aeronautics and Space Administration

(NASA) Goddard Space Flight Center. It comprises

the NASA Seasonal-to-Interannual Prediction Project

(NSIPP) atmospheric model (AGCM), the Poseidon

ocean model (OGCM), and Mosaic land surface model

(LSM). The NSIPP AGCM has a finite-differenced,

primitive equations dynamical core that allows arbi-

trary horizontal and vertical resolution. It uses a finite-

difference C-grid on latitude–longitude coordinates in

the horizontal and a generalized sigma coordinate in

the vertical. The model resolution used here is 3° 

3.75° in the zonal and the meridional, and 34 sigma

layers in the vertical. The top of the model atmosphere

is at 10 mb, where we assume � � 0. The model details

are described in Suarez (1996; also see http://gmao.gsfc.

nasa.gov/research/modeling/cgcm/index.php).

The OGCM is a Poseidon quasi-isopycnal ocean

model (Schopf and Loughe 1995). It is designed with a

finite-difference reduced-gravity formulation that uses

a generalized vertical coordinate to include a turbulent

well-mixed surface layer with entrainment parameter-

ized according to a Kraus–Turner bulk mixed layer

model. The isopycnal region is treated in a quasi-

isopycnal fashion, in which layers do not vanish at out-

crops, but retain a thin minimum thickness at all grid

points. The PP (Pacanowski and Philander 1981)

scheme is used to parameterize the subsurface mixing

and diffusion. The pressure field is designed with a re-

duced-gravity formulation. The version used here has a

horizontal resolution of 1.25°  0.5° in the zonal and

the meridional direction, and 27 layers in the vertical

direction ranging from depths of about 6000 and 8000 m

at the equatorial eastern and western Pacific Ocean.

The LSM computes areally averaged energy and wa-

ter fluxes from the land surface in response to meteo-

rological forcing. The model allows explicit vegetation

control over the surface energy and water balances.

The land surface scheme is based on the simplified ver-

sion of the simple biosphere, but extended to a more

complicated framework accounting for subgrid variabil-

ity in surface characteristics through the “mosaic” ap-

proach. The model details can be found in Koster and

Suarez (1996).

The atmospheric, ocean, and land models are

coupled by the Goddard Earth Modeling System, which

produces routine experimental ENSO prediction of

SST for the tropical Pacific region. The hindcasts dur-

ing 1981–98 show useful skill (i.e., Niño-3 SST anomaly

correlation scores of at least 0.6) for 6–7 months with-

out ocean data assimilation, and the assimilation of al-

timeter data led to better prediction skills (Rienecker

2000)

4. The choice of the perturbation fields, reference

trajectories, and error norm

Before we proceed with SV analysis, some important

issues should be first addressed since to a great extent

2 In this study, the SST and the sea temperature of other two

model layers are respectively chosen as the perturbation variables

(see section 4a).

3364 J O U R N A L O F C L I M A T E VOLUME 19



they determine SVs and their growth rates, that is, the

optimal error growth of predictions. The factors influ-

encing SV include the variables that are perturbed at

the initial time, the prescribed reference trajectories

that are used as a basic state to derive the propagator R,

and the error norm that measures the prediction error.

a. The perturbation variables

The uncertainty in many variables can lead to pre-

diction errors in a realistic coupled model. It is of in-

terest to investigate which variables must be deter-

mined most accurately at forecast initialization time to

produce the best SST forecast. Using an intermediate-

complexity coupled model and energy norm, Moore

and Kleeman (1996) found that thermocline informa-

tion was much more important than SST for SST pre-

diction. Xue et al. (1997a,b) obtained similar conclu-

sions when using the CZ model and L2 error norm. On

the other hand, Fan et al. (2000) and Thompson (1998)

concluded that the initial information of both the SST

field and the thermocline field is equally important for

SST prediction in the tropical Pacific when using two

different intermediate-complexity coupled models.

