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Ensuring Drivability of Planned Motions

Using Formal Methods

Bastian Schürmann, Daniel Heß, Jan Eilbrecht, Olaf Stursberg, Frank Köster, and Matthias Althoff

Abstract—Motion planning of automated vehicles requires dy-
namical models to ensure that obtained trajectories are drivable.
An often overlooked aspect is that motion planning is usually
done using simplified models, which do not always sufficiently
conform to the real behavior of vehicles. Thus, collision avoidance
and drivability is not necessarily ensured. We address this
problem by modeling vehicles as differential inclusions composed
of simple dynamics and set-based uncertainty; conformance
testing is used to determine the required uncertainty. To quickly
provide the set of solutions for these uncertain models, we use pre-
computed reachable sets (i.e., the union of all possible solutions)
for pre-selected motion primitives. The reachable sets of vehicles
are obtained through the novel combination of optimization
techniques and reachability analysis in the controller synthesis
– they enable us to guarantee safety by checking their mutual
non-intersection for consecutive time intervals. The benefits of
our approach are demonstrated by numerical experiments.

I. INTRODUCTION

Motion planning is one of the key technologies for auto-

mated driving [1], requiring efficient approaches for reacting

timely to changes in traffic. The computation time in motion

planning significantly depends on the underlying model chosen

to generate feasible trajectories [2]: While a detailed, general

problem formulation may be computationally intractable in

real-time due to its nonlinear, non-convex nature, simple

models require much less computation time but only ensure

feasibility to a lesser extent, since not all aspects of the

vehicle’s dynamics are considered.

In this work, we address exactly this problem: By computing

motion plans from a simple point-mass model we enable

efficient computation. We ensure drivability by utilizing formal

methods, namely reachability analysis and conformance test-

ing. In the following, we review previous work on a) motion

planning of automated road vehicles, b) formal techniques to

ensure that an uncertain vehicle model can follow a planned

maneuver, c) control approaches which can provide guaran-

tees, and d) conformance testing methods.
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a) Motion planning: The last decades have witnessed

significant progress in the development of motion planning

algorithms for both general problems [2] and in the field of au-

tonomous driving in particular [3]. Existing approaches can be

classified according to the complexity of the dynamical system

employed for planning: Detailed models which account for,

e.g., kinematic constraints or nonlinear tire dynamics, require

solution methods which may not be applicable in real-time or

which lack the guarantee of convergence to a global optimum.

These methods comprise graph-searching in a discretized state

space of a nonlinear model [4], sampling-based approaches

such as RRT∗ [5], nonlinear model-predictive control [6], and

optimal control procedures like hp-adaptive collocation [7].

In contrast to these detailed models, much simpler ones are

used in many approaches, which decouple longitudinal and

lateral dynamics and do not enforce kinematic constraints

explicitly [8], [9], [10], [11]. While these models only give a

coarse representation of a real vehicle’s dynamics, they allow

the application of efficient planning algorithms.

b) Formally ensuring drivability: Despite the wide use of

simplistic vehicle models, there has been very limited research

in formally proving drivability of planned paths. Some works

formally prove correctness, but only consider specific aspects

of automated driving. An approach for safely entering an

intersection is presented in [12]. In [13], automated cruise

control is formally verified by automated theorem proving. Au-

tomated theorem proving has also been applied to overtaking

maneuvers in [14] under the assumption of perfect knowledge

of the environment. A verified synthesis for driving assistance

in traffic merging is presented in [15].

The problem of ensuring that a vehicle can follow a desired

trajectory has mostly been addressed by the authors themselves

in previous work. To our best knowledge, online verification

of drivability was first performed theoretically for cooperating

vehicles in [16], for mixed traffic in [17], and on a real

vehicle in [18]. In our previous work [19], we present a much

simpler method, in comparison to the approach shown here,

for pre-computing drivable maneuvers (so called maneuver

primitives).

c) Formal controller design: Computing controllers

which provide formal guarantees for the satisfaction of state

and input constraints despite disturbances, measurement noise,

and nonlinear dynamics is a hard task. Using optimal control

online for disturbed systems is done in tube model predictive

control [20], [21]. However, these methods work mainly for

linear systems. Abstraction-based control [22] is a formal

control approach which is able to guarantee complex specifica-



tions. Since this is often achieved by discretizing the state and

input spaces, these approaches are limited to low-dimensional

systems. In [23], the authors compute so-called LQR-trees to

control sets of initial states using sums-of-squares methods

which have rather high computational costs.

