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Abstract

Global tra.nsaction management and the preservation of local autonomy are conflicting re

quirements in the design of multidatabase transaction management systems. A flexible trans

action model for the specification of global transactions makes it possible to construct robust

global transactions while still preserving local autonomy. This paper presents an approach that

preserves semi-atomicity. a weaker form of atomicity applicable to flexible transactions which

span several local database systems that maintain serializability and recoverability. We first

offer a fundamental characterization of the flexible transaction model and then precisely define

semi-atomicity for flexible transactions. We then investigate the principles underlying the ap

proach to ROOble tra.nsaction management which ensures this property. Finally, we construct a

class of flexible transactions which can be executed in the presence of failures using our proposed

commit protocol. The results demonstrate that the flexible transaction model substantially en

hances the scope of global transaction management beyond that offered by the traditional global

transaction model.

1 Introduction

A multidatabase system (MDBS) is a collection of autonomous local databases (LDBSs) that can

be accessed as a single unit. There are two types of transactions in a multidatabase. A local

transaction, which accesses a local database only, is submitted directly to a local database system.

A global transaction, in contrast, may access several local databases. Such a global transaction is

submitted to a global transaction manager (GTM) superimposed upon a set of local autonomous
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database systems, where it is parsed into a series of global subtransactions to be submitted to the

local database systems.

While atomicity in traditional distributed databases can be ensured using well-known proto

cols [4], multidatabase systems cannot use these protocols directly because of the stronger autonomy

requirements of the component local. databases [3, 21}. Of particular concern is the fact that multi

databases cannot assume that all participating local databases support a visible prepare-to-commit

state for global subtransactions, in which they have not yet been committed but are guaranteed

the ability to commit. In such situations, a local database system that participates in a multi

database environment may unilaterally abort a global subtransa.ction without agreement from the

global. level (termed a local unilateral abort). As a result, it becomes difficult to ensure that a single

logical. commit action of the subtransactions of a global transaction will be consistently carried out

at multiple local sites. In addition, even when local database systems do provide such support,

the potential blocking and long delays caused by prepare-to-commit states would severely degrade

local execution autonomy.

A flurry of research activity has been devoted to the problems of enhancing transaction man

agement by using extended transaction models. l In particular, some flexible transaction models

proposed for the MDBS environment, such as Flex Transactions [8] and S-transaction [22], increase

the failure resiliency of global transactions by allowing alternative subtransactions to be executed

when a local database fails or a subtransaction aborts. This flexibility allows a global. transaction

to adhere to a weaker form of atomicity, which we term semi-atomicity, while still maintaining

its correct execution in the multidatabase. Semi-atomicity allows a global transaction to commit

even if some subtransactions abort, provided that their alternative subtransactions commit. The

following example is illustrative:

Example 1 Consider the following global transaction. A user of an Automatic Teller Machine

(ATM) wishes to withdraw $50 from his savings account al in bank bl and to obtain the money in

cash from the ATM. If the ATM fails to disburse the cash, he will instead transfer the $50 to his

checking account a2 in bank b2. With Flex Transactions, this is represented by the follOWing set of

subtransactions:

tl: Withdraw $50 from savings account al in bank bl .

t2: Disburse $50 from the ATM.

ta: Transfer $50 to checking account a2 in bank 62.

In this global transaction, either {tl' t2} or {h, ta} is acceptable, with {tl' t2} prefern;d. Ift2 fails,

ta may replace t2. The entire global transaction thus may not have to be aborted, even if t2 fails,

but if both t2 and fa fail, then it must abort. 0

1 Many such modelB have appeared in [6, 7].
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Since the flexible transaction model was proposed, much research has been devoted to its ap

plication [13, 2, 1, 12]. Most of this work has assumed the availability of visible prepare-to-commit

states in local database systems. In such a scenario, the preservation of the semi-atomicity of

flexible transactions is relatively straightforward.

1.1 Proposed Research

In this paper, we offer a precise definition of the fundamental model and of the semi-atomicity

property of flexible transactions. We present an approach which preserves semi-atomicity in an

MDBS environment in which the local database systems are requ.ired only to ensure serializability

and recoverability [4]. In the proposed formulation, a flexible transaction is defined as a set of

sub transactions upon which a set of partial orders is specified. Each partial order provides one

alternative for the successful execution of the flexible transaction. This methodology differs from

previous approaches in that no specific application semantics are involved. Therefore, a theoret

ical basis for flexible transaction management can be built. We then classify the set of flexible

transactions that can be executed in an error-prone MDBS environment. As the compensation and

retry approaches [15) are unified and employed as flexible transaction failure recovery techniques,

local prepare-to-commit states are no longer required. We demonstrate that the flexible transaction

model substantially enhances the scope of global transaction management beyond that offered by

the traditional global transaction model.

1.2 Related Research

In order to handle local unila.teral aborts, approaches using forward recovery (redo and retry) and

backward recovery (compensation) have been proposed in the literature. These approaches seek to

ensure the semantic atomicity [9] of global transactions in MDBSs. When a subtransa.ction of a

global transaction aborts, the GTM may either re-execute it until commitment or undo the effects

of the committed subtransactions of the global transaction. The strategies characterizing these

approaches can be classified by the relative timing of the commitment of subtransactions in the

local databases with respect to the global transaction commit/abort decision [16]. [23,5] enforce a

global decision on the subtransactions by redoing or retrying them as necessary. [19,14,18] commit

subtransactions locally before a global decision is made and rely on compensation when a global

transaction is aborted. [15, 17] combine these two approaches. With the forward approach, all

subtransa.ctions must be redoable or retriable, while the backward approach requires that all sub

transactions must be compensatable. With the combined approach, only one subtransaction of each

global transaction can be neither retriable nor compensatable, and the rest of its subtransactions

must be either retriable or compensatable. Consequently, the ability to specify global transactions

becomes severely limited when the traditional global transaction model is employed in MDBSs.
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1.3 Structure of the Paper

This paper is organized as foUows. Section 2 introduces the fundamental flexible transaction model

and Section 3 defines the property of semi-atomicity. In Section 4, we define those flexible transac·

tions that can be executed in the error-prone MDBS environment without requiring local prepare-to

commit states. In Section 5, we present the flexible transaction recovery protocol and demonstrate

its effectiveness in preserving the semi-atomicity of flexible transactions. Concluding remarks are

offered in Section 6.

