Ensuring Termination by Typability *

Yuxin Deng! and Davide Sangiorgi?

! INRIA and University Paris 7, France
2 University of Bologna, Italy

Abstract. A term terminates if all its reduction sequences are of finite length. We
show four type systems that ensure termination of well-typed w-calculus processes.
The systems are obtained by successive refinements of the types of the simply typed
m-calculus. For all (but one of) the type systems we also present upper bounds to the
number of steps well-typed processes take to terminate. The termination proofs use
techniques from term rewriting systems.

We show the usefulness of the type systems on some non-trivial examples: the encodings
of primitive recursive functions, the protocol for encoding separate choice in terms of
parallel composition, a symbol table implemented as a dynamic chain of cells.

1 Introduction

A term terminates if all its reduction sequences are of finite length. As far as programming
languages are concerned, termination means that computation in programs will eventually
stop. In computer science termination has been extensively investigated in term rewriting
systems [7, 5] and A-calculi [9, 4] (where strong normalization is a synonym more commonly
used). Termination has also been discussed in process calculi, notably the 7-calculus [17, 23],
a formalism widely used to address issues related to concurrency.

Indeed, termination is interesting in concurrency. For instance, if we interrogate a process,
we may want to know that an answer is eventually produced (termination alone does not
guarantee this since other security properties e.g. deadlock-freedom [12] are also involved,
but termination would be the main ingredient in a proof). Similarly, when we load an applet
we would like to know that the applet will not run for ever on our machine, possibly absorbing
all the computing resources (a ‘denial of service’ attack). In general, if the lifetime of a process
can be infinite, we may want to know that the process does not remain alive simply because
of non-terminating internal activity, and that, therefore, the process will eventually accept
interactions with the environment.

Languages of terminating processes are proposed in [27] and [22]. In both cases, the proofs
of termination make use of logical relations, a well-known technique from functional languages.
The languages of terminating processes so obtained are however rather ‘functional’; in that
the structures allowed are similar to those derived when encoding functions as processes.
In particular, the languages are very restrictive on nested inputs (that is, the possibility of
having free inputs underneath other inputs), and recursive inputs (that is, replications la(x).P
in which the body P can recursively call the guard a of the replication). Such patterns are
entirely forbidden in [27]; nested inputs are allowed in [22] but in a very restricted form. For
example, the process

a(z).1b.z | ac (1)

* Work partially supported by the EU project PROFUNDIS and EU Integrated Project Sensoria.
An extended abstract of this paper has been presented at IFIP TCS 2004.

is legal neither for [27] nor for [22]. The restrictions in [27, 22] actually rule out also useful
functional processes, for instance

rY la(n,b). if n =1 then b(1) else ve(a{n — 1,c) | c(m).b{m * n)) (2)

which represents the factorial function. See Section 7 for more discussions on related work.

In this paper, we consider several type systems and well-typed processes under each system
are ensured to terminate. First, in Section 3, we present a core type system, which adds level
information to the types of the simply typed m-calculus. Then, in Sections 4 to 6 we show
three refinements of the core system. Nested inputs and recursive inputs are the main patterns
we focus on. For all the type systems (except for the second one, which can capture primitive
recursive functions) we also present upper bounds to the number of steps well-typed processes
take to terminate. Such bounds depend on the structures of the processes and on the types of
the names in the processes. We show the usefulness of the type systems on some non-trivial
examples: the encodings of primitive recursive functions, the protocol for encoding separate
choice in terms of parallel composition from [18, 23], a symbol table implemented as a dynamic
chain of cells from [11, 21].

Roughly, for each type system, to prove termination we choose a measure which decreases
after finite steps of reduction. To compare two measures, we exploit lezicographic and multiset
orderings, well-known techniques in term rewriting systems [7, 6]. For the core type system,
the measure is just a vector recording, for each level, the numbers of outputs (unguarded by
replicated inputs) at channels with that level in the type. For the extended type systems, the
ideas are similar, but the measures become more sophisticated since we allow them to decrease
after some finite (unknown and variable) number of reductions, up-to some commutations of
reductions and process manipulations.

2 The simply typed m-calculus

We begin with a brief overview of the simply typed m-calculus [23]. We presuppose an infinite
set A of names and let a,b,...,x,¥, ... range over it. A channel is a name that may be used
to engage in communications. As it is customary in the mw-calculus, we make no syntactic
difference between channels and variables. The values, denoted by v, w, are the objects that
can be exchanged along channels.

In this work we only study type systems a la Church, and each name is assigned a type a
priori. We write = : T to mean that the name x has type T. A judgment - P says that P is a
well-typed process, and - v : T says that v is a well-typed value of type T'. The syntax of types
and processes as well as the typing rules are shown in Table 1. We use the usual constructors
of monadic w-calculus: inaction, input, output, parallel composition, sum, restriction and
replication. In the input prefix a(b) name a is the subject and name b is the object of the
prefix, similar for the output prefix ab. Free names, bound names, names of process P and
the subject of a prefix «, written fn(P), bn(P), n(P) and subj(a) respectively, are defined
in the standard way. We also assume a-conversion implicitly in order to avoid name capture
and keep the uniqueness of every bound name. Substitutions, ranged over by o, ¢, 0;, - -, are
maps from names to names. The transition rules are presented in the so-called early style
in Table 2, where « ranges over actions. The symmetric rules of parl, coml and suml are
omitted. Sometime we use the notation == which is an abbreviation for =>—">=, where
— is the reflexive and transitive closure of ——.

For simplicity we only consider two basic types: Bool, for boolean values, and Nat, for
natural numbers. Values of basic types are said to be of first-order because, unlike channels
(names of link type), they cannot carry other values. We also assume some basic operations

ST=V | L
V=1L ‘ Bool | Nat
L=tV

VW =T | true, false ‘ 0,1,2,---

P,Q:=0 | a@.P | @w.pP | PP | P+P | vaP | ta@).P

a: 4T x:T FP

T-in Fa(@).P T-out
FP FQ

T—par W T-sum
a: 4T x:T FP

Torep Fla(z).P

types

value types

link types
values
processes
a: 4T +Fv:T FP .
Fav.P Tnil 5
FP FQ a:L FP
FP+Q T-res = 0p

Table 1. Processes, types and typing rules of the simply typed m-calculus

a(z).P =% P{v/z}

PP bn(a)Nfn(Q) =0
parl o
PlQ—P|Q
« /
res P—>Pa a&nl(a)
vaP — vaP
« /
suml — L —1 _
P+Q P

out —————
av.P — P
com1 £ e pr Q5 Q bnm(@ =0
PQ— (wb)(P'| Q)
(vbyav ., ~
open P —= P cgejjn(v) —{b,a}
vcP (Vﬂw Jad
rep

la(z).P “%la(z).P | P{v/xz}

Table 2. Transition rules

on first-order values. For example, we may use addition (n + m), subtraction (n —m), mul-
tiplication (n * m) for Nat expressions. To avoid being too specific, we do not give a rigid
syntax and typing rules for first-order expressions. We just assume a separate mechanism for
evaluating expressions of type Nat.

Next we introduce some notations about vectors, partial orders and multisets. We write
0; as an abbreviation of a vector (ng,ng—1,---,n1) where k > 1,n; = 1 and n; = 0 for all
j#i(1<1i,7<k),and 0 for a vector with all 0 components. The binary operator sum can

be defined between two vectors. Let ¢ def (Mg, N1, N1, P2 def (my,my_1,---,mq) and
k > 1. First we extend the length of ¢y to k by inserting (k —) zeros to the left of m; to get
an equivalent vector 5. Then we do pointwise addition over two vectors with equal length.
We also define an order between two vectors of equal length as follows: (ng,ng_1, -+, n1) <
(Mg, mp—1,---,mq) iff 3 <k, n; <m; and Vj > i, nj =m;.

Let S be a set. A (finite) multiset M with elements from S is a function M : S +— N such
that {s € S | M(s) > 0}, the set of elements of M, is finite. Following [3], we write a multiset
M over S in the form M = [z1,...,x,], where x; € S for 1 <i <n (when n =0 we get the
empty multiset []). We define membership for multisets by s €,y M iff M(s) > 0. We use
(M M) for the union of M and M, defined by

(M M')(s) = M(s) + M'(s).

Let > be a strict partial order on S. We extend > to a strict partial order >,,,; on Sy, the
set of multisets over S, as follows: >,,,; is the smallest transitive relation satisfying

if s > x for all & €,y M’, then M W [s] >0 MW M’

for all s € S, and M, M’ € S,,;. The intuition is that a multiset becomes smaller in the
sense of >, by replacing one or more of its elements by any finite number (including zero)
of smaller elements. It can indeed be shown that if > is well-founded then so is >, [3].

In this paper we focus our attention to the termination property of closed processes, i.e.,
processes without free names of Bool or Nat types. (This restriction is mainly imposed for the
termination proof of our second type system — cf. Theorem 7. For other three type systems,
our proofs work for open processes as well.)

3 The core system: the simply typed m-calculus with levels

Our first type system for termination is obtained by making mild modifications to the types
and typing rules of the simply typed w-calculus. We assign a level, which is a natural number,
to each channel name and incorporate it into the type of the name. Now the syntax of link
type takes the new form:

L:=4"V link types
n 1,2,

levels

The typing rules in Table 1 are still valid (by obvious adjustments for link types), with
the exception of rule T-rep, which takes the new form:

a:f"T z:T P Vbe os(P),lv(b) <n

T-rep Ha(x).P

where 0s(P) is a set collecting all names in P which appear as subjects of those outputs that
are not underneath any replicated input (we say this kind of outputs are active). Specifically,
0s(P) is defined inductively as follows:

o9}
]
=N

0s(0) = 0 os(av.P) def {a} Uos(P)
os(la(z).P) Ly os(P | Q) def 0s(P) U o0s(Q)
os(a(z).P) &ef os(P) 0s(P + Q) def 0s(P) Uos(Q)
os(vaP) ef os(P

In the above definition we treat bound names and free names in the same way because of
the observation that vaP terminates iff P terminates. The function lv(b) calculates the level
of channel b from its type. If b : T then lv(b) = n. Note that we do not need to give any
level information to names of basic types, because those names can never appear as subjects
of prefixes.

The purpose of using levels is to rule out recursive inputs as, for instance, in the process

a|la.b |'b.a (3)

where the two replicated processes can call each other thus producing a divergence. Our type
system requires that in any replication la(x).P, the level of a is greater than the level of any
name that appears as subject of an active output of P. In other words, a process spawned
by the resource la(z).P can only access other resources with a lower level. Process (3) is
therefore illegal because la.b requires lv(a) > lv(b) while !b.a expects lv(b) > lv(a). For the

same reason, for the process P def a(z).!z.¢ |lc.b to be well typed it is necessary that names
received along channel a have a higher level than lv(c). Therefore P | ab is illegal, since, due
to the right component of P, we have lv(c) > lv(b). As a final example, consider the process

alla.(¢|'b.a). (4)

In this process, there is an output at a underneath the replication at a. The output at a,
however, is not active in the body ¢ |!b.a of the replication because it is located underneath
another replication. Therefore this process is typable by our type system. We call 7 this
type system and write 7 F P to mean that P is a well-typed process under 7. The subject
reduction theorem of the simply typed m-calculus can be easily adapted to 7.