A major interest in this study is to investigate the

difference of SVs between intermediate-complexity

models and the CGCM. Therefore, we also focus our

attention on the sensitivity of the SST prediction error

to the uncertainty in SST and in the thermocline at

initial state. One good variable to characterize the ther-

mocline displacement is the upper-ocean heat content

(HC). However HC is not a model prognostic variable,

limiting its SV analysis. For simplicity, we use the sub-

surface temperature of two model layers for SV analy-

sis. The chosen subsurface layers are model layer 12

and model layer 20, respectively, which cover the model

thermocline zone. Displayed in Fig. 1 is the mean depth

of the two layers, which was derived from the last 10 yr

of a 50-yr model coupling integration. In following dis-

cussions, the temperatures of model layers 12 and 20

are denoted, respectively, as T12 and T20. It should be

noted that the thermocline displacement changes the

temperature in many layers, thus the SVs of T12 and

T20 might mainly explore the impact of the uncertainty

in two subsurface temperature fields on the SST pre-

diction errors.

b. Reference trajectories

In this study, the ENSO cycle with some seasonal

background is used as the reference trajectory for SV

analysis. This allows us to examine the influence of the

interannual cycle on the error growth in the coupled

model. This CGCM has a realistic interannual variabil-

ity with a period of 3 yr or so. The green line in Fig. 2

shows the variability of SST anomalies (SSTAs) over

the Niño-3 region (5°N–5°S, 150°–90°W). As can be

seen, the model produces a realistic ENSO oscillation

with a range of SSTA from about �2.0° to 	2.8°C.

For reasons of computational efficiency, we will

choose several typical ENSO phases to perform SV

analysis in this study. For generality, we choose five

FIG. 1. The mean depth at model layers 12 and 20 averaged

over the last 10 yr of a 50-yr coupling integration.

FIG. 2. The time series of the first POP mode of HC, and of the

Niño-3 SSTA index.
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ENSO phases, that is, the peak of El Niño, the peak of

La Niña, the onset of El Niño, the onset of La Niña, and

the neutral state.

We use the upper-ocean heat content anomalies

(HCAs3) to identify ENSO phases because it repre-

sents ENSO physics and thermodynamics well. Fluctua-

tions in HCAs are both systematic and significant in the

evolution of ENSO, and are thus an effective measure

of ENSO phase.

Principal oscillation pattern (POP) analysis (von

Storch et al. 1988) was performed on HCAs to identify

the typical phases of the ENSO cycle. A dominant

ENSO-related POP mode is chosen by the several mea-

sures: the oscillation period, variance contribution, and

the correlation of the POP coefficients with Niño-3

SSTA index. Displayed in Fig. 2 is its real and imagi-

nary component of the time series. This mode explains

36% of the total variance, with a period of about 26

months. The correlation coefficient of its real time se-

ries with Niño-3 SSTA index is 0.88. The spatial pat-

terns of the POP mode are shown in Fig. 3. The real

part corresponds to the peak phase of ENSO, while the

imaginary part corresponds to the transition phase. The

POP characteristics of the CGCM are somehow similar

to those found in intermediate-complexity coupled

models and hybrid coupled models (e.g., Balmaseda et

al. 1994; Kleeman and Moore 1997; Tang et al. 2004),

which could be interpreted by the delayed-action oscil-

lator (Battisti 1988), but they also have some differ-

ences with the simple models and observations (Latif

and Graham 1992). For example, off-equatorial Rossby

waves disperse much faster in the equatorial western

Pacific in the CGCM than in simple coupled models, so

that the Rossby wave signals in Fig. 3a are rather weak

compared with strong and apparent “Rossby wave–

like” responses characterized in hybrid coupled models,

indicating possible differences in dynamics and physics

between the CGCM and relatively simple models. A

further discussion on the model behavior and the de-

layed-action oscillator will be presented in section 5a.

The five typical ENSO phases are chosen using the

dominant ENSO-related POP mode as shown in Fig. 2.

They are, respectively, B for the peak of El Niño, D for

the peak of La Niña, C for the onset of La Niña (or

post–El Niño), A for the onset of El Niño (or pre–El

Niño), and E for neutral state.

c. The error norm

In this study, one major interest is to obtain the op-

timal spatial pattern that causes the greatest error

growth for a particular region such as Niño-3. This can

simply be implemented by SV analysis under a well-

defined error norm as discussed in section 2a. For ex-

ample, we could prescribe the projection operator P to

be diagonal (and equally weighted) for the area of in-

terest and zero elsewhere.

The P are matrices defined on model space. As dis-

cussed in section 2b, a reduced space from leading EOF

modes shall be used to derive propagator R to save the

computational cost. To evaluate the prediction error on

the reduced space, we have to develop a kernel (norm)

U in the reduced space that is consistent with its coun-

terpart in original model space.