2 A Formal Model of Flexible 'Iransactions

Following [8, 13], the definition of flexible transactions takes the form of a high-level applications

description. Various applications semantics, such as commit dependencies, abort dependencies,

and the acceptable set of successful subtransactions, are captured in the flexible transaction defi

nition. Unfortunately, such a semantics-oriented formulation of flexible transactions may not pre

vent redundancy in the dependency specification, and the structure of flexible transactions cannot

generally be effectively depicted. Delineating a generic structure for flexible transactions is thus

necessary for the discussion of flexible transaction management. In this section, a fundamental

flexible transaction model that specifies global transactions is precisely defined.

From a user's point of view, a transaction is a sequence of actions on data items in a database. In

an MDBS environment, a global transaction is a set of subtransactions, where each subtransaction is

a transaction accessing the data items at a single local site. We assume that each global transaction

has at most one subtransaction at each local site.2

The flexible transaction model supports flexible execution control flow by specifying two types

of dependencies among the subtransactions of a global transaction: (1) execution ordering de

pendencies between two subtransactions, and (2) alternative dependencies between two subsets of

subtransactions. Below, we shall formally delineate the flexible execution control flow in the flexible

transaction model.

Let T = {tl' t2, ... , tn } be a repertoire of subtransactions and P(T) the collection of all subsets

ofT. Let ti,tj E T and T;,Tj E P(7). We assume two types of control flow relations to be defined

on the subsets of T and on P(T), respectively: (1) (precedence) tj -< tj if tj precedes tj (i f:. i)i

and (2) (preference) Tj t> Tj if Tj is preferred to Tj (i f:. j). If Tj t> Tj, we also say that Tj is an

alternative to (or contingent on) Tj.3 Note that T; and Tj may not be disjoint. Both precedence

and preference relations are of an irreftexive transitive nature. In other words, for each tj E T,

:lThis is necessary for the concurrency control of global transactions [10].
3In general, tbe alternative relationship need not exist only between two individual subtransactions; one subtrans

ac~ion may be a semantic aHerna~ive of several subtransactions.

4



-.(ti -< ti)j and for each Tj E P(T), -.(Ti t> Ti). IT t; -< tj and tj -< tk, then tj -< tki if Tj t> Tj and

Tj t> Tk, then Ti t> Tk.

Thus, the precedence relation defines the correct parallel and sequential execution ordering

dependencies among the subtransactions, while the preference relation defines the priority depen·

dencies among alternative sets of subtransactions for selection in completing the execution of 7.

A flexible transaction can be defined as follows:

Deflnition 1 (Flexible transaction) A flexible transaction 7 is a set of related subtransactions

on which the relations of precedence (-<) and preference ( t» are defined.

As this basic definition of flexible transactions provides only a vague picture of the structure of

flexible transactions, we shall now seek a more precise delineation. Let Ti be a subset of 7, with -<
defined on Tj. We then say that (Ti, -<) is a partial order of subtransactions. (Ti,-<) is a singular

partial order, abbreviated as -<-partial order, if the execution of subtransactions in Ti represents the

execution of the entire flexible transaction T. To accommodate the assumption that each global

transaction has at most one subtransaction at a local site, we require that each -<-partial order of a

flexible transaction have at most one subtransaction at a local site. The whole flexible transaction

may contain more than one sub transaction at a local site.

The structure of a flexible transaction T can thus basically be depicted as a set of -<-partial

orders {(Ti, -<), i = 1, ... , k} of subtransactions, with Uf=l Tj = T.4 Let (T, -<) be a -<-partial order

of 7. A partial order (T', -<) is a prefix of (T, -<), denoted (T', -<) ~ (T, -<), if (1) T' ~ T; (2) for all

t l , t2 E T', t l -< t2 in (T', -<) if and only if t l -< t2 in (T, -<)i and (3) for each t E T', all predecessors

of t in T are also in T'. A partial order (T',-<) is the prefix of (T,-<) with respect to sub transaction

t, denoted (T', -<) ~ (T, -<let), if (T', -<) is a prefix of (T, -<) and T' contains only all predecessors

of t in T. A partial order (T', -<) is the suffix of of (T, -<) with respect to sub transaction t, denoted

(T',-<) ~ (T,-<)(t), if, for all t l ,t2 E T',t l -< t2 in (T',-<) if and only if tl -< t2 in (T,-<) and

T' contains only t and all successors of t in T. A set of subtransactions {tl , ... , tk} in -<-partial

order (T, -<) defines a switching set of (T, -<) jf there is a -<-partial order (T', -<) of T such that

(T \ (T, U .•. U T.), -<) is a prefix of (T', -<) and (T, U ... U T.) I> (T' \ (T \ (T, U ... U T.))), where

(Ti,-<) ;::: (T,-<)(ti), for i = 1, ... , k. Here, we use T\T' to denote the subset ofT which results from

the removal of those subtransactions that belong to T'. Each subtransaction in a switching set is

called a switching point. Thus, a switching point relates one -<-partial order to another -<-partial

order.

Let Pi =(Tl, -<) and 1'2 =(T2 , -<) be two -<-partial orders of flexible transaction T. We say that

Pi has higher priority than P2 in T, denoted PI _ P2, if there are T1i ~ T1 and T2j ~ T2 such

that T1i t> T2j. The preference relation defines the preferred order over alternatives. We state

4Note that when k = I, a flexible transaction becomes a traditional global transaction.
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that two subsets Tj,Tk C T have the same priority if there is a Ti C T such that Ti t> Tj and

Ti t> Tk' but ..,(Tj t> Tk) and ...,(Tk t> Tj). The execution of a flexible transaction T at any moment

must be uniquely determined. We say that a flexible transaction T is unambiguous if the following

conditions are satisfied:

• For any switching set {tl' ... , tk} in a -<-partial order T, (T1U ...uTk) where (Ti,-<) :;:: (T,-<)(t;),

for i = 1, ... , k, has no two alternatives with the same priority.

• No any -<-partial orders PI, ... , Pi of T are in a priority cycle such that Pi! --+ ••• --+ Pi. --+ Pi!

for a permutation iI, ... , i, of 1, ... ,1.

