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Abstract

Machine learning is used increasingly in clinical care to improve diagnosis, treatment selection, 

and health system efficiency. Because machine-learning models learn from historically collected 

data, populations that have experienced human and structural biases in the past—called protected 
groups—are vulnerable to harm by incorrect predictions or withholding of resources. This article 

describes how model design, biases in data, and the interactions of model predictions with 

clinicians and patients may exacerbate health care disparities. Rather than simply guarding against 

these harms passively, machine-learning systems should be used proactively to advance health 

equity. For that goal to be achieved, principles of distributive justice must be incorporated into 

model design, deployment, and evaluation. The article describes several technical implementations 

of distributive justice—specifically those that ensure equality in patient outcomes, performance, 

and resource allocation—and guides clinicians as to when they should prioritize each principle. 

Machine learning is providing increasingly sophisticated decision support and population-level 

monitoring, and it should encode principles of justice to ensure that models benefit all patients.
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Machine learning can identify the statistical patterns of data generated by tens of thousands 

of physicians and billions of patients to train computers to perform specific tasks with 

sometimes superhuman ability, such as detecting diabetic eye disease better than retinal 

specialists (1). However, historical data also capture patterns of health care disparities, and 

machine-learning models trained on these data may perpetuate these inequities. This concern 

is not just academic. In a model used to predict future crime on the basis of historical arrest 

records, African American defendants who did not reoffend were classified as high risk at a 

substantially higher rate than white defendants who did not reoffend (2, 3). Similar biases 

have been observed in predictive policing (4) and identifying which calls to a child 

protective services agency required an in-person investigation (5, 6). The implications for 

health care led the American Medical Association to pass policy recommendations to 

“promote development of thoughtfully designed, high-quality, clinically validated health 

care AI [artificial or augmented intelligence, such as machine learning] that … identifies and 

takes steps to address bias and avoids introducing or exacerbating health care disparities 

including when testing or deploying new AI tools on vulnerable populations” (7).

We argue that health care organizations and policymakers should go beyond the American 

Medical Association’s position of doing no harm and instead proactively design and use 

machine-learning systems to advance health equity. Whereas much health disparities work 

has focused on discriminatory decision making and implicit biases by clinicians, 

policymakers, organizational leaders, and researchers are increasingly focusing on the ill 

health effects of structural racism and classism—how systems are shaped in ways that harm 

the health of disempowered, marginalized populations (8). For example, the United States 

has a shameful history of purposive decisions by government and private businesses to 

segregate housing. Zoning laws, discrimination in mortgage lending, prejudicial practices by 

real estate agents, and the ghettoization of public housing all contributed to the concentration 

of urban African Americans in inferior housing that has led to poor health (9, 10). Even 

when the goal of decision makers is not outright discrimination against disadvantaged 

groups, actions may lead to inequities. For example, if the goal of a machine-learning 

system is to maximize efficiency, that might come at the expense of disadvantaged 

populations.

As a society, we value health equity. For example, the Healthy People 2020 vision statement 

aims for “a society in which all people live long, healthy lives,” and one of the mission’s 

goals is to “achieve health equity, eliminate disparities, and improve the health of all groups” 

(11). The 4 classic principles of Western clinical medical ethics are justice, autonomy, 

beneficence, and nonmaleficence. However, health equity will not be attained unless we 

purposely design our health and social systems, which increasingly will be infused with 

machine learning (12), to achieve this goal.

To ensure fairness in machine learning, we recommend a participatory process that involves 

key stakeholders, including frequently marginalized populations, and considers distributive 

justice within specific clinical and organizational contexts. Different technical approaches 

can configure the mathematical properties of machine-learning models to render predictions 

that are equitable in various ways. The existence of mathematical levers must be 
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supplemented with criteria for when and why they should be used—each tool comes with 

tradeoffs that require ethical reasoning to decide what is best for a given application.

We propose incorporating fairness into the design, deployment, and evaluation of machine-

learning models. We discuss 2 clinical applications in which machine learning might harm 

protected groups by being inaccurate, diverting resources, or worsening outcomes, especially 

if the models are built without consideration for these patients. We then describe the 

mechanisms by which a model’s design, data, and deployment may lead to disparities; 

explain how different approaches to distributive justice in machine learning can advance 

health equity; and explore what contexts are more appropriate for different equity 

approaches in machine learning.