As aforementioned, under the quadratic norm, the

prediction error is measured on original space �1 by

�����1
� ��

T
P

T
P��. �6�

Denoting a reduced space by �2 constructed by EOF

leading modes, the projection of �� in �2, �A can be

obtained by a linear mapping, that is,

�A � ET
��, �7�

where E is base vectors of �2, composed of leading

EOF modes ei (i � 1, 2 . . .). In reduced space �2, the

prediction error should be defined by �ATU�A, where

U is a weight matrix defined in �2.

3 Heat content is defined here as the integral of the temperature

over the upper 22 model layers, calculated from HC � (�22
i�1hiTi/

�ihi), where hi and Ti are, respectively, the thickness and tem-

perature of level i.

FIG. 3. The (a) real part and (b) imaginary part of the first POP

mode of HC.
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Combining Eqs. (6) and (7), we have

�����2
� �ATET

P
T
PE�A. �8�

Hence, the norm in reduced space is U � ET
P

T
PE. For

the specific case of L-2 norm, U � P
T
P due to the

orthogonality of E and P
T
P to be proportional to the

identity matrix.

5. Singular vector analysis

In this section, we will examine how error growth

varies with different phases of the ENSO cycle and

different perturbation variables in the CGCM under a

prescribed error norm. Our results show that the first

singular value (the growth rate) is at least 10 times as

much as the second value in all cases considered here,

so we only discuss the first singular value and its cor-

responding vector. The first singular vector represents

the initial pattern that will most rapidly grow over the

optimal interval. The amplitude of the first singular

value provides an indirect measure for the fastest grow-

ing rate at which a trajectory perturbed a small distance

from the original model trajectory at the initial state

will diverge from the original trajectory when averaged

over the optimal interval.

a. Predicting SST over the Niño-3 region

To precisely predict SST variations in the Niño-3 or

Niño-3.4 (5°N–5°S, 170°–120°W) regions is particularly

important in ENSO prediction because of the direct

definition of El Niño. It is meaningful to explore what

is the optimal perturbation mode that could lead to the

fastest error growth of Niño-3 SSTA prediction. As ar-

gued in Fan et al. (2000), this is also equivalent to the

following question: To predict SST in the Niño-3 re-

gion, where is the most important initial oceanic tem-

perature information located?

Prescribing P to be diagonal with unit entries for

Niño-3 region and zero elsewhere, we perform the SV

analysis. Table 1 shows the first singular values for five

different ENSO phases and three different perturba-

tion variables, respectively. As can be seen, the first

singular values vary greatly with different ENSO phase

and different perturbation variables. Compared with

SST and T12, the uncertainty in T20 is less favored for

error growth, which might be consistent with such a fact

that the thermal structure of upper ocean plays a dom-

inant role on the ENSO oscillation since layer 20 is

located near the bottom of the thermocline layer (see

Fig. 1).

To compare the relative importance of error growth

caused by initial uncertainty in SST and in T12 could

shed light on which initial uncertainty is more impor-

tant for predicting SST anomalies of the equatorial

eastern Pacific. Layer 12 approximately lies at the up-

per thermocline layer. As shown in Table 1, the error

growth is larger for the initial uncertainty in SST except

when the prediction starts from the neutral state, in

which case the initial uncertainty in T12 has a larger

error growth. This suggests that initial uncertainty in

SST is equally important with, or even more important

than, the subsurface temperature T12 for predicting

Niño-3 SSTA for most initial states, especially for the

onset of El Niño. This result is consistent with those

shown in Thompson (1998) and Fan et al. (2000), but

different from those in Moore and Kleeman (1996) and

Xue et al. (1997a,b), which showed that subsurface in-

formation has more influence on the evolution of the

system than initial SST information.

Figure 4 shows the time–longitude distributions of

SSTA, zonal wind, and heat content anomalies along

the equator during years 41 to 50 in a 50-yr model

coupling integration. Figure 4 might reasonably explain

why the initial uncertainty in SST plays a significant

role in the error growth of predictions in the CGCM.