Note that the set of all -<-partial orders of a flexible transaction may not be clearly ranked,

even if it is unambiguous. The aborting of subtransactions determines which alternative -<-partial

order will be chosen. In the remainder of this paper, we assume that all flexible transactions are

unambiguous.

So far, we have specified a flexible transaction syntactically as a set of alternative -<-partial

orders of subtransactions that is determined by the two relations of precedence and preference.

The semantics of the precedence relation refers to the execution order of subtransactions. For

instance, t l -< t2 may imply that t2 cannot start before i 1 finishes or that t2 cannot finish before

tl finishes. Similarly, the preference relation defines alternative choices and their priority. For

instance, {til t> {tj,tk} may imply that tj and tk must abort when ti commits or that tj and tk

should not be executed ifti commits. In this situation, {t;) is of higher priority than {tj, tk} to be

chosen for execution.

To make the structure of a flexible transaction more visible, we also describe the structure of

a flexible transaction T by an execution dependency graph, denoted EDG(T), which is a directed

graph whose nodes are all sub transactions of T and whose edges are all ti !.. ti (ti' ti E T), where p

is the list of -<-partial orders of T such that ti precedes tj in a -<-partial order in p and there is no

other subtransaction tk which follows ti and precedes ti in the -<-partial order. H a subtransaction

ti is not ordered with other sub transactions in a -<-partial order, the list of the -<-partial orders in

which ti participates is attached to the node of ti. The following example is illustrative:

Example 2 Consider a travel agent information system engaged in arranging a travel schedule for

a customer. Assume that a flexible transadion T has the following subtransactions:

t l : withdraw the plane fare from account al;

t2: withdraw the plane fare from account a2;

ta: reseMJe and pay for a non-refundable plane ticket;

t4 : rent a car from Avis;

ts: book a limo seat to and from the hotel.
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Figure 1: Execution dependency graph of Example 2.

The following -<-partial orders are defined on the above subtransactions:

PI = {tl -< talta -< t4}, P2 = {ti -< t31ta -< ts},

P3 = {t2 -< ta,ta -< td, P4 = {t2 -< ta,ta -< ts},

where {tl} and {t4} are the switching sets. With these switching sets, we have {tl , ta, t4} I> {t2 , ta, t4}

and {t4} I> its}. The EDG(T) is shown in Figure 1. Clearly, the set of -<-partial orders in this

flexible transaction is unambiguous. Note that PI - P2 and PI - P3, but P2 and Pa cannot be

ranked in any prejcfTed order. 0

In each -<.-partial order of sub transactions I the value dependencies among operations in differ

ent subtraDsactioDs define data flow among the subtransactions. Let flexible transaction G have

subtransa.ctions tl , t2,"', tn. We say that ti, is value dependent on til, ... , ti'_1 (1 ~ iI, ...,it ~ n),

denoted til -v till th -v til' ... , ti'_1 -v tjp if the execution of one or more operations in ti, is

determined by the values read by tiI, '·'1 ti'_I'

We say that a database state is consistent if it preserves database integrity constraints. These

constraints are formulas in predicate calculus that express relationships among data items that a

database must satisfy. As defined for traditional transactions, the execution of a flexible transaction

as a single unit should map one consistent multidatabase state to another. However, with flexible

transactions, this definition of consistency requires that the execution of each -<.-partial order of

subtransactions must map one consistent multidatabase state to another.

3 Ensuring Semi-atomicity

We now discuss the execution of flexible transactions. We assume that the execution of a subtrans

action can be viewed by the system as a sequence of fead and write accessing operations followed

by either a commit or an abort termination operation. We denote commit and abort operations as

c and a (possibly subscripted).

Traditionally, a transaction must be executed atomically, requmng that either all or none of

its actions are completed. In the distributed database environment, this concept of atomicity has

been relaxed by the notion of semantic atomicity [9]. Semantic atomicity differs from atomicity
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in that a global transaction is a.llowed to commit parts of its results at different times. If all

5ubtransactions commit, then the entire global transaction commitSj otherwise, the effects of a.ll

tentatively committed subtransa.ctions are undone and the entire global transaction is to abort.

The concept of semantic atomicity can be further relaxed in the execution of flexible transactions.

Since a flexible transaction allows for the specifica.tion of multiple -<-partial orders and results in

the successful execution of the subtransactions in one of those -<-partial orders (termed committed

-<-partial order), the execution of a flexible transaction can proceed in several different ways. The

subtra.nsa.ctions in different -<-partial orders ma.y be attempted simultaneously, as long as any

attempted subtransactions which are not in the committed -<-partial order can either be aborted

or have their effects undone. The semi-atomicity of flexible transactions, which is an extension of

semantic atomicity, is defined as follows:

Definition 2 (Semi-atomicity) A flexible transaction T is executed with semi-atomicity if one

of the following conditions is satisfied:

• All its subtransactions in one of the -<-parlial orders commit and all other attempted sub·

transactions not in this -<-partial order are either aborted or have their effects undone,.5 or

• No partial effects of its subtransactions remain permanent in local databases.

Such an extension of semantic atomicity allows different -<-partial orders of a flexible transaction

to be attempted, possibly concurrently, while ensuring that the effects of either no or exactly one -<
partial order remain permanent in the multidatabase. Thus, even if a flexible transaction commits,

some of its subtransactions may abort and the effects of some committed subtransactions may be

undone.

As local prepare-ta-commit states are not pre-assumed in our multidatabase system, we shall

now investigate the preservation of the semi-atomicity of flexible transactions through a unification

of the retry and compensation approaches. As pointed out in [15], in contrast to the redo tech

nique [5], the retry technique allows us to relax some of the restrictions on data items that global

transactions can read and write.

Each subtransaction is categorized as either retriable, compensatable, or pivot. We say that

a subtransaction ti is retriable if it is guaranteed to commit after a finite number of submissions

when executed from any consistent database state. The retriability of subtransactions is highly

determined by integrity constraints. For instance, a bank account usually has no upper limit, so a

deposit is retriable. However, it usually does have a lower limit, so a withdrawal is not retriable.