Recently, we proposed several new controller design ap-

proaches [24], [25], [26], which optimize over sets of solu-

tions and guarantee constraint satisfaction, even for disturbed

nonlinear systems, by incorporating reachability analysis in

the controller design. While [24], [25] interpolate open-loop

trajectories and therefore result in non-continuous control

laws, the approach in [26] directly optimizes over the closed-

loop dynamics. In [26], we restrict the approach to disturbed,

linear systems; here we apply it for the first time to disturbed,

nonlinear systems.

d) Conformance testing: Conformance testing is a sys-

tematic process for finding whether the real behavior of a

system and its mathematical model fulfill a conformance

relation [27, p. 30]. We use conformance testing to find

the set of possible deviations between a model and a real

system. There exists rather limited work for conformance

testing of automated vehicles. Although research exists for

general hybrid systems [28], this work does not quantify the

difference between the real system and the model. In [29],

rapidly-exploring random trees are used for test generation.

Rather than quantifying the model error, the authors investigate

the compliance with a specification. First works on rigorously

bounding model errors for systems with continuous dynamics

have been developed by the authors themselves: In [30],

methods have been developed to create simple models with

uncertainty that capture all behaviors of complex models

and in [31], this concept has been generalized to arbitrary

dynamical systems.

e) Concluding remark and paper organization: To the

best of our knowledge, no previous work formally checks

the feasibility of motions planned by a simplified model. We

also present the first work ensuring that the used uncertain

model contains all behaviors recorded from test drives of a real

vehicle. Those test drives are performed before the deployment

of our approach, and we do not consider adapting the model

online in this work.

We begin with an overview in Sec. II. Next, we describe the

three main parts of our approach, starting with the reference

trajectory in Sec. III, followed by the controller design in

Sec. IV, and by conformance checking in Sec. V. In Sec. VI,

we show the results of our approach for a numerical example

based on measured data from real test drives.

II. OVERVIEW

An overview of our proposed approach is illustrated in

Fig. 1. As previously described, we use a simple point-

mass model for motion planning to save computation time.

Since the dynamics of a real vehicle does not exactly match

that of a point-mass model, we prove whether the planned

maneuver is realizable by a non-deterministic system modeled

as a differential inclusion. To properly define this model, we
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Fig. 1. Checking drivability from left to right: a) trajectory planning of
vehicles (here: vehicle A and B), b) matching motion primitives with the
obtained trajectories, c) fetching pre-computed reachable sets and reachable
occupancies (reachable occupancies not yet displayed), d) collision checking
by using reachable occupancies of consecutive time intervals.

introduce the state x ∈ R
n, the control input u ∈ R

m, and the

set of disturbances W ⊂ R
q . The differential inclusion of our

uncertain model is

ẋ ∈ {f(x, u, w)|w ∈ W}, (1)

where W is obtained from conformance testing as detailed

in Sec. V. The measurement of the system is modeled by a

function h, returning the measurement vector y ∈ R
o subject

to a set of measurement errors V ⊂ R
o:

y ∈ {h(x, u, ν)|ν ∈ V}. (2)

We denote a possible solution of (1) by γ(t, x(0), u(·)), where

x(0) ∈ R
n is the initial state and u(·) is an input trajectory.

Unlike a differential equation, a differential inclusion has

infinitely many solutions that can be bounded by its reachable

set Re starting from the set of possible initial states x(0) ∈ X0:

Re(t,X0, u(·),W) :=
{

γ(t, x(0), u(·))
∣

∣

∣
x(0) ∈ X0,

∀τ ∈ [0, t] : w(τ) ∈ W
}

.

The superscript e on Re(t) denotes the exact reachable set,

which cannot be computed for arbitrary nonlinear systems

[32]. For this reason, we aim to compute overapproximations

R(t) ⊇ Re(t) which are as accurate as possible. From now

on, we often only say reachable set when referring to an

overapproximative reachable set to simplify the wording. To

check whether the movement of an uncertain vehicle model is

collision-free, we also have to define the reachable occupancy.
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Fig. 2. Pre-computation of reachable sets and reachable occupancies for all
motion primitives. It is checked which motion primitives can be combined
(last reachable set of preceding motion primitive has to be enclosed in intial
set of the proceeding motion primitive).

