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Abstract

Test adequacy criteria are widely used to guide test creation. However, many of

these criteria are sensitive to statement structure or the choice of test oracle. This

is because such criteria ensure that execution reaches the element of interest, but

impose no constraints on the execution path after this point. We are not guaran-

teed to observe a failure just because a fault is triggered. To address this issue, we

have proposed the concept of observability—an extension to coverage criteria based

on Boolean expressions that combines the obligations of a host criterion with an

additional path condition that increases the likelihood that a fault encountered will

propagate to a monitored variable.

Our study, conducted over five industrial systems and an additional forty open-

source systems, has revealed that adding observability tends to improve efficacy over

satisfaction of the traditional criteria, with average improvements of up to 392.44%

in mutation detection and per-model improvements of up to 1654.38%. Ultimately,

there is merit to our hypothesis—observability reduces sensitivity to the choice of

oracle and to the program structure.
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Chapter 1

Introduction

Test adequacy criteria defined over program structures—such as statement, branches,

or atomic conditions—are widely used as measures to assess the efficacy of test suites.

Such criteria are essential and offering guidance in the testing process, as they offer

clear checklists of goals to testers and the means to automate the creation of test

suites. However, many of these criteria are highly sensitive to how statements are

structured [23, 50] or the choice of test oracle [24, 59, 61].

Consider the Modified Condition/Decision Coverage (MC/DC) coverage crite-

rion [8]. MC/DC is used as an exit criterion when testing software for critical software

in the avionics domain. For certification of such software, a vendor must demonstrate

that the test suite provides MC/DC coverage of the source code [54]. However, the

efficacy of test suites created to satisfy MC/DC—particularly when test suite cre-

ation is automated—is highly dependent on the syntactic structure of the code under

test. A complex Boolean expression, for example, could be written as a series of

simple expressions, or as a single inlined expression. This simple transformation can

dramatically improve the efficacy of MC/DC-satisfying test suites, with increases in

fault detection of up to 4542.47% [23].

Such results are worrying, particularly given the importance of coverage criteria

in safety certification, and the improvements made in terms of automated genera-

tion. When examining the discrepancy in efficacy between test suites for non-inlined

and inlined programs, we often found that the test case encountered a fault in the

code—such as an erroneous Boolean operator—leading to a corrupted internal state.
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However, this corruption was masked out in a subsequent expression, and did not

propagate to an output. This effect was far more prevalent in programs with many

simple Boolean expressions, whose results were stored in intermediate values. In ad-

dition, regardless of structure, it was common that a test case encountered a fault,

leading to a corrupted internal state, but the test case did not allow sufficient execu-

tion time for the corrupted state to propagate to an output; the test case terminated

before the corrupted state became visible in a variable monitored by the test oracle.

This sensitivity to structure and choice of oracle is caused by the fact that the

obligations for structural coverage criteria are only posed over specific syntactic

elements—statements, branches, conditions. Such obligations ensure that execution

reaches the element of interest, and exercises it in the prescribed manner. How-

ever, no constraints are imposed on the execution path after this point. We are not

guaranteed to observe a failure just because a fault is triggered.

To address this issue, we have proposed the concept of observability—an extension

to coverage criteria based on Boolean expressions that has the potential to eliminate

masking. Observable coverage criteria combine the test obligations of their host cri-

terion with an additional path condition that increases the likelihood that a fault

encountered when executing the element of interest will propagate to a variable mon-

itored by the test oracle. Unlike many extensions to coverage criteria [56], this path

condition does not increase the number of test obligations over its host criterion.

Instead, it makes the existing obligations more stringent to satisfy, as the possibility

of propagating a fault revealed by the original obligation must also be demonstrated.

We hypothesize that this additional observability constraint will improve the effec-

tiveness of the host criterion—no matter which criterion is chosen—particularly when

used as a test generation target, paired with common output-based test oracles.

This work is an extension of our prior work defining and exploring the concept

of observability [65, 25, 67]. We first proposed the concept of observability as an

2



extension of the MC/DC coverage criterion [65]. An extended study found that that

OMC/DC was more effective—and overcame many of the weaknesses of—traditional

coverage criteria for a small set of studied industrial systems [25].

This work extends previous efforts by decoupling the notion of observability from

MC/DC and exploring its application as a generic addition to any coverage criterion.

This decoupling allows us to explore the impact of the choice of host criterion, and to

explore the efficacy of observability as a general extension to adequacy criteria. Our

new experimental studies also consider a far wider range of programs than previously

explored in order to better understand the efficacy of observability-based coverage

criteria when used as the target of automated generation.

Our study, conducted over five industrial systems from Rockwell Collins and an

additional forty open-source systems, has revealed the following insights:

• Test suites satisfying Observable MC/DC are generally the most effective, killing

95.61% of mutants on average (MX oracle) and 87.03% (OO oracle) for the in-

lined Rockwell models, 98.85% (MX)/85.88% (OO) for the non-inlined Rockwell

models, and 89.62% (MX)/65.14% (OO) for the Benchmarks models.