As shown in Fig. 4a, SSTA exhibits an obvious feature

of westward propagation, which is not consistent with

the observation (Fig. 5b). This is due mainly to the

contribution of the zonal advection of SST, and could

be explained by the mechanism of surface layer feed-

backs (Neelin et al. 1998). In Fig. 4b, the alternating

westerly and easterly wind anomalies lie over the cen-

tral and western equatorial Pacific and to the west of

the SST anomalies (Fig. 4a). In the surface layer feed-

back, for the warm episodes of ENSO, the surface layer

eastward current and downwelling anomalies occur un-

der the westerlies, thus tending to reinforce the original

anomaly, shifting it westward by the mean temperature

advection by the anomalous currents in the surface

layer and contributing to the westward propagation of

SSTA. To the east of the original warm anomaly, east-

erly winds tend to create cold anomalies by this mecha-

TABLE 1. The first singular value optimized at 6 months as the

function of ENSO phase and the depth of perturbation, with the

norm unity weight in Niño-3.

ENSO phase

(start time) Surface Layer 12 Layer 20

El Niño (September) 19.13 14.45 11.99

La Niña (August) 5.66 5.40 4.03

Neutral state (February) 14.37 21.16 1.82

Onset La Niña (April) 12.16 5.6 4.40

Onset El Niño (March) 107.29 12.13 8.04
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nism, potentially resulting in a westward-propagating

succession of warm anomalies (Neelin et al. 1998). For

the cold episodes of ENSO, analogous arguments can

be applied to explain the westward propagation of the

cold anomalies.

A significant feature in the variation of observed heat

content is its eastward propagation along the equator

(Fig. 5a), which could be explained by thermocline dy-

namics (e.g., Latif and Graham 1992; Tang 2002). This

feature has been captured by many intermediate-

complexity models (e.g., Zebiak and Cane 1987; Tang

2002). However, the eastward propagation of HCA is

not significant in the CGCM, as shown in Fig. 4c. This

suggests that the subsurface T12 and T20 contribution

to SST variability over the east Pacific might be not so

significant as the horizontal advection, and might be

underestimated in this CGCM.

Figures 6 and 7 are, respectively, the variations in the

observed and modeled HCA and SSTA along 8°N. The

observed HCA displays an obvious westward propaga-

tion of Rossby waves at the off-equator region, which is

absent in the modeled counterpart. In addition, an in-

FIG. 4. Time–longitude diagrams along the equator for (a) SSTA, (b) the zonal wind ( 100), and (c) the heat content anomaly of

the upper 22 model layers. The units are °C in (a) and (c) and N m	2 in (b). The annual cycle has been removed prior to plotting.
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teresting feature in the observed SSTA is that the 1982/

83 El Niño seemingly appeared to propagate eastward

along the off-equator region, which is probably caused

by a diagonal stretch of warm SST between Indonesia

and Baja California that migrated south.

Therefore, the reason why the perturbation in SST

can lead to faster error growth than in T12 and T20 in

the model might be due to 1) the significant contribu-

tion of zonal advection of surface temperature to SSTA

variability in this model and 2) the relative weak role of

T12 and T20 to SST variations. The former was sug-

gested by a recent work of Yuan and Rienecker (2003).

They found that SST assimilation can improve the

model simulation of temperature advection signifi-

cantly and produce an estimate of the sea surface heat

flux that is consistent with the model dynamics and

thermodynamics.

Another noticeable feature in Table 1 is that the er-

ror growth depends on the phase of the model ENSO

cycle for all situations. For example, the perturbation in

FIG. 5. Time–longitude diagrams along the equator for observed (a) HCA and (b) SSTA.
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SST leads to the largest error growth during the onset

of El Niño, and the smallest during the peak of La Niña,

whereas the perturbation in T12 leads to the largest

error growth during the neutral state and the smallest

during the peak of La Niña. In general, the error

growth is larger during the onset and peak phase of El

Niño than during the onset and peak phase of La Niña,

suggesting that El Niño may be less predictable than La

Niña in this CGCM. These features are in good agree-

ment with the results obtained from intermediate

coupled models (e.g., Xue et al. 1997a,b; Moore and

Kleeman 1996, 1997a,b). Moore and Kleeman (1997a,b)

explored in detail the mechanism responsible for the

variation of SV with the ENSO cycle using an interme-

diate coupled model. They argued that the surface-

driven deep penetrative atmospheric convection is an

important driving force for perturbation in the real at-

mosphere over the western and central tropical Pacific.

During the onset and peak phase of El Niño, the central

Pacific warms, creating conditions more favorable for

FIG. 6. Same as in Fig. 5, but along 8°N.