After introducing the mapping Γ(x) : R
n → P (R2) (P ()

denotes the power set), which maps a state x to a subset of

R
2 representing the occupancy of the vehicle, we define the

reachable occupancy as

O(t,X0, u(·),W) :=
{

Γ(x)
∣

∣

∣
x ∈ R(t,X0, u(·),W)

}

.

Let us denote the free space of a road scene as Sfree, which

excludes all obstacles and space beyond lane/road boundaries.

We consider a trajectory u(·) as drivable up to a time horizon

tf if

∀t ∈ [0, tf ] : O(t,X0, u(·),W) ⊆ Sfree,

i.e., the trajectory can be followed closely enough to avoid any

possible collisions. An extension to an infinite time horizon is

possible when considering fail-safe maneuvers as explained in

[18], [33], [34]. In order to speed up the computation of reach-

able occupancies, we pre-compute them for so-called motion

primitives [35]. After computing reachable occupancies for

each motion primitive, one can combine them when the final

set of the preceding motion primitive is a subset of the initial

set of the proceeding one (see Fig. 2 and [19]). We concatenate

motion primitives so that the resulting movement is as close

as possible to the originally planned trajectory.

In this work, we consider three different vehicle models: A

simple point-mass model for fast online planning, a kinematic

model for the controller design, and a high-dimensional multi-

body model for the conformance testing. Conformance testing

can either be done using measurements from a real vehicle

or using a high-fidelity model. It is even possible to combine

both, as demonstrated later. As a result, we can efficiently plan

motions based on simple models, while still guaranteeing that

the movement is collision-free despite disturbances and other

uncertainties. Even using more sophisticated models during

motion planning would not result in behavior identical to the

real system. Thus, even for complicated models, conformance

testing would be required – an extra effort that is rarely done

in most other work. A byproduct of our approach is that

we do not have to prove stability of our trajectory tracking

controller, since safety is already guaranteed by the embedded

reachability analysis.

III. REFERENCE TRAJECTORY

Generating collision-free paths for vehicles in a dynamically

changing environment, such as on-road traffic, is a challenging

problem. This is due to the non-convex nature of the solu-

tion space, which is caused by obstacle-avoidance constraints

and both nonlinear dynamics and complex geometries of

the vehicles under consideration. Thus, in its general form,

the problem may not be solvable in real-time. However,

approaches based on the solution of simplified problems exist.

In this paper, we employ a formulation based on the solution

of mixed-integer programs in order to generate reference

trajectories, which are then matched by motion primitives and

followed by their feedback controllers.

Despite unfavorable theoretic run-time properties, mixed-

integer programming has already been applied successfully

in the area of path planning [8], [9]. This success has been

enabled by the fact that for simplified vehicle models, efficient

algorithms exist which facilitate far better computation times

than the theoretic worst-case run-times. Solving the planning

problem in a receding-horizon fashion further reduces the

computational load and also allows one to react to changes

in the environment. Plans are generated by minimizing

J(x(·|tk), u(·|tk)) =

H
∑

j=1

||x(tk+j |tk)− xref(tk+j)||
2
Q+

||u(tk+j−1|tk)||
2
R + ||∆u(tk+j−1|tk)||

2
S (3)

repeatedly over a receding horizon of length H ∈ N
+,

in which the positive semi-definite matrices Q ∈ R
n×n,

R ∈ R
m×m, and S ∈ R

m×m serve as user-defined weighting

matrices and where xref contains velocity and lateral position

references. Let us introduce the argument tk+j |tk to denote the

prediction at time instant tk for a quantity at time instant tk+j .

The search for appropriate input and state sequences,

u(·|tk) =
(

u(tk|tk) u(tk+1|tk) . . . u(tk+H−1|tk)
)

,

x(·|tk) =
(

x(tk+1|tk) x(tk+2|tk) . . . x(tk+H |tk)
)

,

is subject to linear dynamical constraints:

x(tk+j |tk) = Ax(tk+j−1|tk) +Bu(tk+j−1|tk), (4)

x(tk|tk) = x (tk) ,

and box constraints on states x ∈ R
n, inputs u ∈ R

m,

and input increments ∆u(tk+j−1|tk) = u(tk+j−1|tk) −
u(tk+j−2|tk), u(t−1|t0) = 0:

xmin ≤ x(tk+j |tk) ≤ xmax, (5)

umin ≤ u(tk+j−1|tk) ≤ umax, (6)

∆umin ≤ ∆u(tk+j−1|tk) ≤ ∆umax. (7)

A linear prediction model is chosen in order to retain

computational tractability. The vehicle is modeled by double

integrator dynamics for both longitudinal and lateral motion,

such that the state vector x = [px, vx, py, vy]
T in (4) contains

the position and velocity in both longitudinal direction x
and lateral direction y of the road, while the input vector



u = [ax, ay]
T consists of longitudinal and lateral acceleration.

