
Ensuring QoS During
Bandwidth DDoS Attacks

Moti Geva

Department of Computer Science

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University

Ramat-Gan, Israel April 2013

This work was carried out under the supervision of Prof. Amir Herzberg,

Department of Computer Science, Bar-Ilan University.

Preface

As a kid, I got the wonderful opportunity to see the digital revolution with my own

eyes, and the evolution of the Internet. I recall getting my first computer which had no

modem, let alone a network interface card. Calling up friends to come over and play on

the computer would usually result in the group coming over with a large box full of floppy

disks. My next computer had a fast 56 Kbps modem, which I used for dialing-up and

connecting to the Internet. I became fascinated with computers and networking, so it

came as no surprise to anybody when I decided to get a degree in computer engineering.

A little over four years ago, I decided to pursue a Ph.D in computer science. At the

time, I had already worked for several years in systems R&D, and I had gained practical

experience in networking and security. After my M.Sc. thesis got published, a Ph.D.

seemed like something that I would enjoy working toward, which turned out to be just

right. However, I found out that a Ph.D. is not a list of scientific results, but rather a

long, interesting, and sometimes difficult journey.

In research, one knows where he starts but can never know which twists and turns

will the research take. My original research proposal was named “DOT-COM: Secure

Decentralized Online Trading and Commerce.” Over the years the research focus has

shifted from the “decentralized online trading” part to the “secure” part, and some results

got published [32, 33, 35]. Eventually, the thesis was renamed to “Ensuring QoS During

Bandwidth DDoS Attacks,” as most of the work was done in that area. Nevertheless,

we got to publish a paper on DOT-COM [34], and online trading remains an important

motivation for the rest of the thesis.

My Ph.D. goal could not have been accomplished without the help of many people.

First and foremost, I had the privilege to have Prof. Amir Herzberg of the Department

of Computer Science at Bar-Ilan University (BIU) as my advisor. In addition to being

an inspiring researcher, teacher, and advisor, Amir has also been an extremely pleasant

person to work with. At the time I started my Ph.D., I couldn’t imagine how much I

would learn from Amir. During the countless hours we spent discussing the research,

Amir was insightful and with keen observations that shined a spotlight on parts in need

of further research, refinement and clarifications. Amir taught me so much about research

and I am grateful for his guidance. I would especially like to thank Amir for always being

available; many times I found myself writing him emails in the middle of the night to

find out early in the morning that I had already got a response.

I would like to thank my co-authors. To Yoshi Gev, for his part in the Backward Traffic

Throttling research. To Dr. Yair Wiseman who was my M.Sc. advisor and introduced

me to the wonderful world of academic research, with whom I published my first research

papers. To Avshalom Elmalech, Prof. Barbara Grosz, and Dr. David Sarne, with whom

I had the opportunity to work and co-author a paper in the field of artificial intelligence.

For their highly appreciated help, advice and encouragement throughout my Ph.D.

process, special thanks goes to: Prof Amihood Amir – former Chair of the Faculty of

Exact Sciences and former Chair of the Department Computer Science, Prof. Tomy Klein

– Chair of the Computer Science Department, and Prof. Moshe Lewenstein – former Chair

of the Computer Science Department. All of whom helped me at various crossroads, from

undertaking the Ph.D. to graduating. I am also grateful to Dr. Ariel Frank, Dr. Avinatan

Hassidim, Prof. Yehuda Lindell, Prof. Benny Pinkas, and Prof. Ely Porat, for their helpful

advice and discussions.

This long period would certainly not have been the same without the pleasant com-

pany of other students and friends: Gilad Asharov, Aharon Brodie, Boaz Catane, Ran

Cohen, Yair Dombb, Eran Omri, Nethanel Gelernether, Yossi Gilad, Rachel Ginzberg,

Haya Shulman, Assaf Tabach, Erez Waisbard, and Hila Zarosim. I would also like to

thank the many students whom I taught throughout the years, and from which I learned

a lot. They have made my teaching experience enlightening, fun, and rewarding.

I would like to convey special thanks to my dear friend Dr. Omid David for his lasting

friendship, support, stimulating discussions, and helpful suggestions, both professionally

and personally.

Most of all, I would like to deeply thank my beloved family. To my loving brother

and sisters, Menachem, Michal, and Odeyah-Sarah, for their support and encouragement.

To my wonderful children Yoav and Noga, who constantly remind me of what is really

important in life.

Finally, to my dear mother Rachel who ever since I can remember myself has always

been there for me, encouraging, and doing everything she possibly can for me; and to my

amazing wife Merav for her understanding, unwavering support, constant encouragement,

and endless love. To these two extraordinary wonderful women, to whom I owe so much,

I dedicate this thesis!

Ramat-Gan,

April, 2013.

Contents

1 Introduction 1

1.1 Problem Overview . 2

1.1.1 Bandwidth Denial of Service Attacks 3

1.1.2 Network-level Defense Mechanisms 11

1.2 This Thesis . 17

1.2.1 QoS Over DoS-prone Networks 19

1.2.2 Controlled Overlays . 20

1.2.3 Backward Traffic Throttling . 21

2 QoS Over DoS-prone Networks 25

2.1 Introduction . 25

2.2 The QoSoDoS Model . 27

2.2.1 Modeling QoSoDoS As Latency-Rate Server 29

2.2.2 The Delivery Probability . 30

2.2.3 Confronting Network Outage . 32

2.3 QoSoDoS Design . 33

2.3.1 Basic Design: Use of ART and TCP 33

2.3.2 Lowering QoSoDoS’ Transmission Rate By Using TCP 35

2.3.3 Lowering Average Transmission Rate of ART Algorithms 36

2.3.4 Number of Clients vs. Delay Trade-off 38

2.3.5 Resuming TCP . 42

2.3.6 QoSoDoS: The Big Picture . 43

2.3.7 Network Outage Handling Design 45

2.3.8 Algorithm Design . 46

2.4 ART Algorithms . 47

2.4.1 Flat Algorithm . 50

2.4.2 Bulk Algorithms . 51

2.4.3 Linearly Increasing Rate Algorithm 53

2.4.4 Exponentially Increasing Rate Algorithm 55

2.4.5 Burst Linear and Burst Exponential Algorithms 56

2.5 Experimental Evaluation . 57

2.5.1 ART Algorithms Comparison . 58

2.5.2 Mixed Senders and Attackers Tree 61

2.5.3 Various Attack Sizes . 63

2.5.4 QoSoDoS and TCP Comparison 64

2.5.5 Link Failure Experiment . 68

2.6 Conclusions . 70

3 Controlled Overlays 73

3.1 Introduction . 73

3.2 Model Assumptions . 76

3.2.1 Network Behavior . 76

3.2.2 Bandwidth Costs . 77

3.3 Design . 77

3.3.1 Cloud-based Overlay . 78

3.3.2 Clients-based Overlay . 78

3.3.3 Source and Relay Authentication 78

3.3.4 Overlay Design Goals . 82

3.3.5 Overlay Design . 83

3.3.6 Building an Amplification Overlay 85

3.4 Evaluation . 87

3.4.1 Simulator Design and Implementation 87

3.4.2 Availability Simulation . 89

3.4.3 Overlay Performance Simulation 90

3.5 Conclusions . 95

4 Backward Traffic Throttling 97

4.1 Introduction . 98

4.2 Design . 100

4.2.1 Network Model . 101

4.2.2 Typical Traffic and Weights . 102

4.2.3 Congestion Handling . 103

4.2.4 Backward Traffic Throttling . 103

4.2.5 Attack Recovery . 106

4.3 Evaluation . 106

4.3.1 Emulation Setup . 108

4.3.2 Testbed Results . 109

4.3.3 Simulation Setup . 110

4.3.4 Simulation Results – Attacks on Stub Links 111

4.4 Conclusions . 111

5 Conclusions 117

List of Tables

1.1 Comparison Between BW-DDoS Attacks 10

1.2 Comparison Between BW-DDoS Defense Mechanisms 18

1.3 Comparison Between BTT and Related Solutions. 24

2.1 Comparison Between Best-Effort and QoSoDoS. 30

2.2 QoSoDoS Events Description. 46

2.3 QoSoDoS Notation Summary Table. 49

2.4 ART Algorithms Configuration . 59

2.5 QoSoDoS Parameters Used in Experiments 64

2.6 QoSoDoS Parameters Used in the Link Failure Experiment 71

3.1 Bandwidth Estimation Based on AS Size 89

4.1 BTT Notation Summary Table. 107

List of Figures

1.1 Rate vs. Congestion over a Bottleneck Link (Experimental Results) . . . 5

1.2 AS Availability vs. Attack Size. 6

2.1 QoSoDoS Delay Analysis. 29

2.2 Birth-death Process (M/M/1/K Queue) 31

2.3 QoSoDoS Protocol State Model and Transitions 33

2.4 “Linear” Automated Redundant Transmission (ART) Algorithm 35

2.5 Average Rate vs. Delivery Probability 39

2.6 A Simplified Transmission Model . 40

2.7 Delay vs. Number of Clients. 41

2.8 QoSoDoS Average Rate vs. Time . 43

2.9 QoSoDoS’ Multiple Packet Transmission Rate 44

2.10 “Flat” Rate Algorithm . 51

2.11 “Bulk at Start” Algorithm. 52

2.12 “Bulk at the End” Algorithm. 53

2.13 Exponentially Increasing Rate Algorithm. 56

2.14 Dumbbell Topology for ART Comparison 58

2.15 Measured PE vs. PN/A. 60

2.16 Measured Latency vs. PN/A . 60

2.17 Measured Rate vs. PN/A . 61

2.18 Measured Redundant Packets vs. PN/A. 62

2.19 Mixed Senders and Attackers Experiment 63

2.20 Latency vs. Acceptance Probability . 65

2.21 Effective Rate vs. Delivery Probability. 65

2.22 Effective Packet Acceptance Prob. vs. Attacker’s Bandwidth 66

2.23 QoSoDoS Degradation Compared with TCP 67

2.24 Percent of Packets Sent in ART. 67

2.25 TCP Performance Degradation Compared with QoSoDoS 68

2.26 Percent of Packets Sent in ART with a Short-lived Attack 69

2.27 Circle Topology Emulated in DETERlab 70

3.1 Client-based Overlay Protocol . 81

3.2 Overlay Design . 84

3.3 Overlay Throughput vs. Delivery Probability and Goodput Tradeoff . . . 86

3.4 AS Clusters based on Total Bandwidth 90

3.5 Intra-overlay Overhead of Data Passed Between Overlay Nodes 91

3.6 Goodput Traffic Sent Directly from Client to Server 92

3.7 Overlay Goodput Traffic Sent via a Relay from Client to Server 93

3.8 Senders vs. Delivery Latency . 94

3.9 Average Completed Transmissions . 94

3.10 Senders Trying to Use the Overlay . 95

3.11 Excessive Sent and Received Traffic . 95

4.1 BTT System Architecture . 100

4.2 Backward Throttling Example . 101

4.3 Schematic View of Topology . 103

4.4 Testbed Topology . 108

4.5 Legitimate Traffic When BTT is Disabled 113

4.6 Ping Results When BTT is Disabled . 113

4.7 Legitimate Traffic When BTT is Enabled 114

4.8 Ping Results When BTT is Enabled . 114

4.9 Legitimate Traffic When BTT is Enabled with Overbooking 115

4.10 Ping Results When BTT and Overbooking Enabled 115

4.11 Target Link Utilization . 116

4.12 Goodput Ratio vs. BTT Deployment Ratio 116

Abstract

Distributed Denial of Service (DDoS) attacks are aimed at exhausting various resources

of victim hosts, thereby preventing legitimate usage of their computational capabilities.

DDoS attacks are often launched by organized crime, hacktivists, or other (un)usual

suspects, making this type of cyber crime a major concern for many organizations around

the world.

The Internet is a best-effort packet-switching network. Everyday usage shows that the

Internet is able to properly work, and successfully deliver information across the globe in

an instant. However, bandwidth distributed denial of service (BW-DDoS) attacks bring

to light the limitations of best-effort networks.

In this thesis we present our research about mitigation of Bandwidth DDoS (BW-

DDoS) attacks. BW-DDoS is aimed at exhausting network resources, commonly routers’

queue space, and prevent access to the victim server. BW-DDoS attacks have a devas-

tating effect over protocols employing congestion control, as their performance is sharply

degraded as a result of losses and delays. BW-DDoS mitigation techniques introduced in

this work refrain from making changes to Internet infrastructure equipment, i.e. routers,

hence they are focused on adjusting end-host behavior, and the configuration of routers.

The first chapter serves as an introduction to this work. In it we overview key BW-

DDoS attacks and defenses. We argue that so far, BW-DDoS has employed relatively

crude, inefficient, “brute force” mechanisms; future attacks may be significantly more

effective, and hence much more harmful. We discuss current deployed and proposed

defenses. We argue that to meet the increasing threats, more advanced defenses should

I

be deployed. This may involve some proposed mechanisms (not yet deployed), as well as

new approaches.

The second chapter details QoSoDoS, a novel protocol that ensures QoS (that is

timely delivery) over DoS-prone (best-effort) networks. QoSoDoS is based on scheduling

multiple transmissions of packets while attempting to minimize overhead and load, and

avoiding self-creation of DoS. On the downside, QoSoDoS retransmission model achieves

throughput proportional to the delivery probability, hence for large bandwidth attacks

QoSoDoS is able to assure only a low throughput.

The third chapter investigates the effectiveness of using overlay networks to break

through congested networks. We present a novel design which, upon congestion, turns

to an end-host based overlay to redirect communication and amplify legitimate traffic,

using one or multiple paths to the destination. Our overlay is carefully controlled, thus

preventing self-generated DDoS. We suggest two ways to construct such an overlay, one

way is by using the server’s clients and the other way is by using cloud resources. Cloud

resources come at a cost which may be substantial, depending on the configuration (e.g.

0.77 cents for 1 megabit of data with packet delivery probability of 1%; see Section 3.2.2

for details), and therefore may be inappropriate for many application or undesired by

many users. Additionally, the destination must be instrumented with ways to securely

differentiate between legitimate and attack traffic. To that end we propose two MAC-

based protocols to enable such differentiation.

The forth chapter discusses Backward Traffic Throttling (BTT), an efficient, decen-

tralized mechanism for congestion and bandwidth-flooding attacks mitigation. BTT em-

ploys three basic mechanisms to throttle excessive traffic, namely: prioritizing legitimate

flows, shaping traffic, and by requesting upstream BTT nodes to similarly prioritize and

shape traffic. BTT is relatively easy to deploy: it requires no changes to routers, and

does not modify traffic. Instead, BTT configures routers’ queuing discipline and traffic

shapers. The broader BTT’s deployment is the better its performance. However, BTT

has two main limitations. The first limitation is based on the fact that as for any changes

II

to router, even configuration changes may prove challenging to implement in the real

world. The second limitation is that BTT assumes the existence of typical traffic. Dur-

ing an attack BTT uses the typical traffic estimation to prioritize legitimate traffic over

attack traffic.

III

IV

Chapter 1

Introduction

Distributed denial of service (DDoS) attacks pose a serious threat to the Internet. We

discuss the Internet’s vulnerability to Bandwidth Distributed Denial of Service (BW-

DDoS) attacks, where many hosts send a huge number of packets exceeding network

capacity, causing congestion and losses, thereby disrupting legitimate traffic. TCP and

other protocols employ congestion control mechanisms that respond to losses and delays

by reducing network usage. Hence, their performance may be degraded sharply due

to such attacks. Attackers may disrupt connectivity to servers, networks, autonomous

systems, or whole countries or regions; such attacks have already been launched in several

conflicts.

In this chapter we overview the problem of BW-DDoS attacks and defenses. We

argue that so far, BW-DDoS attacks employed relatively crude, inefficient, “brute force”

mechanisms; future attacks may be significantly more effective, and hence much more

harmful. We discuss current deployed and proposed defenses. We argue that to meet

the increasing threats, more advanced defenses should be deployed. This may involve

some proposed mechanisms (not yet deployed), as well as new approaches, which we will

present in later chapters.

1

1.1 Problem Overview

Internet services are indispensable – and yet vulnerable toDenial of Service (DoS) attacks,

and especially to Distributed DoS (DDoS) attacks. In this chapter we focus on DDoS

attacks, in which many attacking agents cooperate to cause excessive load to a victim host,

service, or network. DDoS attacks have increased in importance, number and strength

over the years, becoming a major problem. In a recent survey of network operators [12]

(2012, Fig. 10), DDoS was the most common identified “significant threat” (76% of

respondents). Furthermore, significant growth in size of attacks (in bytes and packets)

and in their sophistication was also reported [12,41].

We further focus on Bandwidth Distributed Denial of Service (BW-DDoS) attacks,

which disrupt the operation of the network infrastructure by causing congestion, i.e., an

excessive amount of traffic. Congestion may be due to the total amount of traffic (in

bytes), or the total amount of packets (often a lower limit, using short packets). BW-

DDoS attacks can cause loss or severe degradation of connectivity between the Internet

and victim network(s) or even whole autonomous system(s), possibly disconnecting whole

regions of the Internet. Recently reported BW-DDoS reached volume of 100 Gbps [12] and

the latest claimed largest attack reported an attack of 300 Gbps [23]; 60-86.5% of the BW-

DDoS targeted the infrastructure (layer 3) [41], including the mitigation infrastructure

itself [12].

In this chapter we do not discuss DoS/DDoS attacks which are not focused on band-

width, including exploits of vulnerabilities and limitations of specific application/transport

protocol implementations (e.g., SYN flooding), service (e.g., ping of death) or device (e.g.,

attack exploiting router and firewall vulnerabilities). For a general DDoS attacks and de-

fenses taxonomy (not limited to BW-DDoS) see Mirkovic et al. [59].

BW-DDoS attackers may use different techniques as well as different attacking agent

capabilities. A strong attacking agent is a privileged-zombie, i.e., a software agent hav-

ing high privileges and complete control over the machine on top of which it is being

2

executed, with the ability to make manipulations to the protocol stack, e.g., being able

to send spoofed IP packets. Weak agents include puppets – that is, programs down-

loaded automatically and executed within sandboxes (e.g., scripts and applets), such as

JavaScript-based web pages. Next, an attacker may use simple types of bandwidth flood-

ing, or elaborate techniques to amplify bandwidth, such that uncompromised machines

assist with consuming bandwidth.

In Section 1.1.1, we discuss significant known BW-DDoS attacks, and compare them

with respect to their effectiveness and requirements, considering the attacking agents,

protocol manipulations, amplification and attack target. We discuss widely used attacks

as per the above mentioned reports [12, 41], as well as more advanced attacks, which so

far have only been presented academically. We argue that as more advanced attacks are

adopted and cyberwarfare threats increase, BW-DDoS growth rates may further acceler-

ate.

In Section 1.1.2, we discuss important results from the vast body of research regarding

BW-DDoS defenses developed in the past twenty years. Some of these defense techniques

are widely deployed defenses in practice, and other defenses were only proposed academi-

cally. We discuss defenses from both groups, and compare them with respect to the action

they take to mitigate the attack, the network location in which they are deployed, the in-

frastructure adaptations they require, and their dependency on cooperation. Considering

reported attacks, we argue that existing defenses may not suffice in the future. Hence,

further research, standardization and development of new practical defense mechanisms

is required to ensure that defenses can withstand potential increasingly strong attacks.

1.1.1 Bandwidth Denial of Service Attacks

BW-DDoS attacks are usually generated from a large number of compromised computers

(zombies or puppets). According to recent surveys, e.g., [12, 41], Bandwidth Distributed

Denial of Service is the most frequently used DoS method. Most BW-DDoS attacks use a

few simple ideas, mainly, flooding, i.e., many agents sending packets at the maximal rate,

3

and reflection, i.e., sending requests to a server with fake (spoofed) sender IP address,

resulting in the server sending (possibly longer) packets to the victim.

Flooding attacks have created significant damages, since the attackers used a suffi-

cient number of agents to cause massive bandwidth consumption and packet losses. For

example, the largest attacks reported in recent years consisting of 100 Gbps (2010) and 60

Gbps (2011, 2012) [12]. Moreover, it seems that gradually, attackers are adopting more

complex and effective attacks. Attacks in 2010-2011 were DNS reflection/amplification

attacks, described below. In 2012 the attack was aimed at the DNS infrastructure itself.

This trend of using more effective attacks is alarming, since significantly more effective

BW-DDoS techniques were discovered by researchers (and more may exist).

Nevertheless, inducing a significant percent of packet loss is no easy task for an at-

tacker. Generally, packet delivery probability is the ratio between the available bottleneck

link bandwidth and the attack’s rate, denoted PD, is independent and can be approxi-

mated by:

PD ≈ min

(

1,
RO

RI

)

(1.1)

where RO is the outgoing rate, or link’s bandwidth, and RI is the incoming rate; see

Figure 1.1 and Section 2.2.2. However, as depicted in Figure 1.1, due to TCP’s conges-

tion control, congestion or (small) packet loss probability causes dramatic performance

degradation in TCP connections. It follows that BW-DDoS damage may be worse than

mere consumed bandwidth.

Figure 1.2 depicts the results of an Internet scale simulation we have conducted,

which can be used to emphasize the potential damage of various-sized BW-DDoS attacks.

Details regarding the simulation are discussed in Section 3.4. As depicted in Figure 1.2,

large-scale attacks, within the order of magnitude seen to date, can cripple even large

ASes, let alone specific hosts or networks.

BW-DDoS attacks come in many flavors, and utilize various mechanisms to induce

excessive bandwidth consumption. We will discuss the main features which can be used

4

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180

R
ec
ei
ve
d
L
eg
it
im

at
e
R
at
e
(M

b
p
s)

Attack Rate (Mbps)

TCP♦

♦

♦

♦

♦

♦ ♦ ♦ ♦ ♦

♦
UDP (100 Mbps)

+

+

+

+
+

+
+ +

+ +

+
UDP (50 Mbps)

� � �
�

�
�

� � � �

�
Theoretical - UDP (100 Mbps)

×

×
×

×
×

× × × × ×

×
Theoretical - UDP (50 Mbps)

△ △ △ △
△ △ △ △ △ △

△

Figure 1.1: Experimental results of delivered rate vs. congestion over a bottleneck link.
The diamonds (♦) line is TCP, the pluses (+) and squares (�) are constant rate UDP,
and the dashed lines are theoretical rates for constant rate UDP flows as per Eq. 1.1.
TCP reduces its rate as a function of available bandwidth, whereas UDP suffers from
packet loss. In the topology: the top solid line (blue) represents the legitimate traffic,
and the bottom dashed line (red) represents the attacker. All links are 100 Mbps.

5

P
er
ce
n
t
of

A
va
il
ab

e
A
S

Attack Size (Mbps)

Figure 1.2: Percent of available Autonomous Systems (AS) vs. attack size (Mbps). Black
bars are ASes with available bandwidth to support TCP connections from all incoming
links. The gray bars are ASes with available bandwidth for only part of their incoming
links. The white bars are fully congested ASes which cannot sustain TCP. The figure
implies that most of the Internet is prone to DDoS at the attack scales seen to date. The
graph is based on the Internet’s AS topology simulation, as described in Section 3.4.2.

to classify different attacks, and discuss which capabilities are required from an attacker

to launch such attacks.

Attacking Agent

Let us first consider a naive BW-DDoS attack, where the attacker sends as many packets

as possible directly to the victim, or from attacker controlled machines called “zombies”

or “bots.” The simplest scenario is one in which the attacker is sending multiple packets

using a connectionless protocol such as UDP. In UDP flood attacks, the attacker com-

monly has a user-mode executable on the zombie machine which opens standard UDP

sockets and sends many UDP packets towards the victim.

For UDP floods, and many other BW-DDoS attacks, the attacking agents must have

zombies, i.e. hosts running adversary-controlled malware, allowing the malware to use

standard TCP/IP sockets. Other attacks require only puppets [11], i.e. scripts, applets,

etc., downloaded and run automatically by client agents such as web browsers. Being

6

untrusted, puppets’ operations are restricted by a sandbox; e.g., they cannot send UDP

packets, let alone spoof packets, and they are limited in establishing TCP connections.

Nevertheless, even though puppets cannot induce as much bandwidth as zombies, they

can still induce significant bandwidth usage. For example the maxSYN attack [11] aims

to maximize SYN packets by setting the sources of several JavaScript image objects to

be nonexistent URLs repeatedly every 50 milliseconds. Every time the script writes

into the image source URL variable, old connections are stalled by the browser and new

connections are established to fetch the newly set image URL.

On the other hand, other types of attacks require zombies to have administrative

privileges for execution. We refer to privileged zombies as root-zombies. For example, to

send packets with a spoofed source IP address, a zombie commonly requires the ability

to open raw sockets, which is permitted for privileged users only. It is also important to

note that some protocol manipulations require network support, or more accurately, lack

of prevention. Specifically, spoofing is commonly filtered by ingress filtering as discussed

in Section 1.1.2.

Hence, we consider three types of zombies: puppets, zombies, and root-zombies. Taking

control over puppets is relatively easy, and can be done by fooling users to browse to the

attacker’s website. Zombies are harder to take over, as they require the attacker to install

malware on the zombie machine by exploiting some vulnerability or tricking users into

installing the malware themselves. Root-zombies require that either an installed zombie

was initially installed with high privileges, or that they have a privilege escalation exploit

that can gain such high privileges.

Amplification Attacks

In a naive attack the attack traffic is limited by the bandwidth capacity of the compro-

mised machines, and the entire load on the victim is due to packets sent by the zombies.

Other attacks use the attacking agents’ bandwidth more effectively, such that on average,

every packet sent by a zombie causes transmission of multiple and/or larger packets to

7

the victim by non-compromised machines. Specifically, the attacker sends a request r of

size |r| which results in longer response r′ of size |r′|, achieving amplification factor of

|r′|
|r| .

DNS amplification attacks [77] rely on the fact that DNS responses may be larger in

size than DNS requests. DNS requests are pretty short, e.g. 40 bytes, whilst responses

may be much longer. Originally, DNS responses over UDP were limited to 512 bytes;

however, DNS extensions (EDNS) [78] allow longer responses, e.g., 1,500 and even 4,000

bytes. Hence, DNS amplification factor can be 512
40

= 12.8, and even up to 4000
40

= 100 with

EDNS. With the uptake of DNSSEC [13], which relies on the long packet capabilities of

EDNS, long responses are likely to become more common.

Theoretically, based on an amplification factor of 100 an attacker requires roughly

100 zombies, each sending DNS requests at 100Kbps, to achieve a 1Gbps attack. For a

10Gbps attack 1,000 zombies are required, etc. Alarmingly, significantly larger botnets,

consisting of hundreds of thousands of zombies, have already been discovered.