3370 J O U R N A L O F C L I M A T E VOLUME 19



deep penetrative convection in the atmosphere. During

the onset and peak phase of La Niña, the western Pa-

cific begins to cool and the western Pacific warm-pool

begins to recede westward. In the central Pacific, this

creates conditions unfavorable for deep penetrative

convection, and the inherent ability of all SVs to grow

there declines. However this mechanism might not

work for this coupled model since the first singular vec-

tor in the CGCM shows that the equatorial eastern

Pacific is the area most favored for perturbation

growth, as shown in Fig. 8a. In Moore and Kleeman

(1996, 1997a,b) the western and central parts of the

Pacific Ocean are the the areas most favored for error

growth. In the Zebiak and Cane model (Chen et al.

1997; Xue et al 1997a,b) and the hybrid coupled model

in Fan et al. (2000), SV action is also primarily confined

to the central and eastern Pacific. Figure 8a suggests

that the surface-driven deep penetrative convection

might not play the first important role to strengthen the

initial perturbation in SST or in subsurface T12 and T20

in this CGCM. Instead, the mechanism responsible for

error growth in the CGCM may be one mixed SST–

ocean dynamics mode (see below discussions).

Shown in Figs. 8b,c is the optimal pattern of zonal

wind and heat content associated with the first SV of

SST for the phase of onset of El Niño and the pertur-

FIG. 7. Same as in Fig. 4, but along 8°N.
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bation on SST. The associated patterns of zonal wind

and HC were computed as below,

APU�x, y� � �
t�1

n

U�x, y, t�PC�t�,

APHC�x, y� � �
t�1

n

HC�x, y, t�PC�t�, �9�

where PC is the time series of the first SV projected

onto SSTA fields. APU and APHC are the zonal wind

and HC pattern that usually appears when the first SV

of SST appears. As can be seen, the spatial patterns in

Fig. 8 are somehow similar to the typical delayed-action

oscillator diagram but also show considerable differ-

ences from it (e.g., Balmaseda et al. 1994; Tang 2002).

In a typical delayed-action oscillator diagram, the large

zonal HC gradient occurs at the central equatorial Pa-

cific, weakening the upwelling there and intensifying

the warm Kelvin waves propagating eastward, whereas

large westerly wind anomalies prevail over the central

equatorial Pacific associated with the eastward-

propagating equatorial Kelvin wave. In such a diagram,

the location of large HC gradient and the westerly wind

anomalies are two crucial elements to dominate the

propagation of subsurface information and adjust

ENSO cycle. Obviously, Fig. 8 shows a different struc-

ture, with the large HC gradient in the eastern Pacific

and the large westerly wind anomalies in the west. The

structure of Fig. 8 may infer a mixed SST–ocean dy-

namics mode (Neelin and Jin 1993): the strong westerly

will shoal the thermocline in the west and deepen the

thermocline in the east to balance the wind stress, cre-

ating the warm anomalies in the subsurface in the east;

the warm anomalies are carried to the surface by up-

welling, leading to the SSTA warm anomalies there.

Meanwhile, the strong westerly wind transfers surface

warm water from the west to the east. In the western

Pacific, SSTA westward propagation is dominated by

surface layer feedbacks due to the deep thermocline

there as discussed above.

Figure 9 is the final pattern of the SV after a 6-month

evolution. Comparing Fig. 8 with Fig. 9 reveals a sig-

nificant growth of the SV, as indicated by the singular

value in Table 1.

Unlike the singular value, the sensitivity of the first

SV variation to the phase of the ENSO cycle is more

complicated. When the perturbation was applied to the

SST and the T12, the derived SV was not sensitive to

different phases of the ENSO cycle. In the both cases,

the leading SVs are characterized by a common spatial

pattern similar to Fig. 8a for all phases of ENSO cycle.

This is consistent with the results found in simpler

coupled models (e.g., Moore and Kleeman 1996; Xue et

al. 1997a,b; Chen et al. 1997; Fan et al. 2000). However,

when the perturbation was applied to T20, the first SV

exhibits some disparities among different initial phases.

Shown in Fig. 10 is the first SV for five different ENSO

phases with the perturbation onto the T20. While the

initial conditions start at neutral state, the peak of La

FIG. 8. (a) The first SV mode of SST starting from the phase of

onset of El Niño with SST as perturbation variable; (b) the HC

pattern associated with the optimal SST structure of (a); (c) same

as in (b), but for the zonal wind stress.