Accordingly, the discrete-time system matrices read

A =









1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1









, B =









1
2T

2
s 0

Ts 0
0 1

2T
2
s

0 Ts









,

where Ts denotes the sampling time. In this model, longitu-

dinal and lateral motion are decoupled by neglecting explicit

constraints from non-holonomic kinematics and the friction

circle. Because the latter represents a convex constraint, it

could be accounted for by introducing a quadratic inequality

constraint, such as a2x + a2y ≤ a2max, though at the expense

of higher computation times. In order to implicitly capture

these constraints and thus maintain drivability of the generated

plans, proper choices of the weights in (3) and constraints

in (5) are essential.

For a set C of vehicles, collision avoidance is based on

an obstacle representation as exemplified in Fig. 3: At first,

all vehicles are over-approximated by rectangles in order to

abstract from a more complex geometric shape. Then, the

bounding rectangles of both the ego vehicle and other vehicles

are projected onto the axes of a coordinate system aligned with

the road orientation. The bounding rectangles of other vehicles

are then enlarged by the dimensions of the bounding box of

the ego vehicle, thus allowing us to consider it as a point mass

from now on. In addition, we enlarge the bounding rectangle

by the safety margins lsafe
(i) = |v

(i)
x |C1 to avoid collisions.

The design parameter C1 ∈ R
+ permits adjusting the size of

the margins.

Obstacle avoidance is then achieved by constraining the po-

sition p
(e)
x of the ego vehicle e ∈ C in the optimization problem

to lie outside the bounding rectangles of obstacles q ∈ C.

A standard procedure to enforce this is to assign a binary

variable δ to each edge of a bounding rectangle, which is set

to 1 in the optimization problem if a position is on the non-

critical side and to 0 otherwise:

δ
(q)
1 (tk) = 1 ⇔ p(q)x (tk) + lsafe

(q)(tk) +
1
2L ≤ p(e)x (tk)

δ
(q)
2 (tk) = 1 ⇔ p(e)x (tk) ≤ p(q)x (tk)− lsafe

(e)(tk)−
1
2L

δ
(q)
3 (tk) = 1 ⇔ p(q)y (tk) +

1
2W ≤ p(e)y (tk)

δ
(q)
4 (tk) = 1 ⇔ p(e)y (tk) ≤ p(q)y (tk)−

1
2W.

Here, L and W denote the length and width, respectively, of

the enlarged bounding box before adding the safety margins.

Requiring that
∑4

l=1 δ
(q)
l (tk) ≥ 1 ensures that the position lies

on at least one non-critical side of the rectangle and therefore

outside of the obstacle. Implementation of these logical rela-

tions is based on the so-called Big-M-Procedure [36].

IV. CONTROLLER DESIGN

To be able to follow the trajectory generated in Sec. III,

we pre-compute motion primitives by extending the technique

presented in [26] for the first time to nonlinear systems. We

design controllers offline for motion primitives as described in

Sec. II to steer all states of an initial set X0 along a reference

L

W

lsafe
(e) lsafe

(q)

obstacle qego

vehicle e

Fig. 3. Obstacles and their safety zones are represented by rectangles

trajectory despite disturbances and measurement noise. Since

we want to minimize the size of the reachable set (see Fig. 2)

while satisfying the input and state constraints, we formulate

the controller design problem as an optimization problem.

In contrast to classical optimal controller design, we do not

optimize over open-loop control inputs or single trajectories.

Instead, we directly minimize the over-approximative reach-

able set of the closed-loop dynamics including disturbances

and measurement noise, included in the sets W and V ,

respectively, see (1) and (2).