A subtransaction is compensatable if the effects of its execution can be semantically undone

5This may cause more than one subtransaction of a flexible transaction to be executed at a local site. However,

a local database system may view the subtransactions in different --<-partial orders of a flexible transaction as being

from different global transactions.
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after commitment by executing a compensating sub transaction at its local site. We assume that

a compensating subtransaction ctj for a subtransaction tj is retriable. That is, it is guaranteed

that any compensation initiated will complete successfully. This requirement, termed persistence

of compensation, has been discussed in the literature [9]. ctj must also be independent of the

transactions that execute between tj and ct;. This is because local database autonomy requires

that arbitrary local transactions be executable between the time tj is committed and the time ctj

is executed, and these local transactions can both see and overwrite the effects of tj during that

time. For example, consider an MDBS that has account a in LSI and account b in LS2 , with the

integrity constraints a ~ 0 and b 2:' O. Suppose a transaction T1 transfers $100 from a to b. The

withdraw subtransaction tl at LSI is compensatable, while the deposit subtransaction t2 at LS2

is not. The compensation of t2 may violate the integrity constraint b ~ 0 if a local transaction

which is executed between t2 and its compensating subtransaction takes the amount of b. Note

that both tl and t 2 are compensatable in the traditional distributed database environment, which

ensures that the transactions that are executed between t2 and its compensating subtransaction

ct2 are commutative [11] with ct2.

Following [15], the compensating subtransactions that are executed for the subtransactions in

each -<-partial order can be considered as an independent global transaction. Consequently, the

execution of these compensating subtransactions will not violate the assumption that there exists

only one subtransaction for each global transaction at a local site.

We say that a sub transaction tj is a pivot sub transaction if it is neither retriable nor compensa

table. For example, let us consider a subtransaction which reserves and pays for a non-refundable

plane ticket. Clearly, this subtransaction is not compensatable; on the other hand, this subtrans

action is also not retriable, since such a ticket might never be available.

Because these properties are dependent on the semantics of the information in the database

and by integrity constraints, we assume that the category of the sub transaction is specified by the

global transaction definer.

[15] formulates each global transaction as the combination of a set of independent subtransac

tions, each of which is either compensatable, retriable, or pivot. At most one subtransaction can

be pivot. In their commit protocol, the compensatable subtransactions must be committed before

the commitment of the pivot subtransaction, which in turn must commit before the commitment

of the retriable subtransactions. The global commit/abort decision is determined by the outcome

of the pivot subtransaction commit. If it aborts, all of the compensatable subtransactions are

compensated for; otherwise the retriable subtransactions are attempted until they commit. With

flexible transactions (which require only semi-atomicity), we can extend this protocol to allow the

execution of a flexible transaction that does not follow this subtransaction commit order and which

permits multiple pivot subtraDsactioDs in the flexible transaction. A detailed discussion of these
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concepts follows in the next two sections.

4 Constructing Recoverable Flexible Transactions

We shall now present a formulation for flexible transactions which integrates the retry and com

pensation techniques so as to preserve the semi-atomicity of their execution.

4.1 Commit Dependencies

We first examine the commit dependency relationships existing between any two subtransactions

of a flexible transaction that must be obeyed in the commitment of these subtransactions. Let

T = {(TiI-<), i = 1, ... ,k} be a a flexible transaction which has subtransactions t l , t2, ... , tn' Let

ti,t; E T. We say that tj is commit dependent on ti, denoted t; -e tj, if the commitment oft;

must precede that of t; to preserve semi-atomicity. Clearly, if tj -< tj in (Til -<) (1 ~ i ~ k), then

tj -e tj. Such commit dependencies, which are determined by the execution control flow among

sub transactions, shall be termed e-commit dependencies.

The type (compensatable, pivot, or retriable) of subtransactions also determines their com

mitment order in the preservation of semi-atomicity. To ensure that a -<-partial order can move

either forward to its commitment or backward to the removal of any partial effects of its committed

sub transactions, the commitment of compensatable subtransactions should always precede that

of pivot subtransactions, which in turn should precede the commitment of retriable subtransac

tions. We term such commit dependencies that are determined by subtransaction type t-commit

dependencies.

For those subtransactions which are retriable, we also observe that value dependencies must be

considered in determining their commitment order. For example, assume that a value written by

a suhtransaction ti at local site LS'
1

is dependent on a value read by a retriable subtransaction

tj at local site LS/~. If ti commits and tj aborts, then tj should be retried. However, local

transactions may be executed after tj is aborted but before it is retried at LSh, which may result

in inconsistencies between the data read from the original execution of tj and from its retrial. To

ensure that the retrial of tj does not result in any database inconsistency, when a sub transaction

tj is value dependent on ti' the commitment of tj must precede that of tj. Thus, if the retrial

of tj leads to a result which is different from that of its original execution, tj that has read the

data from the original execution of tj may be aborted and re·executed. Consequently, each retriable

subtransaction remains retriable without resulting in any database inconsistency as long as all other

subtransactions that are value dependent upon it have not committed. We designate such commit

dependencies that are determined by the value dependencies among subtransactions as v·commit

dependencies.
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These three types of commit dependencies are closely related. Whenever a subtransa.ction t2 is

e-commit dependent, t-commit dependent, or v-commit dependent on tlo we must have tl -te t2.

A set of subtransactions tl, ... , tic is in a commit dependency cycle if there is a permutation i1 , ••• , ile

of 1, ... , k such that til -te ti'l -e ... -te til< -te til. The existence of a commit dependency cycle

in a. flexible transaction may cause its commitment to result in a deadlock situation, in which

each subtransaction has to wait for another subtransa.ction to commit before its commitment. In

addition, the possession of two or more pivot subtransactions in a -<-partial order may render it

difficult to determine a commit order among them which ensures that the -<-partial order can

move either forward to the commitment of its sub transactions or backward to the removal of any

partial effects of the committed subtransactions. In the remainder of this section, we examine those

restrictions that need to be placed on flexible transactions.

4.2 Well-formed Flexible Transactions

As e-commit dependencies must be obeyed in the commitment of subtransactions, the commitment

of any pivot or retriable sub transaction t in T will cause the effects of subtransactions in T' where

(T', -<) :::; (T, -<)(t) to no longer be undoable. We define a pivot subtransa.ction as a critical

8ubtramaction if all subtransactions in T' where (T' , -<) ~ (T, -<)(t) are compensatable.6 (Ti,-<)

may have several critical subtransactions which are not ordered with each other by the -< relation.