Before proceeding to prove the termination property of well-typed processes, we need
some preliminary notations. If name a appears as the subject of some active output of P and
lv(a) = i, then we say a has at least one output (subject) occurrence at level i in P. It does
not matter whether a is a free or bound name. For example, let

def

Q = (vd : t'Nat)(a(x).b(y).(zy | ¢d.cd.d3)).

It is easy to see that @ is a well-typed process if the types of a,b and ¢ are #3#'Nat, #3Nat
and #24!Nat, respectively. In this process x and d have one output occurrence at level 1
respectively, ¢ has two output occurrences at level 2, a and b have zero output occurrence
at any level. Here we do not care about the identity of names that have output occurrences:
what we are interested in is the number of output occurrences of names belonging to the
same level, and this for each level. For every well-typed process P, we use n; to stand for
the number of output occurrences at level i; hence n; is simply calculated by scanning the
process expression. Then the weight, wt(P), of a process P is the vector (ng,ng_1,-+-,n1),
with k representing the highest level on which the process has non-zero output occurrence.
As to the process @ defined above, it has the weight wt(Q) = (2,2). Formally we have the
following definition of wt(P). It is related to the set os(P) since we only count the levels of
names appearing in os(P).

=%
e}
N

def

wt(0) = 0 wt(av.P) = wt(P) + Opy(q)
wt(la(z).P) < 0 wt(P | Q) Y wt(P) + wt(Q)
wt(a(z).P) & wi(P) wt(P + Q) ¥ maz{wt(P), wt(Q)}
wt(vaP) ef wt(P)

The next lemma says that weight is a good measure because it decreases at each reduction
step. This property leads naturally to the termination theorem of well-typed processes, by
the well-foundedness of weight.

Lemma 1. Suppose T + P and P — P’, then wt(P') < wt(P).

Proof. By induction on transitions. The cases are simple. We only need the following results:

1. If T+ Pand P =5 P, then wt(P') < wt(P) 4 Op,(4);
2. 7T+ Pand P-2% P', then wt(P') < wt(P) — Opy(a)-

Theorem 2. If T + P, then P terminates.
Proof. By induction on the weight of well-typed processes.

— Base case: All processes with weight 0 are terminating because they have no active output.
— Inductive step: Suppose all processes with weights less than wt(P) are terminating. We

show that P is also terminating. Consider the set I = {4 ‘ P -5 P;}. For each i € I we
know that: (i) 7 F P; by the subjection reduction property of 7, (ii) wt(P;) < wt(P) by
Lemma 1. So each such P; is terminating by induction hypothesis, which ensures that P
is terminating.

0O

The type system 7 provides us with a concise way of handling nested inputs. For example,
let a : §'4'Nat, b : #?Nat, c : $!Nat, then process (1) is well-typed and therefore terminating.
Similarly, process (4) is well-typed if the types of a,b and c are f#?Nat,fNat and f'Nat,
respectively.

Lemma 1 implies that the weight of a process gives us a bound on the time that the
process takes to terminate. Let the size of a process be the whole number of literals in the
process expression, then we have the following result.

Proposition 3. Let n and k be the size and the highest level in a well-typed process P,
respectively. Then P terminates in polynomial time O(n*).

Proof. Let wt(P) be (ng,...,n1), thus Zle n; < n. The worst case is that when an active
output of level 7 is consumed, all (less than n) new active outputs appear at level i — 1. Hence
one output occurrence of level i gives rise to at most f(i) steps of reduction, where
. 1 ifi=1
1) = {1+n*f(i—1) ifi>1.

In other words,

i S S
f(l)zjzz:on]: 3

Since the weight of P is (ng,...,n1), the length of any reduction sequence from P is bounded
k .
by > iy mix f(2). As

k k k n(nk — 1)
Zni*f(i) Szm*f(k) = (Z"z‘)*f(k) <nx f(k)= 1
i=1 i=1 i=1
we know that P terminates in time O(n*). O

As a consequence of Proposition 3 we are not able to encode the simply typed A-calculus
into the m-calculus with type system 7, according to the known result that computing the
normal form of a non-trivial Ad-term cannot be finished in elementary time [24, 14]. We shall see
in the next section an extension of 7 that makes it possible to encode all primitive recursive
functions (some of which are not representable in the simply typed A-calculus).

4 Allowing limited forms of recursive inputs

The previous type system allows nesting of inputs but forbids all forms of recursive inputs
(i.e. replications la(z).P with the body P having active outputs at channel a). In this and
the following sections we study how to relax this restriction.

4.1 The type system

Let us consider a simple example. Process P below has a recursive input: underneath the
replication at a there are two outputs at a itself. However, the values emitted at a are “smaller”
than the value received. This, and the fact that the “smaller than” relation on natural numbers
is well-founded, ensures the termination of P. In other words, the termination of P is ensured
by the relation among the subjects and objects of the prefixes — rather the subjects alone as
it was in the previous system.

P jéf a(10) |la(n). if n > 0 then (a(n — 1) | a(n — 1))

— a(9) | a(9) |la(n). if n > 0 then (a(n — 1) | a{n — 1))

For simplicity, the only well-founded values that we consider are naturals. But the arguments
below apply to any data type on whose values a well-founded relation can be defined.

We use function out(P) to extract all active outputs in P. The definition is similar to that
of 0s(P) in Section 3. The main difference is that each element of out(P) is exactly an output
prefix, including both subject and object names. For example, we have out(la(z).P) = () and
out(av.P) = {av} U out(P).

In the typing rule, in any replication !a(x).P we compare the active outputs in P with the
input a(x) using the relation < below. We have that bv < a(x) holds in two cases: (1) b has a
lower level than a; (2) b and a have the same level, but the object v of b is provably smaller
than the object z of a. For this, we assume a mechanism for evaluating (possibly open) natural
number expressions that allows us to derive assertions such as x — 29 4+ 4 % 7 < x. We should
stress that this evaluation mechanism is an orthogonal issue, completely independent from
our type system; thus we do not include it in the type system. We adopt an eager reduction
strategy, thereby the expression in an output is evaluated before the output fires.

Definition 4. Let a : S and b : #™T. We write bv <a(x) if one of the two cases holds: (i)
m<n; (it)m=mn, S=T =Nat and v < x.

By substituting the following rule for T-rep in Table 1, we get the extended type system
7', which is parametric w.r.t. the relation <. The second condition in the definition of < allows
us to include some recursive inputs and gives us the difference from 7.

a:t"T x:T P VYbv € out(P),bv<a(z)

T-rep Ha(x).P

The termination property of 7’ can also be proved with a schema similar to the proof
in last section. However, the details are more complex because we need to be clear about
how the first-order values in which we are interested evolve with the reduction steps. So we
use a measure which records, for each output prefix, the value of the object and the level
information of the subject. More precisely, the measure is a compound vector, which consists
of two parts: the Nat-multiset and the weight, corresponding to each aspect of information
that we wish to record.

To a given process P and level ¢, with 0 < i < k and k the highest level in P, we assign a
unique Nat-multiset Mp; = [n1,-- -, ny], with n; € NU{oo} for all j <. (Here we consider co
as the upper bound of the infinite set N.) Intuitively, this multiset is obtained as follows. For
each active output bv in P with [v(b) = i, there are three possibilities. If v is a constant value
(v € N), then v is recorded in Mp;. If v contains variables of type Nat, then a co is recorded
in Mp;. Otherwise, v is not of type Nat and thus contributes nothing to the Nat-multiset.
For instance, suppose a : §3Nat, b : §2Nat, ¢ : §!Nat and P % a(1) | a(1) | b(2) |'a(n).b{n +1) |
b(n).¢(n), then 7' F P and there are three Nat-multisets: Mp3 = [1,1], Mpo = [2] and
Mp 1 = [o0]. Formally, we define Mp; as follows:

def

def
MOJ' = H MVaP,i = MP,i
def def
Migzy.pi = [] Mpigi = Mpi Mg,
def def
Mgy pi = Mpj Mpigi= Mpit Mg,

Mp;¥v] ifa:fNat and v € N
Mp; o] if a:tNat and fon(v) # 0
Mp,; otherwise

def
M&U.P,'L =

where fon(v) is the set of variables of type Nat. We combine a set of Nat-multisets {Mg,; |
0 < i < k} with the weight of @ (as defined in the previous section), wt(Q) = (ng, -, n1),
so as to get a compound vector tg = ((Mqk;nk), -, (Mg,1;n1)). For the above example
wh(P) = (2,1,1), s0 tp = (([1, 1];2), ([21: 1), ({oc]: 1)).

The order < is extended to compound vectors as follows.

Definition 5. Suppose tp = (vg,---,v1) and tg = (ug,---,u1), where v; = Mp;;n; and
u; = Mgi;n for 0 <i<k.

1. v; < u; Z'fMRi <mul MQJ' \Y (MPJ‘ = MQJ‘ An; < 77,2)
2. tp <tg if B <k, v; <u; and Vj > i, v; = uy.

The above definition should be self-explanatory because we have followed the usual way
of extending orderings to multisets, products and strings. Using compound vectors as the
measure, we can build, with similar proof schemas, the counterparts of Lemma 1 and Theorem
2.

Lemma 6. I[f 7'+ P and P —— P’ then tp: < tp.
Proof. By induction on transitions. O

Theorem 7. If 7'+ P then P terminates.

Proof. The result follows from Lemma 6. O

Note that the measure used here is much more powerful than that in Section 3. With
weights, we can only prove the termination of processes which always terminate in polynomial
time. By using compound vectors, however, as we shall see in Section 4.2, we are able to
capture the termination property of some processes which terminate in time O(f(n)), where
f(n) a is primitive recursive function. For example, we can write a process to encode the
repeated exponentiation, where E(0) =1, E(n+ 1) = 2E(") | Once received a number n, the
process does internal computation in time O(FE(n)) before sending out its result.

Surprisingly, the proof of Theorem 7 is not much more complicated than that of Theorem 2.
This is due to the well-designed compound vectors that combine lexicographic and multiset
orderings. See e.g. [6, 7] for the usefulness of the two orderings in term rewriting systems.

4.2 Example: primitive recursive functions

For simplicity of presentation, we have concentrated mainly on monadic communications. It
is easy to extend our calculus and type system to allow polyadic communications and an if-
then-else construct ® (which are needed in many applications). For instance, with polyadicity,
for b(y) < a(Z) to hold, there are two possibilities: (i) either the level of a is higher than
that of b, or (ii) the two names have the same level but at least one argument of first-
order type decreases its value (y; < x;), and the other first-order arguments do no increase
(y; < xj). By appropriately modifying the definition of Nat-multiset, we can show that
Theorem 7 still holds. For conditionals, we can extend the definition of weight in this way:
wt(if b then P else Q) = max{wt(P), wt(Q)}.

The advantage of 7’ over 7 lies in the fact that primitive recursive functions can now be
captured, according to the standard encoding of functions as processes [16, 23].

Definition 8. (Primitive recursive functions [1]) The class of primitive recursive functions
consists of those functions that can be obtained by repeated application of composition and
primitive recursion starting with (1) the successor function, S(z) = x+1, (2) the zero function,
N(z) = 0, (8) the generalized identity functions Ui(") (X1, -, 2n) = m;, with the generating
rules for composition and primitive recursion being

1. Composition — h(xy,---,2n) = f(91(x1, -, 2Zn), g (T1, -+, Tn))
2. Primitive recursion

{T(O,xz,-'wxn)=f(332,'~',$n)

r(xy + 1, z0,-,xn) = g1, 7(@1, -+, Xp), Tay -+, Tyy)

Proposition 9. All primitive recursive functions can be represented as terminating processes
in the m-calculus.