For computing the motion primitives, we consider the

steady state vehicle model (SSM) proposed in [37] together

with disturbances and input noise, which accounts for any

uncertainties and model mismatch to the real vehicle:

ṗx = v cos(θ), (8)

ṗy = v sin(θ), (9)

θ̇ =
v

l

(

1 +
(

v
vch

)2
) (δ + wδ), (10)

v̇ = a+ wa, (11)

with the positions in x and y directions px and py , the

orientation θ, and velocity v as states; the control inputs

acceleration a and steering angle δ; and disturbances wa

and wδ . Moreover, we assume that there is a measurement

uncertainty for each state, see (2). The characteristic velocity

vch is a parameter which computes as vch =
√

l2cfcr

m(crlr−cflf)
,

with cf, cr denoting the cornering stiffness of the front and

rear wheels; lf, lr the distances between the front and rear axis

to the center of gravity; l = lf+lr their sum; and m the vehicle

mass [37].

Without loss of generality, all reference trajectories of the

motion primitives start at 0 for the position and orientation due

to positional and rotational invariance. We only have to sample

different velocity ranges. To maximize flexibility, we choose

the same initial set for all maneuvers and include the constraint

that the shifted and rotated final set must be inside this initial

set, see Fig. 2. We choose the initial set to be a box around

xref(0) with Sinit = {x = xref(0) + x̂ | − xmax
i ≤ x̂i ≤ xmax

i },
where x̂i denotes the i-th element of vector x̂.

We fix the controller to be a linear tracking controller:

utrack(x(t)) = uref(t) +K(t)(x(t)− xref(t)), (12)

where xref(·), uref(·) denote the reference state and input

trajectories, respectively. In our case, the reference states and



inputs are defined by the desired motion primitive. Our goal is

to find the time-varying feedback controller K(t) which tracks

this reference trajectory despite disturbances and sensor noise.

The key to our approach is including reachability analysis

[38] into a nonlinear programming problem. We use zono-

topes to represent the reachable sets due to their favorable

computational complexity for required operations introduced

subsequently. Zonotopes are defined as

Z =
{

x ∈ R
n
∣

∣

∣
x = c+

p
∑

i=1

αig
(i), αi ∈ [−1, 1]

}

.

Therein c ∈ R
n is the center of the zonotope, and

g(i) ∈ R
n, i ∈ {1, . . . , p}, are p generators. We use

< c, g(1), . . . , g(p) > as a more concise notation of Z.
To be able to connect as many motion primitives with each

other as possible, we minimize the reachable set at the final

time tf while restricting it to be inside the shifted initial set.

Due to the box shape of the initial set, we introduce the cost

function for minimizing the reachable set based on the minimal

bounding box as

min
K(·)

‖R(tf ,X0, utrack(·),W))‖1,

where we denote, for a set S ⊂ R
n, the sum of the edges

of its axis-aligned bounding box by ‖S‖1, i.e., ‖S‖1 =
∑n

i=1(supx∈S xi−infx∈S xi). If S =< c, g(1), . . . , g(p) > is a

zonotope, which is the case for our reachable sets, then ‖S‖1
can be efficiently computed by ‖S‖1 = 2

∑n
i=1

∑p
j=1 |g

(j)
i |

[39]. We can include a weighting matrix which we multiply

the generators by in order to weight certain dimensions more

than others or to normalize the final set with respect to the

size of the initial set.

Since initial states are bounded by a box around xref(0), the

final set constraint can be written as
p

∑

j=1

|g
(j)
i | ≤ xmax

i , ∀i ∈ {1, . . . , n},

where g(j) are the generators of the final set, where the set

of x and y positions are rotated by θref(tf ). This can easily

be extended for other types of initial sets, see [26] for details.

Note that any dynamical state constraints, such as avoiding

other vehicles, are taken care of by the online planner (see

Sec. II), which uses the pre-computed reachable sets of the

motion primitives.

In addition to the final set constraint, we consider the input

constraint which results from the friction circle
√

a2long + a2lat ≤ amax, (13)

with the longitudinal acceleration along = a + wa and lateral

acceleration alat = vθ̇
(10)
= v2

l

(

1+
(

v
vch

)

2
) (δ + wδ), both with

respect to the orientation of the vehicle. While we treat the

input constraints decoupled for time reasons during the online

planning, we take the coupled constraints into account for the

motion primitives for more accuracy.

From the reachability analysis, we not only obtain reachable

states, but also the set of applied input Zu([tk, tk+1]) for each

time interval [tk, tk+1]. To check (13) in a coupled way, we

check if

‖Z∗
u([tk, tk+1])‖2 ≤ amax.