FIG. 9. The final pattern of the first SV denned in Fig. 8 after a

6-month evolution.
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Niña and the onset of El Niño, the first SVs also show

a spatial pattern similar to Fig. 8a; whereas the initial

conditions are the peak El Niño and onset of La Niña;

however, the first SVs show little spatial variability. The

latter suggests that the error growth is sensitive to the

uncertainties in T20 over a large domain of tropical

Pacific. On the other hand, when predictions are ini-

tialized from other phases of the ENSO cycle, the error

growth is mainly affected by the uncertainties in T20

over the equatorial east Pacific.

b. Predicting SST over the entire tropical Pacific

and Niño-4

In this section, we will present the results of SVs with

the error norm defined by the entire tropical Pacific.

This allows us to investigate where the most important

initial oceanic temperature information is located for

predicting SST in the entire tropical Pacific. For this

purpose, we define weight matrix P to be diagonal with

unit entries for the 20°N–20°S, 120°E–90°W region and

zero elsewhere. Table 2 is the first singular value opti-

mized at 6 months derived from the new error norm. As

can be seen, the first singular values here are very close

to those in Table 1. Table 2 also reveals many features

similar to Table 1: 1) the first singular value in Table 2

also depends on the phase of the model ENSO cycle; 2)

the error growth is larger during the onset or peak

phase of El Niño than during the onset or peak phase of

La Niña; 3) the uncertainty in SST and T12 favors the

prediction error growth more than that in T20; and 4)

the initial uncertainty in SST is equally important with,

or even more important than, that in T12 and T20 at

most initial states, especially at the onset of the El Niño

phase.

Like the singular values, the SVs derived from the

error norm also bear a striking similarity to those ob-

tained from the error norm of Niño-3 discussed in sec-

tion 5a (not shown), that is, 1) SV is not sensitive to

different phases of the ENSO cycle for the perturbation

of SST and the T12, characterized by a typical El Niño–

like pattern, as in Fig. 8a; 2) for the perturbation of T20,

the first SV exhibits some disparities among different

initial phases, as in Fig. 10.

The striking similarity of singular values and SVs be-

tween the two error norms indicates that the error

growth for predicting the entire tropical Pacific SST is

probably due to that for predicting Niño-3 SST. This

might be explained by the fact that the SST interannual

variability is relatively small in the western Pacific com-

pared to that in the eastern Pacific so that the SST in

the eastern Pacific varies more easily than SST in the

west. Thus, no matter what perturbation is applied, un-

der uniform weighting, SVs for the entire Pacific will be

FIG. 10. The first SV modes of SST, calculated respectively from

five different ENSO phases. The perturbation variable is T20 and

the norm unity weight is given in the Niño-3 area.

TABLE 2. Same as in Table 1, but with the norm unity weight in

the entire tropical Pacific.

ENSO phase

(start time) Surface Layer 12 Layer 20

El Niño (September) 23.3 16.7 14.1

La Niña (August) 7.1 6.2 4.6

Neutral state (February) 18.6 25.0 2.2

Onset La Niña (April) 14.1 14.6 9.4

Onset El Niño (March) 127.4 7.8 5.0
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dominated by what happens in the east since the per-

turbation has more impact on the eastern Pacific. These

results are very consistent with those obtained using an

intermediate hybrid coupled model (Fan et al. 2000). A

further investigation on this issue is to calculate SVs

with the error norm defined by the Niño-4 (5°N–5°S,

160°E–150°W) region.4

Table 3 is the first singular value calculated under the

error norm of Niño-4. Comparing Table 3 with Tables

1 and 2 reveals that the singular values for the predic-

tion of Niño-4 SST are almost all a little less than one-

third of those for the prediction of Niño-3 or the entire

tropical Pacific SST. This is in good agreement with the

results shown in Table 1 and Table 2, that is, the error

growth is much slower for the prediction of Niño-4 SST

than for the prediction of Niño-3 SST, so that the latter

almost dominates the error growth for the prediction of

the entire tropical Pacific SST.

One interesting result obtained under the error norm

of Niño-4 is that the first SV is somewhat sensitive to

the initial ENSO phases as shown in Fig. 11, which is in

contrast to the first SV under the Niño-3 norm and the

entire tropical Pacific norm. In general, the first SV has

two different kinds of spatial structure. The first is very

similar to Fig. 8a in section 5a, that is, the equatorial

eastern Pacific is the region most favorable for the error

growth. This kind of pattern appears at the initial phase

of neutral state, onset of El Niño, and peak of La Niña.