Protocol Manipulations

We discuss two types of protocol manipulations which can be used by an attacker. The

first attempts to avoid detection, and the second tries to exploit legitimate protocol be-

havior and cause legitimate clients/servers to excessively misuse their bandwidth against

the attacked victim. Typically, protocol manipulation for bandwidth attacks require a

strong zombie with administrative privileges, as the manipulation is commonly done at

the low protocol layers handled by the operating system, usually IP and TCP.

For naive attacks such as UDP floods, the sources of the attack are visible. The

victim host can see the zombies’ source addresses, making it relatively easy to block

packets and to take technical or legal measures against the attacking machines and their

owners. Therefore, an attacker may try to avoid detection by manipulating its source IP

address, commonly referred to as spoofing. Thus an attacker can send multiple packets,

each containing a different spoofed source address, making it harder for the victim to

8

identify the attacker source, and block them.

The second type of attack exploits legitimate protocol behavior by misusing packet

fields, or acting dishonestly, causing a legitimate host to send unwanted or excessive

packets to the victim. For example, using IP spoofing an attacker can induce a DNS

reflection attack. DNS is a request-response protocol; that is, a DNS server or resolver,

will return responses to clients that issue DNS requests. The client return address is

determined using the source IP address appearing in the request. DNS reflection attacks

exploit this behavior: the attacker sends a spoofed DNS request to an open resolver

[2, 28], making the open resolver issue a response packet to the spoofed address. A

DNS resolver is open if it provides recursive name resolution for clients outside of its

administrative domain. Commonly, the attacker uses the victim’s IP address as the

spoofed source address. Further, the attacker commonly amplifies his attack, causing the

reflected response to be longer, as described above.

Some attacks, such as optimistic-acknowledge (opt-ack) [70], take advantage of other

mechanisms, such as TCP congestion control. Generally, the congestion control mech-

anism adapts TCP transmission rate based on available bandwidth. Typically, the as-

sumption behind the congestion control mechanism is that the (main) reason for packet

loss is congestion. Hence, whenever TCP packets are successfully received, the rate in-

creases, and whenever packets are lost the rate is reduced. The way that TCP knows

whether a packet has been received or not is based on ACK(nowledge) packets sent by the

destination. The opt-ack attack idea is therefore simple: a malicious client sends some

request to a server, then, as the server sends the response packets, the client optimisti-

cally acknowledges receiving them by sending ACK packets, without actually receiving

the packets themselves. Thus, very low bandwidth is required to cause servers to send

lots of traffic, limited mainly by the servers’ bandwidth.

An ACK-Storm [4] attacks TCP’s acknowledge mechanism. The attacker eavesdrops

on an existing TCP connection. Next, the attacker spoofs ACK packets with a higher se-

quence number than what was actually sent; this induces an ACK packet back containing

9

Attack Agent Amp Proto. Ma-
nipulations

Target

UDP Flood zombie 1 (none) No Host
maxSyn [11] puppet 1 (none) No Host
DNS
Reflection [77]

root-zombie < 100 Yes
(IP spoof)

Host

opt-ack [70] root-zombie > 1, 600
(see [70])

Yes
(TCP)

Host

ACK Storm [4] root-zombie > 40, 000
(see [4])

Yes
(IP spoof)

Host

Coremelt [73] zombie 1 (none) No Link

Table 1.1: Comparison Between BW-DDoS Attacks

the real sequence number. Sending such packets to both connection ends, respectively,

induces a repeated back and forth exchange of ACK packets, until either end eventually

terminates the connection.

Attack Target

While most BW-DDoS target specific hosts or networks, new types are also trying to

attack target links. For example, Coremelt [73] uses a peer-to-peer model in which

zombies communicate directly with each other. Amongst N zombies there exist O(N2)

routes, some of which use the victim (core) link. The attacker can then create excessive

traffic on the link using only inter-zombie communications. Coremelt requires regular

zombies without high privileges, as it can use the standard TCP/IP stack without any

protocol manipulation. Coremelt type of attacks are mainly theoretical since the Internet

backbone links are highly provisioned and would require huge peer-to-peer networks to

clog. Moreover, based on CAIDA data sets [3], we can say that there are more than a

100,000 links between more than 35,000 different autonomous systems, making it very

hard to take down almost any specific link. Nevertheless, assuming enough zombies can

be obtained, Coremelt may prove difficult to detect and filter, since each connection can

use a small amount of bandwidth.

Concluding this section, we argue that deployed attacks use relatively crude methods,

10

while future attackers will likely be able to use significantly more effective attacks. It

is very hard to determine how difficult it is for an attacker to actually launch such

advanced attacks in the Internet, but the basic know-how is being studied and to some

extent even demonstrated. Nevertheless, existing attacks and especially advanced attacks

may challenge currently deployed defense mechanisms, motivating investigation of new

mechanisms.

1.1.2 Network-level Defense Mechanisms

BW-DDoS defense mechanisms focus on several types of schemes, including detecting,

filtering, absorbing, cooperating and coding. In this section we survey defense schemes

of both deployed and academically proposed mechanisms, and provide examples for the

various schemes. Note that many, but not all, defense mechanisms rely on the ability to

differentiate between attacks and legitimate flows. For example, Jin et al. [44] proposed

a spoofing filter based on hop-counts differentiation between spoofed and real packets.

Ingress filtering [29] aims to block spoofed packets at the source ISP, by identifying that

the spoofed packet cannot have originated from that ISP. LOT [36] tunnels packets be-

tween two hosts using a nonce, preventing a non-MITM attacker from spoofing packets

between these hosts. Carl et al. [20] present a survey regarding various detection tech-

niques.

Defense Mechanism Location

There are various defense mechanisms which can be deployed at different network loca-

tions. A defense mechanism can be deployed close to the destination by the victim. Note

that defense mechanisms close to the destination may get a good idea about some attacks’

properties, but for mitigation of BW-DDoS they might not be well positioned, since many

packets are already discarded near the victim. Hence, many defense mechanisms try to

mitigate the attack closer to its sources.

Router or backbone-based defense mechanisms are usually located near an over-

11

provisioned link, and try to make sure that the traffic reaching the victim will be mostly

from legitimate sources rather than attack flows. Similarly, source-based defense mecha-

nisms, such as D-WARD [61], try to prevent an attacker from sending excessive traffic,

especially during a BW-DDoS.

Additional network locations may be in the cloud or overlays networks – that is, traffic

is routed via an over-provisioned cloud service which “scrubs” the attacking flows and

forwards only legitimate traffic to the victim.

Infrastructure Adaptations

A concern that may affect the ability to deploy BW-DDoS solutions is the amount of

changes that the infrastructure has to undergo. For example, some solutions require

installing new software at end-hosts, some require software updates to routers, while

other solutions may be satisfied with mere configuration of networking equipment.

There are several reasons to refrain from deploying BW-DDoS mitigation solutions.

One reason is that it is very difficult to estimate the impact of deploying different so-

lutions, and considering the network equipment itself – “if it ain’t broke, don’t fix it.”

However, we can assume that some changes are easier to make than others. For example,

configuration changes should be significantly easier to make than most other changes, as

the existing software and hardware are used. Next, software changes at end-hosts are

assumed to be more difficult than configuration. Finally, we assume that any change to

routers (that is, software/firmware and especially hardware) are very difficult to make

and widely deploy.

Filtering Schemes

Assuming the offending flows are identified, they can be filtered out, or blocked. Filtering

can take place in various network locations: close to destination, at the core (i.e., routers),

or close to source. Usually, to be effective in BW-DDoS mitigation, filtering should occur

before the congested link, as the victim itself is usually not in position to hold the attack

12

back.

One filtering example is preventing source IP spoofing. RFCs 2827 [29] and 3704 [15]

(BCPs 38, 84), recommend that ISPs employ ingress filtering and filter packets with non-

permitted IP addresses. This is performed by many ISPs, however, the Spoofer Project [5]

and Arbor reports [12] indicate that approximately 15% of Internet addresses can still

send spoofed packets.

Additional deployed filtering mechanisms includeAccess Control Lists (ACL), Remote-

Triggered Black Hole (RTBH), and firewalls. ACLs are router mechanisms which allow

or deny matching flows. ACLs are often configured manually, however, some Intrusion

Prevention Systems (IPS) can configure ACLs automatically. Each ACL entry takes a

significant amount of memory and some time to process, therefore a router should limit

the ACL rules it holds, both in number as well as the processing time they take. Both

memory and CPU usage increase as more ACL entries are used, which may be an addi-

tional cause for DDoS – not necessarily bandwidth based.

RTBH (RFC5635) [47] uses the router’s forwarding tables, such that all traffic to the

victim, or from attacking sources, is forwarded to a “black-hole,” completely denying

access to the target. Forwarding-rules processing is commonly faster than ACL process-

ing, however, RTBH filtering is significantly more aggressive, and may help an attacker

to disconnect its victim from its sources/destination, thereby potentially achieving the

attacker’s goal, with little resources.

dFence [56] is a transparent mechanism to the existing Internet infrastructure with no

software modifications at either routers or the-end hosts. dFence dynamically introduces

special-purpose middlebox devices into the data paths of the hosts under attack, which

filter offending flows.

Rate-Limiting Schemes

In contrast to completely blocking the attacking flows, rate-limiting schemes let the of-

fending flows transmit their typical rate, or obey some other limit.

13

Rate-limiting at routers was proposed in the literature in several main forms, capabili-

ties, packet tagging, and scheduling-based. Capabilities are tokens issued by the destination

(server) to the source (client), and informs that the destination is willing to accept traffic

from the source. The issued capability is attached to packets sent by the source, allowing

routers en route to identify and prioritize approved flows.

SIFF [83] proposed stateless capabilities, in which the capability is calculated using

(keyed) hash. Routers check and prioritize flows carrying verified capabilities. TVA [85]

keeps a (small) state in routers, and allows servers to request specific restrictions per

flow. Capabilities-based solutions assume that the victim will only authorize legitimate

sources, and not cooperate with the attacker. Deployment of capabilities-based solutions

will require change to both end-hosts and routers.

PSP [22] collects network statistics at the provider level, and infer the typical traffic

rates between origin–destination pairs. Packets are tagged upon arrival to the provider as

either normal or excessive. Whenever a router gets congested, packets tagged excessive

are discarded first, effectively prioritizing packets tagged as normal. PSP deployment

is only within the provider boundaries, and requires changing routers’ software for the

packet tagging and prioritizing, or otherwise taking advantage of existing IP packet fields,

which may be used by different applications and hence potentially cause damage to some

flows. D-WARD [61] does not tag excessive packets; instead it simply discards of them

at the source-end, based on collected statistics.

Cooperation Schemes

Pushback [43] schemes, such as ACC [55], AITF [14] and StopIt [51] are router-based

mechanisms trying to prevent DoS attacks by blocking attack streams close to the attack

source. This is done by first identifying the attack and propagating a block request

upstream towards attack source(s).

In Pushback [43], the victim identifies the attacking flows’ profile, followed by “pushing

the attack back,” and freeing the victim’s resources to handle legitimate traffic. FlowSpec

14

(RFC5575) [57], describes an operational implementation similar to key ideas in Push-

back. Basically, Pushback and FlowSpec are ACL-like filtering schemes, but instead of

having the ACL entries employed within a single AS, they are distributed and pushed

back upstream.

Pushback-based solutions allow under-provisioned nodes to filter offensive traffic away

from the victim. However, the assumption that victim nodes can identify the attack

profile might prove very difficult. Furthermore, like other ACL schemes, many Pushback

requests lead to many filtering rules and ACL entries, and may result in a DoS attack on

routers’ processing capabilities, or enable the launch of a decoy attack to exhaust filtering

rules, followed by an attack on the real target. Alternatively, this type of cooperation

may let an attacker issue a Pushback request, disconnecting the victim.

DefCOM [63] introduces a core framework which enables cooperation between source,

core and destination defenses during an attack, by using both shaping and Pushback

schemes.

Cooperation-based schemes assume that the cooperating nodes are honest with each

other in the sense that they will only propagate upstream requests upon BW-DDoS

attacks, which is something that is debatable. Alternatively, the signaling plane between

cooperating nodes may by itself be a target for an attack.

Overlay and Cloud Schemes

Overlay networks, i.e., the use of helper nodes as intermediaries between source and

destination to ensure availability even when under severe DDoS attacks. Overlay networks

research can generally be divided into two types: Indirect Overlay Networks (ION) and

absorption overlays.

IONs, such as Resilient Overlay Networks [9], OverQoS [74], and Bandwidth-Aware

Routing in Overlay Networks [50], bypass the network end-to-end routing, overcoming

BGP’s shortcomings, such as update speed, route selection under different matrices, or

utilizing special network features such as multihoming; see MONET [10]. IONs can

15

implicitly mitigate BW-DDoS only when some routes are congested while others are not,

as depicted by the gray bars of Figure 1.2.

Absorption overlays are over-provisioned with bandwidth, and are able to absorb

the BW-DDoS. Absorption overlays commonly construct a perimeter around the victim

server, which can be penetrated only by selected nodes. The overlay nodes are responsible

for authenticating the client, possibly requiring proof of work etc., and forwarding packets

to one of the authorized selected nodes to forward traffic to the server; unauthorized traffic

is filtered.

“In the cloud” (practical) or “overlay” (academic) solutions, route traffic via the

cloud/overlay, which “scrubs” the attack flows. Absorption overlays/clouds are specif-

ically designed to mitigate BW-DDoS, and were investigated in several works, such as

SOS [45], Mayday [25] and Phalanx [27], and may also incorporate additional schemes.

Note that usually, overlay solutions introduce new protocols, and hence typically require

updating host software. Other solutions, mainly deployed solutions, make no protocol

changes, and instead rely on configuring BGP or DNS records as to divert the traffic to

a cloud-based scrubbing service.

Coding Techniques

Coding techniques, especially Forward Error Correction (FEC) codes, can be considered

for handling various packet loss scenarios. FECs adding redundancy at the bit level are

irrelevant for general use in IP networks in which the infrastructure delivers packets, not

bit streams.

Inter-packet FECs, such as fountain codes, can be considered to address the problem

presented in this chapter. Fountain codes, or rateless erasure codes, such as LT codes [54]

and Raptor codes [52,53,71], are forward error correction (FEC) codes, which can generate

from the source message as many encoding symbols as needed. The receiver should be

able to decode the source message in very high probability from almost any set of encoding

symbols of sufficient cardinality – which is about the number of source symbols or very

16

slightly more.

Fountain coding solutions or fountain-based protocol (FBP), such as presented in

papers by Bonald et al. [17] and Raghavan et al. [66], propose that clients transmit at

their maximal rate, and overcome losses at the receiver side by using fountain codes. Such

methods, if deployed in the current Internet, will severely harm the current TCP-friendly

protocols, as well as protocols relying on high delivery probability such as voice and video

applications; hence, such solutions cannot be gradually deployed. Other schemes try to

cope with losses unrelated to congestion [75], such as wireless networks, and instead of

using ACKs to detect congestion losses, they use RTT changes as a congestion indicator,

such as in TCP Vegas [19]. Note that upon high congestion the throughput should be

decreased, as in other TCP-friendly solutions.

Another important issue is that for small messages, containing only a single or just

a few packets, such as short DNS or HTTP requests, fountain codes are inappropri-

ate. Hence, for solutions which try to maintain current TCP-friendliness, and/or handle

transmissions of messages with very few packets, fountain codes may be inappropriate

altogether.

1.2 This Thesis

In this thesis we present novel schemes for Bandwidth DDoS (BW-DDoS) mitigation. Our

proposed schemes aim to to provide solutions which can be deployed in today’s Internet

without having to change any of the Internet’s infrastructure equipment software or

hardware, especially in regards to routers. We offer three types of solutions: end-to-end,

overlay-based, and router-configuration based. These types of solutions are imperative

to solve today’s problems without redesigning the entire Internet.

Table 1.2 compares between existing solutions and the new solutions proposed in this

dissertation. The table compares the different mechanisms based on the action they take,

where the solution is located in the network, what type of infrastructure adaptations are

17

M
e
ch

a
n
ism

A
ctio

n
L
o
ca

tio
n

In
fra

.
A
d
a
p
t.

C
o
o
p
e
ra

tio
n

In
gress

F
ilter

fi
lter

rou
ter

con
fi
gu

ration
stan

d
alon

e
A
C
L

fi
lter

rou
ter

con
fi
gu

ration
stan

d
alon

e
R
T
B
H

fi
lter

rou
ter

con
fi
gu

ration
in
ter

A
S
(B

G
P
)

C
ap

ab
ilities

rate-lim
itin

g
d
st,

rou
ter,

src
rou

ter
softw

are
in
ter

A
S

d
F
en
ce

fi
lter

core
(m

id
d
leb

ox
)

con
fi
gu

ration
in
tra

A
S
rou

tin
g

D
-W

A
R
D

rate-lim
itin

g
rou

ter
softw

are
stan

d
alon

e
D
efC

O
M

rate-lim
itin

g
rou

ter,
src,

d
st

softw
are

d
st,

rou
ter,

src
P
S
P

rate-lim
itin

g
rou

ter
rou

ter
softw

are/IP
fi
eld

s
in
tra

A
S

P
u
sh
b
ack

fi
lter

rou
ter

rou
ter

softw
are

in
ter

A
S

R
O
N

d
etou

r
src,

clou
d

en
d
-h
osts

softw
are,

clou
d

en
d
-h
ost,

overlay
S
O
S

fi
lter

src,
clou

d
en
d
-h
osts

softw
are,

clou
d

en
d
-h
ost,

overlay
S
cru

b
b
in
g

fi
lter

rou
ter,

clou
d

con
fi
gu

ration
,
clou

d
in
ter

A
S

(B
G
P
),

clou
d

F
ou

n
tain

C
o
d
es

co
d
in
g

src,
d
st

(all)
en
d
-h
osts

softw
are

en
d
-h
osts

Q
oS

oD
oS

b
reak

-
th
rou

gh
src,

d
st

en
d
-h
osts

en
d
-h
osts

C
on

trolled
O
verlay

s
b
reak

-
th
rou

gh
src,

d
st,

clou
d

en
d
-h
osts,

clou
d

en
d
-h
osts,

clou
d

B
T
T

rate-lim
itin

g
rou

ter
con

fi
gu

ration
in
ter-A

S
(ap

p
.)

T
ab

le
1.2:

C
om

p
arison

B
etw

een
B
W

-D
D
oS

D
efen

se
M
ech

an
ism

s

18

required and is the mechanism cooperative or standalone. The following chapters present

solutions found at three network place: end-hosts (QoSoDoS), overlay/cloud (Controlled

Overlays) and routing core (BTT). Neither of the proposed solutions tries to identify or

filter the attack. All of the proposed solutions are complementary to existing detection

and filtering solutions. QoSoDoS and Controlled Overlays try to break through the

congestion which differs from most existing solutions, whereas BTT tries to prioritize the

typical traffic and rate-limit the rest of the traffic based on existing router mechanisms.

All of our proposed solutions try to make changes in places which are relatively easy to

change. Deployment difficulty increases alongside the dissertation chapters. End-hosts

is probably easier to implement than cloud services and router configuration is probably

harder to achieve especially across different ASes. The rest of the chapter shortly describes

the different solutions and compares them to prior work.

1.2.1 QoS Over DoS-prone Networks

In Chapter 2 we present an end-to-end transport protocol named QoSoDoS, that ensures

(modest) Quality of Service among peers connected via an unreliable, clog-prone net-

work, which usually has much higher bandwidth, such as the Internet. When QoSoDoS

is unable to deliver data, it begins sending each packet many times, until the packet is re-

ceived correctly at the destination. This mechanism assumes that even under BW-DDoS

attack, packet delivery probability is larger than 0; we have experimentally validated this

assumption. This approach stands in contrast to existing reliable transport protocols

such as TCP [64], which responds to packet loss by reducing its rate and even aborting

the connection. In essence QoSoDoS overrides TCP’s congestion control [8] in cases of

extreme congestion, while refraining from self-clogging the network. QoSoDoS limitations

are based on its retransmission model. First, the throughput proportional to the deliv-

ery probability, hence as the attack increases the lower throughput QoSoDoS can assure.

Consequently, for high-bandwidth attacks which cause very-low delivery probability this

solution is only applicable to mission-critical low-bandwidth applications. Second, QoSo-

19

DoS requires that the user estimate what is the worst attack that an attacker can launch

and based on that estimation the user configures the worst-case delivery probability.

QoSoDoS is different from the solutions described in Section 1.1.2, as QoSoDoS is

an end-to-end solution, requiring no changes to the Internet’s infrastructure, and is de-

ployed merely at end-hosts. QoSoDoS is focused on circumventing the congestion control

mechanism, hence it can be complementary to many exiting techniques, such as various

filtering schemes, coding techniques, etc.

The QoSoDoS retransmission scheme resembles Application-level DDoS defense such

as Speak-Up [79], which requires legitimate sources to “pay” for the service using band-

width. Speak-Up uses TCP-based traffic as the currency, and makes an auction for each

request before passing it to the server. Our basic assumption is that during a band-

width flooding DoS attack, which occurs at the network level, Speak-Up, as well as other

application-level defenses, will not be able to work at all.

1.2.2 Controlled Overlays

In Chapter 3 we present a new type of overlay which cooperates to aggregate the available

bandwidth and possibly multiple paths to break through congested networks. We present

a novel design which, upon congestion, turns to an end-host based overlay to redirect com-

munication and amplify legitimate traffic, using one or multiple paths to the destination

as necessary. Our overlay is carefully controlled, thus preventing self-generated DDoS.

Our controlled overlay integrates the two previously proposed schemes for overlays,

IONs and absorption overlays, by having multiple overlay nodes, some of which may have

better routes to the victim host, along with the capability of absorbing the attack as an

absorption overlay.

Absorption overlays, as described in Section 1.1.2, assume that the destination loca-

tion is well guarded. Clients must relay via the overlay, and congestion-controlled overlay

nodes are able to transmit data to the destination. In contrast, we assume that all clients

can transmit directly to the destination host, the overlay can assist the client and in-

20

crease its bandwidth, and we can deliver information even when congestion-controlled

protocols fail. Hence, an attacker flooding the guarded perimeter itself may cause previ-

ously proposed absorption overlays to fail, whereas our overlay should be able to deliver

information and utilize the real delivery probability, traverse the congested perimeter,

and reach the destination. Note that an attack on the overlay itself is possible for both

previously proposed overlays as well as ours. This hazard can be mitigated by using cloud

services and instantiating new instances to absorb the attack.

ION schemes, such as Resilient Overlay Networks [9], OverQoS [74], and Bandwidth-

Aware Routing in Overlay Networks [50] do not specifically target DDoS but rather im-

prove the QoS of the network. In reference to Figure 1.2, these solutions consider routing

improvements for the gray and black bars, whereas for large-scale flooding attacks, the

inaccessible ASes (white bars) should also be considered, which is what our solution does.

The controlled overlay has few limitations. The first limitation is that we need to

actually construct an overlay network. In Chapter 3 we suggest two possible ways to do

that. The first is by using the server’s legitimate clients and the second is using cloud

resources. To prevent an attacker from impersonating a legitimate node, both client

and overlay nodes, we propose two MAC-based authentication protocols which lets the

server authenticate the end-client and the overlay node. If either is compromised the

server can drop the packets. Note that the solution is inappropriate in setups in which

the server cannot distinguish between legitimate and attack traffic. If one decides to

use cloud resources instead of using the server’s legitimate clients this, one should be

aware that these resources have non-negligible costs; we discuss these details in Section

3.2.2. Finally, similarly to QoSoDoS, for very large volume attacks which cause a very

low delivery probability this solution is applicable for mission-critical attacks.

1.2.3 Backward Traffic Throttling

In Chapter 4 we present Backward Traffic Throttling (BTT), an efficient, decentralized

mechanism based on router configuration. BTT employs the following mechanisms to

21

throttle excessive traffic: prioritizing incoming flows, shaping outgoing traffic, and re-

questing upstream BTT nodes to similarly prioritize and shape traffic. BTT is relatively

easy to deploy: it requires no changes to routers, and does not modify traffic. Instead,

BTT configures routers’ queuing discipline and traffic shapers. BTT has three main

limitations. The first limitation is that any change to routers, even if it is only a config-

uration change, is non-trivial in a real world production network. The second limitation

is that BTT assumes the existence of typical traffic between ASes and that the routing

between ASes doesn’t change dramatically during the attack, that is, changes that are

not reflected in the estimated typical traffic change over time. The third limitation is

that BTT does not differentiate between attack and flash crowd (“Slashdot effect”) and

whenever a bottleneck link is congested, BTT kicks into action and prioritizes traffic

based on the typical traffic estimations.

BTT is oblivious to the actual attack. Unlike BTT, Pushback schemes rely on identi-

fying specific attack characteristics, such as flow volume, source IP etc. Moreover, Push-

back routers require blocking assistance from upstream routers, otherwise the number of

blocked flows may be too large to handle; this may also burden deployment and adoption.

On the other hand, BTT simply rate limits the traffic and requires few resources from

the router. Additionally, spoofing sources introduces difficulties in placing the stream

filtering rules at the right place, whereas BTT simply reacts to abnormal traffic rates.

Finally, Pushback schemes propose features which commonly require router adaptations,

whereas BTT uses existing mechanisms and merely configures them on-the-fly.

Tagging schemes, such as PSP, may be harmful due to usage of non-standard fields

which may be problematic in some cases, such as various tunneling and traffic engineering.

PSP is based on origin-destination pairs; hence it requires up to (theoretical) O(#AS2)

rules, whereas BTT requires only O(#AS) rules (in the worst case) per congested route.

Finally, PSP is an intra-AS system and cannot decrease the amount of false positives,

whereas BTT, which is an inter-AS system, may improve as its deployment widens.

Yau et al. [86] suggested a throttling (shaping) mechanism with a Pushback mecha-

22

nism, however, unlike BTT, the solution requires router changes. Throttling is server-

centric and is initiated by the destination and not by congested links, and it does not use

queuing techniques for packet prioritizing.

Table 1.3 compares BTT and key router-based related works based on traffic manip-

ulation (TM), route modification (RM), amount of required router resources (RR) by the

mechanism, attack aggregate identification (AAID) and false positives (FP).

Mechanism that use TM are ones that need change the data plane packets, such as

packets tagging. Such changes have two main limitations. The first limitation is that

it commonly requires router modification. The second limitation is that it may need

to use protocol fields which may be used or required by other applications – whether

standard or not. RM means that additional functionality has to be added to the router,

which implies that the router software or hardware has to be updated. RM is opposed

to router configuration which require activating or deactivating an existing router mech-

anism. Essentially, as any router change is difficult to deploy, requiring a software, let

alone hardware, upgrades makes the solution less and less practical in the real world. RR

compares the amount of resources the router has to use which may affect the processing,

memory and storage requirements. Significant resource usage can possibly slow down the

router or even exhaust its resources altogether, potentially becoming the target of DoS

attacks. AAID describes whether the mechanism is based on detecting the attacker’s

flows or not. This is important as differentiating between attack and legitimate traffic is

a hard problem and attackers have a tendency to find new ways to bypass identification

mechanisms. Finally, FP is the amount of false positive we would expect to see from each

mechanism.