By Z∗
u([tk, tk+1]), we denote the zonotope Zu([tk, tk+1])

which is projected into the along and alat space by multiply-

ing the δ-dimension with
v2

max

l(1+(
vmin
vch

)2)
, where vmin and vmax

denote the minimum and maximum value of the reachable set

R([tk, tk+1],X0, utrack(·),W) of the time interval [tk, tk+1] in

the velocity dimension. We take advantage of the fact that the

norm of a zonotope can be exactly computed, see [39]. By

checking the input constraint for all time intervals, we ensure

that the real inputs satisfy the input constraints at all times

despite disturbances and sensor noise.

V. CONFORMANCE TESTING

One of the difficulties of applying formal methods to

automated vehicles is transferring formal properties from the

model to the real, physical system. In order to justify why

results derived for the model also apply to the physical system,

the conformance between a physical system and a model is

investigated in this section. A model is said to conform to a

system if it reacts similarly to the system when the same inputs

are applied. Testing conformance refers to applying exemplary

inputs to the system, recording observations of the system’s

behavior, and investigating whether the model can reproduce

similar observations under these inputs.

We use the following definition of trace conformance: A

test case 〈Ui, Yi〉 is understood as a combination of a control

input trace Ui = [u(t1), ..., u(tK)] ∈ R
m×K applied to the

system and a measurement trace Yi = [y(t1), ..., y(tK)] ∈
R

o×K recorded from the system at discrete points in time

t1, ..., tK . A test suite is defined as a set of test cases

{〈U1, Y1〉, ..., 〈Ur, Yr〉}. A model 〈f, h,V,W〉 is said to be

trace conformant, if for every test case 〈Ui, Yi〉 a model trace

〈Xi, Vi,Wi〉 with Xi = [x(t1), ..., x(tK)] ∈ R
n×K , Vi =

[v(t1), ..., v(tK)] ∈ R
o×K , Wi = [w(t1), ..., w(tK)] ∈ R

q×K ,

exists, for which the following holds:

∀tk ∈ {t1, . . . , tK} :

x(tk+1) = x(tk) +

∫ tk+1

tk

f (x(τ), u(tk), w(tk)) dτ (14)

∧ y(tk) = h(x(tk), u(tk), ν(tk)) (15)

∧ ν(tk) ∈ V ∧ w(tk) ∈ W. (16)

Our conformance testing process involves recording a test

suite with the real system and then solving a constraint

satisfaction problem for equations (14)–(16) for each test

case. The problem is similar to a constrained optimal control

problem, which uses the disturbances as system inputs and can

thus be solved accordingly. We use local linearization of the

system model and the measurement constraints, a quadratic

cost function for the disturbances, and MATLAB quadprog



Fig. 4. Automated Vehicle FASCar2, which is used to obtain the test drives
for the conformance testing.
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Fig. 5. Difference between multi-body and steady-state vehicle model. A
steering angle error is applied to the steady-state model inputs in order to
match the output of the multi-body model. The deviation from the reference
steering angle (black) increases with increasing velocity: Shown from v =
10m/s (red) to v = 25m/s (green).

to find candidate disturbance traces. These can be applied

to an initial value problem with the nonlinear model, solved

at the desired numerical precision, and tested against the

measurement error bounds. If a valid model trace exists for

each test case, the model is trace conformant. If the constraint

satisfaction problem cannot be solved for one or more test

cases, the model is not conformant. In this case, the system has

to be modeled more precisely by choosing a more appropriate

f or h, or by increasing the uncertainty in the model by

changing V or W .

VI. NUMERICAL EXAMPLE

In this section, we consider a numerical example in order

to demonstrate our approach for ensuring drivability of a

maneuver, which has been computed for a simple planning

model. First, the conformance between the physical system

and a verification model is established. In the following we

use the steady state vehicle model (SSM) (8)–(11) as a veri-

fication model. This includes quantification of measurement

noise and disturbance errors, under which the verification

model conforms to the physical system. Second, we verify

the drivability of the computed trajectory for the point-mass

model by matching it with the motion primitives computed for

the SSM model with disturbances and measurement noise.