The second kind of spatial structure of the first SV

appears at the initial phase of the peak of El Niño and

onset of La Niña. As can be seen, this kind of SV is

characterized by an east–west dipole along the equator

in SST field. Such a dipole was also found to be the SST

optimal in several simpler coupled models (e.g., Klee-

man et al. 2003; Xue et al. 1997a,b).

However when the perturbation is applied to T12

and T20, the first SV is insensitive to the reference

trajectory except that the largest-amplitude center

somewhat shifts with different ENSO phases (Fig. 12).

The patterns are very similar to those discussed in sec-

tion 5a, that is, the eastern Pacific Ocean is most favor-

able for the error growth.

In summary, the results shown above indicate that

the eastern Pacific is a crucial region most often favored

for error growth. The warm anomalies in the equatorial

central and eastern Pacific are a common feature for

the optimal perturbation in many models when the er-

ror norm is chosen in a form of L-2, Niño-3, or energy

growth.

4 We define weight matrix P to be diagonal with unit entries for

the Niño-4 region and zero elsewhere.

TABLE 3. Same as in Table 1, but with the norm unity weight in

Niño-4.

ENSO phase

(start time) Surface Layer 12 Layer 20

El Niño (September) 6.2 4.1 4.2

La Niña (August) 1.6 1.6 1.0

Neutral state (February) 4.3 6.7 1.0

Onset La Niña (April) 3.6 0.5 1.4

Onset El Niño (March) 32.5 4.1 2.7

FIG. 11. The first SV modes of SST, calculated from five differ-

ent ENSO phases, respectively. The perturbation variable is SST

and the norm unity weight is given in the Niño-4 area.
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6. Summary and discussion

Over last decade, there has been an increased inter-

est in understanding ENSO prediction using SVs since

it describes in a linear sense the optimal error growth

within predictions. SVs of the coupled system have

been widely studied using a hierarchy of ENSO models

from statistically derived models (e.g., Xue et al. 1994;

Penland and Sardeshmukh 1995) and intermediate-

complexity coupled models (e.g., Chen et al. 1997;

Moore and Kleeman 1996, 1997a,b; Thompson and

Battisti 2000; Xue et al. 1997a,b; Fan et al. 2000) to

hybrid coupled models (e.g., Moore et al. 2003). How-

ever SV analysis has not been applied to a CGCM sim-

ply because there was not an adequate technique avail-

able for such an analysis. The coupled models display

tropical interannual variability that differs considerably

from model to model, which could potentially lead to

significant differences in the structure and growth rates

of SV.

In this paper, we applied a recently developed tech-

nique to examine the influence of the model ENSO

cycle on SV growth under several specified error

norms—the Niño-3 norm, the entire basin norm, and

the Niño-4 norm. The different norms were chosen for

identifying the areas most favored for the error growth

for the prediction of SST of the specified region. The

optimal growth interval is chosen to be 6 months since

this period has usually the fastest error growing rate

and is of practical interest. The perturbation was ap-

plied to three different model layers: surface, layer 12,

and layer 20; and to five different ENSO phases: peak

of El Niño, onset of El Niño, neutral, peak of La Niña,

and onset of La Niña.

The results show that the singular-value spectrum is

dominated by one singular vector for all cases. The

error growth of prediction can be strongly influenced

by the phase of the ENSO cycle and the variables of

perturbation. Compared to SST and T12, the uncer-

tainty in T20 causes less error growth in all SST pre-

dictions. The initial uncertainty in SST is as equally

important as T12 and T20 for Niño-3, Niño-4, and the

entire basin SST prediction. These findings hold for

most initial states of predictions, especially for the ini-

tial state of the onset of El Niño. In general, the large

growth factors of the fastest-growing singular vectors

occur during the onset and the peak of El Niño,

whereas relatively small growth factors occurs during

the onset and the peak of La Niña. This suggests that El

Niño maybe be less predictable than La Niña.