23

Sys TM RM RR AAID FP

PSP ✗ (always) ✗ (yes) (#AS)2

(modest)
X(no) yes

RTBH X(no) X(no) #AS
(low)

X(no) high

ACL X(no) X(no) #IP (high) ✗(yes) low
FlowSpec/
Pushback

X(no) X/✗ #IP (high) ✗(yes) low

BTT X(no) X(no) #AS
(low)

X(no) deployment
dependent

Table 1.3: Comparison Between BW-DDoS Defense Solutions. TM: Traffic Manipulation
(e.g. tagging), RM: Router Modifications (requires non-standard router features), RR:
Router Resource (amount of rules/memory), AAID: Attack Aggregate Identification (i.e.,
requires the identification of attack flows), FP: False Positive.

24

Chapter 2

QoS Over DoS-prone Networks

We present QoSoDoS, a protocol that ensures QoS over a DoS-prone (best-effort) network.

QoSoDoS ensures timely delivery of time-sensitive messages over unreliable networks,

susceptible to high congestion and bandwidth-flooding DoS attacks. QoSoDoS is based

on scheduling multiple transmissions of packets while attempting to minimize overhead

and load, and avoiding self-creation of DoS. We present a model and empirical results of

QoSoDoS implementation. Our results show that under typical scenarios, QoSoDoS can

handle high congestion and DoS attacks quite well.

2.1 Introduction

The Internet is a best-effort delivery network – there is no allocation of resources to

connections, and hence the Internet provides no guarantee of message delivery, and no

bounds on delay. If the network is congested, then routers drop arbitrary packets instead

of transmitting them to their destinations. This is often exploited for Bandwidth Denial-

of-Service (BW-DoS) attacks, in which an attacker intentionally causes excessive traffic

and congests the network. In many cases, DoS attacks and especially bandwidth attacks

are carried out using multiple zombie hosts, and are referred to as Distributed DoS

(DDoS) attacks [60]. Such bandwidth DoS attacks are hard to prevent and mitigate in

25

an open, best-effort network such as the Internet.

Since the Internet is subject to congestion and bandwidth attacks, critical applica-

tions, such as inter-bank clearing, usually resort to private networks, or use Quality of

Service (QoS) protocols, e.g. Diffserv [37] and MPLS [68], to connect between source

and destination. This can be expensive, even for services which can tolerate large (but

bounded) delays, if their availability is critical. Examples for such services include emer-

gency services messaging, and financial and other contractual obligations, in which each

contract counterparty must stand up to its obligations within a given timeframe, which

is usually within the order of seconds, minutes, hours or even days, e.g., DOT-COM [34].

This appears frustrating; the Internet provides low-cost, ubiquitous communication

which usually works fine, even for high bandwidth applications such as voice and video

calls. Yet, for critical applications such as financial transactions, which require low band-

width and allow significant delays, we must resort to specialized, expensive infrastructure.

Can we use the unreliable-but-high-bandwidth connectivity of the Internet to provide the

reliable-but-modest-bandwidth requirements of financial and other sensitive applications?

We answer this question in the affirmative, by presenting QoSoDoS, an end-to-end

transport protocol that ensures (modest) Quality of Service, among peers connected via

an unreliable, BW-DDoS-prone network, which usually has much higher bandwidth, such

as the Internet. The principle behind QoSoDoS operation is simple: when QoSoDoS

detects frequent packet losses, it begins sending each packet many times, until the packet

is received correctly by the destination. Assuming a known bound on packet loss prob-

ability, and an application-defined target for allowed probability of loss, we can easily

calculate the required number of retransmissions. This mechanism assumes that even

under bandwidth attack, we can bound the probability of successful transmission; we

have experimentally validated this assumption. The QoSoDoS approach stands in con-

trast to existing reliable transport protocols such as TCP [64], which responds to packet

loss by reducing its window (and rate), and even aborting the connection.

QoSoDoS is aimed to override TCP congestion control [8] and maintain crucial com-

26

munication in cases of extreme congestion. This is complementary to existing research on

mitigation of bandwidth and other DoS attacks, which mostly attempts to prevent the

BW-DDoS (or other attack), identify the attack and/or its source, and so on; see Chapter

1. QoSoDoS is also complementary to approaches using inter-packet coding, which try to

overcome loss which is unrelated to congestion, while still performing congestion control,

such as [75]. On the other hand, QoSoDoS does not suggest giving up on congestion

control altogether; hence it differs from solutions such as proposed by Bonald et al. [17]

and Raghavan et al. [66], which offer replacing congestion control with coding.

An important concern is that QoSoDoS must not clog the network itself by send-

ing more packets than the network can handle, especially as a response to momentary

congestion (or attack). Our experiments show that even when many QoSoDoS connec-

tions are transmitting over the same bottleneck link, they do not clog the link, and have

comparable performance to regular TCP connections. Furthermore, even a large num-

ber of QoSoDoS clients recover quickly from short-lived BW-DDoS attacks, with better

performance than regular TCP connections.

The rest of the chapter is organized as follows. Section 2.2 describes the QoSoDoS

model. Section 2.3 presents the design of QoSoDoS. We describe several transmission

schemes in Section 2.4. In section 2.5 we present our experimental evaluation of QoSoDoS.

Section 2.6 presents conclusions.

2.2 The QoSoDoS Model

Much of the research on networking considers one of two very different models: QoS

(Quality of Service) networks and DoS/BE (Denial-of-Service-prone, Best-Effort) net-

works. QoS networks are expected to always ensure some maximum delay guarantees,

e.g., no losses; DoS/BE networks are usually modeled as completely unreliable, i.e. can

drop all packets.

We believe that it is reasonable to regard most DoS/BE (Best-Effort) networks, and

27

in particular the Internet, as assuring QoS properties, such as bounded delay, but only

with very low packet delivery probability PD, i.e. 0 . PD ≪ 1. We believe that delivery

probability PD holds even when a connection is undergoing a BW-DDoS attack. To

support our claim we present a queuing analysis and a discussion in Section 2.2.2, as well

as supporting empirical results.

Furthermore, we believe that in reality, packet losses are possible also with QoS net-

works; of course, in QoS networks, packets are delivered with very high probability PQ.

Nevertheless, PQ < 1, namely, there is some probability for some packet loss, e.g., due

to electrical interference; hence, 0 ≪ PQ . 1. See Table 2.1 for a comparison between

DoS/BE and QoSoDoS parameters.

Under benign network conditions we assume that the effective delivery probability,

denoted PE, is relatively high, that is PE → PQ, whereas under (very large) BW-DDoS

attack PE → PD. Generally PD ≤ PE ≤ PQ.

Throughout this chapter we use subscript D to describe a DoS-prone-related param-

eter, subscript Q to describe a QoS-related parameter, and subscript E to denote an

effective (or actual) value of a parameter. For example, if P denotes the delivery prob-

ability, then PD is the DoS-prone network delivery probability; PQ is the QoS delivery

probability, and PE is the effective delivery probability of the network. Table 2.3 provides

a summary to all notations in this chapter.

To make a DoS/BE network assure packet delivery with high probability (PQ), we

may need to retransmit packets. Each time we resend a packet increases the probability

for successful delivery. Generally, if a packet is sent n times, and the delivery probability

is independent and at least PD, then the probability that at least one copy of the packet is

delivered is at least 1− (1−PD)
n. Hence, to ensure packet delivery with high probability

PQ, we need a large enough n such that PQ = 1− (1− PD)
n; hence:

n ≡ ⌈log(1−PD)(1− PQ)⌉ (2.1)

28

2.2.1 Modeling QoSoDoS As Latency-Rate Server

Figure 2.1: QoSoDoS delay analysis. LD and RD (dashed) are the DoS/BE network’s
service latency and rate respectively, which are assured in low delivery probability (PD).
LQ and RQ are the latency rate assured parameters in high delivery probability (PQ).
Packets transmitted by QoSoDoS are bounded by a leaky bucket with burst BQ and rate

CQ. RQ =
CQ

α·n , where α ≥ 1 is a transmission rate relaxation parameter, and n≫ 1 is the
number of required packet retransmissions to assure packet delivery in probability PQ.

QoSoDoS is designed to implement a (high reliability) QoS network service over a (low

reliability) DoS/BE network service. We model both QoS and DoS/BE network services

as latency-rate (LR) servers [18]. During a DoS attack, we assume that the best-effort

network maximal latency is LD and minimal rate is RD. For QoS, we require QoSoDoS

to ensure a bounded latency LQ ≥ LD and rate RQ ≤ RD. In addition, in DoS/BE we

assume (low) delivery probability PD (0 . PD ≪ 1), i.e. high probability for packet loss,

and in QoS we assume (high) delivery probability PQ (0 ≪ PQ . 1). The rate we can

assure cannot exceed transmitting n packets at the maximum rate, RD, i.e. RQ ≤ RD

n
.

However, limiting the transmission rate of QoSoDoS to CQ, then for some relaxation

parameter α ≥ 1 it holds that:

RQ =
CQ

α× n
, α ≥ 1 (2.2)

29

To bound the QoSoDoS negative effect on the network, QoSoDoS transmissions are

policed. Specifically, QoSoDoS implements a Leaky Bucket traffic shaper [18]. The Leaky

Bucket model describes a bucket, with a capacity for holding up to B units and a leaking

hole which leaks units at a rate of C units every time unit. Flow into the bucket, in rate

higher than C, fills the bucket up to its capacity - B. Any additional packets are poured

out, i.e. discarded. In the network QoS analogy, CQ represents the rate by which packets

are transmitted by QoSoDoS over the network, and BQ represents the burstiness, i.e.

the number of packets that can be queued in the LR server. The BQ parameter affects

two things: the buffer required for packet transmission and the delay for the entire burst

delivery. Specifically, the delay for leaky bucket traffic is bounded by:

Delay ≤ LD +
BQ

RD

(2.3)

In Table 2.1 we compare the DoS/BE and QoS parameters.

Parameter DoS/BE QoSoDoS

Latency LD LQ ≥ LD

Rate RD RQ =
CQ

α×n
, α ≥ 1

Packet delivery
probability

0 . PD ≪ 1 PD ≪ PQ . 1

Table 2.1: Comparison between best-effort and QoSoDoS latency-rate server and packet
loss parameters (see figure 2.1). n = ⌈log(1−PD)(1−PQ)⌉ is the number of retransmissions
required to assure successful delivery in high probability PQ while packets transmission
is made with low delivery probability PD.

2.2.2 The Delivery Probability

We now justify the assumption of bounded delivery probability, by presenting a reasonably

simplified analysis of a simple queue. To that end we first analyze bounds for the delivery

probability PD using a birth-death process – M/M/1/K queue model – as depicted in

Figure 2.2, i.e. a single size limited drop-tail queue serving multiple clients. If some

30

packet arrives when the queue is full, it is dropped. We use R to denote the arrival rate,

and r for the service rate. R consists of both the attacker’s and the legitimate clients’

rate. We assume that R≫ r.

?>=<89:;0
R

%% ?>=<89:;1
R

%%

r

ee
?>=<89:;2

R
""

r

ee
· · ·

R
''

r

ee
GFED@ABCK

r

cc

Figure 2.2: Birth-death process (M/M/1/K queue) with R and r as the arrival and
service rates.

πi is the probability that the queue contains i ≤ K packets. According to PASTA

principle, the loss probability is πK , hence the loss rate is R·πK . In general R·πi = r ·πi+1,

hence

πi =

(

R

r

)i

· π0

Since
∑K

i=0 πi = 1, then:

π0 =
R
r
− 1

(

R
r

)K+1 − 1

Consequently, the loss probability is:

πK =

(

R

r

)K

·
R
r
− 1

(

R
r

)K+1 − 1
→ 1− r

R

As we are interested in the delivery probability rather than the loss probability, i.e. 1−πK ,

we get that:

PD →
r

R
(2.4)

Note that in the analysis if K goes to infinity then PD → r
R
; in practice, the numbers

converge very quickly. For R
r
≥ 10 the equation is correct for K = 1 within ǫ < 0.001.

For smaller ratios, e.g. R
r
= 1.1, larger queue sizes of K ≤ 46 are required, however, the

minimal delivery for K = 1 is high by itself and larger than 81%. The higher the R
r
ratio,

the lower the minimal delivery probability, however, the required queue size decreases as

well.

In Figure 1.1 we present experimental results supporting the above analysis, and com-

31

paring the theoretical rate with the rate measured empirically. The bottleneck routers are

the default routers in the DETERlab testbed [16], that is FreeBSD machines, employing

FIFO scheduling, and 500 slots queue size.

To further emphasize our argument, we will use a simple example. Assuming a bottle-

neck link of 1Gbps, to produce a BW-DDoS attack in which packet delivery probability

drops to 1/100, the attacker should produce roughly 100 times the link capacity, i.e.

100× 1Gpbs = 100Gbps (the size of the largest bandwidth attack reported to date [12]).

Assuming a single strong bot produces 1Mbps of attack traffic, the attacker requires at

least 100,000 strong bots. The above scenario also assumes that all attack bandwidth

clogs the same bottleneck link, and is not routed via different paths.

We further argue that even under harder conditions, where the probability drops

below PD, our model can still assure QoS, only that we implicitly achieve a lower QoS

delivery probability (PQ). For example, assuming PD = 0.01, PQ = 0.99 and PE = 0.005,

we effectively get packet delivery assurance of 90%, instead of the required 99%, which

is still very high.

2.2.3 Confronting Network Outage

Network failures which completely prevent communication might also happen, as well as

BW-DDoS attacks on a much larger scale than initially estimated using PD. In either

case, we would like to refrain from the futile congestion of the network. We therefore

identify two cases. The first case is a network failure where the effective packet delivery

probability is PE = 0. The second case is when PE ≪ PD, thereby QoSoDoS practically

achieves no QoS assurance.

To address these cases we define a state model as described in Figure 2.3. The

model has three states: Working, DoS and Faulty, denoted W, D, and F respectively.

The Working state correlates to network low-congestion, in which the vast majority of

packets are successfully delivered. The DoS state correlates to network high-congestion,

in which delivery probability can drop down to about PD, hence 1−PD of the packets are

32

W
1 ,,

D

3

yy

2
ll

F

4

YY
5

99

Figure 2.3: QoSoDoS protocol state model and transitions. There are three states:
Working, DoS and Faulty. During the Working state, QoSoDoS uses TCP. During
the DoS state, QoSoDoS uses an ART scheme (see Section 2.3). During the Faulty state
(where delivery probability PE ≪ PD, e.g. PE = 0), we sample the link at very low rate
and occasionally try to resume either the Working or DoS states. Section 2.3.7 contains
a design and event description in Table 2.2.

discarded. The Faulty state correlates to network failure or a state in which significantly

less than PD packets are delivered.

While in Working state, QoSoDoS should have a very small effect on the network;

during the DoS state, QoSoDoS should employ a retransmission scheme, and during the

Faulty state, QoSoDoS should merely sample the network at low rate and see whether the

network is back to the Working or DoS states. We describe a design for this mechanism

in Section 2.3.7 and empirical results in Section 2.5.5.

2.3 QoSoDoS Design

2.3.1 Basic Design: Use of ART and TCP

Congestion and BW-DDoS attacks are relatively rare events; most of the time, the net-

work delivers packets with high probability. Therefore, in the design of a new transport

mechanism, it is critical to ensure good performance in this typical, benign scenario. One

desirable goal would be to obtain comparable performance to that of TCP [64], which is

the most established, reliable transport protocol.

To achieve this goal while keeping QoSoDoS as simple as possible, we simply use TCP

33

to send all packets whenever possible, i.e. initially, and whenever QoSoDoS determines

that packet loss probability is sufficiently low. However, QoSoDoS sets a timer for TCP

sending; if timeout occurs, and it appears that TCP cannot transmit data, then QoSoDoS

suspends TCP usage and begins using a novel ART (Automated Redundant Transmission)

mechanism, over a connectionless protocol such as UDP.

The ART mechanism is an important component of QoSoDoS, automatically retrans-

mitting each packet, up to n times (as per Eq. 2.1), until the packet is delivered to the

destination. ART mechanism should be contrasted with the well-known class of ARQ

(Automated Repeat reQuest) algorithms, which are designed for more benign environ-

ments with lower loss probability; hence, ARQ algorithms send each packet only once

until detecting delivery or loss, while ART algorithms send multiple copies of a packet

before receiving indication of loss or delivery.

ART can use different algorithms to schedule retransmissions of a packet. Figure 2.4

depicts a “linear” ART algorithm, which begins by sending a small number of copies,

and gradually increases the rate of redundant transmissions. In Section 2.4, we describe

several additional ART algorithms.

In addition, we require a mechanism to identify when the DoS attack is over, and

resume TCP. The next section describes how QoSoDoS is facilitated with the capability

to decrease ART transmission rate and resume TCP. To that end we define an additional

parameter, RE, which denotes the effective rate by which a fair protocol with congestion

control, e.g. TCP [7] or DCCP [46], would transmit packets, when not under DoS attack.

RE is set by congestion control protocols as a function of the measured PE by detecting

packet loss. Ideally before the attack PE . 1. If PE decreases, a TCP-friendly protocol

is assumed to decrease its RE respectively, thereby increasing PE back into a stable state

of PE . 1.

On the other hand, during high congestion periods, and especially during DoS attacks,

TCP cannot provide any assurance for packet delivery. TCP’s behavior of reducing the

rate to practically zero does not achieve the desired effect. In such cases, QoSoDoS have

34

Figure 2.4: “Linear” Automated Redundant Transmission (ART) algorithm, in which
the rate increases linearly up to the maximal rate – CQ. TQ ≥ RQ

−1 is the retransmission
deadline, by which all n retransmissions must be made (see Section 2.3.2). TM is the point
in time from which the algorithm sends in rate CQ. c is the initial transmission rate. m
is the rate increment slope. The rate as a function of time is r(t) = min(m · t+ c, CQ)

a distinct advantage over TCP as it assures communication to the congested destination

host.

2.3.2 Lowering QoSoDoS’ Transmission Rate By Using TCP

A fundamental requirement of QoSoDoS is that it must refrain from self-created DoS,

i.e. QoSoDoS clients must refrain from aimlessly congesting the network, especially when

no attack is present. We therefore facilitate QoSoDoS with such mechanisms, preventing

it from self-initiating DoS attacks, as well as recovering from the high rate transmission

of ART. In this section we describe both the usage of TCP within the QoSoDoS core

design, as well as relaxing the use of ART’s high rate transmissions back to TCP.

As stated in section 2.3.1, QoSoDoS prefers transmitting messages using TCP rather

than ART. To achieve this, and still maintain the assured QoS, QoSoDoS uses a TCP

user-timeout, which we refer to as TT (T for time or timeout and subscript T for TCP). TT

serves as an indicator of the need to suspend TCP and begin transmitting using an ART

scheme. TT limits the time between a TCP packet transmission and its successful delivery.

35

TT must be large enough to allow at least the transmission of a single packet, taking into

consideration an occasional packet loss and the need for retransmission. Hence, TT must

have an order of at least a few RTTs. As we want QoSoDoS to begin with TCP, we refine

LQ (the assured latency) definition to include TT , hence:

LQ = LD + TT (2.5)

A reasonable value for TT should be around a few seconds. Larger values allow TCP to

perform under some states of congestion. Nevertheless, a too-large value will prolong LQ,

as well as the recovery time after an attack as described in Section 2.3.5.

To achieve the design goal of relaxing the high retransmission rate, we designed QoSo-

DoS as follows; instead of assuring a rate based on transmitting all n packets at the

highest rate CQ, thereby minimzing the time for packet acceptance, we relax the time

requirement and allow packets to be transmitted over a longer period of time, yielding a

lower assured rate of RQ =
CQ

α×n
, α > 1. Finally, we define TQ, a single packet’s assured

transmission deadline (i.e. QoS assurance time) as:

TQ ≥ RQ
−1 (2.6)

For the first packet and in the worst case, where for all transmissions we have to send all

n packets, TQ = RQ
−1. For the typical case, where the packet is received prior to sending

all n packets, we might have more time for the transmission, hence TQ > RQ
−1.

2.3.3 Lowering Average Transmission Rate of ART Algorithms

Since RE is the average rate in which a TCP-friendly flow would transmit, then reducing

the average transmission rate down to RE should cause most packets to be delivered.

As we cannot determine RE a priori, we can split packet transmission during the ART

algorithm execution into two time periods, namely increasing and maximal, similar to

36

the depiction in Figure 2.4. In the increasing period, ART increases the transmission

rate starting at very low rate – we consider 0 ≤ c ≤ RTT−1 – up to CQ. Next, ART

should continue transmitting at the maximal allowed rate – CQ – until the deadline TQ

is reached.

The average transmission rate produced by ART algorithms can be calculated as

N
T

where N is the expected number of retransmitted packets and T is the expected

transmission time. To simplify the calculations of N (Eq. 2.8) and T (Eq. 2.9), we define

the function art(x) to return the transmission time of packet x. art(x) can be extracted

from:
∫ art(x)

t=0

r(t) dt = x, 1 ≤ x ≤ n (2.7)

where an r(t) is an ART rate function. For example, for the “linear” ART r(t) =

min (m · t+ c, CQ), hence:

art(x) =

−c+
√
c2+2mx
m

for x ≤
∫ TM

0
(mt+ c) dt

m·x+c−
√

c2+2·m·TM

(CQ−TM)m
for x >

∫ TM

0
(mt+ c) dt

As there is an additional RTT between the time that an accepted packet is acknowl-

edged at the source, we inspect the number of packets added between art(x) +RTT and

its previous packet art(x− 1) +RTT , hence we define:

f(x) =

∫ art(x)+RTT

t=art(x−1)+RTT

r(t) dt, art(0) = −RTT

The expected number of transmitted packets is therefore:

N =
n

∑

x=1

(1− PD)
x−1 · f(x) (2.8)

where (1−PD)
x is the probability that neither of the previous packet was accepted by the

destination, and f(x) is the additional number of packets the ART will have transmitted

37

before an acknowledgement is accepted.

Equation (2.9) defines the expected transmission time T for each ART transmission,

hence:

T =
n

∑

x=1

(1− PD)
x−1 · (art(x)− art(x− 1)), art(0) = 0 (2.9)

Figure 2.5 depicts the average rate vs. the delivery probability for a linear ART. Note

that the percentage of rate usage is higher for higher rates. This is the result of the

amount of packets sent at any RTT, and especially in the initial RTT, which produces

the minimal load inflicted by each QoSoDoS client. Inspecting Equation 2.2: RQ =
CQ

α·n ,

in which the higher CQ, the more packets are sent per RTT, we note that using even

higher rates under the same configuration will cause an even higher average rate usage.

Hence, we conclude that ART’s average rate should be carefully controlled by making

sure that α > 1 so that TQ ≫ n
CQ

, to avoid average transmission rate equal to CQ, as well

as keeping TQ ≫ RTT to avoid high minimal transmission rates. Other configurations

may force limiting the amount of allowed QoSoDoS clients.

2.3.4 Number of Clients vs. Delay Trade-off

Examining Equation (2.4), Section 2.3.3, and Figure 2.5, we note that we must make sure

that after an attack, the remaining congestion which is inflicted by QoSoDoS will reduce

until QoSoDoS can safely and successfully resume TCP.

To simplify our discussion we regard a model as depicted in Figure 2.6, assuming

that all legitimate clients are similar. We therefore want to bound the successful delivery

probability as follows. The worst case is when all clients transmit packets at the maximal

rate CQ, that hence have the same probability for being queued by the network’s routers,

and therefore have the same probability for being forwarded to the destination host. If m

clients are transmitting at CQ and their effective rate should have been RE, had they used

TCP, then PE ≥ m×RE

m×CQ
= RE

CQ
. The number of packets needed to assure transmission is

therefore: n′ = log(1−PE)(1−PQ). We assume PE ≫ PD, hence n≫ n′. This suggests that

38

0%

5%

10%

15%

20%

25%

30%

35%

0.1% 1% 10% 100%

A
ve
ra
ge

R
at
e
(%

of
C

Q
)

Effective Delivery Probability (log-scale) – PE

Top-line: CQ = 10Mbps
Bottom-line: CQ = 100Kbps

Figure 2.5: Average rate (as percent of CQ) vs. delivery probability (log scale) during a
single ART transmission using the “linear” ART algorithm (see Figure 2.4). Both lines
are produced using parameters taken from Table 2.5. For the top line CQ = 10Mbps and
for the bottom line CQ = 100Kbps. The average rate when PE = PD is ≈ 1/3 of CQ.
Note that in most cases QoSoDoS will try to resume TCP between ART transmissions
(see Section 2.3.5), therefore further reducing the average rate. The average rate can be
further reduced using a larger delay, i.e. larger α parameter, as described in Section 2.3.4.

39

S1
R1(t)

((QQQQQQQQQQQQQQQ

... Ri(t) //Network
m×RE //D

Sm

Rm(t)
66mmmmmmmmmmmmmmm

Figure 2.6: a simplified transmission model from multiple senders to a single destination.
S1..Sm represents m senders, D represents the destination, Ri(t) ≤ CQ, 1 ≤ i ≤ m
represents the i′th sender’s transmission rate at time t andm×RE represents the available
rate by which the network transmits packets to the destination host.

much fewer packets need to be transmitted in order to assure delivery, and therefore much

less time should pass until a packet’s acceptance. We would like to have a correlation to

the results presented in Figure 2.5, such that the average rate will be reduced when the

attack is over, down to a minimum congestion which will allow resumption of TCP. The

congestion should therefore be a function of the number of clients. We would expect that

as long as the number of QoSoDoS clients is policed, self-DoS can be avoided.

To provide the number of allowed clients, we examine Equation 2.4. The delivery

probability should stabilize on PE = RN

|C|·RC(PE)
, where RN is the network rate, |C| is

the number of clients and RC(PE) is the average rate of a client as a function of ef-

fective delivery probability, as depicted in Figure 2.5. Note that RC(PE) decreases as

PE increases, i.e. PE ∝ RC(PE)
−1. As PE should gradually increase, we would like

to find out the parameters’ values in which PE stabilizes to a probability which is high

enough to allow successful resuming of TCP, hence we argue that PE should stabilize on a

value larger than 0.7, which produces approximately 50% probability for two consecutive

transmissions to succeed. Such two transmissions correlate to a SYN (answered with a

SYN/ACK) followed by an ACK containing data. In the above equation the RN is given,

hence we can control the stable PE either by reducing the number of clients, or reducing

RC(PE), which means reducing RQ. Recall that RQ =
CQ

α·n , and since both CQ and n

40

100

200

300

400

500

600

700

800

900

1000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

D
el

ay
 (

se
co

n
d
s)

Number of QoSoDoS Clients

Figure 2.7: Delay vs. Number of Clients. After an attack, the effective delivery probabil-
ity should stabilize on PE = RN

|C|·RC(PE)
. In the above figure we require that PE stabilize

on PE ≥ 0.7. Note that the more clients are supported, the worse the assured delay.
Specifically, the figure demonstrates that by policing the number of QoSoDoS clients and
their configuration, self-inflicted DoS can be avoided.