Proof. The representation follows from Milner’s encoding of A-terms into m-processes [16]. In
a similar way (see e.g. [16, 23]) can the correctness of the following five encodings be verified.
We represent a function f(Z) as a process F,, which has replicated input like !p(z,7).R,
where name p is called the port of F, with type T, ,, = ™ (m, f"Nat) where m > n. After
receiving via p some arguments and a return channel r, process R does some computation,
and finally the result is delivered at r. For the three basic functions, the results are returned
immediately. Below we write 7#(v) instead of 7v to highlight the output value v.

3 For convenience of presentation, in the rest of this paper we sometimes use an if-then-else construct.
Its typing rules are straightforward (similar to those of the sum construct).

def

1. The zero function N, =lp(x,r).7(0).
2. The successor function Sp d§f!p(x, r).7{z + 1).
3. The identity functions Uip déf!p(%,). {x;).

By assigning to p the type T3 1, processes Ny, S, and U;, defined above are typable in
our core type system 7, thus typable in 7".

4. Composition Suppose that G;,, is defined for g; with the type of p; being Ty, »,
for all 1 <14 < m, and Fj, is defined for f with the type of ¢ being T}, . By induction
hypothesis, they are well typed in 7’. Then we can define H), for h as:

def ~ ~— o~ o~
Hy, = p(@,7r).(vprq)(Gip, | p21(@,7m1) | -+ | G,y | DT 7m)

[r1(yn)- - rm(Ym)-4(9,7) | Fo)

Let m” = max{mq,---,mpy, m'} + 1 and give name p the type T, ,,». It can be easily
checked that process H,, is typable in 7.

5. Primitive recursion Suppose that Fy is defined for f with the type of g being Ty, .,
and G is defined for g with the type of p’ being T}y, n,. By induction hypothesis they
are well typed in 7’. We define R, as follows.

R, def Ip(Z, 7). if x1 =0 then (vq)(Fy | §{za,- -, Tn, 1))
else (vr')(p(x1 — 1, @2, -+, T, 1)
| Tl(y)‘(yp/)(GP/ | pl<1.1 -]-7ya T, 7xnar>))

Let m = max{mi,ma} + 1 and give type Ty, n, to p. It is easy to see that H, is well
typed in 7. O

For the process F in (2), which represents the factorial function, it is typable if we give
name a the type #?(Nat, #!Nat). By contrast, the encoding of functions that are not primitive
recursive may not be typable. An example is Ackermann’s function. See Appendix A for more
detailed discussions.

5 Asynchronous names

In this section we start a new direction for extending our core type system of Section 3: we
prove termination by exploiting the structure of processes instead of the well-foundedness of
first-order values. The goal of the new type systems (in this and in the next section) is to gain
more flexibility in handling nested inputs. In the previous type systems, we required that in
a replicated process la(z).P, the highest level should be given to a. This condition appears
rigid when we meet a process like la.b.a because we do not take advantage of the level of b.
This is the motivation for relaxing the requirement. The basic idea is to take into account
the sum of the levels of two input subjects a,b, and compare it with the level of the output
subject a. However, this incurs another problem. Observe the following reduction:

PYa|blaba
b ballaba
5 allab.a

The weight of P does not decrease after the first step of reduction (we consume a copy of a

but liberate another one). Only after the second reduction does the weight decrease. Further,

P might run in parallel with another process, say Q déf!b.b.b.(l; | b), that interferes with P by

requiring a communication at b and prevents the second reduction from happening:

10

PlQ
s b|ballabalQ
s ballaba|bb.(b|b)| Q.

This example illustrates two new problems that we have to consider: the weight of a process
may not decrease at every step; because of interferences and interleaving among the activities
of concurrent processes, consecutive reductions may not yield “atomic blocks” after which the
weight decreases. (The weight of P | Q) increases after two steps of reduction.)

In the new type system we allow the measure of a process to decrease after a finite number
of steps, rather than at every step, and up-to some commutations of reductions and process
manipulations. This difference has a strong consequence in the proofs. For technical reasons
related to the proofs, we require certain names to be asynchronous.

5.1 Proving termination with asynchronous names

A name a is asynchronous if all outputs with subject a are followed by 0. That is, if av.P
appears in a process then P = 0. A convenient way of distinguishing between synchronous
and asynchronous names is using Milner’s sorts [15]. Thus we assume two sorts of names,
AN and SN, for asynchronous and synchronous names respectively, with the requirement
that all names in AN are syntactically used as asynchronous names. We assume that all
processes are well-sorted in this sense and will not include the requirements related to sorts
in our type systems. (We stick to using both asynchronous and synchronous names instead
of working on asynchronous m-calculus, because synchronous m-calculus is sometimes useful
— see for instance the example in Section 6.2. However, all the results in this paper are valid
for asynchronous m-calculus as well.)

We make another syntactic modification to the calculus by adding a construct to represent
a sequence of inputs underneath a replication:

ku=ar(xr). - an(xy,) n>1and Vi <n,a; € AN
P:=...|k.P

This addition is not necessary — it only simplifies the presentation. It is partly justified by
the usefulness of input sequences in applications. (It also strongly reminds us of the input
pattern construct of the Join-calculus [8]). We call x an input pattern. Note that all but the
last name in x are required to be asynchronous. As far as termination is concerned, we believe
that the constraint — and therefore the distinction between asynchronous and synchronous
names — can be lifted. However, we do not know how to prove Theorem 10 without it.

To avoid problems of ambiguity in input patterns (for example, in the process !a.b.0, the
ambiguity is whether the input pattern is a or a.b 4), some extra bracketing can be used. For
instance, !(a.b).0 would indicate that the input pattern is a.b. We will not do so, because in
our uses the input pattern will always be clear from the context.

The usual form of replication la(x).P is now considered as a special case where the in-
put pattern has length 1, i.e., it is composed of just one input prefix. We extend the def-
inition of weight to input patterns by taking into account the levels of all input subjects:
wt(ay (z1). - .an(zy)) def 0p, + - -+ 0, where lv(a;) = k;. The typing rule T-rep in Table 1
is replaced by the following one.

b F P wt(k) = wt(P)

T-re Flr.P

4 Note that the choice of input prefixes is relevant for typing. For example, the process !(a.b).@ is
typable in our type system, but !(a).b.a is not.

11

Intuitively, this rule means that we consume more than what we produce. That is, to
produce a new process P, we have to consume all the prefixes from a;(x1) to a,(z,) on the
left of P, which leads to the consumption of corresponding outputs at aq,---,a,. Since the
sum of weights of all the outputs is larger than the weight of P, the whole process has a
tendency to decrease its weight. Although the idea behind this type system (7”) is simple,
the proof of termination is non-trivial because we need to find out whether and when a whole
input pattern is consumed and thus the measure decreases. The rest of the subsection is
devoted to proving the following theorem.

Theorem 10. If 7"+ P then P terminates.

Below we briefly explain the structure of the proof and proceed in four steps. Firstly, we
decorate processes and transition rules with tags, which indicate the origin of each reduction:
whether it is caused by calling a replicated input, a non-replicated input or it comes from an
if-then-else structure. This information helps us to locate some points, called landmarks, that
are reached by consuming the last input prefix of an input pattern in a reduction path. If a
process performs a sequence of reductions that are locally ordered (that is, all and only the
input prefixes of a given input pattern are consumed), then the process goes from a landmark
to the next one and decreases its weight (Lemma 12). (This is not sufficient to guarantee
termination, since in general the reductions of several input patterns may interleave and
some input patterns may be consumed only partially.) Secondly, by taking advantage of the
constraint about asynchronous names, we show a limited form of commutation of reductions
(Lemma 13). Thirdly, by commuting consecutive reductions, we adjust a reduction path and
establish on it some locally ordered sequences separated by landmarks. Moreover, when an
input pattern is not completely consumed, we perform some manipulations on the derivatives
of processes and erase some inert subprocesses. Combining all of these with the result of Step
1, we are able to prove the termination property of tagged processes (Lemma 14). Finally,
the termination of untagged processes follows from the operational correspondence between
tagged and untagged processes (Lemma 11), which concludes our proof of Theorem 10.

We begin with introducing the concepts of atomic tag, tag and tagged process. Atomic
tags are names from a separate infinite set N’, which is disjoint from the set A/ used for
constructing untagged processes. We use the function p : N’ — N to associate every atomic
tag with a natural number. Note that we require AN to be an infinite set so that it can always
supply fresh atomic tags as we need. We let 1,1, 1, - - - range over atomic tags and e stand for
a special atomic tag by setting p(e) = 0. A tag is a pair (I,n) where [is an atomic tag and n
is an integer with n < p(I). We let t,t/,- - - range over tags and write € as the abbreviation of
the special tag (¢,0). The only difference between tagged processes and untagged ones is that
the former gives tags for all non-replicated inputs.

Pu=-..|ad(x).P

Note that we do not give tags to input patterns. A tagged process P is regular if the only tag
that appears in P is the special tag €. On the contrary, if there is a tag ¢t with ¢ # € in P, then
P is irregular. We reserve the tag ¢’ for the transition rules if-t and if-f (see Table 3). Unlike
€, € only appears in transitions, not in tagged processes. We define the operator erase(-) to
erase all tags in a tagged process so as to get an untagged process. Let P be a tagged process.
We define wt(P) as wt(erase(P)), and we write 7" - P if 7" + erase(P). The transition
rules for tagged processes are the same as in Table 2 except for rules in, com1, rep, if-t and if-f,
which are displayed in Table 3. In the rule rep, a fresh atomic tag [is introduced to witness
the invocation of the replicated input !x.P. The result of invoking !x.P is the generation of

a new process (a(l’z) (29).-+- attm (25,).P){v/x1}. The condition p(l) = n relates | to k by

12

if-t if-f

if true then P else <, P if false then P else <, Q
P (VZ)T“’ P/ atv ’ ’l; o 0
coml I Q I Q mfn(Q) _ in

t ' / / atv

PlQ— wh)(P'| Q) a'(z).P X% P{v/x}

k=ai(r1). - .an(xzn) lfresh p(l)=n
rep i,
P 21k P (0 (z2). - .all™ (). P){v /21 }

Table 3. Transition rules for tagged processes

requiring the number of input prefixes in k£ to be p(l). So if an input prefix has tag (I, p(1))
then it originates from the last input prefix in .
Note that substitutions of names do not affect tags. More precisely, we have

(' (z).P){c/b} = (a{c/b})" (x).P{c/b}.

From the transition rules it can be seen that tags are never used as values to be transmitted
between processes and that there is no substitution for tags.
Tags give us information about the transitions of tagged processes. For example, if P is

regular and P LN P’, then at least we know the following information:

— if t = ¢ then an if-then-else structure in P disappears when P evolves into P’;

— if t = € then the reduction results from an internal communication between an active
output and a non-replicated input;

— if t = (1, 1) then the reduction results from an internal communication between an active
output and a replicated input of the form la;(21). - -.a,0)(2,))-Q; moreover, if p(I) > 1
then P’ has a subprocess az(z2). - - .a,0) (1)) Q-

We define the operator (-)°, which is complementary to erase(-), to translate untagged
processes into regular processes by giving all non-replicated inputs the special tag e.