CASE STUDY 1: INTENSIVE CARE UNIT MONITORING

A common area of predictive modeling research focuses on creating a monitoring system—

for example, to warn a rapid response team about inpatients at high risk for deterioration 

(13–15), requiring their transfer to an intensive care unit within 6 hours. How might such a 

system inadvertently result in harm to a protected group? In this thought experiment, we 

consider African Americans as a protected group.

To build the model, our hypothetical researchers collected historical records of patients who 

had clinical deterioration and those who did not. The model acts like a “diagnostic test” of 

risk for intensive care unit transfer. However, if too few African American patients were 

included in the training data—the data used to construct the model—the model might be 

inaccurate for them. For example, it might have a lower sensitivity and miss more patients at 

risk for deterioration. African American patients might be harmed if clinical teams started 

relying on alerts to identify at-risk patients without realizing that the prediction system 

underdetects patients in that group (automation bias) (16). If the model had a lower positive 

predictive value for African Americans, it might also disproportionately harm them through 

dismissal bias—a generalization of alert fatigue in which clinicians may learn to discount or 

“dismiss” alerts for African Americans because they are more likely to be false-positive 

(17).

CASE STUDY 2: REDUCING LENGTH OF STAY

Imagine that a hospital created a model with clinical and social variables to predict which 

inpatients might be discharged earliest so that it could direct limited case management 

resources to them to prevent delays. If residence in ZIP codes of socioeconomically 

depressed or predominantly African American neighborhoods predicted greater lengths of 

stay (18), this model might disproportionately allocate case management resources to 

patients from richer, predominantly white neighborhoods and away from African Americans 

in poorer ones.

WHAT IS MACHINE LEARNING?

Traditionally, computer systems map inputs to outputs according to manually specified “if–

then” rules. With increasingly complex tasks, such as language translation, manually 
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specifying rules becomes infeasible, and instead the mapping (or model) is learned by the 

system given only input examples represented through a set of features together with their 

desired output, referred to as labels.

The quality of a model is assessed by computing evaluation metrics on data not used to build 

the model, such as sensitivity, specificity, or the c-statistic, which measures the ability of a 

model to distinguish patients with a condition from those without it (19, 20). Once the 

model’s quality is deemed satisfactory, it can be deployed to make predictions on new 

examples for which the label is unknown when the prediction is made. The quality of the 

models on retrospective data must be followed with tests of clinical effectiveness, safety, and 

comparison with current practice, which may require clinical trials (21).

Traditionally, statistical models for prediction, such as the pooled-cohort equation (22), have 

used few variables to predict clinical outcomes, such as cardiovascular risk (23). Modern 

machine-learning techniques, however, can consider many more features. For example, a 

recent model to predict hospital readmissions examined hundreds of thousands of pieces of 

information, including the free text of clinical notes (24). Complex data and models can 

drive more personalized and accurate predictions but may also make algorithms hard to 

understand and trust (25).

WHAT CAN CAUSE A MACHINE-LEARNING SYSTEM TO BE UNFAIR?

The Glossary lists key biases in the design, data, and deployment of a machine-learning 

model that may perpetuate or exacerbate health care disparities if left unchecked. The Figure 

reveals how the various biases relate to one another and how the interactions of model 

predictions with clinicians and patients may exacerbate health care disparities. Biases may 

arise during the design of a model. For example, if the label is marred by health care 

disparities, such as predicting the onset of clinical depression in environments where 

protected groups have been systematically misdiagnosed, then the model will learn to 

perpetuate this disparity. This represents a generalization of test-referral bias (26) that we 

refer to as label bias. Moreover, the data on which the model is developed may be biased. 

Data on patients in the protected group might be distributed differently from those in the 

nonprotected group because of biological or nonbiological variation (9, 27). For example, 

the data may not contain enough examples from a group to properly tailor the predictions to 

them (minority bias) (28), or the data set of the protected group may be less informative 

because features are missing not at random as a result of more fragmented care (29, 30).