One critical subtransaction acts as the critical point of the -<-partial orderj its commit or abort

determines whether the -<-partial order can either go forward to its commitment or must move

backward to the removal of any partial effects of its committed subtransactions. The critical point

of (Ti, -<) is determined through the following rules:

• H t € Ti is the only critical subtransaction, then t is the critical pointj otherwise

• H there js a critical subtransaction t E Tj which is not a switching point, then choose t as the

critical pointj otherwise

• A critical 5ubtransaction is randomly chosen as the critical point.

Any compensatable subtransactions which precede a critical subtransaction and are not or

dered in -< relation with the critical point can commit before it, and any retriable sub transactions

which are not ordered with the critical point can commit after it. However, the abort of any pivot

subtransaction which is not the critical point and of any compensatable subtransaction which fol

lows a. pivot or retriable sub transaction in (Ti, -<) may hamper (Ti,-<) in either moving forward

to its commitment or backward to the removal of any partial effects of its committed subtransac

tions. Such problematic subtransactions are termed abnormal subtransactions. More precisely, a.

'If (Ti,-<) has no such pivot subtransaction, then a dummy null pivot subtransaction, which is not ordered in-<
relation with any subtransacLion of Ti, is created.

11



subtransaction t in Tj is abnormal if one of the following conditions is satisfied:

• t is a compensatable or pivot subtransaction and there is a pivot or retriable subtransaction

tl in Tj such that tl -< t; or

• t is a pivot subtransa.ction but is not the critical point.

Otherwise, t is a normalsubtransa.ction. Note that only a compensatable or pivot subtransaction

may be an abnormal subtransaction.

Following the discussion in [15], no abnormal subtransa.ctions can be permitted in a traditional

global transaction. Otherwise, the semantic atomicity of the global transaction may not be pre

served. As a result, each global transaction can only have one pivot sub transaction. This may

be tao restrictive for same applications, especially those complex global applications in an MDBS

environment which involve many local sites.

The use offlexible transactions can extend the traditional global transaction model to permit the

presence of abnormal sub transactions. In Example 2, it is obvious that t l and t 2 are compensatable,

ta is pivot, and t4 is compensatable. If we assume that a limo is available in the required time

period, ts is retriable. Note that t4 is an abnormal subtransaction in both PI and Pa. If t1 and ta

have already committed and then t4 aborts, the partial effects of PI cannot be undone. However,

the execution of t4 can be replaced by the execution of ts. As ts is retriable, T can be committed.

Thus, abnormal subtransactions can be permitted in flexible transactions. However, if any abnormal

subtransaction t 1 aborts, appropriate actions must ensue to continue the execution of the flexible

transaction.

Let T be a flexible transaction and (Ti, -<) be a -.<-partial order of T which has an abnormal

subtransaction t. Let an immediate predecessor of a sub transaction t denote a sub transaction tl

such that t1 -< t and no other subtransaction t2 exists such that tt -< t2 -< t. We say that an

abnormal subtransaction t in T; is a blocking point if one of the following conditions is satisfied:

• a.ll predecessors of t are normal. In this case, t must be a pivot subtransactianj or

• all immediate predecessors of t are not compensatable; or

• if t has a immediate predecessor tl which is compensatable, t1 has a successor which is not

ordered by -< relation with t and not compensatable.7

An abnormal sub transaction t that is a blocking point in -.<-partial order (Ti, -<) identifies a

place at which the abortion or compensation of t must result in the replacement of the execution

of (Til -<) with an alternative -<-partial order. The following example is illustrative:

7This is because, if the non-compensatable successor commits, then it is no longer possible to back up to the point

where t l can be undone.
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Figure 2: Execution dependency gra.ph of Example 3.

Example 3 Assume that a ftezible transaction T is defined in Figure 2. Let iI, is. ta, and t7

be compensatable subtransactions, t2 and ia be pivot 8ubtransactions, and t4 and is be retriable

8ubtran.saetions. There are three -< -partial orders in T:

PI = ({tl,tZ,t3,tS,t6,t7}'-<)'

pz = ({tl' t2 , ta, ta}, -<),

P3 = ({tl,tz,t.t},-<),

where {ts, ta, t7} 1> {ta} and {t3' is. ts, t7, ts} I> {t4}. t2 and ta are the critical 8ubtransactions of both

PI and pz. t2 is the critical 8ubtransaction for P3. By the critical point determination rules, t2 is

the critical point for all three partial orders, because there is altemative if the pivot 8ubtransaetion

i3 fails. Thus, ta. is, t6, t7 are abnormal subtransactions and among them, ls. ts. and t6 are the

blocking points. 0

We define well-formed flexible transactions as follows:

Definition 3 (Well-formed flexible transaction) A flexible tmmaetion T is well-formed if ev

ery abnormal subtrnnsaetion which is a blocking point is a switching point such that, in its switching

set) all other switching points are abnormal subtransactions and the successors of each switching

point which are not ordered by -< relation with the successors of another switching point are com

pematable.

Thus, in a well-formed flexible transaction t for any -<-partial order (Tit -<) which contains an

abnormal subtransaction t, there is at least one alternative -<-partial order (Tj, -<) which shares a

prefix with (TiI-<) such that the aborting of t will lead the execution of T from (Tit -<) to (Tj,-<)

without resulting in any database inconsistency.

Observation 1 If a flexible transaction is well-formed. it has at least one -<-partial order such

that it has no abnormal subtransaction and no other -<-partial order has lower priority than it.

13



In Example 2, the flexible transaction 7 has two -<-partial orders P2 and P4 that contain no

abnormal subtransaction. The only blocking point t4 constitutes a switching set. Thus, 7 is

well-formed. In Example 3, the flexible transaction 7 has one -<-partial order 1'3 that contains no

abnormalsubtransaction. Since the blocking point t3 constitutes the switching set and the blocking

points t s and ta also constitute the switching set, T is also well-formed.

4.3 Maintaining the Recoverability of Flexible Tt-ansactions

We now discuss the preservation of semi-atomicity. Following [4], we define a schedule over a set of

transactions as a partial order of the operations of those transactions which orders a.ll conflicting

operations and which respects the order of operations specified by the transactions. A global

schedule S is a schedule over both local and flexible transactions which are executed in an MDBS.

We denote 01 <s 02 if operation 01 is executed before operation 02 in global schedule S.