0° o (a(x).P)° o at(z).P°
(av.P)° &f Guv.pe (vaP)° f ape
(P Q)r ¥ P (Ik.P)° % 1. pe
(if b then P else Q))° 4f if b then P° else Q°

Note that erase(P°) = P holds but (erase(P))° = P may not be valid. For example !a.b.c |

a "iabe | b2).¢ = P', and thus (erase(P’))° =la.b.c | b°.¢ # P'. However, there exists

operational correspondence between tagged and untagged processes since tags do not have
semantic meaning and the purpose of using tags is to identify every newly created process
from some replicated process. This is precisely what the next lemma shows.

Lemma 11. Let P be a tagged process and QQ an untagged one.

1. If P - P’ then erase(P) — erase(P’).
2. If Q - Q' and erase(P) = Q, then P 5 P and erase(P') = Q' for some t.

Proof. These results follow from the definition of erase(-). O

13

As we shall see soon, (well-typed) tagged processes have some interesting properties such
as decrement of weight after some specific steps of reduction and commutation of reductions.

Lemma 12. 1. If P — P’ then wt(P) = wt(P").
2. If P = P’ then wt(P) = wt(P")

3. IfP = & P, &2 <o Ppq M) P and n = p(1) > 0 then wt(P) = wt(P’).
Proof. See Appendix B. a

Generally speaking, commutativity of reductions does not hold in the m-calculus. For
instance, the process P = a.b | a | b has reduction path P T ™ but not —--—"%, where —-
means that an internal communication happens on channel c. As we shall see in the next two

lemmas, this property does hold in the presence of certain constraints. We write P =4 R for
P LR, where t =t -+ - t,,.

(,7)

Lemma 13. 1. If P is regular and P RU R SR, te{ee} andi < p(l), then

there exists Ry such that R — R} =) R
2. If P is reqular and P =4 R =L) R — ¢4)

exists some R} such that R~ (t4) R} —= *.3) R.

R, 11U, j<pll!) and i < p(l), then there

Proof. See Appendix B.]

In the following lemma, we make full use of commutativity and reorganize a reduction
path in a way easy of pinpointing landmarks, which witness the decrement of the measure
that we choose for the beginning process of the path.

Lemma 14. All the regular tagged processes terminate.

Proof. We sketch the idea of the proof; more details are given in Appendix B.

Let P be a regular tagged process. We show that P terminates by induction on its weight
wt(P).
e Base case: All processes with weight 0 must be terminating because they have no active
outputs.
e Inductive step: Suppose P is non-terminating and thus has an infinite reduction sequence

t t
PEP0—1>P1—2>~-~—>R i

Now the tag ¢ takes one of the three forms: €/, € or (I,4). By doing case analysis we can prove
that in every case there always exists some @ such that: (i) Q is also non-terminating; (ii) @
is regular; (iii) wt(P) > wt(Q). When @ is found, we get a contradiction since by induction
hypothesis all processes with weights less than wt(P) are terminating. So the supposition is
false and P should be terminating.

In seeking this @), we carefully manipulate the reduction path of P by commuting reduc-
tions (Lemma 13) in order to put all tags belonging to the same input pattern in contiguous
positions. Then we can use Lemma 12 to prove (iii). If an input pattern cannot be completed,
which means that its continuation does not contribute to the subsequent reductions of P, we

can substitute 0 for the continuation. For example, suppose P def vas(ay |lay.a2.Ry) | Rz and
there is a reduction sequence like:

(1)

piip 2 p 2

14

with P, = Vag(aél’Z).Rl ['a1.a2.R1) | Re. Since agm).Rl is never consumed in the reduction
sequence, it contributes nothing to the subsequent reductions starting from P;. So we can
safely take @ to be vas(0 |lay.azs.R1) | R2, and the same transition sequence can still be made,
with 0 in place of the top level aél’Q).Rl in all derivatives.

Consequently, for each new atomic tag | with p(l) > 0 created by the derivatives of P,
either we have found the complete input pattern corresponding to [, or the input pattern
cannot be completed but no [appears in the infinite reduction path starting from Q. As a
result, no new tag appears in @, i.e. (ii) is satisfied. O

Theorem 10 follows from the above lemma and the following observation (given by Lemma
11):

Let P and Q be untagged and tagged processes respectively. If erase(Q) = P, then P
1s mon-terminating iff Q is non-terminating.

We also show an upper bound to the number of reduction steps for each well-typed process.

Proposition 15. For a process P well-typed under T", let n and k be its size and the highest
level, respectively. Then P terminates in polynomial time O(n**1).

Proof. From the proof Lemma 14 (where Lemma 12 and Lemma 13 are used) we know
that: (i) commutation of reductions does not change the length of a reduction sequence; (ii)
the measure diminishes from one landmark to the next one; (iii) the distance between two
neighboring landmarks is less than n. In addition, by similar arguments as in the proof of
Proposition 3 it can be shown that in each locally ordered reduction path there are at most
% landmarks. Therefore the whole length of each reduction path is bounded by %

O

5.2 Example: the protocol of encoding separate choice

Consider the protocol in Table 4 which is used for encoding separate choice (the summands
of the choice are either all inputs or all outputs) by parallel composition [18], [23, Section
5.5.4]. One of the main contributions in [18] is the proof that the protocol does not introduce
divergence. Here we prove it using typability.

The protocol uses two locks s and r. When one input branch meets a matching output
branch, it receives a datum together with lock s and acknowledge channel a. Then the receiver
tests r and s sequentially. If r signals failure, because another input branch has been chosen,
the receiver is obliged to resend the value just received. Otherwise, it continues to test s.
When s also signals success, the receiver enables the acknowledge channel and let the sender
proceed. At the same time, both r and s are set to false to prevent other branches from
proceeding. If the test of s is negative, because the current output branch has committed to
another input branch, the receiver should restart from the beginning and try to catch other
send-requests. This backtracking is implemented by recursively triggering a new copy of the
input branch.

Usually when a protocol employs a mechanism of backtracking, it has a high probability
to give rise to divergence. The protocol in this example is an exception. However, to figure
out this fact is non-trivial, one needs to do careful reasoning so as to analyze the possible
reduction paths in all different cases. With the aid of type system 7", we reduce the task to
a routine type-checking problem. We show that the protocol does not add any infinite loop
by proving that the typability of [P;] and [@;] implies that of [X;%;d;.P;] and [X,y;(2).Q:].
Then we conclude by Theorem 10. Here we take the i-th branch of input guarded choice as an
example and assume that y; does not appear in Q;. Suppose that [Q;] is typable by 7" and

15

(XL %:d; P s (3(true)
| I vaz;{d;,s,a).a(x). if = then [P;] else 0)
[P1yi(2).Qi] &
vr (#(true)
| IIZvg (g
| '9.y:(z,8,a).r(z). if = then
(s(y). if y then
(7(false) | s(false)| a(true) | [Q:])

else

(7(truey | 5(false)| a(false)| g))

else
7(false) | yi(z,s,a)))
where 7, s and a are fresh and IIj_| P; means P; | - - | Py.

Table 4. The protocol of encoding separate choice

the highest level of names in [Q;] is n with n > 1. Let us give type #'Bool to r, type " T'Unit
to g (here we use a new basic type Unit, which is straightforward to handle, otherwise g
can also be considered of type #"*!Nat) and type #2(7%, #'Bool, #!Bool) to y; where T}, is the
type of the datum z. Take g.y;(z, s,a).r(z) as the input pattern, noted as x, and abbreviate
its continuation as P. Then !x.P is well typed under 7" because wit(x) = (1,---,1,1) and
wt(P) = (1,---,0,3) (the dots stand for a 0-sequence of length (n —2)), thus wit(x) > wi(P).

6 Partial orders

The purpose of our final type system is to type processes even if they contain replications
whose input and output parts have the same weight. Of course not all such processes can be
accepted. For instance, !a.b.(@ | b) should not be accepted, since it does not terminate when
running together with a | b°. However, we might want to accept

'p(a,b).a.(p{a,b) | b) (5)

where a and b have the same type. Processes like (5) are useful. For instance they often
appear in systems composed of several “similar” processes (an example is the chain of cells in
Section 6.2). In (5) the input pattern p(a,b).a and the continuation p{a,b) | b have the same
weight, which makes rule T-rep of 7" inapplicable. In the new system, termination is proved
by incorporating partial orders into certain link types. For instance, (5) will be accepted if
the partial order extracted from the type of p shows that b is below a (both b and a being
names that are received along p).

6.1 The type system

We present the new type system 7. The general structure of the associated termination
proof goes along the same line as the proof in Section 5.1. But now we need a measure which
combines lexicographic and multiset orderings.

5 The reader might argue that the process !a.b.(a | b) itself is terminating, so it is parallel composition
that is to blame. Given the importance of the parallel composition operator, we choose to impose
the restrictions on the input operator and thus discard that process.

16

To begin with, we introduce some preliminary notations. Let A be a set and R C A x A
be a partial order on elements of A. The set of names (that can be channel names or natural
numbers) appearing in elements of R is n(R) = {a | aRbV bRa for some b}. Let T be a tuple
of names x1,- -+, 2,, we write the length n of the tuple as | Z |. Without risk of confusion,
sometimes we consider Z as the set {1, ..., 2, }. In the following, we define some operators for
partial orders. They will be used for simplifying the presentation of our typing rules in Table
5.

Definition 16. Let R C N x N and S C Nat x Nat be two partial orders and T be a tuple of
names in N. We define two operators / and x to transform one partial order into the other.

et 0 ifn(R)yNnz=10
1. R/ = { {(i,§) | ziRx;} if n(R) C &
undefined otherwise

2. 8% Y {(as, ;) | iS5} if max{n(S)} <| 7 |
As shown by the following lemma, the two operators are complementary to each other to
some extent.

Lemma 17. . (R/Z)*Z=TR ifn(R)Cx
2. (Sxx)/z =S8 if max{n(S)} <| 7|

Proof. By the definition of / and * directly. O

For example, let R = {(a,b), (a,¢)}, S = {(1,2),(1,3)}, and T be the tuple of four names
abed, then we have R/ =S and S+ T = R.

Remark: In this paper we use partial orders in a very narrow sense. We require each
partial order on names to satisfy the following two conditions: (i) mathematically it is a strict
partial order (irreflexive, antisymmetric and transitive); (ii) all names in n(R) are of the same
type (this type is written Tx).

Let R be a partial order. We extract the sub-partial order defined on n(R)\ T by R{z=
{(a,b) | a,b ¢ T and aRec1R - --Rey,b for some ¢ C 7 and n > 0}. Given two partial orders
Ri, Re with T, = Tr,, we let Ry + Ra be R1 U Ry if such a union is a partial order.
Otherwise, R1 + Rs is undefined.

The operator os(-) of Section 3 is now refined to be mosg(+), which defines a multiset
recording all subject occurrences of names in active outputs and with type Tx.

mosr (0) < []
mosr (la(7).P) < []
mosg (a(Z).P) e o sr(P)
mosg (vaP) < o sr(P) '
mosg (av.P) = {m]oan(L;’S)R(P) i)ftﬁe'rgvii[ze
mosr (P | Q) o sr(P)Wmosg(Q)
mosr(if b then P else Q) o sr(P)Wmosg(Q)

The operator mosg (+) can be extended to input patterns by defining: mosg (k) def mosg (171 |
| anTy) if K =a1(Z1). - .an(Ty).

Let R be a partial order and R ,,.; be the induced multiset ordering on multisets over n(R)

as defined in Section 2. The binary relation defined below will act as the second component of

our measure, which is a lexicographic ordering with weight of processes as its first component.