(Equation 2.1) are given, ultimately we can only increase α, thereby decreasing RQ and

consequently RC(PE).

Figure 2.7 depicts the relation between the assured delay for a single packet transmis-

sion as a function of the number of QoSoDoS clients. The figure shows that by policing

the number of clients we can assure resuming of TCP, and more specifically, the more

clients QoSoDoS has to support, the worse is the assured delay.

Based on the above results, Figure 2.8 depicts a theoretical macro-view of multiple

QoSoDoS clients in a DoS attack scenario where TCP transmissions are aborted by QoSo-

DoS, followed by ART transmissions and a recovery period until TCP is resumed. Figure

2.9 depicts a correlating theoretical micro-view of a single QoSoDoS client’s multiple

packet transmissions within the context of Figure 2.8. In our experiments (see Section

2.5), QoSoDoS clients resumed TCP almost immediately after the attack stopped.

Concluding Sections 2.3.3 and 2.3.4, we find that there are three reasons for the actual

41

rate decrease and the resumption of TCP. The first reason is that the DoS attack is over.

The second reason is the ART behavior of decreasing average transmission rate. The

third reason is the delivery probability stabilization to a high enough probability. When

the attack is over, it implies an increase in legitimate packet delivery probability. Next,

the retransmission behavior which lowers the average transmission rate comes into action,

since the remaining congestion is created due to ART by legitimate clients. This means

that packets reaching the destination host are legitimate. Hence, even in the worst case,

where all legitimate clients are transmitting packets at rate CQ, one legitimate packet

should be acknowledged by the destination host, causing its sender to reduce its rate.

Probabilistically, the higher the transmission rate the higher the delivery probability is,

which is supposed to help clients transmitting at higher rates reduce their transmission

rate within an RTT. Finally, we make sure that when no attack is present, the network’s

effective delivery probability will stabilize on a delivery probability which is high enough

to enable TCP to perform well enough.

2.3.5 Resuming TCP

Before resuming TCP, QoSoDoS must assure that it has enough time for both the re-

suspension of TCP, in case it fails or timeouts, and re-initiation of ART, without harming

the assured QoS. In order to do so, QoSoDoS inspects the assured parameters, and the

actual packet acceptance state. It compares the current time and the next packet’s

guaranteed time of delivery. This is done by inspecting the next packet in the burst, if

such exists, or the minimal time needed for transmission of a potential newly arriving

packet. If the time until the guaranteed time of delivery for the next packet is greater

than the time needed for re-suspending TCP (TT) and its transmission using ART (TQ),

then QoSoDoS can safely try to resume TCP, otherwise, it must continue transmitting

in the ART scheme, so that the assured QoS will not be jeopardized. If there are no

packets waiting for transmission, i.e. no burst, we can resume TCP immediately, as

LQ = LD + TT , and enough time exists between the next packet arrival and the QoS

42

Figure 2.8: QoSoDoS average rate vs. time (theoretical macro-view based on Figures
2.5 and 2.7). Top figure represents rate vs. time of multiple QoSoDoS clients, and the
bottom figure is a correlating single packet’s effective delivery probability (PE). In the top
figure, the solid line represents the average rate by which legitimate clients would transmit
packets. RE is the effective average rate by which TCP would transmit packets under
congestion control (w/o attack). At the beginning of the DoS attack TCP practically
stops transmitting data. TT is QoSoDoS’ TCP-timeout interval, which, when it expires,
results in the abortion of TCP and initiation of ART transmission. When the DoS attack
is over, QoSoDoS starts a recovery period. At time t QoSoDoS resumes TCP.

commitment.

Finally, merely trying to resume TCP is helpful in reducing the average QoSoDoS rate

cf. to ART rate (see Figure 2.5), since it adds an interval TT , in which very few packets

are sent.

2.3.6 QoSoDoS: The Big Picture

QoSoDoS basically works in two modes derived from the network state, namely low and

high congestion modes. In low congestion, QoSoDoS uses TCP as is, thereby taking

advantage of TCP mechanisms such as congestion and flow control. In high congestion,

43

Figure 2.9: QoSoDoS’ multiple packet transmission rate over time (theoretical micro-
view based on Figures 2.5 and 2.7). The top figure represents rate vs. time of a single
QoSoDoS client, and the bottom figure represents a correlating single packet’s effective
delivery probability (PE). In the top figure, the solid line is the rate by which legitimate
clients transmit packets. At TT , QoSoDoS aborts TCP transmission and initiates ART.
RE is the rate by which TCP would have transmitted (w/o attack). Each distinct climb
is a different packet transmission (see figure 2.4). At time t QoSoDoS resumes TCP. In
the experiments described in Section 2.5 most transmissions returned instantaneously to
TCP.

in which packet delivery probability is low and TCP cannot function properly, QoSoDoS

uses ART.

The principle on which QoSoDoS relies during high congestion periods is that packet

delivery is essentially statistical, even under BW-DDoS attacks. During an attack, the

attacker tries to clog the victim host’s bandwidth by transmitting numerous futile packets

and thus preventing legitimate packets from reaching that host; therefore most (legiti-

mate) packets sent to the victim host are dropped. Nevertheless, probabilistically, once

in a while a legitimate packet should come through and reach its destination. During an

attack, the probability of packet successful delivery (assuming independence, and same

44

packet size) drops down to about PD ∼ RN

RA+RC
, where RN , RC , RA are network, (legiti-

mate) client and attacker rates respectively. See analysis in Section 2.2.2.

The following is a numerical example. Assume RN = RC ·100 and RA = RC ·999, 999,

hence PD = 0.0001. Assume C wants its packet delivered with PQ = 99% certainty,

hence C needs to retransmit the packet n = ⌈log(1−PD)(1−PQ)⌉ = 46, 050 times. If C can

transmit CQ = 1, 000 packets/second, C can assure delivery within TQ = 46.05 seconds. C

will optimistically start transmission using TCP, in hopes that it will succeed in delivering

data. After some time, say TT = 3 seconds, C aborts TCP, and starts using ART. To

relax the average ART rate, for support of multiple QoSoDoS clients, C sets α = 1.5,

hence all n retransmissions end by TQ = 46,050×1.5
1,000

= 70 seconds. Assuming independence,

C’s packet should get accepted after an expected 1
PD

= 10, 000 retransmissions, implying

shorter latency than 70 seconds, and a higher expected assured rate.

2.3.7 Network Outage Handling Design

As described in Section 2.2.3, QoSoDoS deals with network outages by trying to estimate

whether the current network state is Working, DoS or Faulty (see Figure 2.3). The above

sections describe the transition between the Working and DoS States, in which TCP and

ART are used respectively, and what triggers the transition. The Faulty state is used

when ART fails to deliver a few consecutive packets. In such a case there is a large

probability that either PE = 0, i.e., the network actually cannot delivery any packets, or

that PE ≪ PD, which by design we consider a network outage. In the Faulty state we

want to stop unnecessary retransmissions and merely sample the network and identify

when it becomes available again.

We define two parameters: φinit and φsample. φinit denotes the Faulty state’s ini-

tialization condition, and constitutes the number of consecutive ART transmission fail-

ures. The probability that no packet was received after φinit ART transmissions is

(1 − PQ)
φinit = (1 − PD)

n·φinit which suggests that PE ≪ PD. Hence if φinit consecu-

tive ART transitions failed, QoSoDoS enters the Faulty state; see edge 3 in Figure 2.3).

45

Description
1 TT (pre-defined TCP timeout) has expired (see Section 2.3.2).
2 QoSoDoS had a successful transmission and more than TT time exists

before next (assured) transmission must take place.
3 After φinit failed ART transmissions, change to Faulty state. See also

Event #5.
4 TCP connection reestablished (resume Working state).
5 After φsample attempts to resume TCP (Event #4), try sending a single

packet using QoSoDoS. If that single packet delivery failed, resume
Faulty state (Event #3).

Table 2.2: QoSoDoS events description per state model depicted in Figure 2.3.

φsample denotes the Faulty state’s sampling rate. When in Faulty state, QoSoDoS tries

to estimate when the network failure is over and packet delivery can resume. Since we

specifically assume failure and not DoS, we sample the link by trying to resume TCP. We

retry to establish TCP connection φsample times, and each attempt is TT in duration (see

Section 2.3.2 for definition). TCP sends just a few SYN packets while trying to establish

a new connection, therefore it should introduce only minimal congestion to the network.

After φsample attempts to establish a TCP connection, QoSoDoS tries to send a single

packet in ART (edge 5 in Figure 2.3). If packet delivery is not successful then the Faulty

state is reinitialized, without the additional φinit− 1 retries made upon first transition to

the Faulty state (edge 3 in Figure 2.3). This mechanism further prevents QoSoDoS from

self-creating DoS and prevents unnecessary packet transmissions on network failures.

Table 2.2 provides a summary for the transitions. See Section 2.5.5 for experimental

results.

2.3.8 Algorithm Design

Algorithm 1 describes a transmission algorithm, based on the QoSoDoS model. Algorithm

1 uses a general ART transmission algorithm, generically used by calling the ART ()

function in line 23 of the algorithm, which is described in Algorithm 2. The actual

algorithm, that is the NP and SP implementations used inside the ART algorithm, may

vary; in Section 2.4 we discuss a few possible implementations, such as the “linear”

46

algorithm depicted in Figure 2.4. We also compared these different implementations

empirically in Section 2.5.

Algorithm 1 begins by setting the number of consecutive fails to 0 and the initial state

to Working, meaning that we optimistically start by using TCP.

In line 3 we dequeue a packet from the queue or wait until a packet is available for

dequeuing. Once we have dequeued a packet we test whether we are in the DoS state

and have enough time to try and resume the Working state, thereby trying to send the

packet using TCP. Initially the state is Working, hence the if in line 4 fails as soon as we

test whether the state is DoS. This implies that the values of i and tart are only tested

if the state is DoS, which is an important fact as both i and tart are only initialized in

lines 13-16 when we switch to the DoS state.

Based on line 5, we will try using TCP if either state = Working or fails > φinit.

The latter condition means that we got to this line when state = Faulty and we are

trying to sample the link and to resume TCP. Lines 6-9 describe the process of trying to

send the packet using TCP. In case TCP did not get an ACK within TT we switch to the

DoS state, that is, unless the state is Faulty and we do not yet need to activate Event

#3. In case the state is Faulty and it is time to sample the link using the DoS state, then

line 14 makes sure that we will enter the DoS state for one transmission only and reenter

the Faulty state in case it fails.

Lines 17-30 describe the UDP-based retransmissions that take place during the DoS

state. The DoS state retransmissions are timed based on the ART algorithm, defined in

Algorithm 2, which returns the amount of time that the algorithm should wait before the

j’th retransmission has to take place.

2.4 ART Algorithms

In this section we present several ART algorithms we have developed which are compa-

rable using various measures, which we tested as reported in Section 2.5.

47

Input:
CQ // Max allowed transmission rate

RQ // QoSoDoS assured rate

TT // QoSoDoS timeout for using TCP

n // ≡ ⌈log(1−PD)(1− PQ)⌉ (max retrans.)

φinit, φsample // Parameters for state changes

queue // Transmission queue shared w/sender
Data:

TQ // ≡ R−1
Q (retrans. deadline)

state // Working, DoS or Faulty

pkt // Packet to transmit

tart, tpkt // ART/packet transmission start time

i, j // #trans. and #retrans. counters

fails // Consecutive failures counter

fails←0, state←Working;1

while True do2

pkt← Dequeue(queue);3

if state=DoS and (now()− tart) + TT + TQ < i · TQ then state←Working;4

if state=Working or fails > φinit then5

tpkt ← now();6

Async-TCP-Transmit(pkt);7

Wait for TCP abort or pkt ACK or (now()− tpkt) = TT ;8

if pkt ACKed then fails←0;9

if pkt not ACKed then10

Abort TCP connection;11

if satate=Working or (fails mod φsample) = 0 then12

i← 1;13

if state 6=Working then i← φinit − 1;14

state←DoS;15

tart ← now();16

if state =DoS then17

j ← 0;18

tpkt ← now();19

while pkt not ACKed and j < n and (now()− tpkt) < TQ do20

UDP-Transmit(pkt);21

j ← j + 1;22

sleep(ART (now()− tpkt, j, n, TQ, CQ));23

end24

if pkt not-ACKed then25

Notify: Failed to deliver packet;26

fails++;27

if fails ≥ φinit then state=Faulty;28

if pkt ACKed then fails←0;29

i← i+ 1;30

end31

Algorithm 1: QoSoDoS’ packet scheduling algorithm. ART () is an ART algorithm
(see Section 2.4). 48

Type Param Description Section

Prob PD DoS-prone delivery prob (low) 2.2, 2.2.2
PQ QoSoDoS delivery prob. (high) 2.2
PE Effective delivery prob. PD ≤ PE 2.2
PN/A min(1, RN

RA
) (attacker induced delivery prob.) 2.5.1

Rate RD DoS-prone transmission rate (high) 2.2.1
RQ QoSoDoS transmission rate (low) 2.2.1
RE Effective trans. rate 2.3.1
RN Network rate (bottleneck’s bandwidth) 2.3.6
RA Attacker rate 2.3.6
CQ Maximal QoSoDoS(ART) transmission rate 2.2.1

Latency LD DoS-prone network latency (low) 2.2.1
LQ QoSoDoS network latency (high) 2.2.1

Time TT QoSoDoS timeout for using TCP 2.3.2
TQ Single packet trans. time (Eq. 2.6) 2.3.2
TM The time when r(t) reaches CQ 2.3.1,2.3.3

Misc. n Required no. of retransmissions (Eq. 2.1) 2.2
α Relaxation/delay parameter (Eq. 2.2) 2.2.1
φinit Faulty state initialization parameter 2.3.7
φsample Faulty state sampling parameter 2.3.7

Func. r(t) Rate as a function of time 2.3.1,2.3.3
RC(PE) Average rate as a function of PE 2.3.4
art(x) ART’s trans. time of packet 1 ≤ x ≤ n 2.4(Alg.2)
NP (x) Next Packet’s (x+ 1) transmission time 2.4
SP (t) Sum of Packets (supposedly) sent by time t 2.4

Table 2.3: QoSoDoS Notation Summary Table.

49

We define Algorithm 2, which for convenience purposes uses two functions, namely

NP and SP . NP gives the Next Packet’s transmission time, relative to the beginning

of a specific ART transmission (see Algorithm 1). NP assumption is that it is called in

conjunction to sending a packet. SP returns the Sum of Packets that were supposed to

be transmitted by time t. Both NP and SP receive n, TQ and CQ as input, in order to

calculate each algorithm’s parameters, as described later.

ART(t, i, n, TQ, CQ)1

Input:
t // time since current ART transmission began, 0 ≤ t ≤ TQ.

i // transmitted packet counter.

n // maximal packet retransmissions.

TQ // deadline for n retransmissions.

CQ // maximal permitted transmission rate.

if i < SP (t, n, TQ, CQ) then2

/* Send now */

return 0;3

end4

/* Send in NP seconds */

return NP (t, n, TQ, CQ);5

Algorithm 2: ART next transmission algorithm is used by all transmission algo-
rithms. NP returns the Next Packet transmission time and SP return the Sum of
Packets that were supposed to be sent by time t. The implementations of NP and
SP are algorithm-specific (see Section 2.4).

The algorithms are presented along with rate vs. time diagrams. The area beneath

the function is the number of packets sent, i.e. the area in the time interval 0 ≤ t ≤ TQ

must be equal to n.

2.4.1 Flat Algorithm

The “Flat” algorithm is straightforward and is based on retransmitting packets at a

constant rate, n
TQ

(see Figure 2.10). Eq. (2.10) and (2.11) define NP and SP for the

“Flat” algorithm respectively.

NP (t, n, TQ, CQ) =
n

TQ

(2.10)

50

SP (t, n, TQ, CQ) = t · n

TQ

(2.11)

Figure 2.10: “Flat” rate algorithm. CQ is the maximal allowed transmission rate, while
the rate for packet retransmissions is n

TQ
. TQ is the deadline for all n retransmissions.

2.4.2 Bulk Algorithms

Bulk algorithms are bi-rate algorithms; that is, they either send at a high or low rate,

while making sure that the required sum of messages are sent by the deadline time (TQ).

“Bulk At Start” Algorithm

The “bulk at start” algorithm tries to send packets at rate CQ until a packet is acknowl-

edged or all n packets were transmitted. Figures 2.11 depicts “bulk at start,” while Eq.

2.12 and Eq. 2.13 define NP and SP respectively.

NP (t, n, TQ, CQ) = min

(

1

CQ

, TQ − t

)

(2.12)

SP (t, n, TQ, CQ) = min

(

t

CQ

, n

)

(2.13)

51

Figure 2.11: “Bulk at start” algorithm starts retransmitting packets at the highest rate
CQ, and continues doing so until either the one of the packets is acknowledged or n
packets were transmitted. This behavior may send all n packets in less than an RTT,
effectively disregarding any potential previously accepted packets (see Section 2.3.2)

“Bulk At End” Algorithm

“Bulk at end” transmits at a low rate, such as 1
RTT

, at the beginning and switches to the

maximal rate CQ towards the end. Unlike “bulk at start,” low rate transmission is used,

as it makes little sense to hold off all transmissions until the end, and remain silent for a

long period of time. Figure 2.12 depicts “bulk at end.”

The “bulk at end” algorithm finds the point in time prior to the deadline (t ≤ TQ), in

which it must begin transmitting at the maximal rate CQ, using a function TM . At this

point the algorithm switches from the low rate c, e.g. RTT−1, to the maximal rate CQ.

The sum of the rectangles’ area, i.e. the area of the rectangle at the low rate and the

area of the rectangle at the high rate, is equal to n. Eq. (2.14), (2.15) and (2.16) defines

TM , NP and SP for “bulk at end” respectively.

TM ≡
n− CQ · TQ

c− CQ

(2.14)

NP (t, n, TQ, CQ) =

1
c

for t < TM

min
(

1
CQ

, TQ − t
)

for TM ≤ t ≤ TQ

(2.15)

52

Figure 2.12: “Bulk at the end” algorithm retransmits packets at a low rate c, such as
c = 1

RTT
, until the time left until TQ requires it to transmit the remaining packets at CQ,

in which it increases its transmission rate respectively.

SP (t, n, TQ, CQ) =

t · c for t < TM

TM · c+ (t− TM) · CQ for TM ≤ t < TQ

n for t ≥ TQ

(2.16)

2.4.3 Linearly Increasing Rate Algorithm

The Linearly Increasing Rate algorithm increases the rate linearly starting at the minimal

rate c, e.g. RTT−1 up to the point where it reaches the maximal rate CQ. Figure 2.4

depicts the Linearly Increasing Rate algorithm, and we use it for parameters reference.

As before, our aim is to define the NP and SP functions. To this end we define the rate

function, as:

r(t) = min (CQ, m · t+ c)

We find TM by using area calculations which denote the number of sent messages. The

area under the slope m, and the rectangle between TM and TQ equals n, i.e. c · TM +

53

TM (CQ−c)

2
+ (TQ − TM) · CQ = n. Hence:

TM ≡
2(n− TQ · CQ)

c− CQ

(2.17)

Based on TM , the slope m is:

m =
CQ − c

TM

(2.18)

Prior to defining NP we define NPS(t), which denotes the Next Packet on Slope, i.e.

the next transmission time when t < TM . NPS(t) is the point where the area between t

and NPS(t) equals 1 (packet). Based on
∫ NPS(t)

t
(mx+ c)dx = 1,

NPS(t) =
−c+

√

c2 +m(mt2 + 2ct+ 2)

m
(2.19)

As the next packet may need to be transmitted after TM , i.e. NPS(t) > TM , and since

the rate cannot be increased above CQ, we need to flatten the transmission exceeding CQ.

We define the function PR(τ), which denotes the Packet Remainder, for any τ > TM as

PR(τ) =
∫ NPS(τ)

TM
(mx+ c)dx. Hence:

PR(τ) =
m

2
(τ 2 − TM

2) + c(τ − TM) (2.20)

Finally, we construct NP and SP as follows:

NP (t, n, TQ, CQ) =

NPS(t) for NPS(t) ≤ TM

TM + PR(NPS(t))
CQ

− t for t < TM < NPS(t)

1
CQ

for TM ≤ t < TQ

(2.21)

SP =

t
(

m
2 t+ c

)

for t ≤ TM

TM

(

m
2 TM + c

)

+ t−TM

CQ
for TM < t < TQ

n for t ≥ TQ

(2.22)

54

2.4.4 Exponentially Increasing Rate Algorithm

The Exponentially Increasing Rate algorithm is similar to the linear algorithm, only that

it increases the rate exponentially instead of linearly. We use Figure 2.13 for parameters

reference. We define the rate function as follows:

r(t) = min
(

c · γt, CQ

)

Our initial objective is to calculate the value of γ, hence we first define TM in Eq. 2.23.

TM = logγ(
CQ

c
) (2.23)

Based on C
∫ TM

0
(γt)dt+ (TQ − TM)CQ = n, we get Eq. 2.24 as follows:

γ = e

CQ

(

1−ln

(

CQ
C

))

−C

n−TQ·CQ

(2.24)

Similar to the Linearly Increasing Rate algorithm, we define NPE(t), the Next Packet on

Exponent function, and PR(τ) for τ > TM , the Packet Remainder. Based on C
∫ NPE(t)

t
(γt)dt =

1, we get:

NPE(t) = logγ

(

ln γ + cγt

C

)

(2.25)

PR(τ) =
cγτ − cγTM

ln γ
(2.26)

Finally, we define NP and SP for the exponential algorithm as follows:

NP =

NPE(t) for NPE(t) ≤ TM

TM + PR(NPE(t))
CQ

− t for t < TM < NPE(t)

1
CQ

for TM ≤ t < TQ

(2.27)

55

SP =

cγt−c
ln γ

for t ≤ TM

cγ(TM)−c
ln γ

+ t−TM

CQ
for TM < t < TQ

n for t ≥ TQ

(2.28)

Figure 2.13: Exponentially Increasing Rate algorithm. The exponent part of the algo-
rithm is based on a function in the form of c·γt, where c is a low transmission rate, such as

1
RTT

and CQ is the maximal rate. The exponent is used while t ≤ TM , TM = logγ

(

CQ

c

)

.

TQ is the deadline for all n retransmissions.

2.4.5 Burst Linear and Burst Exponential Algorithms

We have designed two additional algorithms: “burst linear” and “burst exponential.”

These two algorithms are the same as Linearly Increasing Rate and Exponentially In-

creasing Rate respectively with one difference. Their SP function gives a larger number

of packets that were supposed to be sent by the original algorithm’s, whilst the time

spacing between transmissions, i.e. NP , functions are the same. This makes the algo-

rithm “burst” packets (see Algorithm 2), before their transmission time in the original

algorithm. The burst size grows along with the rate function. Note that no more than n

packets are sent in any case, as Algorithm 1 prevents that from happening.

In the “burst linearly” we changed SP to return t(m ∗ t + c) instead of t(m
2
t + c).

56

Hence:

SP = min

n,

t (m · t+ c) for t ≤ TM

TM (m · TM + c) + t−TM

CQ
for TM < t < TQ

n for t ≥ TQ

(2.29)

In “burst exponential” we changed SP to return 2∗(cγt−c)
ln γ

instead of cγt−c
ln γ

. Hence:

SP = min

n,

2(cγt
−c)

ln γ
for t ≤ TM

2(cγTM
−c)

ln γ
+ t−TM

CQ
for TM < t < TQ

n for t ≥ TQ

(2.30)

2.5 Experimental Evaluation

We have implemented an initial version of QoSoDoS and used it to test QoSoDoS’ be-

havior and performance, as well as to compare between different ART algorithms. The

implementation included Algorithms 1 and Algorithm 2 as well as all the ART-algorithms

described in Section 2.4. To each packet we added a 12 bytes header, which include 3

integers: operation (SEND/ACK), message ID and retransmission number. This way we

could know which retransmissions were accepted by the server and whether more than

one copy of the same message was received.

Mirkovic et al. [58] discuss ways to test DoS defenses. In the paper, the authors

compare between computational simulations, testbed emulations and deployment-based

testing. They conclude that testbed experiments serve as the preferred way to test DoS

defenses. In a nutshell, complete systems complexities and unexpected behavior is very

difficult to fully capture using simulations or theoretical analysis. On the other hand,

using real-world deployment-based testing is difficult, if not completely impossible. Con-

sequently, as testbeds use real systems which are made out of actual hardware and soft-

ware, they provide many of the complexities and unexpected behavior one might expect

to find in a deployed system. The downside of testbeds is their (relatively) small-scale

and their lack of ability to fully emulate the real-world traffic (legitimate and attack) and

57

Figure 2.14: Dumbbell topology for ART comparison in DETERlab [16]

equipment heterogeneity. Nevertheless, they provide a reasonable compromise between

the (unachievable) real-world and the theoretic results of simulations and analysis. We

follow these recommendation and use the DETERlab testbed [16] as the infrastructure

of our evaluations.

2.5.1 ART Algorithms Comparison

We have constructed a dumbbell topology as depicted in Figure 2.14 to compare between

the different ART algorithms. All the traffic flows via the bottleneck link between node4

and node5. Attack traffic flows between the attacker and the attacker sink, denoted

atk and atk-sink respectively, and the legitimate traffic flows between the legitimate

QoSoDoS client and its destination, denoted src and dst respectively.

The topology consists of Linux (Ubuntu 10.04 or 12.04) machines for end-hosts, and

FreeBSD for routers (node4 and node5). The attack traffic produced UDP traffic at a

constant 100Mbps rate, using iperf [1]. The configuration used for comparing between

the ART algorithms is described in Table 2.4.

58

Parameter Description Value

I
n
p
u
t

LD Network max latency 75 ms
TT TCP (user) timeout 6.925 sec
CQ Client max rate 10 Mbps
PD Min bound on packet delivery prob. 2%
PQ QoS delivery probability 99.9%
BQ QoSoDoS assured burst 100 Mbit
α QoSoDoS Relaxation Parameter 750

C
a
lc
u
la
t
e
d LQ Assured latency 7 sec

n Required number of retransmissions 342
RQ QoSoDoS assured rate 39 bps
TQ QoSoDoS packet timeout 63.2 sec

Table 2.4: ART algorithms configuration.