The immediate effect of these differences is that the model may not be as accurate for 

patients in the protected class, but the effects on patient outcomes and resource allocation are 

usually mediated through how clinicians and administrators interact with the model. For 

example, do clinicians trust the model even when it is wrong (automation bias) or ignore it 

when they should not (dismissal bias)? Will administrators use a flawed model to determine 

which patients are at high risk for poor outcomes and who should then receive more 

assistance?
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Patients in the protected group may also be negatively affected by privilege bias if models 

are not built for diseases that disproportionately affect them or if models are 

disproportionately deployed to areas where they do not seek care (for example, concierge 

practice vs. safety-net clinic) (31). They also may be affected by informed mistrust if 

protected groups distrust using models for their own care (32).

DISTRIBUTIVE JUSTICE OPTIONS IN MACHINE LEARNING

What can be done to mitigate the biases that make a model unfair? We propose using 3 

central axes inspired by principles of distributive justice to understand fairness in machine 

learning.

Equal Outcomes

Equal patient outcomes refers to the assurance that protected groups have equal benefit in 

terms of patient outcomes from the deployment of machine-learning models (33). A weak 

form of equal outcomes is ensuring that both the protected and nonprotected groups benefit 

similarly from a model (equal benefit); a stronger form is making sure that both groups 

benefit and any outcome disparity is lessened (equalized outcomes). Ensuring equal 

outcomes is the most critical aspect of fairness and can be advanced by interventions 

proactively designed to reduce disparities (34, 35). It may be hard to know in advance, 

though, if any well-intentioned general, nontailored intervention, whether a quality 

improvement project or a machine-learning system, might disproportionately harm or benefit 

a protected group. However, besides equal outcomes, other options that might advance 

health equity can be analyzed and addressed prospectively.

Equal Performance

If a model systematically makes errors disproportionately for patients in the protected group, 

it is likely to lead to unequal outcomes. Equal performance refers to the assurance that a 

model is equally accurate for patients in the protected and nonprotected groups. Equal 

performance has 3 commonly discussed types: equal sensitivity (also known as equal 

opportunity [36]), equal sensitivity and specificity (also known as equalized odds), and equal 

positive predictive value (commonly referred to as predictive parity [37]). Not only can these 

metrics be calculated, but techniques exist to force models to have one of these properties 

(36, 38–41).

When should each type of equal performance be considered? A higher false-negative rate in 

the protected group in case 1 would mean African American patients were missing the 

opportunity to be identified; in this case, equal sensitivity is desirable. A higher false-

positive rate might be especially deleterious by leading to potentially harmful interventions 

(such as unnecessary biopsies), motivating equal specificity. When the positive predictive 

value for alerts in the protected group is lower than in the nonprotected groups, clinicians 

may learn that the alerts are less informative for them and act on them less (a situation 

known as class-specific alert fatigue). Ensuring equal positive predictive value is desirable in 

this case.
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Equal performance, however, may not necessarily translate to equal outcomes. First, the 

recommended treatment informed by the prediction may be less effective for patients in the 

protected group (for example, because of different responses to medications and a lack of 

research on heterogeneous treatment effects [42]). Second, even if a model is inaccurate for 

a group, clinicians might compensate with additional vigilance, overcoming the model’s 

deficiencies.

Third, forcing a model’s predictions to have one of the equal performance characteristics 

may have unexpected consequences. In case 1, ensuring that a model will detect African 

American and non–African American patients at equal rates (equal sensitivity) could be 

straightforwardly accomplished by lowering the threshold for the protected class to receive 

the intervention. This simultaneously increases the false-positive rate for this group, 

manifesting as more false alarms and subsequent class-specific alert fatigue. Likewise, 

equalized odds can be achieved by lowering accuracy for the nonprotected group, which 

undermines the principle of beneficence.

Equal Allocation

Predictions are often used to allocate resources, such as in case 2, in which some patients are 

given additional case management. The third type of equity is equal allocation (also known 

as demographic parity [43]), which ensures that the resources are proportionately allocated 

to patients in the protected group. Because the comorbidity distribution may differ across 

groups, the desired allocation might first be adjusted for relevant variables (44). This is 

distinct from equal performance, because allocation is determined by the rate of positive 
predictions (such as predictions above a threshold) without regard to their accuracy.