17

Definition 18. Let R be a partial order on names, Q be a process, P be either an input
pattern or a process. It holds that P R Q if the following three conditions are satisfied, for some
multisets on names My, My and M: (i) mosg(P) = MW My; (i) mosg(Q) = M ¥ Ma;
(#15) M1 Rpur Ma.

Essentially the relation R is an extension of the multiset ordering R ;- One can easily
prove that R is also well-founded: if R is finite, then there exists no infinite sequence like
PPRPPRPR:--

Now we are well-prepared to present our types and type system. Here we consider polyadic
m-calculus and redefine link types as follows.

L:=t2T where Vijen(S), Ti=T;

where S C Nat x Nat is a partial order on the indexes of T (that is, if | T |= m then & is
a partial order on the set {1,...,m}). The condition in the definition says that if ¢ and j are
two indexes related by S, then the i-th and j-th components of T have the same type.

If vaP is a subprocess of @), we say that the restriction va is unguarded if vaP is not
underneath any input or output prefix. More precisely, we define a set ur(P) to collect all
unguarded restrictions in P.

ur(0) def ur(a(x).P) Ly
ur(la(Z).P) def ur(av.P) =)
ur(vaP) def {a} Uur(P) ur(P | Q) def r(P)Uur(Q)

ur(if b then P else Q) def ur(P) Uur(Q)

If we pull all unguarded restrictions of) to the outmost positions, the resulting process
va@' has the same behavior as Q. In the literature this property is often characterized by a
sequence of structural rules describing scope extrusion, see for example [19]. Since we assume
that bound names are different from free names, the side conditions of those rules are met
automatically. We use this property implicitly and often write Q as va@Q’ without unguarded
restrictions in Q.

Besides the two sorts AN and SN introduced in the beginning of Section 5.1, now we
need another sort RN. It requires that

if a.P is a process with subj(a) € RN then ur(P) = §.

In other words, if a name of sort RN appears in the subject position of a prefix (either
input or output), then the continuation process has no unguarded restrictions. This technical
condition facilitates the presentation of Definition 19. B

Suppose k = a1(T1). - - - .an(Ty) and each a; has type §5'T. We extract a partial order from
k by defining R,, = S1 21 U---US, *Z,. It is well defined because all the bound names are
assumed to be different from each other. For example, if k = a1 (z11, 12, T13).a2(x21, Tag, To23),
S1={(1,2)} and S; = {(2,1)}, then we have R, = {(x11, Z12), (¥22,z21)}.

Definition 19. Let k = a1(Z1). - - .an(Ty). The relation k > P holds if one of the following
two cases holds: (i) wt(k) = wt(P); (ii) wt(k) = wt(P), K R, P and a, € RN.

The second condition indicates the improvement of 7" over 7”. We allow the input
pattern to have the same weight as that of the continuation, as long as there is some partial
order to reflect a tendency of decrement.

The typing rules of 7" are presented in Table 5. Now the judgment R + P means that P
is a well-typed process and the free names in P respect the (possibly empty) partial order R.

18

a:f2T 7:T R+P S=TR/T

T-in RUZF a(@).P Tmlﬂ)ko

oy 08T 5:T REP RiFP RyFQ

T-out "RJrS*v}— 5P TparR1+R2|—P|Q

T.f _b:Bool RibEP RobQ Tores @i L REP
R1i+ ReF if b then P else Q) R vaP

REk.P Kk =P

Trep =T p

Table 5. Typing rules of 7"

In the premise of rule T-in, if there exists some non-empty partial order relation on Z, then
it is exactly captured by R, the partial order built upon free names of P. In rule T-out, for
R + S v to be well defined, the partial order on v should not conflict with the partial order
exhibited by P. Similarly in rules T-par and T-if the partial orders contributed by P and Q
should be compatible in the sense that Ry + R2 is well defined. Otherwise, R + Ra F P | Q
is not a legal judgment. As we only consider the partial order on free names of vaP, in rule
T-res all pairs concerning a are deleted from R while the relative partial order relation on
other names are kept intact. In rule T-rep the appearance of the replication operator does not
affect the existing partial order, but it requires the validity of the condition x > P, which
plays an important role in Lemma 21 and gives us the possibility of doing termination proof.

In Definition 19 the constraint imposed on a,, is used to prohibit potential extension of
partial orders caused by the restriction operator. Let us consider two examples, concerning
two different occurrences of restricted names.

(i) Underneath an input pattern

P = 1p(a,b).a.ve(plb.c) | B) | pla,b) | a | pla,b)
5 Ip(a, b).a.ve(pb, c) | b) [a.ve(p(b,c) | b) | a | pla,b)
— !p(a, b)-a-VC(ﬂb, C> | b) \}/C ﬁ(ba C> | b) | p(a, b)
= vd(ipla, b).a.ve(p(b,c) | B) | pib.d) | b | pla, b))
L yap!

0 1p(a,b).0.(5(a,B) |) | pla,b) | awepb,c)

. tp(a,b).a.(5(a,B) | B) | a.(3la,) | B) | avepth, o
— Ip(a,b).a.(p(a,b) | b) | pla,b) | b| vep(b, c)

= vd(tp(a,b)-a.(pla,5) | D) | pla,b) | B | p(b,)
def vdQ'

Let the type of name p be tt{ 1 2)}(ﬁ@T 83T). Assume R = {(a,b)} and R’ = {(a,b), (b, d)}.
If the condition a,, € RN in Definition 19 was lifted, then both P and @) would be well typed:
in the first example, it could be derived that R = P and R’ + P’; in the second example,
REQ and R’ @Q'. In both cases the new name d extends the partial order R to be R’.

However, the process P does not terminate because it can make cyclic reduction and
the two steps from P to vdP’ form a cycle. Therefore the structure in (i) is dangerous and
should be disallowed. The process @) always terminates in at most 6 steps, but ruling out the

19

structure in (ii) simplifies our proof of Lemma 22. (We believe that it is possible to allow the
structure in (ii) at the expense of a more complicated proof of Lemma 22.)
For this type system, we have the following subject reduction property.

Theorem 20. (Subject reduction) Suppose R - P and P - P’.

1. If a = 7 due to a communication then R+ P’.
2. If oo =7 due to a conditional then R' = P" with R =R’ +R" for some R' and R".
3. If o = av then there_exists n,S and T such that
(a) a: lng and v : T
(b) if S+ is a partial order then R +S v F P’.
4. If a = (Z/b)cw then there exists n,S, R’ and T such that
(a) a: lng and 5 : T
(b)) R+ P
() R= (R +S+7) U

Proof. See Appendix C. Most efforts are made to check the consistency of partial orders in
the type environments. O

The following lemma is the counterpart of Lemma 12.

Lemma 21. Suppose that ur(P) =0, R+ P, P — 1) P &2 P (l ™ P andn = p(l) >
0. Then one of the following two cases holds.

1. wt(P) = wt(P’)

2. PR P and ur(P') =1.

Proof. See Appendix C. O

With the last lemma we are able to prove Lemma 22, whose role in 7" is the same as
that of Lemma 14 in 7.

Lemma 22. All the reqular tagged processes (well-typed under T"') terminate.

Proof. Compared with the proof of Lemma 14, the main difference is that when we have
completed some input patterns and get a reduction sequence like

i ! is
.P():1>P16—>P2:2>—>P 1:>P

it may be possible that Vj < ¢, wt(P;) = wt(Pj41). Let R = Py, we can show by contradiction
that the sequence of processes of equal weight is finite, by the well-foundedness of R .- See
Appendix C for more details. O

Finally we have the following termination theorem for 7", due to the operational corre-
spondence between tagged and untagged process and Lemma 22.

Theorem 23. If R+ P then P terminates. Moreover, let n and k be its size and the highest
level, then P terminates in time O(nk+3).

Proof. The proof of termination is straightforward. Let us look at the time complexity. Clearly
the sizes of the two sets n(R) and mosg (P) are less than n. It follows that for any sequence
PRP R - R P,,wehave m < n?. By similar arguments as in the proof of Proposition 151t

n(n 1

can be shown that in each locally ordered reduction path there are at most landmarks

and the distance between two neighboring landmarks is less than n3. T herefore the whole

length of each reduction path is bounded by M O

20

6.2 Example: symbol table

This example comes from [11, 21]. Tt is about the implementation of a symbol table as a chain
of cells. In Table 6 G is a generator for cells; STy is the initial state of the symbol table with
only one cell; ST, is the system in which the symbol table has m pending requests.

Every cell of the chain stores a pair (n, s), where s is a string and n is a key identifying the
position of the cell in the chain. A cell is equipped with two channels so as to be connected
to its left and right neighbors. The first cell has a public left channel a to communicate with
the environment and the last cell has a right channel nil to mark the end of the chain. Once
received a query for string ¢, the table lets the request ripple down the chain until either ¢ is
found in a cell, or the end of the chain is reached, which means that ¢ is a new string and
thus a new cell is created to store t. In both cases, the key associated to t is returned as a
result. There is parallelism in the system: many requests can be rippling down the chain at
the same time.

e Ip(a,b,n,s).a(t,r).

if ¢ = s then
7(n).p(a, b, n, s)
else if b= nil then
7{n + 1).ve(p{c,nil,n + 1,t) | p{a,c,n, s))
else b(t,r).pa,b,n,s)
STy “ vp(G | pla, nil, 1, s0))

ST STy [alte,r) | -+ | @{tm, rm)

Table 6. The implementation of a symbol table

As to termination, the example is interesting for at least two reasons. (1) The chain exhibits
a syntactically challenging form. The replicated process G has a sophisticated structure of
recursive inputs: the input pattern has inputs at p and a, while the continuation has a few
outputs at p and one output at b, which has the same type as a. (2) Semantically, the chain is a
dynamic structure, which can grow to finite but unbounded length, depending on the number
of requests it serves. Moreover, the chain has a high parallelism involving independent threads
of activities. The number of steps that the symbol table takes to serve a request depends on
the length of the chain, on the number of internal threads in the chain, and on the value of
the request.

Suppose T % #3(String, #'Nat), S <ef {(1,2)} and #5(T, T, Nat, String) is the type of p. We
consider nil as a constant name of the language studied in this section and take it for the
bottom element of any partial order R C N x N with Tr = T. For any m € N, process ST),
is well typed under 7" and thus terminating.

7 Concluding remarks

In this paper we have proposed a core type system and three extensions of it to ensure
termination of processes in the m-calculus. The system in Section 5 exploits the structure of
processes, so does the system in Section 6, but the latter is more expressive because it is a
conservative extension of the former. The system in Section 4 exploits the well-foundedness of

21

first-order values. Since it is parametric w.r.t. a binary relation on first-order value expressions,
we are not able to delimit its exact expressiveness, though we know that it can capture
primitive recursion and that it is incomparable with the systems in Sections 5 and 6 (for
example, the encoding of the factorial function in (2) is not typable under the systems of
Sections 5 and 6, while the examples in Tables 4 and 6 are not typable under the system
of Section 4). Based on the type systems we are able to prove the termination property of
some non-trivial applications: the encodings of primitive recursive functions, the protocol for
encoding separate choice in terms of parallel composition, a symbol table implemented as a
dynamic chain of cells. For all (but one of) the type systems we also present upper bounds
to the number of steps well-typed processes take to terminate.