Clearly, to preserve semi-atomicity, the commit dependencies of flexible transactions must be

correctly preserved in global schedules. We fonnulate below the concept of a commit dependency

graph that is defined on each well-formed flexible transaction, effectively incorporating all effects of

e-commit dependencies, t-commit dependencies, and v-commit dependencies.

Definition 4 (Commit dependency graph of a flexible transaction) A commit dependency

graph of a well-formed flexible transaction T = {(Tj,-<),i = l, ... ,k}, denoted eDG('ll, is a di

rected graph whose nodes are all subtransactions of T and whose edges are all t1 _ tz (t1, tz E Tj

for 1 ~ i ~ k and t1 ;:f:. tz ) such that:

• (e-commit dependency) t1 -< tZi

• (v-commit dependency) t1 _" tz and tt is retriable;

• (t-commit dependency) t1 is compensatable and normal and t z is the critical point; or

• (t-commit dependency) tt is the critical point and tz is either pivot or retriable.

We define the concept of commit dependency preserving on global schedules as follows:

Definition 5 (Commit dependency preserving) Let (} be a set of well-formed flexible trans

actions. A global schedule S is commit dependency preserving if, for any two subtransactions tl

and tz of T in S such that tt -)0 t2 in C DG(T)} Ct2 E S implies Ctl <s Ct2'

Lemma 1 Let (} be a set of flexible transactions that participate in global schedule S. If, for each

T in (}, CDG(T) is acyclic, then S is commit dependency preserving.

Proof: Since, for each T in (}, CDG(Ti,-<) is acyclic for all (Ti, -<) in T, for any (Ti,-<) in T,

CDG(Ti, -<) may be topologically sorted. Without loss of generality, let tll "', tm be the nodes of
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CDG(Ti, -<) and il, ... ,im be a permutation of 1,2,... ,m such that tjl' th, ... , tjm is a topological sort

of CDG(Tj, -<). This order ensures that the commitment orders of these subtransactions in global

schedule S conform to the definition of commit dependency preserving. To illustrate this, let t,

and tk be subtransactions in Tj such that tk --+c tl. By the definition of CDG(Tj, -<), tk --+ t, is an

edge in CDG(Ti, -<). Thus, tk must appear before tl in the topological sort tiJ, th, ... , tjm' H the

commitment order of all subtransactions in Tj follows the order of tjl' th' ... , tjm in global schedule

S, then the commitment of tk precedes that of t, in S. Hence, S is commit dependency preserving.

o

A well-formed flexible transaction in a commit dependency preserving global schedule may still

not be semi-atomic. For example, if two alternative retriable subtransactions commit simultane

ously, it will be impossible to undo the effects of one of those subtransactions. Since the effects of

both will remain, the execution of that flexible transaction cannot be semi-atomic. We define the

concept of F-recoverability on global schedules as follows:

Definition 6 (F-recoverability) Let 9 be a set oJ well-formed flexible transactions. A global

schedule S is F-recoverable if, for each flexible transaction T in g, no two pivot or retriable sub

transactions tt and t 2 which participate in different -<-partial orders commit in S simultaneously.

Theorem 1 Let T be a well-formed flexible transaction and eDG(T) be acyclic. If global schedule

S is commit dependency preserving and F-recoverable, then the semi-atomicity of T is preservable.

Proof: Without loss of generality, we assume that each -<-partial order of T contains at least one

pivot subtransaction. Following Lemma 1, we can assume that S is commit dependency preserving.

The proof proceeds by induction on a number n of -<-partial orders of T = {(Ti, -<), i=l, ... ,n}:

BMic step (n=l). T is a traditional global transaction. If every subtransaction of T1 commits,

then the atomicity of (T1 ,-<) is obviously preserved. Suppose t E T1 is aborted. Assume that t is

either compensatable or pivot. Since S is commit dependency preserving, by the definition of --+c,

all committed subtransactions of Tl in S must be compensatable. Hence, the committed partial

effects of T1 can be undone by the execution of the corresponding compensating subtransactions.

Now assume that t is retriable. Again, since S is commit dependency preserving, by the definition

of --+c, any subtransactions of Tt which are value dependent on t must not have committed in S.

Let t' E Tt , which is value dependent on t, also be executed but not yet committed in S. t' can

be aborted and resubmitted for execution if the retrial of t would result in inconsistency in the

execution of t l
• As our model assumes that value dependencies and -< are the only relationships

in effect among the subtransactions of each -<-partial order, t can thus be retried without creating

any multidatabase inconsistencies. Hence, the semi-atomicity of T is preservable.

Induction. Suppose for n = k(~ 1), the semi-atomicity of T is preservable. Consider n = k + 1.

Let (Ti' -<) be a -<-partial order of T. Consider the following situations:
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(1) If every subtransaction of Ti commits, then, since Sis F-recoverable, no pivot or retriable

subtransaction in another -<-partial order of T has committed. Thus, the effects of all committed

subtransactions of 'T which are not in Tj can be undone by the execution of the corresponding

compensating subtransactions. Consequently, the semi-atomicity of'T is preservable.

(2) Suppose now that t E Ti is aborted and t is either compensatable and normal or a critical

point. Since S is commit dependency preserving, by the definition of --io,a all committed subtrans

actions of Ti in S must be compensatable. Any of the partial effects of T; can be undone. The

problem then is reduced to preserving the semi-atomicity of less than k +1 -<-partial orders of T.
Thus, by the induction hypothesis, the semi-atomicity of 'T is preservable.

(3) Suppose now that t E Tj is aborted and t is retriable. Then, at least one pivot subtrans

action of (7i, -<) has committed. By the F-recoverability of S, we know that no pivot or retriable

subtransaction in another -<-partial order of T has committed. As wHh the proof in the basic step,

since S is commit dependency preserving, t can be retried until commitment. The situation then

resolves to either (1) or (4).

(4) Suppose now that t E Ti is aborted and t is abnormal. Since T is well-formed, by Definition

3, the execution of (Ti, -<) can be changed to another -<-partial order (Tj, -<) without resulting in

any database inconsistency. The problem then is reduced to preserving the semi-atomicity of less

than k +1 -<-partial orders of T. Thus, by the induction hypothesis, the semi-atomicity of 'T is

preservable. 0

We say that a flexible transaction is recoverable if its semi-atomicity is guaranteed to be pre

served. Based upon Theorem I, if a flexible transaction is well-formed and its commit dependency

graph is acyclic, then it is recoverable.