In some cases, judging accuracy is misleading when labels have historical bias, explaining 

why equal allocation may be preferable. Consider a model to identify which patients 

presenting emergently with chest pain should automatically activate a cardiac catheterization 

team. If African American women were historically sent for this procedure at 

inappropriately low rates compared with white men (45), then “correct” predictions (based 

on historical data) would underidentify these women. Equal allocation could be used to 

lower the threshold for African American women so that the catheterization laboratory 

would be activated at equal rates across groups, thereby correcting for past bias. This may 

not necessarily translate to equal outcomes if it leads to a higher rate of false-positive 

activations of the laboratory with respect to actual clinical need or to a continuation of lower 

true-positive rates if clinicians dismiss the predictions because of the underlying bias against 

recommending the procedure for women. Whether the net effect of the model is a reduction 

in health care disparities, especially compared with not implementing a model, is uncertain.

Tradeoffs

The computer science community was rocked when a machine-learning model used to help 

predict which criminal defendants were at risk for committing a future crime was found to 

be unfair with respect to equalized odds: African American defendants who did not reoffend 

were classified as high risk at a substantially higher rate than white defendants who did not 

reoffend. The model builders, however, asserted that the model had equal positive and 
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negative predictive value across the groups (46). Subsequent analysis revealed that various 

types of fairness are sometimes incompatible: A model may be fair with respect to equal 

positive and negative predictive value but unfair with respect to equalized odds (or vice 

versa), but it is impossible for any model to satisfy both. This impossibility also holds for 

equalized odds and equal allocation, and for equal allocation and equal positive and negative 

predictive value (37). Machine-learning fairness is not just for machine-learning specialists 

to understand; it requires clinical and ethical reasoning to determine which type of fairness 

is appropriate for a given application and what level of it is satisfactory. Although no cookie-

cutter solution exists, the examples and recommendations provide a starting point for this 

reasoning. We believe that in practice, satisfactory levels of the desired fairness types can be 

achieved.

RECOMMENDATIONS

In the Table, we present recommendations for how to incorporate fairness into machine 

learning. Researchers should consider how prior health care disparities may affect the design 

and data of a model. For example, if advanced-stage melanoma is diagnosed more frequently 

in patients with dark skin than in other groups, might a skin cancer detection model fail to 

detect early-stage disease in patients with dark skin (47, 48)? During training and evaluation, 

researchers should measure any deviations from equal accuracy and equal allocation, and 

consider mitigating them by using techniques during training (38–40) or by postprocessing a 

trained model (30, 36, 41). Before deployment, launch reviews should formally assess model 

performance and allocation of resources across groups. The reviews should determine 

whether a model promotes equal outcomes, broadly defined as “the patient’s care 

experience, functional status, and quality of life, as well as… personalization of care and 

resource stewardship” (49). If a model is deployed, the performance of the model and 

outcome measurements should be monitored, possibly through formal trial design (such as 

stepped-wedge trials [50]). Moreover, the model may be improved over time by collecting 

more representative or less biased data.

We purposefully do not recommend the commonly discussed fairness principle of 

“unawareness,” which states that a model should not use the membership of the group as a 

feature. Complex models can infer a protected attribute even if it is not explicitly coded in a 

data set, such as a model identifying a patient’s self-reported sex from a retinal image even 

though ophthalmologists cannot (51). Moreover, removing features may lead to poorer 

performance for all patients.

CONCLUSIONS

Consideration of fairness in machine learning allows us to reexamine historical bias and 

proactively promote a more equitable future. We are optimistic that machine learning can 

substantially improve the care delivered to patients if it is thoughtfully designed and 

deployed. Case 2 is based on a University of Chicago Medicine example in which data 

scientists from the Center for Healthcare Delivery Science and Innovation collaborated with 

experts from the Diversity and Equity Committee to identify the equity problem and to 

design a local checklist for model building and deployment that advances equity.
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Machine-learning fairness is not just about preventing a model from harming a protected 

group; it may also help focus care where it is really needed. Models could be used to provide 

translation services where inperson interpreters are scarce, provide medical expertise in 

areas with a limited number of specialists, and even improve diagnostic accuracy for rare 

conditions that are often misdiagnosed. By including fairness as a central consideration in 

how the models are designed, deployed, and evaluated, we can ensure that all patients 

benefit from this technology.
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Glossary