We believe that the idea of using levels can be applied to other name-passing calculi.
For instance, we have checked that in the Join-calculus [8] the type system presented in
Section 5 can be simplified. Intuitively, this is because the Join-calculus can be encoded into
a sublanguage of the asynchronous m-calculus with each input channel being unique, thus our
assumption about asynchronous names in Section 5 is automatically met and recursive inputs
are easier to be handled.

We have already discussed related work on termination, notably [22] and [27]. The systems
proposed in this paper are incomparable with those in [22] and [27]. Roughly, in [22] and [27]
processes are mainly “functional” and indeed include the standard encodings of the A-calculus
into the w-calculus. These processes are not typable in the systems of this paper. In this work
the processes are mainly “imperative”. For instance, the examples in sections 5.2 and 6.2 are
not typable in [22] and [27]. One way of interpreting the results of this paper is to consider
combinatory approach (on which this paper is based) as a complementary technique to logical
relations (on which [22] and [27] are based) for showing termination of processes. It would be
interesting to see whether the two approaches can be successfully combined.

A typical way of increasing the expressive power of a type system is to use polymorphism.
Turner [25] has extended the simply typed w-calculus with impredicative polymorphism and
has given a type-preserving encoding of System F [10, 20]. Berger et al. [2] have incorporated
polymorphism into their linear typing [27], which enables them to embed System F fully
abstractly in linear polymorphic processes. In this way they are able to prove the termination
property of the terms in System F. However, in spite of its power of guaranteeing termination
of processes that are functional, the polymorphic linear system of [2] suffers from the same
drawback as the linear system of [27]: it rules out many useful processes that are imperative,
such as the examples in sections 5.2 and 6.2.

A (less important) difference between our type systems and that in [27] is about finite
processes. In our type systems we impose type-checking restrictions on replicated inputs.
Since finite processes are constructed without using replicated inputs, it is easy to see that
if a process is accepted in the simply typed m-calculus, then it is also accepted by our type
systems. This is not the case for [27], where, for example, the process a.b | b.a | a is disallowed.

Kobayashi [13] has introduced a type system to guarantee non-interference of processes in
the m-calculus. He uses natural numbers in types as obligation levels and capability levels. An
obligation level expresses the degree of an obligation to do an action, while a capability level
expresses the degree of a capability to successfully complete an action. The level information
is used to detect deadlocks, so his type system is incompatible to the systems presented in
this paper. For example, the deadlocked process a.b | b.@ is ruled out by [13], but accepted by
our type systems as a terminating process. On the other hand, the process la.a is dangerous
for termination (when put in parallel with @), thus discarded by our systems, but it is typable
in [13].

For simplicity we have given our type systems in the Church version. It is not difficult to
transform them into the Curry version. For the Curry version of 7 and 7, it is possible to

22

check automatically whether a program is well-typed by using type inference, following for
instance Vasconcelos and Honda’s type inference algorithm for polyadic m-calculus [26]. Here
one needs an extra constraint, which is a partial order between levels of names. By inspecting
the structure of a process, this task can be done in linear time w.r.t. the size of the process.
For 7" and 7", however, type inference is not straightforward. We leave it as future work
to investigate efficient type inference algorithms for them.

Acknowledgements

We would like to thank the anonymous referees for their valuable comments on a preliminary
version of the paper.

References

(1]

[12]
[13]
[14]
[15]
[16]
[17]

18]

F. S. Beckman. Mathematical Foundations of Programming. Addison-Wesley Publishing Com-
pany, Inc., 1980.

M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculus. In Proceedings of 6th
International Conference on Foundations of Software Science and Computational Structures,
volume 2620 of Lecture Notes in Computer Science, pages 103—119. Springer, 2003.

M. Bezem. Mathematical background. In M. Bezem, J. Klop, and R. de Vrijer, editors, Term
Rewriting Systems, pages 790-825. Cambridge University Press, 2003.

G. Boudol. On strong normalization in the intersection type discipline. In Proceedings of the
6th International Conference on Typed Lambda Calculi and Applications, volume 2701 of Lecture
Notes in Computer Science, pages 60—-74. Springer, 2003.

N. Dershowitz and C. Hoot. Natural termination. Theoretical Computer Science, 142(2):179—
207, 1995.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, chapter 6, pages 243-320. North-Holland, Amsterdam, 1990.

N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communications
of the ACM, 22(8):465-476, 1979.

C. Fournet. The Join-Calculus: A Calculus for Distributed Mobile Programming. PhD thesis,
Ecole Polytechnique, Paris, France, 1998.

R. O. Gandy. Proofs of strong normalization. In To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism. Academic Press, 1980.

J.-Y. Girard. Interprétation Fonctionnelle et Eliminations des Coupures de UArithmétique
d’Ordre Supérieur. PhD thesis, Université de Paris VII, 1972.

C. Jones. A m-calculus semantics for an object-based design notation. In Proceedings of 4th
International Conference on Concurrency Theory, volume 715 of Lecture Notes in Computer
Science, pages 158—-172. Springer, 1993.

N. Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions on Pro-
gramming Languages and Systems, 20(2):436-482, 1998.

N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Informatica,
42(4-5):291-347, 2005.

R. Loader. Notes on simply typed lambda calculus. Technical Report 381, LFCS, University of
Edinburgh, 1998.

R. Milner. The polyadic m-calculus: A tutorial. Technical Report 180, LFCS, University of
Edinburgh, 1991.

R. Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119-141,
1992.

R. Milner. Communicating and Mobile Systems: the m-Calculus. Cambridge University Press,
1999.

U. Nestmann. What is a ‘good’ encoding of guarded choice? Information and Computation,
156:287-319, 2000.

23

[19] J. Parrow. An introduction to the pi-calculus. In Bergstra, Ponse, and Smolka, editors, Handbook
of Process Algebra, pages 479-543. Elsevier, 2001.

[20] J. C. Reynolds. Towards a theory of type structure. In Programming Symposium, volume 19 of
Lecture Notes in Computer Science, pages 408-425. Springer, 1974.

[21] D. Sangiorgi. The typed m-calculus at work: A proof of Jones’s parallelisation theorem on
concurrent objects. Theory and Practice of Object-Oriented Systems, 5(1):25-33, 1999.

[22] D. Sangiorgi. Termination of processes. Mathematical Structures in Computer Science, 2006.
To appear.

[23] D. Sangiorgi and D. Walker. The mw-calculus: a Theory of Mobile Processes. Cambridge University
Press, 2001.

[24] R. Statman. The typed A-calculus is not elementary recursive. Theoretical Computer Science,
9(1):73-81, 1979.

[25] D.N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD thesis, University
of Edinburgh, 1996.

[26] V. T. Vasconcelos and K. Honda. Principal typing schemes in a polyadic m-calculus. In Proceed-
ings of the 4th International Conference on Concurrency Theory, volume 715 of Lecture Notes
in Computer Science, pages 524-538. Springer, 1993.

[27] N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the pi-calculus. In Proceedings
of the 16th Annual IEEE Symposium on Logic in Computer Science, pages 311-322. IEEE
Computer Society, 2001.

A The A-calculus and Ackermann’s function

This section consists of two parts. In the first part, we discuss why the standard encodings
of the simply typed A-calculus cannot be typed in the type systems presented in this paper.
In the second part, we show that if we encode Ackmermann’s function in the same way as
we did for recursive functions (cf. Proposition 9), the resulting process is not typable by our
type systems.

First we recall the standard encoding of untyped call-by-value A-calculus [16, 23]. Each
A-term M is encoded as m-process [M]p, where p is the channel along which the process sends
out a value (or a link to the value) represented by M.

. MIp < 5(y)ty(x,q).[M]q
[e]p < po
[elp < pe
[MNTp = (vqr)([M]q | [N]r | q(y).r(2)-5z.p))

where ¢ is a constant. ot
Consider the term M = Az.(Ay.y)e. According to the above encoding, we have that

[M]p = p(pz) -0z (2, 0)-[(Ay-y)clq
= p(pz)-'p= (2, 9)-(varq2) ([My-yl a1 | [elaz | q1(py)-a2(2)-py (2, @)
= p(p2) P2 (2, 9)-(vq162) (01 (Py) 12y (¥, 43)-BY | G2c | q1(py)-a2(2)-0y (2, q))-

In the typed setting, the encoding of terms is similar to that in untyped setting, but we
need to encode types and annotate bound names with types (see e.g. [23]). Each type in the
A-calculus is encoded as a unique type in the 7-calculus. Let us consider the term M again. If
x,y and ¢ have the same type S, then the term M is well typed and has type S in the simply
typed A-calculus. In the process [M]p, the type of p, is determined by that of x, similar for

24

py and y. Since the types of z and y should be the same, say [S], the two names p, and
p, must have a common type constructed from [S], thus they have the same level. Now the
structure

e(x,q).Py(z,q)

in [M]p is not typable in any type system reported in this paper. The reason is that the
two prefixes p,(x,q) and py(z, ¢) have the same weight, but there is no way to establish any
kind of “greater than” relation between x and z. Similar problems exist in the encoding of
call-by-name A-calculus as well.

Below we have a look at Ackermann’s function, which is defined as follows:

y+1 forc=0andy>0
flx,y) =4 flz—1,1) forz >0and y=0
flx—1,f(z,y—1)) for x,y > 0.

If we follow the encodings of primitive functions given in Proposition 9, we get the process
Ap.
Ap wef Ip(z,y,r). if £ =0 and y > 0 then 7(y + 1)
else if 2 >0 and y =0 then p{z —1,1,7)
else (vr')(p{x,y — 1,7y | ¥'(2).p(x — 1,2,7))

In the above process, the structure

o(x,y,r). ... ple—1,2,7)

is not typable by our type systems because we cannot establish any clear relation between y
and z. Note that the condition x — 1 < z is not sufficient to make the assertion

plz—1,z,7r)<p(z,y,7)

be true. So far we have not been able to work out an alternative encoding that is typable by
our type systems. We leave this problem as future work.

B Proofs from Section 5

Proof of Lemma 12

Proof. 1. There is a communication performed between a non-replicated input and an output
message. That is, P = (vb)(a®(z).Py | av.Q1 | Q2) for some a, Py, Q1,Q2,v and b, and

P’ = (vb)(Pi{v/z} | @1 | Q2). Therefore we have that

wt(P) = wt(Py) + wt(av) + wt(Q1) + wt(Q2)
= wt(Py) + wt(Q1) + wt(Q2) = wt(P’)

2. If rule if-t is used, then we have that P = (vb)((if true then P; else Q1) | Q) and
P’ = (vb)(Py | Q3) for some b, P;, Q1 and Q5. Depending on the relation between wt(P;)
and wt(Q1) we have wt(P) = wt(P’') if wt(Py) < wt(Q1) and wt(P) = wt(P’) if wt(Py) =
wt(@Q1). The symmetric case for if-f is similar.

3. By the transition rule rep, each time a replicated process is invoked a fresh tag is produced.
So there is no replicated process invoked in P; for 1 < 4 < m — 1. Then there are two
possibilities:

25

(a) No replicated process invoked in P either. Therefore all communications take place
between non-replicated inputs and outputs. Reasoning as in Clause 1, one can derive

that
wt(P) = wt(Py) = -+ = wt(P’)
(b) A replicated process k.Q, with kK = a1 (z1). - - - .an(2y), is invoked in P and a new pro-
cess (aém) (z2). - albm™) (z,,)-Q)o, for some o, is spawned. The subsequent reductions

consume the input prefixes from aél’Q)a(xg) to ag’n)a(:rn) and their corresponding

outputs. Thus we have the relation
wt(P') + wt(k) = wt(P) + wt(Qa’).