To achieve different delivery probabilities we changed the bottleneck link capacity.

The link capacity started from 50Mbps and down to 6.25Mbps (in log scale), yielding 50%

down to 6.25% of the attacker’s bandwidth. The ratio between the attacker’s bandwidth

and the bottleneck link min
(

1, RN

RA

)

, is denoted PN/A, i.e., the attacker induced deliv-

ery probability. The effective delivery probability, PE, depicted in Figure 2.15, changes

depending on the ART algorithm used, which also influences the delivery probability.

Note that the bursty algorithms, bulk-at-start and burst-exponential, can be helpful for

low delivery probabilities as their negative impact on link load is reduced, compared to

the attacker rate. However, in high delivery probabilities, burstiness has negative effect

on the network, and may decrease the delivery probability as numerous redundant pack-

ets are transmitted whilst only a fraction of which would suffice, and the average load

produced by the bursty algorithms is relatively high.

Latency and rate results. We compared the latency and rate of the different ART

algorithms, as depicted in Figures 2.16 and 2.17 respectively. Observe that the latency

of the bulk-at-start algorithm is significantly lower than the rest of the ART algorithms.

This is not surprising by itself, however, when examining Figure 2.17 we can see that the

rate is comparable with the other ART algorithms. This phenomenon can be explained

based on ART’s ability to identify packet acceptance only after an RTT, which implies

that the algorithm will keep sending for at least an RTT, until stopping, which does

59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ff
ec
ti
ve

d
el
iv
er
y
p
ro
b
ab

il
it
y
(P

E
)

Network to attacker ratio (PN/A)

linear

+
+

+

+

+
burst-linear

×
×

×

×

×
bulk-at-end

∗

∗

∗
∗

∗
flat

� �

�

�

�
exponential

�

�

�

�

�
burst-exponential

◦

◦

◦
◦

◦
bulk-at-start

•
•

• •

•

Figure 2.15: Measured PE vs. PN/A.

0.01

0.1

1

10

100

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

L
at
en
cy

(s
ec
on

d
s)

Network to attacker ratio (PN/A)

linear

+
+

+ +

+
burst-linear

× × ×
×

×
bulk-at-end∗

∗

∗ ∗

∗
flat

� �

�

�

�
exponential�

�
�

�

�
burst-exponential◦

◦
◦ ◦

◦
bulk-at-start

• • • •

•

Figure 2.16: Measured latency (log scale) vs. PN/A.

60

0

10

20

30

40

50

60

70

80

90

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
at
e
(K

b
p
s)

Network to attacker ratio (PN/A)

linear

+ +
+

+
+

burst-linear

× ×
×

××
bulk-at-end

∗ ∗
∗

∗
∗

flat

� �
�

�
�

exponential

� �

�

�

�
burst-exponential

◦ ◦
◦

◦

◦
bulk-at-start

• •
•

•

•

Figure 2.17: Measured rate vs. PN/A.

not allow it to continue for the next packet, even though one of its packets has been

successfully accepted. This observation is supported by Figure 2.18, in which we see the

significant amount of redundant packets sent (and received) by bulk-at-start.

Redundant packets results. Another observation regarding Figure 2.18 is that

lower delivery probabilities cause more redundant packets to be accepted. The reason for

this is that while we have changed the link’s bandwidth, we did not change its queue size,

which implies that the RTT increases as the same number of packets in the queue are

being delivered using a lower outgoing rate. Hence, the time until acknowledgement is

accepted is prolonged. During this time, the bulk-at-start algorithm sends more packets,

and, as depicted, more redundant packets are effectively accepted.

Figure 2.18 depicts the number of packets redundantly received by the destination

server. Note that in the configuration used (see Table 2.4), only the bursty algorithms

exhibited such redundant behavior, as shown in the figure.

2.5.2 Mixed Senders and Attackers Tree

In this experiment we evaluate transmissions by nodes which send a mix of senders and

attackers. This emulates a scenario where there are two congested locations. The first is

61

0.1

1

10

100

1000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
ed
u
n
d
an

t
p
ac
ke
ts

Network to attacker ratio (PN/A)

burst linear

+ +
+ +

+
burst exponential

× × × ×

×
bulk at start∗ ∗ ∗ ∗

∗

Figure 2.18: Measured Redundant Packets vs. PN/A.

at the last-mile bottleneck link, as before. The second is another upstream bottleneck,

closer to the sources. Such a scenario may happen if an attacker cohabits the same

machine or the same network as legitimate clients, or otherwise when another bottleneck

is encountered en route. In this scenario the congestion on the last-mile bottleneck

link does not provide the full picture regarding delivery probability, as some packets are

already lost before reaching the last-mile bottleneck link by some congested upstream

machine.

We have set up a network in a tree topology as depicted in Figure 2.19, in which we

emulated various attack sizes and compared QoSoDoS with TCP. The network topology

is constructed so that all transmissions towards the destination host D congest the same

link.

All the machines, including routers, are Linux machines with kernel version ≥ 2.6.18.

Both clients and server used Ubuntu 10.04 with the default TCP congestion control

(CUBIC [69]). Each machine has 100Mbps Ethernet NIC(s). R0 and R1 are routers with

three and two Ethernet interfaces respectively. S1 and S2 connect to the first NIC of R0,

whereas S3 and S4 connect to the seconds. The third NIC of R0 is connected to the first

NIC of R1. The second NIC of R1 is connected to D using a rate-limiter rating it to

62

10Mbps with buffer size of 750Kbps.

Each source node consists of several QoSoDoS clients and at least twice as many at-

tackers with higher scheduling priority, transmitting as many packets as required to con-

sume enough bandwidth according to the attack scenario. Each client transmits packets

with a payload of 262-bytes which emulates a 12-bytes QoSoDoS header and 250 bytes

of payload. For this experiment, attackers transmit a 12-bytes payload over UDP, hence

producing a minimal Ethernet packet with a size of 64-bytes. Such a packet size is typical

to TCP packets carrying no payload, such as SYN, ACK, FIN and RST. Motivation for

having such a small attacker packet size is to give the attacker’s packets better queuing

probability in routers.

For all experiments described in this section we used the linear ART algorithm.

S1

''PPPPPPPPPPPPPPP S2

 A
AA

AA
AA

A

R0
100Mbps // R1

10mbps //D

S3

77nnnnnnnnnnnnnnn
S4

>>}}}}}}}}

Figure 2.19: Mixed senders and attackers experiment. S1..S4 are sources of packets
containing both QoSoDoS clients and attackers. Each QoSoDoS client is configured to
use no more than 100Kbps when executing QoSoDoS-ART scheme (see Table 2.5). The
amount of packets and bandwidth created by the attackers changes to emulate various
probabilities for QoSoDoS’ successful packets delivery. R0 is a router with a 100Mbps
rate connected to router R1 which limits the rate towards D to 10Mbps. Each single
source does not transmit any more than 40Mbps so that the underlying Ethernet links
won’t affect the results.

2.5.3 Various Attack Sizes

On each source machine, S1..S4, we have executed six concurrent QoSoDoS clients with

parameters as described in Table 2.5. In addition, we have executed 14 attackers on each

63

Parameter Description Value

I
n
p
u
t

LD Network max latency 75ms
TT TCP (user) timeout 2.925s
CQ Client max rate 100Kbps
PD Min bound on packet delivery prob. 0.1%
PQ QoS delivery probability 99.9%
BQ QoSoDoS assured burst 10Mbits
α QoSoDoS Relaxation Parameter 1.5

C
a
lc
u
la
t
e
d LQ Assured latency 3s

n Required number of retransmissions 6905
RQ QoSoDoS assured rate 9.65 bps
TQ QoSoDoS packet timeout 255.2s

Table 2.5: QoSoDoS’ parameters used in experiments.

machine which produce the bandwidth-flooding of the link.

Each experiment was executed as follows. 30 seconds after the clients were all exe-

cuted, an attack was launched for 30 minutes, followed by 60 seconds for clients recovery

and testing whether TCP was resumed properly. For all attack sizes we examined, all

the QoSoDoS clients resumed TCP almost immediately.

We have tested attack sizes ranging from 10Mbps to 150Mbps, which provided an

effective acceptance probability (PE) ranging from 4.5% to 0.3% as described in Figure

2.22.

Figure 2.20 and 2.21 present the average latency and rate (respectively) vs. packet

acceptance probability. As expected, packets were accepted at lower latencies and higher

rates than assured by QoSoDoS, since the packets’ expected number of retransmissions

until delivery is 1
PE

.

2.5.4 QoSoDoS and TCP Comparison

We conducted two experiments to compare TCP and QoSoDoS. In the first experiment

we tested the goodput of TCP vs. the goodput of QoSoDoS. We executed the same

number of clients for 5 minutes and tested how much data was delivered using TCP and

how much data was delivered using QoSoDoS. For each QoSoDoS client we used the

64

0

5

10

15

20

25

30

0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
Packet Acceptance Probability (PE)

Latency (seconds) vs. Packet Acceptance Probability - PE (%)

Latency

♦
♦

♦

♦
♦

♦♦
♦

♦
♦
♦♦
♦

♦♦ ♦

Figure 2.20: Latency (seconds) vs. acceptance probability (PE). The effective latency
ranges between 29.3 and 3 seconds. Note that the latency values are lower than the
assured value TQ (see Table 2.5), as the average packet is accepted by the mean value
of the effective probability (1

PE
), producing much lower latencies than the assured worst

case.

0

100

200

300

400

500

600

700

800

900

0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
Packet Acceptance Probability (PE)

Effective Rate (bps) vs. Delivery Probability – PE (%)

RE
♦

♦

♦
♦♦♦♦♦♦♦♦♦♦♦♦

♦

Figure 2.21: Effective Rate vs. Delivery Probability (PE). The effective rate ranges
between 803 bps and 84 bps. The rate values are much higher than the assured RQ (see
Table 2.5), as the average packet is accepted by the mean value of the effective probability
(1
PE

), producing much higher rates than the assured worst case.

same configuration as described in Table 2.5. Figure 2.23 shows that using up to 100

concurrent clients, QoSoDoS performs within 2.5% of TCP, which seems like a reasonable

65

0%

0.5%

1%

1.5%

2%

2.5%

3%

3.5%

4%

4.5%

5%

0 20 40 60 80 100 120 140 160
Attack Bandwidth Size (Mbps)

Packet Acceptance Probability - PE (%) vs. Attack Size (Mbps)

PE♦

♦

♦

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦

Figure 2.22: Effective packet acceptance prob. (PE) vs. attacker’s bandwidth. Even for
a strong attacker (×15 link bandwidth), the acceptance probability is 0.3%. Note that
the delivery probability is dependent on more than one bottleneck, both at the source
machines as well as the bottleneck link.

price to pay for the assured QoS. Figure 2.24 shows that the amount of QoSoDoS packets

using ART (rather than TCP) is negligible; less than 0.12% (about one promil) of the ac-

cepted packets were ART packets when 100 QoSoDoS clients were executed concurrently.

This demonstrates that QoSoDoS does not self-create DoS even when many clients run

concurrently.

The second experiment we conducted to compare QoSoDoS and TCP included a

short-lived attack. Like the previous experiment, we started without an attack. After

60 seconds of running TCP, we launched a 10Mbps attack (PE = 4.5%) which lasted 40

seconds. After the attack was over, we continued running the experiment for an additional

200 seconds (2.3 minutes). This kind of attack is intended to simulate a flash crowd, or an

attacker with low and/or short-lived capabilities. Low-rate attacks [49] can be regarded

as an extreme case for this type of an attack, which are very hard to detect and filter.

In this case, QoSoDoS performs better than TCP. Figure 2.25 shows TCP degradation

compared with QoSoDoS. In a small number of clients, QoSoDoS performs 11.5% better

than TCP. This is reduced to about 9% when the number of clients is increased to 100.

66

−0.5%

0%

0.5%

1%

1.5%

2%

2.5%

20 30 40 50 60 70 80 90 100
Number of clients

QoSoDoS Degradation Compared with TCP w/o Attack

♦
♦

♦

♦

♦

Figure 2.23: QoSoDoS degradation compared with TCP. The X-axis is the number of
concurrent clients and the Y-axis is the performance degradation ranging between 0 and
2.5%. QoSoDoS performs quite well even when no attack is launched. This seems like a
reasonable price for assured QoS during flooding DoS attacks.

0%

0.02%

0.04%

0.06%

0.08%

0.1%

0.12%

20 30 40 50 60 70 80 90 100
Number of clients

Percent of Packets Sent in ART

♦
♦

♦

♦

♦

Figure 2.24: Percent of packets sent in ART. The X-axis shows the number of concurrent
clients and the Y-axis shows the percentage of packets accepted using ART. The values
range between 0 and 0.12%, i.e. ART overhead is negligible. Note that this means that
QoSoDoS has almost no overhead, adds only a negligible amount of non-TCP traffic, and
does not become a source of congestion, let alone self-created DoS.

67

8.5%

9%

9.5%

10%

10.5%

11%

11.5%

12%

20 30 40 50 60 70 80 90 100
Number of clients

TCP Degradation Compared With QoSoDoS with Short-Lived Attack

♦
♦

♦
♦

♦

Figure 2.25: TCP performance degradation compared with QoSoDoS, under a short-lived
attack during a connection. TCP performs worse than QoSoDoS in the range of 11.5% to
9%. We believe that this phenomenon is due to QoSoDoS’ ability to recover faster than
TCP from DoS attacks, which is mainly the result of its TCP timeout mechanism TT .

Figure 2.26 shows that the overhead of ART packets remains almost as small as without

an attack (about one promil). These results suggest that QoSoDoS recovers very well

from such small-sized and/or short-lived attacks which target TCP timeouts and recovery

time. We believe that the main reason behind these results is mainly due to TCP timeout

– TT – which helps fast recovery when an attack is over. The results presented in Figure

2.26 support our claim that even after a DoS attack, QoSoDoS does not self-create DoS.

2.5.5 Link Failure Experiment

The experimental results presented here were produced using the circle-topology as de-

picted in Figure 2.27, using the DETERlab testbed [16]. In this experiment 10 QoSoDoS

clients were executed on each node with the configuration described in Table 2.6. LAN

links are 1Gbps and WAN links (connecting the routers) are 100Mbps. The routing ta-

bles were configured statically such that every packet to the server travels clockwise and

every packet from the server travels counter-clockwise. For example, packets traveling

from lan-0 (node-[0..2]) to serverlan-2 are routed via router-1, in addition to packets

68

0%

0.02%

0.04%

0.06%

0.08%

0.1%

0.12%

20 30 40 50 60 70 80 90 100
Number of clients

Percent of Packets Sent in ART with Short Lived Attack

♦
♦

♦

♦

♦

Figure 2.26: Percent of packets sent in ART with a short lived-attack. Examining the
percent of ART packets in the context of a short-lived attack yields that ART presents
almost no overhead. This is comparable with the result in Figure 2.24. This result further
supports the claim that QoSoDoS does not become a source of self-created DoS.

traveling from serverlan-2 to lan − 0. Such a circle topology is prone to congestion

explosion in case congestion is not controlled well enough. Note that CQ is configured to

100Mbps for each client, which theoretically provides much higher bandwidth usage than

the WAN links’ bandwidth, hence it can potentially produce DoS.

The experiment scenario was to execute clients for five minutes, and after one minute

of execution to drop the link between router-1 and router-2. The experiment was exe-

cuted once with TCP-only clients and then with QoSoDoS clients using the configuration

described in Table 2.6. The results of this experiment showed that QoSoDoS sent an

average of about 10-12% more packets using TCP. The second interesting result was that

the average bandwidth used in total for QoSoDoS was about 120Mbit (15MB) in total,

for all ART transmissions. We believe that the reason for QoSoDoS’ better performance

is its better recovery from link outage. After a link outage TCP enters congestion avoid-

ance, while QoSoDoS starts a new connection with slow-start, which grows the congestion

window faster.

The second experiment executed the same basic scenario with 1% packet loss on each

69

Figure 2.27: Circle topology emulated in DETERlab. LAN links have 1Gbps of band-
width, while links between routers have 100Mbps. Packets from client nodes to servers
are (statically) sent clockwise, while server responses are sent counter clockwise (e.g.
node-0→ serverlan-2 is sent via router-1 and the response follows the same path in the
opposite direction).

link. Results here show that both TCP and QoSoDoS performed the same. ART overhead

was around 90Mbit, which was produced during the link down period. This result can

be explained by the TCP congestion control mechanism, which was forced to use less

bandwidth, due to the packet loss. In the scenario without packet loss, when many TCP

clients congest the link and push it to its limits, an occasional TCP connection exceeds

the 3 seconds TT timeout, hence causing an occasional packet transmission in ART (which

also increases QoSoDoS’ overhead).

2.6 Conclusions

In this chapter we have presented QoSoDoS, an end-to-end transport protocol assur-

ing QoS over DoS-prone networks. We compared between different ART transmission

schemes. Experimental results show that QoSoDoS has good performace during large-

scale BW-DDoS attacks. Compared to TCP under normal conditions QoSoDoS presents

70

Parameter Description Value

I
n
p
u
t

LD Network max latency 75 ms
TT TCP (user) timeout 2.925 sec
CQ Client max rate 100Mbps
PD Min bound on packet delivery prob. 0.1%
PQ QoS delivery probability 99.9%
BQ QoSoDoS assured burst 100 Mbit
α Relaxation parameter 1.5

φinit Faulty state initialization parameter 3
φsample Faulty state sampling parameter 5

C
a
lc
u
la
t
e
d LQ Assured latency 3 sec

n Required number of retransmissions 6905
RQ QoS (Assured) rate 14.5Kbps
TQ QoSoDoS message timeout 255ms

Table 2.6: QoSoDoS’ parameters used in the link failure experiment.

little overhead, whilst during and after an attack its performance is superior. QoSoDoS

does not self-create DoS attacks and recovers well after such attacks.

71

72

Chapter 3

Controlled Overlays

In this chapter we investigate the effectiveness of using overlay networks to break through

congested networks as a result of bandwidth flooding, such as DDoS attacks (BW-DDoS).

We present a novel design which, upon congestion, turns to an end-host-based overlay

to redirect communication and amplify legitimate traffic, using one or multiple paths to

the destination as necessary. Our overlay is carefully controlled, thus preventing self-

generated DDoS.

We have evaluated our proposed overlay scheme using a large-scale simulation, based

on the Internet’s AS topology. We examined the effectiveness and overhead of our design

as well as that of TCP-based relaying schemes, such as RON [9]. Our results show consid-

erable improvement in delivery probabilities and acceptable overhead. To our knowledge,

this is the first large-scale evaluation of the use of overlays to ensure availability in spite

of a significant BW-DDoS.

3.1 Introduction

The Internet provides a best-effort packet delivery service, with routing mechanisms

which respond to congestion only slowly, if at all. In particular, inter-AS routing by

BGP does not consider congestion at all, neither inter-AS nor intra-AS. Most providers

73

ensure sufficient overcapacity, to avoid such congestion along the route from source to

destination AS, however, this may fail against a determined DDoS attack such as the

large attacks recently reported [12].

In recent years, there is a growing number of incidents of large-scale, well-organized

DDoS attacks with significant attacker resources [12,30,41,42]. Recent DDoS attacks [39]

have shown that strong attackers can produce attacks at an alarming rate of millions of

packets per second, yielding a few dozens of Gbps. Such large-scale attacks can cripple

very large sites, as well as various mitigation systems which cannot handle the overwhelm-

ing magnitude of the attack’s bandwidth.

In practice, many solutions can be considered to mitigate DDoS. A common solution

is over-provisioning the potential victim with bandwidth and other resources, making

it harder to launch an effective DDoS attack. However, resource over-provisioning is

costly, and cheaper solutions are widely available, such as attack flows filtering by ISPs,

or spawning new point-of-presence (PoP). We further discuss two types of off-the-shelf

solutions, namely, in premise, such as Corero DDS [40], and “in the cloud” solutions, such

as Akamai DDoS Defender [38]. Customer-premises equipment (CPE) solutions assume

that the victim has sufficient bandwidth but cannot handle the attack at application

level. Hence, traffic can be filtered at the victim’s premises before it exhausts the victim

servers’ resources. In the cloud solutions are based on diverting the traffic to a cloud

service which can absorb the attack bandwidth and filter out the offending flows. not

under attack, or ad-hoc upon attack.

DDoS attacks have also motivated vast research in various aspects of DDoS mitigation,

including the use of overlay networks, i.e., the use of helper nodes as intermediaries

between source and destination, to ensure availability even when under severe DDoS

attacks. Overlay networks research can generally be divided into two types: Indirect

Overlay Networks (ION) and absorption overlays.

IONs try to improve end-to-end availability and performance by detouring the Inter-

net’s core routing, and overcoming BGP’s shortcomings, such as speed of update, route

74

selection using different matrices, or using special network features such as multihoming;

e.g. see RON [9],Bandwidth-Aware Routing in Overlay Networks [50] and MONET [10].

IONs can mitigate DDoS in cases where some routes to the victim are congested, while

others are not congested and are able to deliver data to the victim. However, once all

routes to the victim are congested, existing IONs will most probably prove futile.

Absorption overlays absorb the attack bandwidth at overlay nodes, and only forward

legitimate traffic to the destination. Absorption overlays were proposed and investigated

in several works, such as SOS [45], Mayday [25], Phalanx [27], and Countering DoS At-

tacks With Stateless Multipath Overlays [72]. Such overlays commonly construct a secure

perimeter around the victim, through which only a selected set of authorized nodes can

deliver data. Authorized nodes are commonly authenticated using lightweight authentica-

tors, e.g. IP, port etc. On the other hand, even for absorption overlays, the perimeter

itself has limited bandwidth capacity. Thus, attackers may try to clog the perimeter bor-

ders, and severely limit the connectivity between the overlay and the secure perimeter.

Ultimately, existing mitigation techniques have some bandwidth limitations, whether it is

in routers, firewalls, secure perimeters, or even a highly provisioned link.

In this work, we study the use of overlay networks to increase availability, in the

presence of severe bandwidth flooding, possibly by an intentional DDoS attack. We take

a complementary approach to existing solutions, both overlay-based and others, to fight

such bandwidth floods. We accomplish this by amplifying bandwidth and aggressively de-

livering the legitimate traffic in spite of existing congestion. The key feature is that, when

necessary, we let a set of legitimate and controlled overlay nodes collaborate and transmit

data, at a predefined (controlled) rate, but without congestion control, i.e., using UDP in-

stead of TCP. We thereby assure information delivery to the victim host, even when it is

under a large-scale flooding attack. Since the set of overlay nodes is controlled, we can

control the worst-case bandwidth usage, and avoid self-generating DDoS. Employing our

solution will require a much stronger attacker utilizing a much stronger botnet to achieve

the same effect as it can today, and it requires no change to the Internet’s core or to

75

routers.

Figure 1.2 depicts an Internet-scale simulation which motivates our solution. The

black bars depict ASes, fully available under various scales of bandwidth attacks; gray

bars depict partially available ASes to which IONs may offer some solution. The white

bars depict the area of inaccessible ASes by existing solutions, to which, in conjunction

with the gray bars area, we offer a solution in this chapter. Note that the white area in

Figure 1.2 is also relevant for protecting the secure perimeter of absorption overlays.

Our solution should be less costly than statically over-provisioning resources, and

should be complementary to existing solutions. It should be easy to deploy for example by

maintaining online overlay relays or spawning cloud relay instances on demand. Despite

the bandwidth costs, many services have considerable costs from going offline, hence our

solution should be cost-effective for such services. Our solution is strictly designed for

cases in which we can differentiate friend from foe, i.e. when clients can be authenticated

by the overlay and banned for misbehaving, e.g. banking and emergency services. Our

solution is inappropriate for open services which do not require any client authentication,

in which an attacker might try misusing the overlay for its own attack amplification.

The rest of the chapter is organized as follows. Section 3.2 presents the model as-

sumptions. Section 3.3 describes the design followed by the evaluation found in Section

3.4. We conclude in Section 3.5.

3.2 Model Assumptions

3.2.1 Network Behavior

We take the delivery assumptions as described in Section 1.1.1. Specifically we assume

that the delivery probability PD is approximated by Equation 1.1, i.e., PD ≈ min
(

1, RO

RI

)

.

Next, as depicted in Figure 1.1, traffic without congestion control is “prioritized” over

congestion controlled traffic, i.e., TCP lets UDP flows transmit their bandwidth and use

only the remaining bandwidth.

76

3.2.2 Bandwidth Costs

We try to estimate the costs associated with an aggressive relaying scheme, and conclude

whether our scheme is financially reasonable. Chen et al. [21] calculated cloud usage

costs, including networking costs to and from the cloud. In this chapter we use these

assessments to estimate the costs of our relaying scheme. We further focus on bandwidth

costs, as processing costs are negligible compared to bandwidth costs. Assuming that our

relays are cloud instances, and using worst-case pricing, i.e. 4, 500 pico (10−14) cent per

bit (pcb) for end-host transmissions, in addition to 1, 164pcb for the cloud’s data-in, and

1, 979pcb for the cloud’s data-out, we get a total of 7, 643pcb for a single end-to-end bit

relaying. In our design, relaying through the cloud should be retransmitted several times

by the cloud, hence reducing the costs, as the end-host transmission plus cloud data-in

are significantly larger than just the cloud’s data-out. Even so, transmitting 1 megabit

using 100 end-to-end relaying – an example of the expected number of retransmissions

for PD = 1/100 – we get less than 0.77 cent per transmission (comparable to a single

SMS price). Since commonly attacks don’t get to such low delivery probabilities and since

the amount of data to deliver can be smaller than 1 Mbit, then based on these costs

we argue that there exist a group of applications for which our solution is cost-effective.

Additionally, some types of transmissions are worth significantly more than one cent,

such as emergency services messaging or financial transactions, which make our proposed

cloud-based scheme financially reasonable at least for similar types of applications.

3.3 Design

Our basic design is based on using standard TCP over the Internet whenever enough

bandwidth is available for TCP streams. However, whenever the network becomes too

congested, we do two things. First, we begin transmitting using UDP, hence exploiting the

real delivery probability. Second, we begin using an overlay to relay data to the destination

in parallel, as described in Section 3.3.5.

77

3.3.1 Cloud-based Overlay

We suggest that operators of potential victim servers deploy an overlay across the Internet

at different locations, making attacks on the overlay itself impractical. We assume that

most of the time the server is not attacked, hence ad-hoc cloud services can be instantiated

only upon attack. The operator can instantiate just enough nodes, constantly considering

links’ limitations. To prevent attackers from misusing the overlay for amplification, over-

lay nodes should require client authentication, e.g. by using TLS client authentication,

proof-of-work such as SpeakUp [79], CAPTCHA [6] or other previously proposed means

for DoS mitigation in overlays [25,27,45]. Our solution is inappropriate for open services

which are unable to differentiate attackers from legitimate clients.