Because abnormal subtransactions are permitted, the concept of a well-formed flexible transac

tion greatly extends the scope of global transactions that can be specified in the MDBS environment

beyond that of the basic global transaction model proposed in [15}. This was demonstrated in Ex

ample 2, where a compensatable transaction (t4: reserve a rental car) could be attempted after

the pivot (t3: reserve and pay for a non-refundable plane ticket) because of the presence of an

alternative retriable transaction (ts: book the limo).

5 The Flexible Transaction Commit Protocol

In this section, we present a system model and a commit protocol for flexible transactions that

is based upon Theorem 1. It maintains semi-atomicity during the commit process through a

combination of retry and compensation techniques.
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Figure 3: The multidatabase system model.

The system model employed for this protocol is shown in Figure 3. We assume that the Global

Transaction Manager (GTM) submits flexible transaction operations to the local databases through

servers that are associated with each local local database system. This model assumes that, at any

time, only one -<-partial order of each flexible transaction is executing.8 The local databases also

may execute their own local transactions independently.

In the flexible transaction definition, we assume that a specification mechanism is provided

to allow users to identify to the system the type (compensatable, pivot, or retriable) of each

subtransaction. The compensating subtransactions are submitted together with the corresponding

cornpensatable subtransactions. The GTM ensures that the flexible transaction is well·formed

by finding all abnormal subtransactions which are blocking points and ensuring that each is also

a switching point such that all other switching points in the same switching set are abnormal

subtransactions and the successors of each switching point which are not ordered by -< relation

with the successors of another switching point are compensatable. Also, a commit dependency

graph is built for each flexible transaction and is checked for cycles. If the flexible transaction is

8 A multiple-threa.ds approa.ch which deals with multiple -.<-partial orders simultaneously can be extended frOlQ this

basic approach. Such an approach should not commit more than one pivot or retriahle subtransaction simultaneously

in different -<-partial orders of a flexible transa.ction or F-recoverability may be violated.
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not well-formed or if its commit dependency graph is cyclic, it is rejected.

As each subtransaction begins to execute, the type of the sub transaction is sent to the local

database server with the begin command. The operations belonging to the sub transaction are

submitted to an individual local data.base by its server as a part of a single subtransaction. The

completion of each submitted operation, as well as the begin and commit operations, are individ

ually acknowledged by the local database server to the GTM.

5.2 The Commit Protocol

In the proposed protocol, commitment of ftexible transactions is approached in a dynamic man

ner. Each subtransaction is permitted to commit locally as soon as possible after it has finished

executing. Such an approach is mandated by the possible presence of value dependencies among

subtransactions. If tl --+v t2 is a value dependency between two subtransactions tl and t2, then

the value t2 reads cannot be guaranteed until t 1 commits. The abort of t 1 may force the abort of

t2, resulting in a cascading abort. To avoid such cascading aborts, we restrict that if tl --+v t2 and

tl is retriable, then t2 is not submitted until tl commits. In contrast, the commit protocol defined

in [15] is static, in that it processes the commit operations of a global transaction following the

completed execution of all its subtransactions.

We assume that the GTM maintains state information for each subtransaction in the commit

dependency graph of its ftexible transaction. This state is inactive if the subtransaction has not

started its execution, is active if the sub transaction has started but not completed its execution,9 is

to_be_committedifthe subtransaction has completed its execution, is committed if the subtransaction

has committed, is aborted if the subtransaction has aborted, and is committed-reversed if both the

sub transaction and its compensating subtransaction have committed. Figure 4 shows the state

transition diagram for a subtransaction. In this figure, op is an operation submitted by the GTM,

and ack is an acknowledgement from a local database server.

The execution and dynamic commitment of a ftexible transaction is coordinated via message

exchanges. The message exchanges that occur during the commitment of a single subtransaction

t are shown in Figure 5. In this figure, items in italics are messages that are passed. Other items

indicate code that is executed when the message is received. Time proceeds from top to bottom.

When the last operation in a subtransaction is acknowledged, the GTM updates tIs subtrans

action sta.te to "to_be_committed." The GTM can thus commit the sub transaction as soon as is

consistent with the maintenance of semi-atomicity. Once all the subtransactions that precede t in

the commit dependency graph have committed, the GTM sends a commit(t) message to tis server,

which then tries to commit t in the local database. This commit is either successful (case (a) in

9That is, it hall not completed its read and write operations.
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Figure 4: State transitions for a subtransaction in a flexible transaction.

Figure 5) or unsuccessful (case (b) or (c)). IT it is successful, the final state of the subtransaction in

the GTM is committed. Otherwise, if is retriable, the subtransaction is retried by the local database

server until it eventually commits, and the final state of the subtransaction becomes committed.

Otherwise, it is set to aborted.

When an ack_abort(t) is received, the GTM seeks an alternative -<-partial order of the flexible

transaction. Such an alternative may be obtained directly, or one may be constructed by finding

alternatives of more remote predecessors and trying from an early point. In this paper, we assume

that the next alternative attempted by the GTM requires as little backtracking as possible and

that the alternatives must be tried in preference order. The following algorithm describes the

backtracking method:

Algorithm 1 (Backtracking Algorithm) Input: t, the aborted subtransaction.

1. If t is a switching point, find the switching set that includes t and that has the

fewest committed successors. Otherwise, find the closest predecessor t1 in the -<

partial order that is a switching point and then find the switching set that includes

t1 that has the fewest committed successors.

2. If a switching set is found, abort all subtransactions in the switching set as well as

all their successors that are in the active state and compensates for all subtrans

actions in the switching set and their successors that are in the committed state.