Substitution of names does not affect the weight of a process, so wt(Qo’) = wt(Q). The
side condition of rule rep requires that wt(x) > wt(Q). Hence we have the conclusion
that wt(P) > wt(P’).

0

Proof of Lemma 13

Proof. Let n = p(l).

1. Since P is regular, the transition with tag (,7) must originate from a communication
between an active output and a replicated input. So R must be of the form:

{ (wh)(lay (x1). - - - .an(an).P | dv | Q) ifi=1 .
W) (‘ay (x1). - .an(zn).P | (@7 (@)™ (2).P)o | v | Q) if1<i<n

with a;0 = a}. To have a subsequent transition with tag €, @ must be of the form:

c(2).Q1 | cw.Qz | Qs for some ¢, w,Q1,Q2 and Q3. It is evident that R also have the

L
reduction path R - R} U9 BRI The case for ¢ = ¢ is also straightforward.

2. Let m = p(I'). As in the proof of Clause 1 we know that the transitions with non-special
tags come from replicated inputs. Depending on whether [and I’ come from the same
input pattern or not, we have the following two cases:

(a) They are generated by two different input patterns, that is, there exist at least two
replicated inputs in P, say lai(x1). - .an(xy).P1 and b1(x1). - - by (). Pa respec-
tively. There are four possibilities. Let us consider the typical case that j # 1 and
i # 1. Then R should be of the form

O (). 05 (ym)-Po)on | (a7 (). 0l ™ (@) Pr)ory
| Viw | Q)

with bjo1 = b). Since j < p(I') the consumption of b;o1(y;) does not liberate any
output, and an output on a;oo should be directly available in @ so as to make the
subsequent communication on a;09 possible, which means that

0= av | Q2 iti<n
B @;U.Ql | Qs ifi=n
Li
with a;o9 = aj. Obviously in both cases R can take another reduction path: R &4

R} 9 R’ for some R;.

26

(b) 1 and !’ originate from the same input pattern lay (z1). - - .an,(z,).P1, which has been
invoked two times. The arguments are similar to Case (a).

O
Proof of Lemma 14

Proof. We consider the inductive step. Suppose P has an infinite reduction sequence P =

Py A P LN P; iz S We shall do case analysis to find some process @ satisfying
the three conditions: (i)) is also non-terminating; (ii) @ is regular; (iii) wt(P) = wt(Q).

It is clear that if t; = (I,¢) and ¢ < p(l), then the atomic tag [is generated by invoking
an input pattern, since in P there are only special tags.

Case 1: If t; = ¢/, by Lemma 12 there are two possibilities. If wt(P) = wt(P;) we can set
Q = P. If wt(P) = wt(Py), we need to start the search from ¢5. Note that any reduction
sequence by consecutively using rules if-t or if-f is finite since the size of the starting process
decreases step by step. So we will find either a tag ¢ that decreases weight or a tag of the
form € or (,4), which directs the analysis to Case 2 or Case 3 accordingly.

Case 2: If t; = ¢, then by Lemma 12 we know that wt(P) > wt(Py). Py is just the process
Q@ we are looking for.

Case 3: If t; = (I,7) and p(I) > 0, then ¢ = 1 since P is regular. Let n = p(1).
—If n =1, then by Lemma 12 it holds that wt(P) > wt(P;). So we can set Q = P;.
— If n > 1 and hence a new process R % (aél’z) (29).- -+ altm (25,).Ro)o appears in P;.

1. If R does not participate in any communication among the infinite sequence Py BN

P; by -, then replacing R with 0 does not affect the sequence. More precisely, let P =
(ve)(lar(z1). - - .an(zn).Ro | R | R1), for some Ry, and @ = (v¢)(la1(21). - -+ .an(2n).Ro |
0 | R1). @ can produce the same infinite reduction sequence as that of Py, but with

L
wt(Q) < wt(P) because P consumes an output during the transition P ¢n p.

2. If R participates in a communication among the sequence, then there exists 7 such that
t; = (1,2). We need to classify all the reductions between P; and P;. There are two
subcases to consider.

(a) If all ¢; for 1 < j < i are of the forms € or €, then we use Lemma 13 for (i — 2) times
and push (I,1) forward until to the proper left of (I,2). The resulting sequence is of
the form:

ti—1

—

t t
p_z)pé_S,...

P 00 o

By Lemma 12, we have the relations
wt(P) = wt(Py) = -+ = wt(P}_;)

(b) If there is a partition of the set {j | 1 < j < ¢} by I and I such that all t; € C; =
{t; | i€ i} = {ti1, -, tix} are of the forms e or ¢’ and all t; € Co = {t; | i € [} =
{ta1,- -, taw } are of the form (I;,n;) with p(l;) > 0.

i. If Vj € Is,n; < p(l;), i.e., no input pattern is complete (since for each j not all
tags from (l;,1) to (I;, p(I;)) are in the set C5), then by using Lemma 13 for finite
many times we can push all tags in Cy to the left of (I,1) and preserve their order.
The sequence changes into this form:

t12

t1n 1 tonr (1,2
piu, p, tz e p Gl et (02

27

Similarly, by using Lemma 13, we can push all tags in Cy to the right of (I, 2).
1,1)(1,2)

t t tik t t
pL)puﬁ,...&plk_,_)Hi,...Q_’f’,...

By Lemma 12 it follows that

ii. If there is a set I5 C I such that Vj € I}, t; = (1, p(l;)), i.e., all tags in I are the

tags of ending inputs in some input patterns. These patterns can be completed

by tags between (1,1) and (I,2). We shall use Lemma 13 to sort out all complete

patterns and push them to the left of (I, 1).

A. Starting from (I, 1) we scan the sequence forward to find the first tag (11, p(I1))
for some atomic tag [; because we want to make all tags with atomic tag [y
be in consecutive positions by “squeezing out” other tags to the left of (I1,1)
or to the right of (11, p(l1)). All tags between (I1,1) and (I1, p(l1)) are of one
of the three forms: €, € or (I;,n;) with n; < p(l;). As we did in Case i,
it is feasible to push all € and € backward and all (I;,n;) forward so that
only tags with atomic tag l; are left between (I1,1) and (I3, p(l1)) (these tags
are already in ascending order since they come from the same input pattern,
say a1(x1). -+ .a,1,)(Tp@,)), and the consumption of these input prefixes goes
from left to right). After the operations, we get a reduction sequence like

(l’l) € € (llvl)(

P 11,2) (11,p(11)) (Ljmy) (1,2)

— 5 ...

Th

B. Find the next tag (I3, p(l2)) for some atomic tag I and make all tags with
atomic tag lo in consecutive positions. Now we can treat tags in group 7't as
a whole and push them backward just as what we do for tag e. We repeat this
operation for other group 7% as long as (I;, p(l;)) lies between (I,1) and (I, 2).
At the end of this stage, we have a sequence as follows.

1,1 Y l2 Ly 1,2
2 i S G G N L) B

L

where 2% stands for 2242 . @)

C. For other tags t; with j ¢ I and j € I, which do not belong to a complete
group, we push them forward to the right of (,2), keeping their order. At this
moment, there are still tags like € and €’ between (I,1) and (I, 2).

1 Ly
pUY o, e G2
where t € {¢,€'}.
D. Push (I, 1) forward until to the proper left of (,2) so as to yield this sequence:

t b t (1,1) (1,2)

t t Tl
J

K2
where t € {¢,€¢'}. By Lemma 12 it follows that
wt(P) = wt(P}y) = -+ = wt(P;,kj,)
In the above four steps, when we commute reductions like (ii)t—n the condition
nj < p(l;) is always satisfied. This ensures the correct use of Lemma 13.

28

If n = 2, by Lemma 12 and the transitivity of =, we have that wt(P) > wt(P/) and so Q
can be set as P/. If n > 2 we repeat the operations done for (I,1) on (I,4) with 1 <14 < p(I).
There are two possibilities for the ultimate result:

1) either (I, + 1) does not appear in the subsequent reductions, then we replace R e
(agi’_zfrl)(xiﬂ). e .agf’n)(xn).RO)a with 0 and get a non-terminating process () such that

wt(P) = wt(Q);
2) or we complete the input pattern with atomic tag ! and have a sequence like

t; (1,1)(1,2) (ln) t
N T e

P

In this case we also have wt(P) > wt(Q) according to previous operations and Lemma 12.

Note that there are possibly three kinds of tags lying in the ultimate sequence between P
and @:
1) tags € or €;
2) tags belonging to complete input patterns;
3) tags not belonging to complete input patterns, but the continuations of these incomplete
input patterns are discarded in @) since we have substituted 0 for them.

Therefore each new atomic tag [with p(I) > 0 created by the derivatives of P is used up
when reaching Q). As P is regular, () must be regular as well. Hence the induction hypothesis
applies and it maintains that @ is terminating. At this point contradiction arises. a

C Proofs from Section 6

Lemma 24. Ifn(R)NZ =0 then (R +R')lz= R+ R Iz

Proof. Let R" =R+ R'.

(R+TR) |z
={(a,b) | a,b ¢ T and aR"c1;R" ---R" ¢, R"b for some ¢ C Z and n > 0}
={(a,b) | a,b ¢ T and aRb}

U{(a,b) | a,b ¢ % and aR'c1R’---R'c,, R'b for some ¢ C ¥ and n > 0}
—RUTR s
=R+R |z

a

Let R be a partial order and o be a substitution of names. We say Ro is well defined if
Ro = {(zo,yo) | (z,y) € R} is a partial order. For the multiset M = [z1,---,x,]| we write
Mo = [x10,- -+, 2,0].

Lemma 25. If My Ry Mo then
(1) M1 R, M2 with R' =R +S.

(2) (M1 Y M) Ry (Mo M) for any multiset M over n(R).
(8) M1 Romu Moo with Ro well defined.

Proof. We only need the definition of multiset ordering. (1) Since R’ is a superset of R, it
holds that Ry implies 2R'y. (2) Trivial. (3) Since Ro is well defined, it follows that 2Ry
implies xoc Ro yo. a

Given a multiset M, we can extract from it a sub-multiset in the following way:

[M(z) zen(R)
Mz () = {0 x €n(R)

29

Note that here we consider a multiset M with elements from set S as a function M : S — N
(cf: [3]). Clearly all elements in Mg belong to n(R).

The following lemma provides an alternative characterization of the relation R. It shows
that names not in n(R) are invariant with respect to the multiset ordering.

Lemma 26. Suppose P R Q, M' = mosr (P) and M? = mosg(Q). Then Mk Ryu Mk.

Proof. From P R Q we know that: (i) M = MWM;; (i) M? = My Ma; (iil) M1 Ry Ma.
Since all elements in M; and Ms belong to n(R), it is easy to see that ML = Mz & M,
and M% = Mg & Ms. From Lemma 25(2), it follows that Mk R M%.]

Lemma 27. If the partial order R is finite, then there exists no infinite sequence like
PBRRPRPR:---

Proof. Since R is finite, it is well-founded, so is the induced multiset ordering R ,,,;. Suppose
there exists such an infinite sequence. Let M* = mosg(P;). By Lemma 26, we would have
the sequence

which contradicts the well-foundedness of R .- 0O

Lemma 28. If P R Q then

(1) PR Q withR' =R+ S

(2) PIRRQ|R

(8) Po Ro Qo with Ro well defined.