3.3.2 Clients-based Overlay

A second scheme for building an overlay is by using the server’s clients. Most servers

have many clients, some of which would probably be willing to help each other on a tit-for-

tat basis. We can use the fact the destination server is involved and can act as a trusted

bookkeeper. In this setup the server can offer premium service for cooperating clients,

or even offer a payment, and in turn charge clients who are using the overlay, thus also

avoiding free-riders.

3.3.3 Source and Relay Authentication

To mitigate spoofing and forgery by either sources or relays, we need to use cryptographic

primitives to prevent both source and relay from launching attacks on behalf of otherwise

legitimate clients. On the other hand, since the victim server is already attacked and

we do not wish to add new computational DDoS attack vectors, we try to avoid using

computationally expensive solutions. Therefore, we try to make sure that the server will

make as few PKI operations as possible. The requirement are therefore as follows:

1. The destination node should be able to authenticate the relaying node of the message.

78

2. The destination node should be able to authenticate the source node of the message.

3. Optionally, in case of misbehavior the destination node should be able to detect

which of the source and relay nodes is misbehaving.

4. The destination should use as few PKI operations as possible.

To that end, we assume that prior to the attack, the server shares a key with each of its

clients, which is used for client authentication. Additionally, the server supplies the client

with a server-signed certificate, containing the client’s public key, and a server-signed list

of nodes it may use as relays.

We will be using the following notation. Sx(·) is a signature using a signing key of

x. MACk(·) is a Message Authentication Code using a shared key k. CERT x(n) is a

Certificate, e.g., X.509 [24], signed by x, authorizing node n (i.e. n’s public key).

Figure 3.1 depicts a protocol sequence, in which prior to the attack, the destination

server, denoted D, provides the source client, denoted S, and a relay, denoted Ri, where

i is the relay’s ID, with signed certificates CERT D(S) and CERT D(Ri) respectively. Ad-

ditionally, the server provides S with a signed list of relay nodes it may use. When the

client S refers to relay Ri, it first identifies itself using the signed certificate CERT D(S).

This process can be performed, for example, using TLS [26] or IPsec [31], and it should

include client and server authentication between the source client and the relay, hence pre-

venting anyone from spoofing client messages to relays. After the authenticated channel

has been established, the source client should present the relay with a destination signed

relay-list issued to that specific source client. The destination signed relay-list should

contain, at least, the source client’s ID and the relay’s ID (i). Until S can provide Ri

with the destination signed relay-list, Ri should not relay any of S’ data. Once S has a

relaying permission from Ri, it can start relaying messages to D via Ri.

Next, we need to enable D to authenticate both the relay Ri and the source S, with

minimal number of PKI operations. For Ri authentication we useMAC with pre-shared

keys between Ri and D. Since we also want to prevent Ri from spoofing S’ messages, S

79

will also add aMAC with another pre-shared key between S and D. Hence D is required

to authenticate two MACs, without any computationally expensive PKI operations. The

first MAC to be authenticated is Ri’s MAC, and the second MAC to be authenticated

is S’. If Ri’s authentication failed, there is no point in authenticating S’ MAC, as the

entire message is probably forged.

In case Ri’s MAC is authenticated, but S’ MAC is not, D should request Ri to

refrain from relaying any further messages from S. This decision is based on the fact

that we do not assume that either Ri or S are honest. Hence Ri could have spoofed S’

message, or S is delivering a malformed message or MAC, or otherwise S or Ri may

be compromised. In any case, Ri should stop relaying such packets. If Ri continues to

deliver messages from S, then Ri can be banned by D for misbehaving. To prevent replay

attacks of messages sent to the relay or from the relay, relayed messages should always

contain a nonce from S as well as another nonce added by Ri.

Ri may refrain altogether from transmitting S’ data, which as far as we are concerned

is acceptable, as we do not presume that any node must cooperate in relaying. Instead,

nodes should be motivated to cooperate as discussed above. Finally, if an attacker can

impersonate S or Ri, this would imply that it is able forge the certificate signed by D or

forge aMAC.

Using the optional PKI-based operations, shown in brackets in Figure 3.1, we get a

protocol which enables the destination D to identify the malicious node, S or Ri. This

may be followed by D banning the malicious nodes from (using) the overlay. The protocol

begins similarly to the simpler protocol, i.e., prior to the attack Ri and S receive from

D certificates, CERT D(Ri) and CERT D(S) respectively, and shared keys with D, kr and

ks respectively. During congestion, S establishes an authenticated channel with Ri and

delivers SD(S||{Ri, ...}) to Ri. Next S constructs a message, denoted MS, which consists

of the message M to deliver, a nonce ns to prevent replays, andMACks(M ||ns). S then

sends MS alongside a signature SS(MS). The relay cannot authenticateMACkS(M ||ns),

however it should be able to verify the signature SS(MS). If mathcalSS(MS) is ver-

80

Src (S) Relay (Ri) Dst (D)

Pre−attack: CERT D(Ri)

pre-shared key kr (for MAC)
oo

Pre−attack: CERT D(S),SD(S||{Ri,...})
pre-shared key ks (for MAC)

oo

Est. authenticated channel, e.g., IPsec

Using: CERT D(S), CERT D(Ri)
//

SD(S||{Ri,...})
(authenticated)

//

MS={M ||ns||MACks (M ||ns)} [||SS(MS)]

(authenticated)
//

MS ||nr||MACkr (MS ||nr) //

ACK/Stop relaying S [/Req Signature]
oo

[SS(MS)] // [Ban S/Ri]

Figure 3.1: Client-based overlay protocol, with an optional extension (in brackets) for
identifying malicious nodes (S or Ri) using minimal PKI operations. M is the message
to deliver, ns and nr are nonces added by S and Ri respectively, to prevent message
replay attacks. Without the extension the destination can only acknowledge receiving
message M or ask Ri to stop relaying S’ messages. Using the extension, the destination
can specifically identify and ban the malicious node Ri or S.

ified, Ri will concatenate MS, its own nonce nr and MACkr(MS||nr), and send it to

the destination D. Once the message arrived at the destination, D should authenticate

MACkr(MS||nr) followed by authenticating MACks(M ||ns). If both are authenticated,

and no replay was detected, then D can process the message.

In case eitherMAC was not authenticated, there are several conditions to consider:

• IfMACkr(MS||nr) was not authenticated, then the message might have been spoofed

and can simply be ignored.

• If MACkr(MS||nr) is authenticated but MACks(M ||ns) is not authenticated then

D should request SS(MS) from Ri and act as follows:

– If SS(MS) is verified, then S is faulty, as it signed the badMACks(M ||ns) and

81

should be banned from the network.

– If SS(MS) is not verified, then Ri did not properly verify the signature before

sending the message (or forged the message itself), hence Ri should be banned

from the network.

Unlike the first simple protocol, in which the server uses no PKI operations, the sec-

ond extended protocol requires PKI operations only when misbehaving node behavior is

detected, and D wishes to identify the dishonest node. Hence, even the second extended

protocol with PKI requires almost no effort on the destination server end. Additionally,

signing and verification of signatures made by the source client and relay require both to

perform some expensive operations, and can also be used to provide some proof-of-work.

The actual banning from the network can be performed by sending signed revocation lists

by D to the various overlay relays. Finally, the destination server can do bookkeeping,

and record what the different nodes in the overlay did. In case financial incentive was

used, the destination server can act as the trusted party and deliver payments or credit

according to the actual relaying that took place.

3.3.4 Overlay Design Goals

Our design strives to meet three main design goals. First we would like to be able deliver

packets even over congested links, utilizing the real delivery probability PD; see Eq. 1.1.

Second, we must refrain from self-creating DoS ourselves while trying to utilize PD.

Obliviously we cannot transmit data without any congestion control mechanism, and we

would always prefer using TCP over UDP.

Third, we wish to harness additional overlay resources, which we can utilize to increase

delivered capacity and reduce packet delivery delay. We expect that in some cases we would

relay through nodes with higher PD, thus expediting packet delivery. Otherwise, we settle

for the additional bandwidth.

82

3.3.5 Overlay Design

All nodes discussed in this chapter are assumed to be a part of a managed overlay which

cooperates to deliver data to the destination. Unlike traditional relaying overlays, which

are used to simply relay the data to the destination, possibly using multipath, such as

proposed by Stavrou et al. [72], the key idea of our overlay is aggregating bandwidth,

to break through to the destination, as well as persisting in packet delivery, especially

when facing a bandwidth-flooding DDoS. Unlike persistence in QoSoDoS [33], using an

overlay may assist in routing via less congested routers, such that the same transmission

rate may be more effective. We acknowledge that if our scheme is misused it may help in

DDoS amplification, hence we assume that our overlay is carefully controlled, especially in

regards to the total transmission bandwidth of the overlay, as described in Section 3.3.6.

Furthermore, by controlled overlay we mean that in case the destination is purposely

unreachable, the attack is too large or otherwise the overlay behavior is unwanted, it can

be taken off by the overlay controller.

To avoid redundant transmissions, we assume that a fountain-code (FC) such as Rap-

torQ [53] can be used. FCs are forward error correction (FEC) codes, that can generate

from the source message as many encoding symbols as needed. The receiver should be

able to decode the source message in very high probability from almost any set of encoding

symbols of sufficient cardinality – which is about the number of source symbols or very

slightly more. Hence, in our overlay, sources and relays send different encoding symbols

to the destination. Once enough packets are received, the receiver reconstructs the orig-

inal message, and the message transmission stops. Acknowledgements from the victim

can be sent using UDP, as the congestion is on the victim’s downlink, whereas its uplink

is completely under its control.

FCs are prone to become a source for DoS, as the destination keeps state in order to re-

construct the original message. Consequently, an attacker may try to exhaust the server’s

memory (state) and/or processing capabilities (reconstructing). To address this, we as-

sume that packets’ sources are authenticated, allowing the server to differentiate between

83

S2

S3

S1

S4

S5 S6

D

Self/Direct Trans.

Relayed Trans.

Figure 3.2: Overlay design. S1..S6 are overlay nodes and D is the destination. Nodes
with self-generated data use their bandwidth to transmit solely their own data (solid
lines), e.g., S1 → D, S2 → D, and S4 → D. Otherwise, nodes may act as relays (dashed
lines), e.g. S5 and S6. Relaying nodes may relay data from more than a single source, in
which case their route will be (fairly) shared, e.g. S6 → D is shared by both S1 and S2.

legitimate clients and attackers, and ban misbehaving clients, as described in Sections

3.3.1-3.3.3. Additionally, FCs should not be used for messages containing only a few

packets, such as DNS and short HTTP requests/responses, as simply retransmitting the

packet avoids the overhead introduced by FCs, i.e., the extra packets and (re)construction.

Although short messages may encounter (significant) redundancy, thanks to their small

bandwidth requirements, they should still be cost-effective.

In each transmission the source node optimistically begins to transmit using TCP, in

hopes that TCP’s throughput will be at least some minimal rate, denoted RTCP
min . Once

TCP rate drops below RTCP
min the node is allowed to begin transmitting using UDP. The

UDP rate is limited to a predefined rate, denoted RUDP
max . Note that the TCP connection is

not aborted, however the UDP transmission stops once TCP’s rate is back above RTCP
min .

The expected goodput is approximately TCP’s rate plus UDP’s goodput, i.e., approximately

RUDP
max · PD.

When using UDP, a node may request help from overlay nodes in relaying its data.

84

Relaying is done like regular transmissions, i.e. using TCP and optionally UDP if the

TCP rate drops below RTCP
min . However, like P2P systems, we assume that overlay nodes

are self-interested, and if they have self-data to deliver they will deliver it using their

entire bandwidth, without sharing it with other nodes. If a node is not transmitting its

own data, it may use its bandwidth for relaying. The overlay is fully distributed, and

no centralized server is controlling it, as to avoid attacks on the centralized controller.

Hence, more than one node may ask the same relay to deliver its data. We assume that

the relay bandwidth is fairly shared among all requesting nodes, however, this cannot be

assured.

Relaying through one or more overlay nodes might detour the congested links, and pos-

sibly be able to relay the information using TCP. Such a TCP relaying network is called

an Indirect Overlay Network (ION), e.g. RON [9], OverQoS [74] and Bandwidth-Aware

Routing in Overlay Networks [50]. Note that traditional IONs assume good TCP perfor-

mance, and merely bypass packet losses, congestion, or bandwidth limitations. However,

if all routes to the destination are congested, IONs are likely fail in data relaying. Our

solution can utilize congested routes, even such with low PD and bad performance.

3.3.6 Building an Amplification Overlay

It is important to keep in mind that the total UDP bandwidth of the overlay must be

carefully controlled, otherwise, if the overlay network’s permitted bandwidth grows too

large it may cause congestion collapse, and prolong the congestion indefinitely. Hence the

overlay total allowed bandwidth must not reach a critical point in which it can amplify an

attack once the attacker stopped its attack or reduced its rate.

Generally speaking, if we would like to cause an attacker to utilize, or cause utilization

[48, 70] of more bandwidth than the overlay, i.e., reduce the attack amplification factor,

we should make sure that the overlay bandwidth does not exceed 50% of the (congested)

link’s rate. Hence, assuming we use UDP rate which is twice the minimal TCP rate, i.e.

RUDP
max = 2 · RTCP

min , and stop UDP transmissions once TCP reaches its minimal rate, we

85

can say that the total rate of the non-congestion controlled UDP transmissions, made by

the entire overlay, should not exceed 1/3 of the bottleneck link. The reason is that 1/3

of UDP rate + 1/6 of TCP rate, totals to 1/2 of the link’s rate. This way to sustain an

attack, the attacker must produce more than 50% of the bottleneck link’s rate. Moreover,

since we do not expect that the entire overlay will transmit at the same time, this would

probably won’t be enough on behalf of the attacker.

Due to the Internet’s topology and decentralization, the bottleneck link is almost always

the “last-mile” link(s) connected the destination, hence it should be easy to identify and

limit the overlay’s bandwidth accordingly.

Inherent in the overlay size and link capacity utilization is a trade-off between the

goodput/throughput and the transmission rate. The higher the transmission rate is, the

less the delivery probability, as RI = RA + RC, see Eq. 1.1, where RA and RC are the

attacker’s and clients’ rate respectively. This implies that the more bandwidth we use to

deliver the packets, the less relative data (goodput/throughput) will go through. Figure 3.3

depicts this tradeoff. The figure depicts the theoretical delivery probability (Fig. 3.3(a))

and theoretical goodput (Fig. 3.3(b)) when using 10% and 33% of the link’s rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

D
el
iv
er
y
P
ro
b
ab

il
ty

Attack Rate (Multiple of Link)

10% of link
♦

♦

♦
♦

♦ ♦ ♦ ♦ ♦ ♦

♦
33% of link

+

+

+
+

+ + + + + +

+

(a) Delivery Probability (PD = RO

RI
, RI = RA+RC)

0

0.05

0.1

0.15

0.2

0.25

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10D
el
iv
er
ed

b
an

d
w
id
th

(R
at
io

of
L
in
k
S
iz
e)

Attack Rate (Multiple of Link)

10% of link

♦

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
33% of link

+

+

+

+
+

+ + + + +

+

(b) Client’s Goodput (RC · PD)

Figure 3.3: Theoretical overlay throughput vs. delivery probability (3.3(a)) and goodput
(3.3(b)) tradeoff. The x-axis is the attacker’s bandwidth as a multiple of bottleneck
link. Larger overlay throughput contributes to the delivery probability reduction, thus
degrading the goodput to throughput ratio. The figure shows that an overlay transmitting
at 33% of the link’s bandwidth causes up to 25% loss of its throughput, whereas an overlay
delivering 10% of the link’s bandwidth loses less than 10% of its throughput.

86

3.4 Evaluation

We try to evaluate two main things. First, we would like to estimate the severity of the

BW-DDoS problem and the vulnerability of ASes to the sheer volume of bandwidth attacks

reported to date. Second, we would like to estimate the effectiveness and trade-offs of our

proposed solution.

3.4.1 Simulator Design and Implementation

We have developed a simulator which uses CAIDA’s AS relationships dataset [3] to con-

struct an Internet-scale AS topology. CAIDA’s data is derived from RouteViews [76] BGP

table snapshots, and includes the following inferred AS relationships: customer-provider,

peer-to-peer, and sibling-to-sibling. AS relations capture the inter-AS agreements which

dictate which routes can be traversed and which cannot. Currently, our simulator uses

the shortest traversable paths.

We are not aware of any available AS-to-AS link bandwidth data, hence we have

adopted the philosophy proposed by Songjie et al. [81], in which large ASes will have

bigger links than small ASes, and that AS size is proportional to its connections degree.

Using the obtained topology, the simulator uses the links as described in Table 3.1. We

consider three types of node sizes, small (up to 4 links), medium (between 5 and 300 links)

and large (more than 300 links).

Traffic simulation itself is divided into two parts, based on the observations made in

Figure 1.1. Bandwidth is initially used by UDP transmissions, followed by TCP trans-

missions which use only the remainder of bandwidth. Thus, if 100% of the bandwidth is

used by UDP, we assume no TCP transmissions take place.

In each simulation step a set of flows is used, such that each flow tries to deliver some

amount of data over a specific route. The data may contain UDP traffic, TCP traffic, or

both, depending on the configuration. Flows can be dynamically added or removed prior to

each simulation step. Each route consists of a list of links, and each link has a knowledge

87

of its outgoing bandwidth and flows going through it – that is, all its incoming traffic. The

simulation simulates data flows as a stream of bits, which should produce an approximate

mean value for packet transmission.

To capture that UDP is prioritized over TCP, as described in Section 3.2, simula-

tion steps are composed of two parts: computing the UDP traffic going through all links,

followed by computing TCP traffic. UDP traffic is calculated by iterating the flows, and

calculating the amount of data delivered by each link along the route. In case a link

is congested, that is, it has a higher incoming bandwidth than outgoing bandwidth, then

the amount of UDP bandwidth passed to the next link along the flow’s route is reduced

proportionally to the delivery probability PD (Eq. 1.1). Therefore, the succeeding links

receive less bits and are updated accordingly. This process is iterated along the route, until

reaching the destination. This implies that UDP traffic is the same or reduced over the

route, i.e. preceding links in the route carry the same or more UDP traffic than succeed-

ing links. If instead incoming traffic is larger than outgoing traffic and there’s available

bandwidth, then each flow’s traffic is proportionally increased, up to a maximum of its

incoming traffic. The process is iterated, such that in each iteration there’s recalculation

of PD for each link compared to the previously computed PD. Once the change in delivery

probability is less than some predefined ǫ, we assume the UDP calculation has stabilized

and stop the iterating. In our simulations we set to ǫ = 0.01

After UDP traffic has stabilized, TCP traffic is calculated by iterating all flows con-

taining TCP traffic, and trying to send all the TCP traffic. Each link calculates its unused

outgoing bandwidth, that is the outgoing bandwidth after reducing the UDP transmitted

over that link. It then splits the bandwidth proportionally between incoming TCP traf-

fic. In case the amount of TCP traffic is changed, the entire flow’s TCP rate is updated

accordingly. This implies that all links of a specific TCP flow deliver the same TCP

bandwidth. This differs from the non-increasing/decreasing rate of UDP flows. Similar

to UDP, the process is iterated until changes are smaller than ǫ.

We used the simulator to test two scenarios. The first is AS availability as a function

88

Src/Dst Small Medium Large

Small OC-3 OC-12 OC-24

155.52 Mbps 622.08 Mbps 1.244 Gbps

Medium OC-12 OC-48 OC-192

622.08 Mbps 2.488 Gbps 9.953 Gbps

Large OC - 24 OC - 192 OC - 768

1.244 Gbps 9.953 Gbps 39.813 Gbps

Table 3.1: Bandwidth estimation based on AS size. AS size is estimated based on the
number of links it has to other ASes. Small AS has up to 4 links. Medium AS has up to
300 links. Large AS has more than 300 links.

of attack size. The second is the performance of our overlay scheme.

3.4.2 Availability Simulation

We have simulated AS connectivity during bandwidth attacks. We recorded a thousand ex-

ecutions of the simulator, and each execution consisted of various sized bandwidth attacks.

For each execution we randomly chose a destination AS node, and 102, 400 uniformly dis-

tributed AS nodes, from which we construct flows for attackers, and an additional 100

uniformly distributed nodes to simulate an overlay. Each attacker flow sends 1Mbps of

UDP traffic to the destination, and each overlay node tries to send 1Mbps of TCP traf-

fic. To simulate various-sized bandwidth attacks, each simulation was executed 10 times,

such that each time we double the amount of attacking routes, starting with 200 attacking

flows, which transmit 200Mbps, up to 102, 400 flows which transmit 102.4Gbps.

Figure 1.2 presents the results of the simulation. The black bars represent simulator

executions in which all overlay nodes were able to transmit some data, using TCP, to

the destination. The gray bars are simulations in which some overlay nodes are able to

transmit TCP data, while other nodes cannot, implying that some routes are congested

and some are open. In these situations, nodes with congested flows can try to detour the

congested links, by finding an overlay node with a non-(fully) congested route, and relay

89

0

50

100

150

200

250

300

1000 10000 100000

D
ir
ec
t
T
C
P
G
o
o
d
p
u
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦
♦

♦

♦

♦

♦
♦ ♦ ♦ ♦

♦
Medium

+ + + +

+ +

+

+
+ +

+
Broad

� � � � � � � � �

�

�

Figure 3.4: AS clusters based on total bandwidth as per Table 3.1. Narrow bandwidth
consists of ASes with total bandwidth up to 1.6Gbps. Medium bandwidth consists of ASes
with total bandwidth between 1.6Gbps and 12.8Gbps. Broad bandwidth ASes consist of
ASes with total bandwidth over 12.8Gbps.

data through the uncongested node to the destination, i.e., use a routing overlay. The

white bars are the simulations in which all routes to the destination are congested, and

no route can sustain TCP flows to the destination, which implies that no detouring route

exists, while our solution can enable communication.

3.4.3 Overlay Performance Simulation

For this simulation we have implemented the overlay as described in Section 3.3. Due to

the diversity of the Internet topology and link sizes, the simulation results exhibit large

variance. Consequently, we classified the different ASes based on their total links’ band-

width and the largest bandwidth attack they can handle, as depicted in Figure 1.2 (white

bars in the figure). The classifications is depicted in Figure 3.4, and shows three types of

AS with total bandwidth sizes as follows. Narrow bandwidth ASes have less than 1.6Gbps

of total bandwidth. Medium bandwidth ASes have total bandwidth between 1.6Gbps and

12.8Gbps. Broad bandwidth ASes have more than 12.8Gbps total bandwidth.

To simulate randomly joining and leaving clients, we configured the simulation such

90

that in each step there’s a 10% probability that any node in the overlay will have a new

message to deliver. In case the node is already sending a message, the new message is

queued for deferred delivery. Each message is 1 megabit in size. TCP rate is limited up to

1Mbps, RTCP
min = 500kbps and RUDP

max = 1Mbps. The overlay consists of 100 nodes, i.e. the

total bandwidth producible by the overlay is limited to 150Mbps. Zombies send UDP traffic

at 1Mbps. Attack phase of the experiment is 1, 000 steps. Sending 1 megabit can be typical

for file transfer or sending an email with an attachment. For other applications such as

web browsing, in which typical HTTP header sizes of 700-800 bytes are common [65], the

entire transmission should complete much faster.

We present the results of two heuristics used for transmitting a message from source

nodes to overlay relay nodes. The first heuristic is called linear, that is, it transmits

the message to one additional overlay node every step. The second heuristic is called

exponential, that is, in each step it doubles the number of overlay nodes to which it sends

the data.

Both linear and exponential heuristics exhibit similar behavior. While the time for

delivering data using the exponential heuristic is better, compared to the linear heuristic,

the exponential heuristic requires significantly more intra-overlay overhead, that is the

amount of bandwidth used between overlay nodes and not sent directly to the destination;

see results in Figure 3.5.

0

20000

40000

60000

80000

100000

120000

1 10 100

E
x
ce
ss
iv
e
R
ec
ei
ve
d
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦
♦

♦

♦

♦ ♦
♦

♦

♦
Medium

+
+

+
+

+
+ +

+

+
Broad

� � �
�

� �

�

(a) Linear

0

50000

100000

150000

200000

250000

300000

350000

400000

1 10 100

E
x
ce
ss
iv
e
R
ec
ei
ve
d
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦
♦

♦
♦

♦

♦

♦

♦

♦

♦
Medium

+ +
+

+

+

+
+

+

+
Broad

� � � �
� �

�

(b) Exponential

Figure 3.5: Intra-overlay overhead of data passed between overlay nodes.

Figure 3.6 depicts the goodput of traffic sent directly from client to server. TCP

91

0

2000

4000

6000

8000

10000

12000

1 10 100

D
ir
ec
t
T
C
P
G
o
o
d
p
u
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦

♦ ♦ ♦ ♦ ♦ ♦

♦
Medium

+ +
+

+

+

+ + + +

+
Broad� � � � �

�

�

�

�

�

�

(a) TCP Traffic – Linear

0

2000

4000

6000

8000

10000

12000

1 10 100

D
ir
ec
t
U
D
P
G
o
o
d
p
u
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦

♦

♦
♦

♦
♦ ♦

♦

♦
Medium

+

+

+
+

+ +
+

+

+
Broad

�
�

�

�

�

�

�

(b) UDP Traffic – Linear

0

2000

4000

6000

8000

10000

12000

1 10 100

D
ir
ec
t
T
C
P
G
o
o
d
p
u
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦

♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Medium

+ +
+

+

+

+ + + +

+
Broad� � � � �

�

�

�

�

�

�

(c) TCP Traffic – Exponential

0

2000

4000

6000

8000

10000

12000

1 10 100

D
ir
ec
t
U
D
P
G
o
o
d
p
u
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦

♦

♦
♦

♦
♦ ♦

♦

♦
Medium

+

+

+
+

+ +
+

+

+
Broad

�
�

�

�

�

��

(d) UDP Traffic – Exponential

Figure 3.6: Goodput traffic sent directly from client to server.

reduces its rate as a function of attack, and in correlation direct UDP rate increases. For

both narrow and medium bandwidth ASes, bandwidth reaches a peak, and from that point

onward is reduced, since the delivery probability PD decreases as a function of attack size.

For the broad bandwidth nodes, we observe that they only start using UDP under large

attacks, and did not reach their peak within the 100Gbps attack. Throughout the results,

UDP exhibits in order of magnitude more goodput than TCP, since it utilizes the actual

delivery probability, whereas TCP utilizes only the available bandwidth.