Biases in model design
Label bias: A label that does not mean the same thing for all patients because it is an 

imperfect proxy that is subject to health care disparities rather than an adjudicated truth. This 

is a generalization of test-referral and test-interpretation bias in the statistics literature

Cohort bias: Defaulting to traditional or easily measured groups without considering other 

potentially protected groups or levels of granularity (e.g., whether sex is recorded as male, 

female, or other or more granular categories)

Biases in training data
Minority bias: The protected group may have insufficient numbers of patients for a model to 

learn the correct statistical patterns

Missing data bias: Data may be missing for protected groups in a nonrandom fashion, which 

makes an accurate prediction hard to render (e.g., a model may underdetect clinical 

deterioration in patients under contact isolation because they have fewer vital signs)

Informativeness bias: Features may be less informative to render a prediction in a protected 

group (e.g., identifying melanoma from an image of a patient with dark skin may be more 

difficult)

Training–serving skew: The model may be deployed on patients whose data are not similar 

to the data on which the model was trained. The training data may not be representative (i.e., 

selection bias), or the deployment data may differ from the training data (e.g., a lack of 

unified methods for data collection or not recording data with standardized schemas)

Biases in interactions with clinicians
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Automation bias: If clinicians are unaware that a model is less accurate for a specific group, 

they may trust it too much and inappropriately act on inaccurate predictions

Feedback loops: If the clinician accepts the recommendation of a model even when it is 

incorrect to do so, the model’s recommended versus administered treatments will always 

match. The next time the model is trained, it will learn to continue these mistakes

Dismissal bias: Conscious or unconscious desensitization to alerts that are systematically 

incorrect for a protected group (e.g., an early-warning score for patients with sepsis). Alert 

fatigue is a form of this

Allocation discrepancy: If the protected group has disproportionately fewer positive 

predictions, then resources allocated by the predictions (e.g., extra clinical attention or social 

services) are withheld from that group

Biases in interactions with patients
Privilege bias: Models may be unavailable in settings where protected groups receive care or 

require technology/sensors disproportionately available to the nonprotected class

Informed mistrust: Given historical exploitation and unethical practices, protected groups 

may believe that a model is biased against them. These patients may avoid seeking care from 

clinicians or systems that use the model or deliberately omit information. The protected 

group may be harmed by not receiving appropriate care

Agency bias: Protected groups may not have input into the development, use, and evaluation 

of models. They may not have the resources, education, or political influence to detect 

biases, protest, and force correction

Distributive justice options for machine learning
Equal patient outcomes: The model should lead to equal patient outcomes across groups

Equal performance: The model performs equally well across groups for such metrics as 

accuracy, sensitivity, specificity, and positive predictive value

Equal allocation: Allocation of resources as decided by the model is equal across groups, 

possibly after controlling for all relevant factors
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Figure. Conceptual framework of how various biases relate to one another.
During model development, differences in the distribution of features used to predict a label 

between the protected and nonprotected groups may bias a model to be less accurate for 

protected groups. Moreover, the data used to develop a model may not generalize to the data 

used during model deployment (training–serving skew). Biases in model design and data 

affect patient outcomes through the model’s interaction with clinicians and patients.
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Table.

Recommendations

Design

 Determine the goal of a machine-learning model and review it with diverse stakeholders, including protected groups.
 Ensure that the model is related to the desired patient outcome and can be integrated into clinical workflows.
 Discuss ethical concerns of how the model could be used.
 Decide what groups to classify as protected.
 Study whether the historical data are affected by health care disparities that could lead to label bias. If so, investigate alternative labels.

Data collection

 Collect and document training data to build a machine-learning model.
 Ensure that patients in the protected group can be identified (weighing cohort bias against privacy concerns).
 Assess whether the protected group is represented adequately in terms of numbers and features.

Training

 Train a model taking into account the fairness goals.

Evaluation

 Measure important metrics and allocation across groups.
 Compare deployment data with training data to ensure comparability.
 Assess the usefulness of predictions to clinicians initially without affecting patients.

Launch review

 Evaluate whether a model should be launched with all stakeholders, including representatives from the protected group.

Monitored deployment

 Systematically monitor data and important metrics throughout deployment.
 Gradually launch and continuously evaluate metrics with automated alerts.
 Consider a formal clinical trial design to assess patient outcomes.
 Periodically collect feedback from clinicians and patients.
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