Attempt the next untried alternative in preference order.
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(a) Successful Subtransaction Commit

cal tab SGlobal Transaction Manaaer Lo D. ase erver

submit op(t) (last operation) do operation in local database
state(t)<-to_be_committed ock op(t)

commit(t) commit t in local database
state(t)<-committed ockJommit(t)

(b) Unsuccessful Compensatable or Pivot Subtransaction Commit

Global Transaction Manaaer Local Database Server

submit op(t) (last operation) do operation in local database
state(t)<-to_be_committed ock op(t)

commit(t) commit t in local database (aborted)
state(t)<-aborted ack_abort(t)

(c) Unsuccessful Retriable Subtransaction Commit

sGlobal Transaction Manaaer Local Database erver

submit op(t) (last operation) do operation in local database
state(t)<-to_be_committed ock op(t)

commit(t) commit t in local database (aborted)
retry t in the local database until

it commits

state(t)<-committed ock_commit(t)

Figure 5: Message passing sequences for commltted and aborted subtransactions. (a.) Commlt

succeeds in the local database. (b) Commit fails in the local database, subtransaction is not

retriable. (c) First commit fails in the local database, subtransaction is retriable.
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(a) Compensating for a Committed Subtransaction during Backtracking

Global Transaction Manaaer Local Database Server
compensate(t,ct) execute ct and

commit in local database

if aborted, retry the compensaUng
subtransaction until it commits

state(t)<-committed-reversed ack_commit(ct)

Aborting a Running Subtransaction during Backtracking

L aJ D S

(b)

Global Transaction Manaaer 00 atabase erver
abortlt) abort t in local database

stale(t)<-abcrted ock_abortlt)

Figure 6: Message passing sequences used during backtracking: (a) when compensation is required,

(b) when aborting is possible.

3. If no switching set is found, abort the flexible transaction by aborting all subtrans

actions in the -< -partial order that are in the active state and compensates for all

subtransactions in the -< -partial order that are in the committed state.

When a subtransaction must be compensated for, the compensating subtransaction may need

to be retried until it actually succeeds. When the compensating subtransaction commits, the state

of the original subtransaction in the GTM changes to committed-reversed. Thus, the execution of

the compensating subtransaction ct of subtransaction t is as shown in Figure 6.

When all subtransactions in the currently executing -<-partial order of the flexible transaction

enter the committed state, the flexible transaction commits. All its subtransactions which are

not in the committed -<-partial order should be in either inactive, aborted, or committed-reversed

states. Otherwise, there is no committed -<-partial order, the flexible transaction aborts. In this

case, all its subtransactions should be in either inactive, aborted, or committed-reversed state.

5.3 Discussion

The flexible transaction commit protocol preserves the semi-atomicity of the flexible transactions

in a multidatabase. This is shown as follows:

Theorem 2 The flexible transaction commit protocol ensures that the semi-atomicity of flexible

transactions is preserved, provided that the flexible transactions are well-formed and have acyclic

commit dependency graphs.
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Proof: Let T = {(Ti, -<), i = I, ... , k} be a well-formed flexible transaction and CDG(T) is acyclic.

Let (Ti.-<) of T be currently in execution. Because the GTM issues commits for the subtrans

actions of Tj in the order that is defined in CDG(T), the global schedule is commit dependency

preserving. When the GTM receives an acLabort(t), there are two cases to be considered. IT t

is either compensatable and normal or a critical point, then any partial effects of (Ti.-<) can be

undone. Based upon the backtracking algorithm, the GTM either changes the execution ofT to an

alternative -<-partial order (Tj, -<) by properly undoing some of the partial effects of (Ti,-<) or if no

alternative exists, it undoes all partial. effects of (Ti, -<) and aborts the entire flexible transaction. H

t is abnormal, then, since T is well-formed, the backtracking algorithm automatically changes the

execution of T to an alternative -<-partial order (Til -<). In either case, the backtracking algorithm

guarantees that no partial effects of (Ti, -<) remain permanent. When the GTM receives commit

acknowledgement for all subtransactions of Ti, then T is determined to be committed. At this

moment, no partial effects of any other -<-partial orders remain permanent in the multidatabase.10

Hence, the execution of T satisfies Definition 2. 0

This commit protocol also is effective with local databases that accept only transactions that

are executed and committed as a unit. However, in such instances, the submission and execution

of the subtransaction on the local database must occur at the time it is expected to commit. Thus,

the inactive, active, and to_he_committed states are all collapsed into a single to_be_committed state,

and the transition to the committed state occurs when the commit acknowledgment for the entire

subtransaction is received. If the transaction aborts, then the transition is to the aborted state.

Both the GTM commit protocol described in [15J and the flexible transaction commit protocol

outlined here prevent the severe blocking of local transactions that may be caused by the 2PC

protocol. As the flexible transaction commit protocol permits each sub transaction to commit dy

namically without waiting for the other subtransactions of the same flexible transaction to complete

their execution, it generates even less blocking of local transactions than does the GTM commit

protocol developed in [15]. However, to prevent cascading aborts, value dependencies may cause

the execution of some subtransactions to be delayed by retriable subtransactions upon which they

are value dependent, a complication not present with the GTM commit protocol. As a result, the

GTM commit protocol may achieve better execution performance for the more restricted class of

input global transactions with which it deals.

6 Conclusions

Global transaction management in an error-prone MDBS environment has been recognized as a

substantial and as yet unresolved issue in those instances in which the component local database

IONote ~hat F.recoverability is also guaranteed in the global schedule.

22



systems do not support prepare-to-commit states [20]. We have advanced a theory which facilitates

the preservation of semi-atomicity, a weaker formulation of flexible transaction atomicity which is

appropriate to an MDBS environment in which local database systems are required to maintain

only serializability and recoverability. This theory includes definitions of a fundamental transaction

model and of the semi-atomicity property of flexible transactions and the classification of those

flexible transactions that can be executed in the presence of failures.

The preservation of the weaker property of semi-atomicity renders flexible transactions more

resilient to failures than are traditional global transactions. This property is preserved through a

combination of the compensation and retry approaches. Local prepare-to-commit states are thus

not required. The construction of recoverable flexible transactions that are executable in the error

prone MDBS environment demonstrates that the flexible transaction model indeed enhances the

scope of global transaction management beyond that offered by the traditional global transaction

model. The design of the proposed protocol is currently being investigated as part of the InterBase

project at Purdue University.

It is worthy of note that the proposed theory and protocol can be applied as well to the tradi

tional distributed database environment. Using flexible transactions I the retry and compensation

techniques can prevent the severe blocking that may be caused by the 2PC protocol. Compensating

subtransactions may be subject to fewer restrictions in such an environment.

This discussion has addressed solely the issues relevant to the consistency and reliability of a

single flexible transaction. A complete exploration of the concurrency control of flexible transactions

must examine the effect of compensation on the concurrent execution of such transactions. The

results of these investigations are presented elsewhere.
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