Figure 3.7 shows that the overlay goodput of TCP reaches the peak for narrow, medium,

and broad bandwidths ASes, whilst the exponential heuristics manages to use slightly more

TCP traffic than the linear. However, using UDP, large-scale attacks manage to reduce

the effectiveness, at least for narrow bandwidth, whereas the exponential is still able to

keep growing. The reason for this can be explained using Figure 3.8, in which we can

observe that for the very large-scale attacks, the majority of the nodes in the overlay

92

0

200

400

600

800

1000

1200

1 10 100

O
ve
rl
ay
’s
T
C
P
G
o
o
d
p
u
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦

♦

♦

♦
♦ ♦ ♦ ♦

♦
Medium

+

+ +

+

+
+

+

+
Broad

�

�

�

�
�

�

�

(a) TCP Traffic – Linear

0

2000

4000

6000

8000

10000

12000

1 10 100

O
ve
rl
ay
’s
U
D
P
G
o
o
d
p
u
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦
♦

♦ ♦ ♦ ♦ ♦

♦

♦
Medium

+

+

+

+
+ + +

+

+
Broad

� �
�

�

� �

�

(b) UDP Traffic – Linear

0

200

400

600

800

1000

1200

1 10 100

O
ve
rl
ay
’s
T
C
P
G
o
o
d
p
u
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦

♦

♦
♦

♦
♦

♦ ♦ ♦

♦
Medium

+

+

+

+

+
+ +

+
Broad

�

�

�

� �

�

�

(c) TCP Traffic – Exponential

0

2000

4000

6000

8000

10000

12000

1 10 100

O
ve
rl
ay
’s
U
D
P
G
o
o
d
p
u
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦

♦

♦ ♦ ♦ ♦ ♦
♦

♦
Medium

+

+

+

+

+ +
+ +

+
Broad

� �
�

�

�
�

�

(d) UDP Traffic – Exponential

Figure 3.7: Overlay goodput traffic sent via a relay from client to server.

are transmitting their own data. That is, there are almost 100 senders, but none of them

would relay any data, rendering the overlay ineffective. This observation is especially true

when considering the intra-overlay traffic, see Figure 3.5, which approaches 100 Mbps at

that point. On the other hand, since the average exponential heuristic transmission is

shorter, there are less senders on average; see Figure 3.8. We assume that for larger

attacks than those we have simulated, a similar effect will happen for the exponential

heuristic as well. This observation sheds light on the trade-off between the probability of

sending a node’s own data, and the time to deliver a message. The smaller the probability

that an overlay node would not share its bandwidth, or alternatively as more nodes are

available for delivering data, the more effective the overlay would be. Note that this effect

seems soon to happen in larger provisioned ASes with medium bandwidth.

Similarly, Figure 3.9 depicts the amount of completed transmissions in each simulation

step. The degradation correlates to the reduction in the effectiveness of using the overlay.

93

20

40

60

80

100

120

1 10 100

S
en
d
er
s

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦
♦

♦

♦

♦ ♦
♦

♦

♦
Medium

+ + +
+

+
+

+
+ +

+

+
Broad

� � � � � � �
�

� �

�

(a) Senders – Linear

1

10

100

1 10 100

D
el
ay

(s
im

u
la
ti
on

st
ep
s)

–
lo
g
sc
al
e

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦
♦

♦

♦
♦ ♦ ♦

♦♦
Medium

+ + +

+
+

+
+

+ +

+

+
Broad

� � � � � �
�

�
� �

�

(b) Delay (simulation steps) – Linear

20

40

60

80

100

120

1 10 100

S
en
d
er
s

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦
♦

♦

♦

♦ ♦ ♦
♦

♦
Medium

+ + +
+

+
+

+
+ +

+

+
Broad

� � � � � � �
�

� �

�

(c) Senders – Exponential

1

10

100

1 10 100

D
el
ay

(s
im

u
la
ti
on

st
ep
s)

–
lo
g
sc
al
e

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦
♦

♦
♦

♦ ♦ ♦
♦

♦
Medium

+ + +

+
+

+
+

+ +
+

+
Broad

� � � � � �
�

�
� �

�

(d) Delay (simulation steps) – Exponential

Figure 3.8: Senders vs. delivery latency per transmission (in simulation steps).

2

4

6

8

10

1 10 100

F
in
is
h
ed

T
ra
n
sm

is
si
on

s

Attack Rate (Gbps) – log scale

Narrow

♦ ♦ ♦ ♦ ♦ ♦

♦
♦ ♦

♦

♦
Medium

+ + + + + + + +
+

+

+
Broad

� � � � � � � � � �

�

(a) Linear

2

4

6

8

10

1 10 100

F
in
is
h
ed

T
ra
n
sm

is
si
on

s

Attack Rate (Gbps) – log scale

Narrow

♦ ♦ ♦ ♦ ♦ ♦

♦
♦

♦
♦

♦
Medium

+ + + + + + + +
+

+

+
Broad

� � � � � � � � � �

�

(b) Exponential

Figure 3.9: Average Completed Transmissions

Once all nodes are trying to transmit data using the overlay, we only get the delivery

probability of the sender vs. the attack size.

Figure 3.11 depicts the amount of excessive data being sent to the destination, and

the amount of excessive data which actually reaches the destination, which is in orders of

magnitude less, due to the low delivery probability PD.

94

20

40

60

80

100

120

1 10 100

U
si
n
g
ov
er
la
y

Attack Rate (Gbps) – log scale

Narrow

♦
♦

♦

♦

♦ ♦
♦

♦

♦
Medium

+
+

+
+

+ +

+

+
Broad

� �
�

� �

�

(a) Linear

20

40

60

80

100

120

1 10 100

U
si
n
g
ov
er
la
y

Attack Rate (Gbps) – log scale

Narrow

♦
♦

♦

♦

♦ ♦ ♦
♦

♦
Medium

+
+

+
+

+ +

+

+
Broad

� �
�

� �

�

(b) Exponential

Figure 3.10: Senders trying to use the overlay.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 10 100

E
x
ce
ss
iv
e
S
en
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦
♦

♦

♦

♦
♦

♦

♦♦
Medium

+
+

+

+

+
+ +

++
Broad

� � �
�

�
�

�

(a) Sent linear

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100

E
x
ce
ss
iv
e
R
ec
ei
ve
d
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦

♦

♦

♦
♦ ♦ ♦

♦

♦
Medium

+

+

+

+

+ + +

+

+
Broad

�
�

�

�

�

�
�

(b) Received linear

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 10 100

E
x
ce
ss
iv
e
S
en
t
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦

♦

♦

♦

♦
♦

♦

♦

♦
Medium

+
+

+

+

+
+ +

+

+
Broad

� � �
�

� �

�

(c) Sent exponential

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100

E
x
ce
ss
iv
e
R
ec
ei
ve
d
(K

b
p
s)

Attack Rate (Gbps) – log scale

Narrow

♦ ♦

♦ ♦
♦

♦

♦ ♦ ♦

♦

♦
Medium

+

+

+ + +
+

+

+

+
Broad

�

�

�

�

�

�
�

(d) Received exponential

Figure 3.11: Excessive sent and received traffic (overhead)

3.5 Conclusions

In this chapter we have presented a novel mechanism which uses overlays to mitigate

flooding attacks. Previous work, including overlay solutions, have concentrated on filtering

the offending flows, absorbing the attack in various ways, or circumventing the congested

links. These solutions are themselves prone to large-scale bandwidth attacks, made by an

95

attacker with bandwidth larger than they can handle. Our work presents a complementary

solution which lets a controlled overlay cooperatively send information, without congestion

control, thereby competing against the attackers’ packets, and substantially increasing

legitimate packet delivery.

We presented design and Internet-scale simulation results, based on real world AS

topology. The simulation results show that our solution can mitigate flooding DDoS at-

tacks even at the scale of the largest attacks seen to date.

96

Chapter 4

Backward Traffic Throttling

We present Backward Traffic Throttling (BTT), an efficient, decentralized mechanism for

mitigation of congestion and bandwidth-flooding attacks. Upon congestion, BTT employs

two basic mechanisms to throttle excessive traffic, namely: prioritize and shape legitimate

flows traffic, and pushback, or request upstream BTT routers to similarly prioritize and

shape traffic. Flow prioritizing parameters are independently determined by each BTT

server, based on typical traffic estimations. BTT requires deployment in routers, but is

relatively easily deployed: it requires no changes to routers’ hardware or software, and

does not modify the packet traffic. Instead, BTT configures routers based on existing

mechanisms in the router; specifically, BTT configures queuing disciplines and traffic

shapers.

Both simulation and testbed experiments were performed to estimate the effectiveness

of BTT during BW-DDoS attacks. Results reported in Section 4.3 show that even limited

BTT deployment alleviates attack damage and allows legitimate TCP traffic to sustain

communication, whereas larger deployments maintain larger portions of the original band-

width.

97

4.1 Introduction

Distributed denial-of-service (DDoS) attacks, and in particular bandwidth-flooding DDoS

attacks, are hard to prevent and mitigate in a decentralized, best-effort network such as

the Internet. Mitigation is hard, also due to the huge amount of resources exploited by the

attacker during DDoS attacks, launched by large botnets. Recent studies showed dramatic

growth of DDoS attack volumes [12], e.g., during 2010, volumes exceeded 100 Gbps.

Bandwidth flooding botnets usually send traffic to victim hosts, causing packet losses

on bottleneck links, thereby making TCP and TCP-friendly flows drop their transmission

rates. New attack types utilizing peer-to-peer (P2P) traffic between compromised nodes,

such as Coremelt [73], pose an additional threat. Depending on the botnet size, P2P

attacks can utilize small traffic rate between many pairs of zombies (bots), and cause

congestion on a link between two routers (possibly at the core of the network); consequently

such Coremelt attacks can be hard to detect and block.

Router defenses rely on various router mechanisms. Prominent operational router-

based tools include Access Control Lists (ACL), Remote-Triggered Black-Holes (RTBH),

firewalls and FlowSpec [12]. Other proposed solutions include capabilities and rate-

limiting schemes. Capabilities schemes, such as TVA [85] and SIFF [84], propose a

DoS-limiting network architecture in which destination and routers use secure token (ca-

pability) information, indicating the destination’s willingness to receive information from

the source. Rate-limiting schemes, such as PSP [22], limit flows rate during attack back

to their typical rate, thereby reducing congestion. For comparison between the various

defense schemes see Table 1.2.

This chapter details the design, simulations and testbed experimentation of Backward

Traffic Throttling (BTT), a novel distributed mechanism, deployed within autonomous

system (AS) networks. BTT design is based on carefully combining two mechanisms:

throttling of traffic causing congestion at routers, and a cooperative pushback protocol,

which requests upstream routers to perform corresponding throttling, closer to the traffic

98

sources. Throttling further consists of two mechanisms, namely changing routers’ queuing

discipline and traffic shaping. BTT throttles network traffic based on observed congestion,

or when requested by an authenticated downstream BTT server. Request based throttling

is done only for traffic which will be routed via the AS who issued the throttling request.

Throttling is adjusted to preserve both fairness and link utilization. may reduce their rates

considerably upon loss detection. In the BTT context, fairness is provisioning sources

with their typical transmission rates, which are estimated prior to the attack. When

the excessive traffic which is causing congestion subsides, BTT reduces and then stops

throttling.

Rather than modifying the internals of routers, BTT is deployed using servers which

do not handle the traffic flow; the servers configure routers queuing discipline and traffic

shapers as needed. Hence, unlike previous solutions (see Table 1.2), BTT does not require

any changes to routers, or any manipulations to packets. BTT is decentralized, i.e., it

can be adopted independently by one or (preferably) more Autonomous Systems (AS),

incrementally improving defenses against DDoS attacks.

BTT makes the following design choices:

Fairness BTT uses estimates of the typical traffic to divide the available bandwidth

among the incoming links, achieving fair allocation, as per the typical rate.

Decentralization BTT uses decentralized traffic prioritization, i.e., downstream BTT

servers only request upstream BTT shapers to comply with rate limitations, but the up-

stream BTT server can decide which packets to discard if any, and which further upstream

shaping to announce. In addition, the typical rate estimation is also carried out in a de-

centralized manner.

Flow obliviousness BTT throttles traffic based on weights derived from the typical

traffic rates, avoiding the need to identify the actual attacking flows, making BTT ro-

bust and not attack-specific. For example, BTT is resilient to spoofing attacks since it

does not consider the flows’ sources based on their source IP address. Instead it simply

limits atypical excessive traffic, based on its actual flooding source. Similarly, BTT does

99

not differentiate between the Slashdot effect (flash crowd), and DDoS; BTT always as-

sures fairness as per the typical rate. Any unused bandwidth will be fairly shared among

demanding flows.

Evaluation. We performed both simulations based on realistic AS topology, as well

as experiments in the DETERlab testbed [16]. Both simulation and testbed experiments

results show that BTT significantly prioritizes legitimate traffic over attack traffic, even

in massively distributed scenarios. The results show that even in limited deployments,

BTT proves to be effective. Furthermore, as BTT adoption increases, an increase in the

amount of legitimate traffic is also observed, demonstrating that even partial and gradual

deployment of BTT proves valuable, and provides an effective defense against flooding

DDoS.

The rest of the chapter is organized as follows. Section 4.2 presents design of BTT.

In Section 4.3 we present an empirical evaluation of BTT. Conclusions are presented in

Section 4.4.

4.2 Design

R

R

R

AS1

R

R
R

AS2

T
ra

ff
ic

 s
am

pl
in

g

Q
ue

ui
ng

/s
ha

pi
ng

 c
on

f.

BTT
Server

BTT
Server

Messages
(authenticated)

DataFlow

Figure 4.1: BTT system architecture.

Figure 4.1 depicts the system architecture. BTT servers continuously read traffic

statistics from the AS routers, which are used to estimate the typical traffic prior to

100

flow
1flo

w
2

d

a
b

c

e

fg

h ij k

Figure 4.2: Backward throttling example. Operation steps: (1) Node e detects congestion
on link 〈e, f〉. (2) Node e activates throttling on incoming links. (3) Node e notifies node
d. (4) Node d creates a virtual link of the traffic destined to 〈e, f〉 and throttles it.
The traffic of flow 2 will not be throttled as it is not destined to 〈e, f〉. Note that the
throttling of a flow only depends on its downstream route.

an attack and identify congestion. Traffic estimations should be stored in an AS-wide

database, which can contain a significant amount of traffic statistics and can be queried

during an attack.

BTT servers control the routers’ queuing and shaping policies, which by default are left

unchanged. Whenever BTT detects congestion on some link, or if it receives a shaping

request from a peer BTT, it prioritizes and shapes the traffic traversing the congested link.

Traffic prioritizing and shaping is configured on the routers themselves using standard

queuing disciplines and shapers. Next, BTT propagates rate limiting notifications to

upstream BTTs, which should perform corresponding traffic shaping and limit the attack

closer to its sources.

4.2.1 Network Model

The network is modeled as a directed graph, with Autonomous Systems (ASes) as nodes.

We assume that each node knows the AS-level route that each outgoing packet will traverse

and that no routing changes occur while the throttling is active. The routes can be learned,

for example, from the AS Path sequence of the Border Gateway Protocol (BGP) [67].

101

We denote a link from AS a to AS b as an ordered pair L = 〈a, b〉. The set UP (L)

contains all neighboring links upstream of L, which contribute to the traffic from a to b.

Each AS can measure the current traffic rate, CurRateLD(L), received on an incoming

link L and destined to traverse a downstream link LD.
1 Note that LD might be several

hops away from L.

4.2.2 Typical Traffic and Weights

The basic idea behind BTT is to utilize typical traffic rates estimation as a guideline

for fairly splitting the available bandwidth among upstream neighbors. Similarly to other

papers which proposed using typical traffic estimation, we assume that it is indeed possible

to collect “typical traffic” statistics. In this chapter we rely on existing methods, e.g., as

proposed in PSP [22].

BTT keeps typical traffic estimations, denoted TypLD(LU), per upstream link LU

routed through downstream link LD. These estimations should be calculated and stored for

different times of the day, and updated periodically, e.g. daily, possibly using techniques

such as exponential smoothing and giving lower weights to recent data, as to prevent an

attacker from easily messing with the statistics.

To estimate the maximum storage volume of the typical traffic tables, we are re-

quired to estimate the number of ASes in the Internet. According to the CAIDA [3]

dataset, there are 36, 878 ASes, hence in the worst case we need to keep information

about O(AS2) source-destination AS pairs, i.e., O(36, 8782). Assuming we store hourly

average/maximum leaky bucket parameters per day of the week per source-destination AS

pair, each record contains 100 bytes, which is more than required to keep the leaky bucket

parameters, we get approximately 20TB we need to store. These are worst case limits as

no AS should be in route of all Internet traffic, hence no AS should keep track of the whole

20TB, let alone that 20TB is a reasonable volume for most, if not all, ASes to store.

1For readability, time is omitted from our notation.

102

4.2.3 Congestion Handling

When identifying congestion in a downstream link LD, BTT fairly allocates a fraction

φLD

LU
of its LD’s rate for each upstream link LU which delivers traffic via LD. The weights

are derived from the typical traffic estimation, as described in Eq. 4.1.

φLD

LU
=

TypLD(LU)
∑

L∈UP (LD) Typ
LD(L)

(4.1)

In the current design of BTT, we use wighted fair queuing (WFQ) to allocate the

typical rate. In WFQ, if any flow does not fully utilize its bandwidth share, then the

remaining bandwidth will be (fairly) utilized by the other flows. This implies that as long

as there is any demand, the available bandwidth will be properly utilized.

4.2.4 Backward Traffic Throttling

Each AS executes an independent instance of BTT. Each BTT instance begins traffic

throttling when an outgoing link is congested, i.e. exceeds some rate threshold, or when

receiving a Notify message from a downstream AS.

If BTT was initiated due to congestion, then it starts using WFQ followed by sending

Notify messages to neighboring BTT servers. If the throttling was activated due to

a Notify message, then BTT creates a virtual link, LD, containing all traffic routed

through the congested link; see Figure 4.3. Both virtual and physical links are treated

similarly. For a physical links, the rate capacity of LD, denoted CLD is LD’s bandwidth.

For a virtual links CLD is the rate restriction requested by the Notify message. If the

d

a

b

c

e · · · f g · · ·LU

congested

LD

Figure 4.3: Schematic view of topology. LD is a virtual link containing all traffic from d
to the congested link 〈f, g〉. LU is a neighbor upstream link of d.

103

current rate exceeds CLD , BTT uses WFQ for incoming traffic, using weights as defined

in Equation 4.1.

If as a result of the upstream shaping the congested link becomes underutilized, BTT

slowly increases the shaping limits, until LD has high utilization. The increase in shaping

is based on the available underutilized capacity of LD. Links receive additional bandwidth

quotas as a function of their weight φLD

LU
.

To describe the shaping increase, we need to calculate the harshest restrictions for

incoming links. For simplicity, we start by describing the basic allocation scheme, which

limits each incoming link to a fraction of CLD . To that end we describe the typical

overcapacity factor of LD, denoted OCFLD , where:

OCFLD =
CLD

∑

L∈UP (LD) Typ
LD(L)

(4.2)

For example, if LD is a 100 Mbps link, with total typical traffic of 50 Mbps, the

overcapacity factor will be OCF = 100
50

= 2. In the worst case, an incoming link LU is

restricted to φLD

LU
·CLD , which corresponds to its typical rate multiplied by the overcapacity

factor of LD. For example, an incoming link with typical rate of 10 Mbps, might be

restricted to as low as 100
50
· 10 = 2 · 10 = 20 Mbps.

Using the harshest shaping restrictions may lead to underutilization of LD, when some

incoming links transmit less than their shaping restrictions. Therefore, an adaptive over-

booking factor, denoted OBFLD , is maintained for each downstream link LD, adjusting

the restrictions over time. The bandwidth restriction for LD, denoted RestLD(LU), is

defined as:

RestLD(LU) = φLD

LU
·OBFLD · CLD (4.3)

Initially, OBFLD is set to 1, hence RestLD(LU) = φLD

LU
·CLD , and each upstream link LU

receives its fair share of LD rate. Next, we periodically check whether OBFLD needs to be

adjusted, increasing or decreasing the shaping restrictions, as described in Equation 4.6.

To that end we derive a rate usage parameter, ρLD .

104

ρLD =
CLD

∑

LU∈UP (LD) min {CurRateLD(LU), RestLD(LU)}
(4.4)

A BTT-compliant upstream link would deliver a maximum rate of RestLD(LU), hence

CurRateLD(LU) ≤ RestLD(LU). For non-compliant links CurRateLD(LU) may be larger

than RestLD(LU). To prevent non-compliant links from overusing bandwidth at the ex-

pense of compliant links, we regard non-compliant links as if they were only using their

full restriction, that is, a minimum between CurRate and Rest. If the bandwidth is not

fully utilized, we let compliant links increase their rate.

Using Equation 4.5, BTT derives ρ̄LD , the change factor of OBFLD . ρ̄LD ’s “aggres-

siveness” is restrained by using two configurable parameters: α, and a maximum change,

ρ̄max. In our experiments we have set both α and ρ̄max to 2.

ρ̄LD =

min
{

ρ̄max, 1 + (ρLD − 1)/α
}

, if ρLD ≥ 1

1 + (ρLD − 1) · α, if ρLD < 1

(4.5)

OBFLD ← max
{

1, ρ̄LD ·OBFLD
}

(4.6)

Examining Equations 4.4 and 4.5, we see that when ρLD ≥ 1 then CLD is larger than

the used capacity, hence LD is underutilized, and we will increase the permitted rate for

upstream BTTs, in an inverse proportion to α. Otherwise, if ρLD < 1, then LD is over-

utilized and BTT reinstates restrictions in direct proportion to α. Note that to have any

affect on OBF , ρLD must be larger than 1 − 1
α
, otherwise ρ̄LD < 0. Therefore, Based

on Eq. 4.6, we will set OBFLD = 1, which forms our initial restriction per link LU

of φLD

LU
· CLD . This implies that a legitimate client transmission restriction is at least

overcapacity times more than their typical rate, i.e.:

RestLD(LU) ≥ OCFLD · TypLD(LU) (4.7)

105

BTT would gradually increase utilization of underutilized links by “moving” the unused

bandwidth capacity to demanding upstream links, gradually allowing them to send more

and more traffic. Note that even while loosening the restrictions, BTT does not change

the WFQ weights. Thus, attacker rate spikes or oscillations should not significantly affect

BTT-compliant upstream links.

Updating OBFLD changes the restrictions, as per Equation 4.3, and should lead to

messages sent between BTT servers. Messages which decrease the senders’ rates are sent

immediately, whereas rate increase messages are sent periodically. Hence, BTT quickly

responds to congestion, but delays relaxation of active restrictions.

4.2.5 Attack Recovery

If BTT sees that the congestion dropped below some threshold, it restores the original

queuing discipline, followed by sending Notify with infinity rate restriction. To avoid

exploitation by the attacker which changes its attack rate from high to low at high fre-

quencies, two practices are used. First, restrictions are removed slowly as described above.

Second, BTT activation is made at a high kick-in threshold Θ and the deactivation process

begins only if the link utilization drops below a lower threshold, θ. Both Θ and θ are con-

figurable, whereas θ should be between the typical link utilization and Θ. In any case, even

if BTT stops shaping, whenever the rate re-crosses Θ, BTT automatically re-initiates the

throttling, limiting such an attack impact.

4.3 Evaluation

We performed both testbed experiments and simulations. The experiments were designed

to test how BTT handles real traffic and to measure its performance. The simulations

were designed to test BTT on an Internet-scale topology, and its behavior when only

partially deployed.

106

Type Param Description Section

Links LU Upstream (originating) link 4.2.2(Fig.4.3)

LD Downstream (congested) link 4.2.2(Fig.4.3)

UP (L) Set of neighboring links upstream of
L

4.2.1

CLD Capacity (bandwidth) of link LD 4.2.4

Rate TypLD(L) Typical traffic from L flowing
through LD

4.2.2(Fig.4.3)

CurRateLD(L) Current rate from L flowing
through LD

4.2.1

RestLD(L) Current restriction on L for traffic
flowing through LD

4.2.4

Factors φLD

LU
Typical fraction of LU traffic in LD 4.2.2(Eq.4.1)

OCFLD Overcapacity factor 4.2.4(Eq.4.2)

OBFLD Overbooking factor 4.2.4(Eq.4.6)

ρLD Rate usage factor 4.2.4(Eq.4.4)

ρ̄LD OBFLD change factor 4.2.4(Eq.4.5)

Table 4.1: BTT Notation Summary Table.

107

4.3.1 Emulation Setup

node11

node10

node13

node12

node15

node14

node16

node9

node8

node1

node0

node3

node2

node5

node4

node7
node6

20
00
k
b
p
s

1000 kbps

30
0
kb
ps

20
00
kb
ps

25
00
k
b
p
s

2000 kbps

300
kbp

s

10
00
kb
ps

2000 kbps

1000 kbps

30
0 k
bp
s

2000 kbps1000
kb
p
s

1000
k
b
p
s

300
kbps

1000
k
b
p
s

x

x

x

x

xx

x
x

x

Figure 4.4: Testbed topology. A star marks legitimate TCP sources. An X marks a UDP
attacker. Traffic destination is node5 for both legitimate and attack traffic. Weights are
links’ bandwidth. During experiments, node16 rate was upgraded to 600kbps.

To evaluate the performance of BTT in a real environment, we developed a prototype in

Python that emulates a router with all the features of BTT (BTT server, traffic estimator,

traffic scheduler, and traffic shaper). The prototype was tested on the DETERlab testbed

[16], using the topology shown in Figure 4.4.

The attack traffic was generated using DETERlab’s traffic generation tools, using

constant-bit-rate of 1KB-packets over UDP. The nodes from which attack traffic is gen-

erated are marked with an X in figure 4.4. All the traffic, both attack and legitimate, is

directed to node5.

The legitimate traffic is produced using FTP connections uploading a large file to

108

node5. Each node marked with a star maintains 3 FTP connections. Prior to the ex-

periment, we measured the rates of the TCP connections to be used as the typical traffic

rates. In order to test how BTT handles legitimate traffic changes, the TCP bandwidth

of node16 was doubled to 600kbps after the typical rate estimates were calculated.

Each testbed node used Ubuntu 10.04 (Linux 2.6.32), with the standard TCP/IP proto-

col stack. The nodes were connected via links with drop-tail queues of length 20 (packets).

Links bandwidths are rate limited, as depicted in Figure 4.4.

4.3.2 Testbed Results

Figures 4.5–4.10 depict traffic measurements between node16 and node5. Figures 4.5

and 4.6 show the behavior without activating BTT. Figure 4.5 presents the aggregated

rate of the 3 FTP connections from node16, before, during and after the attack. Figure

4.6 depicts the delay and packet loss as measured using ping. Both figures constitute a

baseline for the following results.