As mentioned in Sec. II, our approach is capable of obtain-

ing the measurement error and disturbance error sets V,W
used for reachability analysis, either from real vehicle data

or from simulations of a high-fidelity model. To demonstrate

this, we compare the verification model against a test suite

of five test drives with a life-sized automated vehicle (see

Fig. 4, FASCar2, detailed technical description in [40]) and

against a test suite of 480 Monte-Carlo simulations with a

multi-body vehicle model. While the experiments with a real

10 20 30 40 50

1

2

3

4

px[m]

p
y
[m

]

Fig. 6. Physical test drives: Lane change, five repetitions.

TABLE I
CONFORMANCE TESTING: MEASUREMENT ERRORS AND DISTURBANCES

empx [m] empy [m] em
θ
[◦] emv [m

s
] eda[

m
s2

] ed
δ
[◦]

MBM/MC 0.015 0.015 0.15 0.05 0.025 0.2
SSM2MBM 0.025 0.025 0.25 0.075 0.1 0.5
SSM2VEH 0.025 0.025 0.3 0.075 0.03 0.5

vehicle serve to demonstrate applicability of our approach to a

physical system, the simulated test suite underpins reliability

by successful execution of a bigger number of tests. In both

test suites, the control input u = [a, δ]T contains the requested

steering angle as well as the requested acceleration, and the

measured output y = [px, py, v, θ]
T contains the positions in

x and y directions, the direction of movement θ, and the

absolute velocity v (values are recorded at 100Hz). Here, the

requested control input refers to the control input sent from

the controller to the actuator, implying that actuator errors are

incorporated in the disturbances of the resulting, conformant

model. A lane-change maneuver with velocity v = 10m/s
and lateral acceleration ay ≈ 2m/s2 is used for conformance

testing, as shown in Fig. 6.

For the simulation experiments, we use a multi-body model

(MBM) with 29 states described in [41]. To represent a

test drive, a Monte-Carlo simulation is executed with control

inputs Ui ∈ R
2×K according to the tested maneuver as

well as with additive, uniformly distributed disturbances with

bounds ed given in row MBM/MC of Tab. I. A simulated

output trace Yi is generated by adding uniformly distributed

measurement errors em. For the simulated test drives, a test

suite is designed; this consists of two types of maneuvers

(double lane change and slalom), which are executed both

in a 7 s and a 10 s time interval, with lateral accelerations

from the set alat ∈ {1, 2, 4}m/s2, test velocities from the set

v ∈ {10, 15, 20, 25}m/s, and 10 repetitions per combination.

The double lane change maneuver is specified by a piece-

wise linear steering angle profile presented in Fig. 5 (black)

and the slalom maneuver is specified by a sine-wave steering

angle profile with frequency 0.2Hz.

We match the four-dimensional SSM with differential equa-

tion fSSM (8)–(11) and measurement function h(x, u, ν) =
x+ν against the physical system and the simulated test drives.

As shown in Fig. 5, the deviations from the reference inputs

have to be increased with higher velocities and higher lateral

accelerations to maintain similar outputs, e.g., by increasing

the disturbances. In order to achieve a conformant, non-
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Fig. 7. Physical test drive: Conformant disturbance error traces.
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Fig. 8. Physical test drive: Conformant measurement error traces. Disconti-
nuities due to jumps in GPS position signal.

deterministic model 〈fSSM, h,V,W〉, the disturbance set W
and the measurement error set V are increased until (14)-(16)

can be satisfied by the corresponding error traces 〈Vi,Wi〉
for all test cases 〈Ui, Yi〉, with Xi = Yi + Vi. The bounds

of error sets, for which conformance can be shown for all

test cases, are provided in Tab. I in line SSM2MBM for the

simulation test suite and in line SSM2VEH for the physical

test drives. The disturbance error traces Wi for the steering

angle error of a subset of the simulation test suite are shown

in Fig. 9. The measurement error traces of the simulation test

suite are indistinguishable from random noise and are therefore

omitted. The disturbance error traces and the measurement

error traces for the physical test drives are given in Fig. 7 and

8, respectively. Each trace of a given color corresponds to one

test drive. As can be seen, the given error bounds (red) are

never exceeded.

We use our results from conformance testing for the con-

troller design of the motion primitives. As previously described

(see Sec. IV), all reference trajectories of the motion primitives

start at 0 for px, py, and θ and have a duration of 2 s
each. The initial set for all maneuvers is a box with size

[−0.2, 0.2]m×[−0.2, 0.2]m×[−1.15, 1.15]◦×[−0.2, 0.2]m/s.
We compute a robust controller for each maneuver and assume

thereby that the disturbances and measurement errors belong in

the sets corresponding to the maximum values from the confor-
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]

slalom

double lane-change

Fig. 9. Steering angle error (ed
δ
) for test-cases with v = 25m/s, ay ≈

4m/s2, and duration 10 s. Results for double lane-change maneuver in blue
and slalom in green, admissible error bound in red.