(4) P’ R Q' with mosgr (P) = mosr (P’) and mosg(Q) = mosgr(Q’).

Proof. Straightforward. The first and third clause of Lemma 25 are used to prove (1) and (3)
respectively. ad

The next two lemmas illustrate the basic properties of the type system 7.

Lemma 29. If RE P then n(R) C fn(P).
Proof. By trivial induction on the structure of P. O
Lemma 30. If REE:T, Z:v, 0 ={v/Z} and Ro is well defined, then Ro+ Eo : T.

Proof. The derivation of R = E : T forms a tree tr with the conclusion as root. If we replace
all occurrences of z; with v; we get another tree tr’. By induction on the depth of ¢r’ it can
be shown that tr’ is a valid derivation tree with root Ro + Fo : T. O

Proof of Theorem 20

Proof. By induction on the depth of the derivation P - P’. Let us consider the last rule
used in the derivation.

1. Rule in In this case P = a(Z).P; and P’ = Pyo, where 0 = {t/Z}. From R F P we infer
that a: 427, % : T, R’ P, S = R'/% and R = R’ 5.
(a) If S = 0 then n(R’)NZ = (). Obviously R’ is well defined since R'c = R’. By Lemma
30 we have R'o F Pyo. Observe that S*xv = () and R’ Jz=R/,ie., Ro=R' =R |z
+0 = R + S * v. Therefore it holds that R + S * v - P’.

30

(b) If § # 0, then n(R’) C T by definition and S * 7 = R’ by Lemma 17. By hypothesis
S x U is a partial order, so R'o is well defined since R'oc = (S % 2)o = S % 0. By
Lemma 30 we have R'c = Pjo. The conclusion is straightforward by noting that
R+S*0=R |z +Ro=0+R'oc=TRo.

2. Rule coml We have P = P, | Py, P, 2% Pl P, % PLb fu(Py) = 0 and P/ =
(Vg)(Pl/ | Py). From R + P we derive that Ry F P, Ro b P, and R = Ry + Ro. By
induction hypothesis on the transition of P; we have the following results: (1) a : ﬂgf and
7:T; (2) R, - Pl; (3) Ry = (R) + 8 +0) 3. By inductive assumption on the transition
of P, we infer that Ro + S v - Pj. Using T-par it follows that Re + R} +S*v - P | Pj.
Using T-res we have that (R + R| + S * v) {3 (vb : S)(P] | P}). By the condition
bN fn(Py) = 0 and Lemma 29, b N n(R;) = § holds. By using Lemma 24 we have that
(Ro+ R+ S*0)lz=R2 + (R} + S % 0) 3= Ro + Ry = R. Therefore R P’ is valid.

3. Rule rep Suppose P =!k.P; with k = a(Z).x. Let 0 = {v/Z}. After the transition P
changes into P' = P | (k'.P;)o. From R Hk.P; we have R F k.P; according to the typing
rule T-rep. Applying the arguments in Case 1 to x.P; we have the results: (1) a : ﬁgf and

7 : T; (2)if S * U is a partial order then R + S % @ - (x'.P;)o. Using T-par we can infer

that R+S*v+RHE P ie, R+S*xvF P.

(vb,c)av (vb)av

4. Rule open Let P = vcP;. The transition P~ — P’ comes from P, —— P’ with c¢€
fn(@)—{b,a}. From R F P we have that R’ - P; and R = R’ |}.. By induction hypothesis
on the transition of P; we have the following results: (1) a : ﬁgf and v: T; (2) R + P’
(3) RN = (R" 4 S v) 3. Therefore R = R'|}.= (R" +S*v)I3) = (R" + S %) oy
Now all conditions required for P are satisfied and thus we complete this case.

5. Rule if-t Let P = if true then P; else Py and P’ = P;. From R - P we have that
RiF P, Ro- Py and R = Ry + Ro. By setting R = R; and R” = R5 the conclusion
is obvious. The symmetric rule if-f is similar.

6. Rule parl and res Followed from induction hypothesis. 0O

Let R b P. If P appears underneath an input prefix as in a(Z).P, then either all names in
n(R) are shielded by the prefix or none of them is bound. In other words, Z cannot include
only a portion of names in n(R). This observation is made explicit by the following lemma,
where we write 3!i... to mean that there exists a unique i satisfying the succeeding condition.
Usually if name a is given type 57 we say that the partial order of a is S, written as

po(a) =S.

Lemma 31. Suppose Ro - P and R + k.P with k = a1(Z1).--.an(Tyn) and n > 1. Then
one of the following two cases holds.

1. R.=10
2. i <n, R, = po(a;) * T;

Proof. We prove a stronger proposition: when the conditions in the above hypothesis are met,
then one of the following two cases holds:

1. Vi <m,po(a;) =0 An(Ro)NZ; =DAR =Ry.
2. i <n,po(a;) =S #DAn(Ro) CZ; ANRo=S*z; A(Vj #1i,po(a;) =0 An(Ro)NZ; =
0)AR=0.

By induction on the length of x. Since &.P is well-typed, the sub-process a,,(Z,,).P must be
well-typed as well. Let R F a,(Z,,).P. Then R1 = Rolz,, an 1 87T, T, : T and S = Ro/Tn.
Let k' = a1(x1). - an-1(Tp-1).

31

1. If Ro = 0 then S =0, i.e., po(a,) = 0. We also have Ry = Ry = 0. Now take a(x,).P as
P and &' as k, we can do similar reasoning to show that po(a,—1) =0 and Re = Ry =0
if Ro b an_1(Tp-1).a41(Z,).P. Repeat the game until aq, it can be shown at last that
Vi < n,po(a;) =D AR =Ry.

2. If Ry # 0 there are two possibilities.

(a) n(Ro) C Z,. In this case we have S # 0 but Ro Jz,= 0 and Ry = S * Ty,. So it
holds that po(a,) # 0 and Ry = (. By the arguments of Case 1, it is easy to see
that Vj < n —1,po(a;) =0 AR; = Ry = (. Since we assume that bound names are
different from each other, n(Ro) N Z; = 0 holds.

(b) n(Ro) N Z,, = 0. In this case S = () and Ry = Rp. By induction hypothesis on
R F K.an(Z,).P, we have the following results: (1) either Vi < n — 1,po(a;) =
DAR(Ro)NZT; =0AR=Ro (2) or i <n—1,po(a;) =8 ADAn(Ro) CT; ARy =
S« AN (Vj # i,po(a;) = D An(Ro)NZ; = 0 AR = 0). The conclusion follows
immediately. 0O

Proof of Lemma 21

Proof. By the transition rule rep, each time a replicated process is invoked a fresh tag is
produced. So there is no replicated process invoked in P; for 1 < ¢ < n — 1. Then there are
two possibilities:

1. No replicated process invoked in P either. Therefore all communications on a;, with
1 < i < n, take place between non-replicated inputs and outputs. By similar analysis in
Lemma 12, one can derive that

wt(P) = wt(Py) = -+ = wt(P’)

2. A replicated process k.Q, with & = a1(Z1). - - .a,(Zy), is invoked in P and a new process
(aél’z) (Za). -+~ .a%’n)(in).Q)o is spawned. The subsequent reductions consume the input

prefixes from agm)

the relation

o(Za) to ag’n)a(fn) and their corresponding outputs. Then we have

wt(P') + wt(k) = wt(P) + wt(Qo")

Note that substitution of names does not affect the weight of a process, so wt(Qo’) =

wt(Q). According to the side condition of rule T-rep there are two cases:

(a) wt(k) = wt(Q). It follows that wt(P) > wt(P’).

(b) wt(k) = wt(Q), k Ri. Q and a,, € RN. First, observe that P must be of the following
form in order to have the reduction sequence.

P :!al(fl). e an(En)Q | l_)ljl\)ll | e ‘ l_)nﬂan | R2

with a; = b1 and bi+1 = ;4101 """ 04 for 4 2 1 by letting g; = {:51/?51} Let 0 =
01+ 0n. According to our bound name convention that bound names are different
from each other, z; NZ; = 0 if « # j. If follows that b; = a;o for all ¢ > 1. Hence
we have the result that mosg (ko) = mosg (b101 | -+ - | bpv,). We also have P’ in the
form:
P =lay(71).+.an(7,).Q | Qo | Ry | R2
Let P1 Z!&l(il)."'.an(fn).Q, P2 = b}ﬁl | | b;bian and PQ/ = QO’ | Rl. From
R F P we have the results that R; - P;, Ro F P, and Rz + Rwith R = R1+Ro+R3.
Let Ra1 = X 1po(b;) *v; and Roe F Ry. Then Ry = Ra1 + Raz. Note that Ry F £.Q
is valid and by Lemma 31 there are two possibilities:
i R =0

32

ii. 3 <n, Ry = po(a;) * T;

From the condition & R, Q we know that R, # 0, so the second possibility is true.
It follows that Ra; = po(b;) * v; = Rko; = Rko by bound name convention. Hence
we have the following inference sequence

K Re Q

= ko R0 Qo by Lemma 28(3)
= Ko R Qo Reo =TRo

= (0101 | -+ | baty) Ror Qo by Lemma 28(4)
= (01 || buBn) | R Ry Qo | Ry by Lemma 28(2)
= Py 7@ Py by Lemma 28(4)
= Py | Py| Ry Roy P | PS| Ry by Lemma 28(2)
= P R P by Lemma 28(1)

Since a, € RN we have that ur(Q) = 0, thus ur(Qc) =) and no unguarded restriction is
liberated by the reduction sequence. Note that b,, and a,, are of the same type, hence of the
same sort, which means that ur(R;) = (). Theorefore P’ has no unguarded restrictions either.

O
Proof of Lemma 22
Proof. Suppose that there exists an infinite reduction sequence like
l / l ’ 1
PP P P P (6)

then there must be infinitely many transitions T:L]> because the transition N decreases
the size of processes. Let Py = vaQo, without unguarded restrictions in Qq, i.e., ur(Qp) =
(). Suppose R + Py, then Qg is also well-typed, say Rg F Qg for some Rg. There is a
corresponding reduction sequence starting from Qg:

15 ’ lo ’ l
Qo=@ Qi Qi

By Lemma 21 and transition rules if-t and if-f we know that no unguarded restriction is
created in the sequence, thus Vj < i, P; = va@; and wt(P;) = wt(Q,). From Lemma 21 and
Subject Reduction Theorem we have that all Q); are well-typed, noted as R; - @;, and

Tl"' —
o if Qj - Qj+1 then Rj = Rj+1 and Qj Rj Qj+1
o if Q; —— Qj11 then R; =R,41 + R4y for some R ;.

If follows that Vj < i, R =R; + R;’ and by Lemma 28(1) if @, 7/?,; Qj+1 then Q; R Qi1
Let M7 = mosg(Q;). It can be derived that

o if Q; 25 Q41 then My, Rynu M by Lemma 26.
o if Q; < Qj11 then M}, R, M by rules if-t and if-f

mul

where the notation M R>_, M’ means M R,,.; M’ or M = M’. Since there are infinitely

mul

Iy
many transitions % in (6), there are infinitely many R, in the sequence
M% Rmul M’lR R;ul M’2R Rmul o

which contradicts the well-foundedness of R,,4;.
Consequently, by means of commuting reductions used in Lemma 14, we can always find
a @ with wt(Py) = wt(Q) in finite number of steps. O

33