Figures 4.7 and 4.8 depict experimental results in which BTT is enabled, but over-

booking is disabled. Figures 4.9 and 4.10 depict experimental results in which both BTT

and overbooking are enabled. As depicted in Figures 4.7 and 4.8, the activation of BTT

succeeds in maintaining a good throughput of the legitimate streams, even without the use

of overbooking. When using overbooking, BTT was able to restore TCP to its original

rate, even during the attack, as depicted in Figures 4.9 and 4.10.

Figure 4.11 depicts the bottleneck link utilization, when BTT is enabled with over-

booking, while being able to maintain the typical traffic of legitimate clients (Figures 4.9,

4.10)

Note that the presented rate originates from a source node which is not generating

attack traffic. Nodes that do generate attack traffic, e.g., node13, cannot maintain their

TCP connections rate using the current implementation of BTT without introducing a

filtering mechanism, or some kind of an intra-node fair-queuing.

109

4.3.3 Simulation Setup

In addition to testbed experiments, we have adapted the PAWS simulator [80], and used

it to evaluate BTT. PAWS uses a full-scale AS-level Internet topology, including links,

bandwidths and routing information, as described by Wei et al. [82].

For each setup of legitimate sources, attackers and BTT nodes, the simulator iterates

for several rounds, until it reaches a stable network state. In each round, packet delivery

ratios are calculated for all the links in the network, based on the rates transferred in the

previous round. Using these ratios, the traffic of the current round is adequately adapted.

Legitimate traffic is simulated as TCP-friendly flows, altogether consuming the min-

imum between the bottleneck capacity and the flow’s maximal rate. For each simulation

execution, approximately 350, 000 flows are created, by randomly choosing pairs of ASes

and setting their maximal rate to 1% of the available bandwidth along the path between

them. This method results in moderate link utilization.

Attack traffic is generated by a botnet, constructed based on the Slammer worm [62]

distribution, using 50, 000 bots, such that the bandwidth of all the bots is configured to

create a certain overload to the target link.

Our simulation setup was made of the following:

Attack overload factor The attacks are designed to congest a single target link, while

possibly causing collateral congestion at peripheral links. The attack rate is the botnet’s

rate arriving at the incoming queues of the target link. The attack overload factor is

the attack rate divided by the target link’s bandwidth. An attack overload factor above

1 causes packet loss on the link. In the simulation we used an attack factor of 2 which

simulates packet delivery probability of about 50%, implying that any TCP connection

would have very low throughput, and possibly even disconnect.

BTT deployment ratio BTT is deployed at a random set of ASes. BTT deployment

ratio is the ratio of the deployed ASes out of the total number of ASes.

Goodput ratio To measure the degradation of legitimate traffic rates during an at-

tack, we calculate the ratio between the legitimate rate during the attack and the legitimate

110

rate before the attack. This goodput ratio is calculated for the target link, such that a

low ratio indicates that the attack is successful. Since legitimate flows are TCP-friendly,

a ratio below 100% but above 0% means that the attack consumes only a portion of the

link’s bandwidth, letting legitimate traffic utilize the remainder of the bandwidth. That

given, an attack which overloads the link above its bandwidth results in a goodput ratio

close to 0%.

4.3.4 Simulation Results – Attacks on Stub Links

A classic attack type targets a single AS (e.g., an AS containing a Web server), usually

connected by a single link to a provider AS. To test this scenario, we choose random target

links for which the tail degree is 1 and the head degree is below 10. These links represent

a connection between a small-sized AS and a stub AS. In the simulated attack all the bots

send traffic to the stub AS, causing packet loss on the target link.

Figure 4.12 depicts BTT performance enhancement as its deployment widens. BTT

provides significant mitigation when deployed on all ASes. When deployed only at the AS

adjacent to the target (first point above 0 in the figure) poor performance is observed, as

the attacking traffic overloads all the incoming links as well.

4.4 Conclusions

In this chapter we have presented BTT, a deployable, efficient, decentralized mechanism

to mitigate bandwidth-flooding DDoS attacks. BTT is implemented as a server outside

the traffic flow. BTT collects typical traffic statistics prior to the attack, and uses it

during DDoS attacks to throttle the bandwidth of incoming links. Throttling is based upon

on-the-fly configuration of existing queuing disciplines and traffic shapers within routers.

BTT does not require changes to any protocol, router’s hardware or software, or any

packet manipulations.

Testbed experimentation and Internet AS scale simulations indicate that BTT can

111

throttle a high percentage of the attack rate and sustain a considerable amount of good-

put.

112

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

R
at
e
(k
b
p
s)

Time (s)
Figure 4.5: Legitimate traffic rate of node16 (transmitting at 600kbps) when BTT is
disabled. The attack takes place between t = 100s and t = 200s. TCP traffic drops to
practically zero during the attack.

0

100

200

300

400

500

600

R
T
T

(m
s)

0 50 100 150 200 250 300

L
os
s

Time (s)
Figure 4.6: Ping results from node16, when BTT is disabled. During the attack, all ping
packets were discarded. Ping rate is 10 packets per second, 1KB each. When an echo-
reply packet is received, the RTT will appear as a dot in the upper section, otherwise a
line will be marked in the lower section.

113

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

R
at
e
(k
b
p
s)

Time (s)
Figure 4.7: Legitimate traffic rate from node16 (transmitting at 600kbps), when BTT is
enabled, without overbooking. Two seconds after the attack begins, BTT restores TCP
to about 90% of its rate.

0

100

200

300

400

500

600

R
T
T

(m
s)

0 50 100 150 200 250 300

L
os
s

Time (s)
Figure 4.8: Ping results when BTT is enabled, without overbooking. The delay decreases
during the attack, as BTT without overbooking restricts the traffic rates under their
normal rates.

114

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

R
at
e
(k
b
p
s)

Time (s)
Figure 4.9: Legitimate traffic rate from node16 (transmitting at 600kbps), when BTT is
enabled with overbooking. The legitimate TCP is restored to its normal rate even during
the attack.

0

100

200

300

400

500

600

R
T
T

(m
s)

0 50 100 150 200 250 300

L
os
s

Time (s)
Figure 4.10: Ping results, when BTT and overbooking are enabled. The delay is not
affected by the attack.

115

0

20

40

60

80

100

0 50 100 150 200 250 300

U
ti
li
za
ti
on

(%
)

Time (s)
Figure 4.11: Utilization of the target link, with BTT and overbooking enabled in the
testbed experiments. Under attack, BTT succeeds in fully utilizing the target link.

0

20

40

60

80

100

0 20 40 60 80 100

G
o
o
d
p
u
t
ra
ti
o
(%

)

BTT deployment (%)

Figure 4.12: The goodput ratio vs. BTT deployment ratio, when the attack is against a
stub link, using the Slammer distribution. The legitimate traffic was randomized. The
attack overload factor was set to 2.

116

Chapter 5

Conclusions

BW-DDoS consist of the majority of DDoS attacks [41], which in turn are found at the

top of the security concerns of Tier 1, Tier 2, and other IP network operators around

the world [12]. In Chapter 1, we have reviewed various BW-DDoS attacks and defenses.

So far, BW-DDoS have employed relatively crude, inefficient, “brute force” mechanisms.

However, known attacks, which are not commonly used, allow attackers to launch so-

phisticated attacks, which are difficult to detect and may considerably amplify attackers’

strength. Furthermore, the recent largest BW-DDoS attacks have indeed used more ad-

vanced techniques; this may indicate that attackers may adopt more effective, advanced

BW-DDoS attacks in the future.

We argue that deployed and proposed defenses may struggle to meet increasing threats,

hence more advanced defenses should be deployed. This may involve some proposed mech-

anisms (not yet deployed), as well as new approaches. Note that some of the proposed

defenses may raise operational and political issues; these are beyond the scope of the cur-

rent thesis, but should be carefully considered. Finally, we argue that in order to become

practical, defense mechanisms should be easy to deploy and would require minor changes,

if any, to the Internet’s infrastructure routers.

In Chapters 2-4, we have presented three schemes which can be deployed in today’s

Internet for improving QoS, and mitigation of BW-DDoS. QoSoDoS and controlled over-

117

lays are end-host-based and can be deployed without any Internet service providers’ in-

tervention, hence, can be implemented by anyone. On the other hand, BTT requires

deployment at the infrastructure level as well as cooperation between AS/ISP. Neverthe-

less, even though the deployment is at the infrastructure level, it can be done externally

to the data-plane, and merely requires the ability to configure routers without the need

to make any hardware or software changes to equipment which is commonly difficult to

upgrade.

In Chapter 2 we presented QoSoDoS, a protocol that ensures (modest) Quality of Ser-

vice, among peers connected via an unreliable, BW-DDoS-prone network, which usually

has much higher bandwidth, which is the common situation in the Internet. QoSoDoS

persists in delivering data, and may send each packet many times, until the packet is

received correctly by the destination. This mechanism exploits the available delivery prob-

ability which, as established and experimentally validated in this thesis, is larger than 0,

even for large-scale attacks. When under extreme congestion, QoSoDoS will temporarily

stop using congestion control in order to maintain QoS, and resume using congestion

control as soon as possible. Despite the fact that QoSoDoS may seem extreme, it should

be able to allow selected critical services to survive significant BW-DDoS attacks.

In Chapter 3 we presented a new type of cooperative overlay which aggregates the avail-

able bandwidth and possibly multiple paths to break through congested networks. We pre-

sented a novel design which, upon congestion, turns to an end-host-based overlay to redi-

rect communication and amplify legitimate traffic, using one or multiple paths to the des-

tination as necessary. The overlay is carefully controlled, thus preventing self-generated

DDoS. Previous overlays have concentrated on filtering the offending flows, absorbing the

attack in various ways, or detouring the congested links. These solutions are themselves

prone to large-scale bandwidth attacks made by an attacker with bandwidth larger than

they can handle. Our work presents a complementary solution which lets a controlled

overlay cooperatively send information, without congestion control, when needed, thereby

competing against the attackers’ packets, and substantially increasing legitimate packet

118

delivery.

In Chapter 4 we presented Backward Traffic Throttling (BTT), an efficient, decentral-

ized mechanism based on router configuration. BTT prioritizes incoming flows, shapes

outgoing traffic, and informs upstream BTT nodes to similarly prioritize and shape traffic.

BTT requires no software or hardware changes to routers, does not manipulate protocols

and does not modify traffic. Instead, BTT configures routers’ queuing discipline and traf-

fic shapers. BTT is a deployable, efficient, decentralized mechanism as it is implemented

as a server outside the traffic flow. BTT uses typical traffic statistics during BW-DDoS

attacks and throttles the bandwidth of incoming links, based upon on-the-fly configuration

of existing queuing disciplines and traffic shapers found in routers.

119

120

Bibliography

[1] Iperf Network Testing Tool. http: // iperf. sourceforge. net/ .

[2] Open DNS Resolver Project. http: // openresolverproject. org/ .

[3] The CAIDA AS Relationships Dataset, 2011. http://www.caida.org/data/active/as-

relationships/, 2011.

[4] Raz Abramov and Amir Herzberg. TCP Ack storm DoS attacks. Computers and

Security, 33:12–27, 2013.

[5] Advanced Network Architecture Group. ANA Spoofer Project.

http: // spoofer. csail. mit. edu/ summary. php , 2012.

[6] Luis Von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. CAPTCHA:

using hard ai problems for security. In Proceedings of the 22nd international con-

ference on Theory and applications of cryptographic techniques, EUROCRYPT’03,

pages 294–311, Berlin, Heidelberg, 2003. Springer-Verlag.

[7] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681 (Draft

Standard), September 2009.

[8] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581

(Proposed Standard), April 1999. Obsoleted by RFC 5681, updated by RFC 3390.

[9] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris.

Resilient overlay networks. In Greg Ganger, editor, Proc. of the 18th ACM Sympo-

121

sium on Operating Systems Principles (SOSP-01), volume 35, 5 of ACM SIGOPS

Operating Systems Review, pages 131–145, New York, October 21–24 2001. ACM

Press.

[10] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Rohit N. Rao.

Improving web availability for clients with MONET. In NSDI. USENIX, 2005.

[11] Spiros Antonatos, Periklis Akritidis, Vinh The Lam, and Kostas G. Anagnos-

takis. Puppetnets: Misusing Web Browsers as a Distributed Attack Infrastructure.

ACM Transactions on Information and System Security, 12(2):12:1–12:15, Decem-

ber 2008.

[12] Arbor Networks. Worldwide infrastructure security reports series (2005-2012).

http: // www. arbornetworks. com/ report .

[13] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Intro-

duction and Requirements. RFC 4033 (Proposed Standard), March 2005. Updated

by RFC 6014.

[14] Katerina Argyraki and David R. Cheriton. Active internet traffic filtering: real-

time response to denial-of-service attacks. In Proceedings of the annual conference

on USENIX Annual Technical Conference, ATEC ’05, pages 10–10, Berkeley, CA,

USA, 2005. USENIX Association.

[15] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks. RFC 3704

(Best Current Practice), March 2004.

[16] Terry Benzel, Robert Braden, Dongho Kim, Cliford Neuman, Anthony D. Joseph,

and Keith Sklower. Experience with deter: A testbed for security research. In TRI-

DENTCOM. IEEE, 2006.

[17] T. Bonald, M. Feuillet, and A. Proutiere. Is the “Law of the Jungle” Sustainable

for the Internet? In INFOCOM 2009, IEEE, pages 28–36. IEEE, 2009.

122

[18] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Determin-

istic Queuing Systems for the Internet, volume 2050 of Lecture Notes in Computer

Science. Springer, 2001.

[19] L.S. Brakmo and L.L. Peterson. Tcp vegas: End to end congestion avoidance on a

global internet. Selected Areas in Communications, IEEE Journal on, 13(8):1465–

1480, 1995.

[20] G. Carl, G. Kesidis, R.R. Brooks, and S. Rai. Denial-of-service attack-detection

techniques. Internet Computing, IEEE, 10(1):82–89, 2006.

[21] Yao Chen and Radu Sion. To cloud or not to cloud?: musings on costs and viability.

In Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC ’11, pages

29:1–29:7, New York, NY, USA, 2011. ACM.

[22] J. C. Y. Chou, B. Lin, S. Sen, and O. Spatscheck. Proactive surge protec-

tion: a defense mechanism for bandwidth-based attacks. IEEE/ACM Trans. Netw.,

17(6):1711–1723, 2009.

[23] Matthew Prince CloudFlare. The DDoS That Almost Broke the Internet. http:

// blog. cloudflare. com/ the-ddos-that-almost-broke-the-internet .

[24] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)

Profile. RFC 5280 (Proposed Standard), May 2008.

[25] David G. Andersen. Mayday: Distributed filtering for internet services. In 4th

USENIX Symposium on Internet Technologies and Systems USITS, pages 37–39,

2003.

[26] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed

Standard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746,

6176.

123

[27] Colin Dixon, Thomas E. Anderson, and Arvind Krishnamurthy. Phalanx: With-

standing multimillion-node botnets. In Jon Crowcroft and Michael Dahlin, edi-

tors, 5th USENIX Symposium on Networked Systems Design & Implementation,

NSDI 2008, April 16-18, 2008, San Francisco, CA, USA, Proceedings, pages 45–58.

USENIX Association, 2008.

[28] The Measurement Factory. DNS SURVEY: OPEN RESOLVERS. http: // dns.

measurement-factory. com/ surveys/ openresolvers. html .

[29] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service

Attacks which Employ IP Source Address Spoofing. RFC 2827, May 2000.

[30] Forrester Consulting Study, commissioned by VeriSign, Inc. DDoS: A threat you

can’t afford to ignore. http://www.verisigninc.com/assets/whitepaper-ddos-threat-

forrester.pdf, 2009.

[31] S. Frankel and S. Krishnan. IP Security (IPsec) and Internet Key Exchange (IKE)

Document Roadmap. RFC 6071 (Informational), February 2011.

[32] Yehoshua Gev, Moti Geva, and Amir Herzberg. Backward traffic throttling to miti-

gate bandwidth floods. In Globecom 2012 - Communication and Information System

Security Symposium (GC12 CISS), Anaheim, CA, USA, December 2012.

[33] Moti Geva and Amir Herzberg. QoSoDoS: If You Can’t Beat Them, Join Them! In

INFOCOM, 2011 Proceedings IEEE, pages 1278 –1286, April 2011.

[34] Moti Geva and Amir Herzberg. DOT-COM: Decentralized Online Trading and COM-

merce. In 8th International Workshop on Security and Trust Management (STM

2012), September 2012.

[35] Moti Geva, Amir Herzberg, and Yehoshua Gev. Bandwidth distributed denial of

service: Attacks and defenses. IEEE Security & Privacy, 99, 2013.

124

[36] Yossi Gilad and Amir Herzberg. Lightweight opportunistic tunneling (LOT). In

Michael Backes and Peng Ning, editors, Computer Security - ESORICS 2009,

14th European Symposium on Research in Computer Security, Saint-Malo, France,

September 21-23, 2009. Proceedings, volume 5789 of Lecture Notes in Computer

Science, pages 104–119. Springer, 2009.

[37] D. Grossman. New Terminology and Clarifications for Diffserv. RFC 3260 (Infor-

mational), April 2002.

[38] Akamai Technologies Inc. Akamai DDoS defender.

http://www.akamai.com/html/solutions/security-/ddos defense.html, 2011.

[39] Corero Network Security Inc. Corero network security reports on top 5 ddos attacks

of 2011. http://www.corero.com/en/company-/news and events?item id=4, 2011.

[40] Corero Network Security Inc. Corero’s DDoS defense system (DDS).

http://www.corero.com/en/products and services-/dds, 2011.

[41] Prolexic Technologies Inc. Prolexic Attack Report, Q3 2011 – Q4 2012.

http://www.prolexic.com/attackreports, 2011/2012.

[42] Trustwave Holdings Inc. Web hacking incident database (whid).

https://www.trustwave.com/wp/whid/, 2009.

[43] John Ioannidis and Steven M. Bellovin. Implementing pushback: Router-based de-

fense against DDoS attacks. In NDSS. The Internet Society, 2002.

[44] Cheng Jin, Haining Wang, and Kang G. Shin. Hop-count filtering: an effective

defense against spoofed ddos traffic. In ACM Conference on Computer and Com-

munications Security, pages 30–41, 2003.

[45] Angelos D. Keromytis, Vishal Misra, and Dan Rubenstein. SOS: an architecture

for mitigating DDoS attacks. IEEE Journal on Selected Areas in Communications,

22(1):176–188, 2004.

125

[46] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol

(DCCP). RFC 4340 (Proposed Standard), March 2006. Updated by RFCs 5595,

5596, 6335.

[47] W. Kumari and D. McPherson. Remote Triggered Black Hole Filtering with Unicast

Reverse Path Forwarding (uRPF). RFC 5635 (Informational), August 2009.

[48] Aleksandar Kuzmanovic and Edward W. Knightly. Low-Rate TCP-Targeted Denial

of Service Attacks: the Shrew vs. the Mice and Elephants. In SIGCOMM ’03: Pro-

ceedings of the 2003 conference on Applications, technologies, architectures, and

protocols for computer communications, pages 75–86, New York, NY, USA, 2003.

ACM.

[49] Aleksandar Kuzmanovic and Edward W. Knightly. Low-rate TCP-targeted denial

of service attacks and counter strategies. IEEE/ACM Trans. Netw, 14(4):683–696,

2006.

[50] Sung-Ju Lee, Sujata Banerjee, Puneet Sharma, Praveen Yalagandula, and Sujoy

Basu. Bandwidth-aware routing in overlay networks. In INFOCOM, pages 1732–

1740. IEEE, 2008.

[51] Xin Liu, Xiaowei Yang, and Yanbin Lu. To filter or to authorize: network-layer DoS

defense against multimillion-node botnets. In Victor Bahl, David Wetherall, Stefan

Savage, and Ion Stoica, editors, Proceedings of the ACM SIGCOMM 2008 Con-

ference on Applications, Technologies, Architectures, and Protocols for Computer

Communications, Seattle, WA, USA, August 17-22, 2008, pages 195–206. ACM,

2008.

[52] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer. Raptor Forward Error

Correction Scheme for Object Delivery. RFC 5053 (Proposed Standard), October

2007.

126

[53] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder. RaptorQ

Forward Error Correction Scheme for Object Delivery. RFC 6330 (Proposed Stan-

dard), August 2011.

[54] Michael Luby. LT codes. In Proceedings of the 43rd Symposium on Foundations of

Computer Science (FOCS-02), pages 271–282, Los Alamitos, November 2002. IEEE

COMPUTER SOCIETY.

[55] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern Paxson, and

Scott Shenker. Controlling high bandwidth aggregates in the network. SIGCOMM

Comput. Commun. Rev., 32:62–73, July 2002.

[56] Ajay Mahimkar, Jasraj Dange, Vitaly Shmatikov, Harrick M. Vin, and Yin

Zhang. dFence: Transparent Network-based Denial of Service Mitigation. In NSDI.

USENIX, 2007.

[57] P. Marques, N. Sheth, R. Raszuk, B. Greene, J. Mauch, and D. McPherson. Dis-

semination of Flow Specification Rules. RFC 5575 (Proposed Standard), August

2009.

[58] Jelena Mirkovic, Sonia Fahmy, Peter Reiher, and Roshan K Thomas. How to test

DoS defenses. In Conference For Homeland Security, 2009. CATCH’09. Cybersecu-

rity Applications & Technology, pages 103–117. IEEE, 2009.

[59] Jelena Mirkovic and Peter L. Reiher. A taxonomy of DDoS attack and DDoS defense

mechanisms. SIGCOMM Comput. Commun. Rev., 34(2):39–53, 2004.

[60] Jelena Mirkovic and Peter L. Reiher. A taxonomy of DDoS attack and DDoS defense

mechanisms. Computer Communication Review, 34(2):39–53, 2004.

[61] Jelena Mirkovic and Peter L. Reiher. D-ward: A source-end defense against flooding

denial-of-service attacks. IEEE Trans. Dependable Sec. Comput., 2(3):216–232,

2005.

127

[62] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside

the Slammer worm. IEEE Security Privacy, 1(4):33–39, 2003.

[63] George C. Oikonomou, Jelena Mirkovic, Peter L. Reiher, and Max Robinson. A

framework for a collaborative DDoS defense. In ACSAC, pages 33–42. IEEE Com-

puter Society, 2006.

[64] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981.

[65] Chromium Projects. SPDY: An experimental protocol for a faster web. http:

// dev. chromium. org/ spdy/ spdy-whitepaper .

[66] B. Raghavan and A.C. Snoeren. Decongestion control. In Proceedings of the Fifth

Workshop on Hot Topics in Networks (HotNets-V), pages 61–66. Citeseer, 2006.

[67] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271

(Draft Standard), January 2006. Updated by RFC 6286.

[68] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architec-

ture. RFC 3031 (Proposed Standard), January 2001. Updated by RFC 6178.

[69] Ha Sangtae, Rhee Injong, and Xu Lisong. CUBIC: a new TCP-friendly high-speed

TCP variant. SIGOPS Oper. Syst. Rev., 42:64–74, July 2008.

[70] Rob Sherwood, Bobby Bhattacharjee, and Ryan Braud. Misbehaving TCP Receivers

Can Cause Internet-Wide Congestion Collapse. In Catherine Meadows and Paul

Syverson, editors, Proceedings of the 12th ACM Conference on Computer and Com-

munications Security, pages 383–392, pub-ACM:adr, 2005. ACM Press.

[71] Amin Shokrollahi. Raptor codes. IEEE/ACM Transactions on Networking,

14(SI):2551–2567, June 2006.

[72] Angelos Stavrou and Angelos D. Keromytis. Countering DoS Attacks With Stateless

Multipath Overlays. In CCS’05: proceedings of the 12th ACM Conference on Com-

128

puter and Communications Security: November 7-11, 2005, Alexandria, Virginia,

USA, pages 249–259. ACM Press, 2005.

[73] Ahren Studer and Adrian Perrig. The Coremelt Attack. In Michael Backes and

Peng Ning, editors, ESORICS, volume 5789 of Lecture Notes in Computer Science,

pages 37–52. Springer, 2009.

[74] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy H.

Katz. OverQos: an overlay based architecture for enhancing internet Qos. In Pro-

ceedings of the 1st conference on Symposium on Networked Systems Design and

Implementation, 2004.

[75] J.K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzenmacher, and

J. Barros. Network coding meets tcp: Theory and implementation. Proceedings

of the IEEE, 99(3):490–512, 2011.

[76] University of Oregon. Route Views Project. http: // www. routeviews. org/ .

[77] Vaughn, R. and Evron, G. DNS Amplification Attacks. http: // www. isotf. org/

news/ DNS-Amplification-Attacks. pdf , 2006.

[78] P. Vixie. Extension Mechanisms for DNS (EDNS0). RFC 2671 (Proposed Standard),

August 1999.

[79] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and Scott

Shenker. DDoS defense by offense. ACM Transactions on Computer Systems,

28(1):3:1–3:??, mar 2010.

[80] Songjie Wei, C. Ko, J. Mirkovic, and A. Hussain. Tools for worm experimentation

on the DETER testbed. In Proc. 5th TridentCom, 2009.

[81] Songjie Wei, J. Mirkovic, and M. Swany. Distributed worm simulation with a real-

istic internet model. In Principles of Advanced and Distributed Simulation, 2005.

PADS 2005. Workshop on, pages 71 – 79, june 2005.

129

[82] Songjie Wei and Jelena Mirkovic. A realistic simulation of Internet-scale events. In

Proc. 1st VALUETOOLS, 2006.

[83] Abraham Yaar, Adrian Perrig, and Dawn Xiaodong Song. SIFF: A stateless internet

flow filter to mitigate DDoS flooding attacks. In Proc. IEEE Security Privacy, pages

130–146, 2004.

[84] Abraham Yaar, Adrian Perrig, and Dawn Xiaodong Song. SIFF: A stateless internet

flow filter to mitigate DDoS flooding attacks. In IEEE Symposium on Security and

Privacy, page 130. IEEE Computer Society, 2004.

[85] Xiaowei Yang, David Wetherall, and Thomas E. Anderson. A DoS-limiting network

architecture. In Roch Guérin, Ramesh Govindan, and Greg Minshall, editors, Pro-

ceedings of the ACM SIGCOMM 2005 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, Philadelphia, Penn-

sylvania, USA, August 22-26, 2005, pages 241–252. ACM, 2005.

[86] David K. Y. Yau, John C. S. Lui, Feng Liang, and Yeung Yam. Defending against

distributed denial-of-service attacks with max-min fair server-centric router throttles.

IEEE/ACM Trans. Netw., 13(1):29–42, February 2005.

130