Fig. 10. Double lane-change maneuver driven using motion primitives along
planned trajectory (green). Initial sets of motion primitives are shown in blue,
final sets in red, reachable sets in gray, and their reference trajectories in
black. The planned trajectory is hard to see, as in most parts the reference
trajectories are very close to it.

mance testing for the MBM and for the real driving data. We

restrict the maximum acceleration in (13) to amax = 10m/s2.

All considered maneuvers end in a final set, which is contained

in the initial set shifted and rotated by xref(2 s). Therefore, we

can concatenate any one maneuver with any other.

The combination of all parts is shown in Fig. 10. Therein,

we show in green the planned path for a double-lane change,

which is planned using our online planner. In the next step, we

fit the planned path with our motion primitives. We show the

initial sets of each motion primitive in blue, the final sets in

red, the reachable set in between in gray, and their reference

trajectories in black. In Fig. 11 we show a single maneuver.

One can see how the final set is contained in the initial set

of the second maneuver, which is the rotated version of the

initial set of the first maneuver.

VII. CONCLUSION

In this paper we present for the first time all parts of

an efficient and formal path-planning-and-tracking approach

for autonomous vehicles. Since autonomous vehicles act in

Fig. 11. Zoom into a single motion primitive: Full motion primitive on the
left, final set (red) with initial set from following maneuver (blue) on the
right. Initial set is a box rotated by the orientation of the reference trajectory.



complex and safety-critical environments, it is important to

have algorithms which solve the path planning problem in

real-time despite other traffic participants and obstacles. To be

able to do so, the planning algorithms are mostly restricted

to simplified models with no guarantees whether the planned

paths are drivable and safe for the real vehicle. We therefore

combine path planning with motion primitives, which include

the pre-computed controllers and reachable sets for car models

which incorporate the real vehicle dynamics in the form of

disturbance sets. The disturbance sets are obtained from a

combination of simulations with more complex models and

real vehicle data to guarantee conformance of the controller

model to the real vehicle dynamics. Since our planning algo-

rithm uses a simple model and since the motion primitives are

pre-computed, we can perform the online planning in real-

time, while still ensuring safety despite disturbances, sensor

noise, and complex vehicle dynamics.
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[24] B. Schürmann and M. Althoff, “Convex interpolation control with formal

guarantees for disturbed and constrained nonlinear systems,” in Proc. of

Hybrid Systems: Computation and Control, 2017, pp. 121–130.
[25] ——, “Guaranteeing constraints of disturbed nonlinear systems using

set-based optimal control in generator space,” in Proc. of the 20th IFAC

World Congress, 2017, pp. 12 020–12 027.
[26] ——, “Optimal control of sets of solutions to formally guarantee

constraints of disturbed linear systems,” in Proc. of the American Control

Conf., 2017, pp. 2522–2529.
[27] J. Tretmans, “A formal approach to conformance testing,” Ph.D. disser-

tation, Universiteit Twente, 1992.
[28] M. P. W. J. van Osch, “Automated model-based testing of hybrid

systems,” Ph.D. dissertation, Technische Universiteit Eindhoven, 2009.
[29] T. Dang, Model-Based Testing for Embedded Systems. CRC Press,

2011, ch. Model-based Testing of Hybrid Systems, pp. 383–423.
[30] M. Althoff and J. M. Dolan, “Reachability computation of low-order

models for the safety verification of high-order road vehicle models,” in
Proc. of the American Control Conf., 2012, pp. 3559–3566.

[31] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff, “Reachset
conformance testing of hybrid automata,” in Proc. of Hybrid Systems:

Computation and Control, 2016, pp. 277–286.
[32] G. Lafferriere, G. J. Pappas, and S. Yovine, “Symbolic reachability

computation for families of linear vector fields,” Symbolic Computation,
vol. 32, pp. 231–253, 2001.

[33] S. Magdici and M. Althoff, “Adaptive cruise control with safety guaran-
tees for autonomous vehicles,” in Proc. of the 20th IFAC World Congress,
2017.
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