Compared to large variations of the first singular

value with the phase of ENSO cycle and the variables

of perturbation, the first SV pattern is not very sensitive

to changes in ENSO phase and the variables subject to

perturbation. This is especially obvious when the norm

is chosen to be the Niño-3 norm or the entire tropical

norm. Under either norm, one dominant singular vec-

tor similar to that in many intermediate models (e.g.,

Xue et al. 1997a; Fan et al. 2000) and in the observation

(Penland and Sardeshmukh 1995) is found. In this op-

timal pattern, the eastern and central parts of the Pa-

cific Ocean are the areas most often favored for the

error growth by the singular vectors. Under the choice

of the Niño-4 norm, two dominant singular vectors are

found: one is similar to that of the Niño-3 norm and the

FIG. 12. Same as in Fig. 11, but the perturbation variable is T12.
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other shows an east–west dipole along the equator with

major weighting located in the eastern and central Pa-

cific. These results indicate that to predict SST anoma-

lies using this CGCM in both the eastern and the west-

ern Pacific 6 months ahead, the important initial upper-

ocean temperature information is located mainly in

the eastern Pacific. This finding was also documented

by Fan et al. (2000) using a simple hybrid coupled

model. However there is a large-scale structure located

in the Northern Hemisphere subtropical intertropical

convergence zone (ITCZ) region in the first SV of

the observed SST that is absent in the leading SV of

the CGCM like all intermediate and hybrid coupled

models.

One interesting result obtained in this study is that

the initial information in SST plays more significant

roles than that in the temperatures of other two sub-

surface layers (i.e., T12 and T20) for predicting the

tropical Pacific SST. It seemingly contradicts some

work that holds that subsurface information is more

important for ENSO prediction (e.g., Latif and Graham

1992; Ji et al. 1998), although some simpler models also

have similar conclusions (e.g., Fan et al. 2000; Thomp-

son 1998). Several reasons are probably responsible for

this: (i) T12 and T20 may not represent subsurface in-

formation well. For example, T20 lies around the bot-

tom of the thermocline and has little contribution to

SST variabilities in the east equatorial Pacific. (ii) The

results may represent the reality reasonably well. There

are two popular hypotheses responsible for ENSO os-

cillations (Neelin et al. 1998): one is subsurface feed-

back, called delayed-action oscillator, and the other one

is the surface layer feedback associated with strong SST

zonal advection. The interannual variability in the

CGCM could in fact be explained by a mixed mode of

subsurface feedback and surface layer feedback (see

section 5a). (iii) The subsurface temperature has a

strong linear relation with SST in the tropical Pacific

(Tang et al. 2004) so the uncertainty in subsurface tem-

perature maybe be able to be resolved and represented

by the uncertainty in SST. ENSO is a coupled mode in

the tropical Pacific. SST plays a significant role in the

coupling process. In this sense, the results might rea-

sonably reflect the importance of SST in the coupling

process. Of course, the results might be only model

dependent, and result from some deficiencies of the

model in physics and dynamics. More work is required

to identify the truth.

Several concerns should be born in mind. First, the

SV is computed based on five different phases of the

ENSO cycle, which are from five different calendar

months; thus the results present in this paper might

include some seasonal influence. However the seasonal

influence should be relatively small since the chosen

calendar months approximately fall into two groups,

each consisting of adjacent calendar months, that is,

February–April and August–September. We believe

that the large differences within the same group should

be due mainly to the influence of phases of the ENSO

cycle. Second, when calculating the SV, for simplicity

we give equal weight to all analysis errors and use

simple geographical projection operators for P, as in

some previous work (e.g., Chen et al. 1997; Thompson

1998). There is no a priori reason to assume that analy-

sis errors have equal weight over all grids and variables

of perturbation. One more realistic strategy is to calcu-

late the analysis error covariance using some specific

technique, as in Fan et al. (2000). In addition, because

of the expensive computational cost, we only choose

five typical phases of model ENSO cycle and examine

their influence on SV growth. Nevertheless this explor-

atory work has shed light on the effect of the phase of

ENSO cycle on the SV growth in a CGCM model and

has obtained some new findings. In particular, the de-

rived optimal perturbation patterns could allow us to

effectively generate ensemble prediction for this

CGCM model. Also, the results reported in this paper

have implications for the initialization of seasonal fore-

cast of this CGCM. For example, the finding that the

uncertainty in SST can lead to faster error growth than

that in T12 and T20 suggests the importance of SST

assimilation in this coupled model. Our recent work

(Tang et al. 2004; Tang and Kleeman 2002) indeed

showed that the assimilation of SST can significantly

improve the prediction skill of Niño-3 SSTA.
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