• Adding observability tends to improve efficacy over satisfaction of the tradi-

tional criteria, with average improvements of up to 392.44% in mutation detec-

tion and per-model improvements of up to 1654.38%.

• Factors that can harm efficacy—generally resulting in a reduction in the number

of fulfilled obligations—include expression complexity, the length of the com-

binatorial path from expression to output, and the length of the delayed path

from expression to output.

• The addition of observability results in an increase in the size of test suites.

The magnitude of that increase depends on the length of the path from each

expression to the output.

3



• The addition of observability results in an decrease in the number of fulfilled

obligations. This loss is due to either the discovery of dead code that cannot

influence the output or obligations that are too complex for the test generator

to solve.

• The choice of host criterion influences the final efficacy, but the largest increase

in complexity comes from the addition of observability itself. Varying both

dimensions—criterion and observability—may allow testers to find an optimal

level of efficacy and complexity.

• Observability reduces sensitivity to the choice of oracle, by ensuring a masking-

free path from expression to the variables monitored by the test oracle.

• Observability reduces sensitivity to the program structure by capturing the

complexity benefits of inlining in the path from expression to output.

Based on our results, observability is a valuable extension—regardless of the chosen

host criterion. The addition of observability increases test efficacy and produces test

suites that are robust to changes in the structure of program or the variables under

monitored by test oracle.

The remainder of this thesis is structured as follows. Chapter 2 introduces impor-

tant background material. Chapter 3 presents the concept of observability and offers

formal definitions and implementation details. Chapter 4 presents the details of our

experiments, and Chapter 5 discusses our observations. Chapter 6 presents related

work. Finally, Chapter 7 summarizes and concludes the thesis.
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Chapter 2

Background

In this research, we are interested in improvements to the criteria used to judge the

adequacy of testing efforts—and to automatically generate test suites. In particular,

we are focused on the safety-critical reactive systems that power our society. In this

chapter, we will discuss background material on both topics.

2.1 Adequacy Criteria

The concept of adequacy is important in providing developers with the guidance

needed to test effectively. As we cannot know what faults exist without verification,

and as testing cannot—except in simple cases—conclusively prove the absence of

faults, a suitable approximation must be used to measure the adequacy of our testing

efforts. If existing tests have not surfaced any faults, is the software correct, or are

the tests inadequate?

The most common methods of measuring adequacy involve coverage of structural

elements of the software, such as individual statements, branches of control, and

complex boolean expressions [38, 48, 49]. Each adequacy criterion prescribes require-

ments tests must fulfill. For example, branch coverage requires that all outcomes

of expressions that can result in different code segments being executed—such as if-

then-else and loop conditions—be executed. The idea of measuring adequacy through

coverage is simple, but compelling: unless code is executed, many faults are unlikely

to be found. If tests execute elements as prescribed by the criterion, than testing is

deemed “adequate” with respect to faults that manifest through such structures.
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Adequacy criteria have seen widespread use, as they offer objective, measurable

checklists [26] and—importantly—stopping criteria for the testing process. For that

same reason, they are ideal as test generation targets [52, 44, 35], as coverage can be

straightforwardly measured and optimized for [5].

2.2 Structural Coverage

Structural coverage criteria serve as a means to determine that the structure of system

under test—the various elements making up the source code—have been thoroughly

exercised by test cases. Many structural coverage criteria, defined with respect to

specific syntactic elements of a program, have been proposed and studied over the

past decades [25, 21]. These have been used to measure suite adequacy—as a means

to assess the quality of existing test suites, and whether developers can stop adding

tests. They are also commonly used as as targets for automated test generation.

In this study, we are primarily concerned with reactive systems—safety-critical

embedded systems that interact with the physical world. Such systems often have

sophisticated logical structures in the code. Therefore, in this work, we are primarily

concerned with structural coverage criteria defined over Boolean expressions. In par-

ticular, we are focused on Condition Coverage, Branch Coverage, Decision Coverage,

and Modified Condition/Decision Coverage (MC/DC).

Decision Coverage A decision is any Boolean expression within the program.

Decisions are composed of one or more conditions—atomic Boolean subexpressions—

connected by operators (and, or, xor, not). Decision Coverage requires that all

decisions in the system under test evaluate to both the true and false. Given the

expression ((a and b) and (not c or d)), tests would need to be produced where

the expression evaluates to true and the expression evaluated to false. In this case,

the test input (TTTT),(TTTF) would achieve Decision Coverage.
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Branch Coverage A branch is a particular type of decision that can cause program

execution to diverge down a particular control flow path, such as that in if or case

statements. Branch Coverage is defined in the same manner as Decision Coverage,

but is restricted to branches, rather than all decision statements. Branch Coverage is

arguably the most commonly used coverage criterion, with ample tool support1 and

industrial adoption. Improving Branch Coverage is a common goal in automated test

generation [44, 15].

Condition Coverage A condition is an atomic Boolean subexpression within the

broader decision. Condition Coverage requires that each condition evaluate to true

and false. Given the expression ((a and b) and (not c or d)), achieving Con-

dition Coverage requires tests where the individual atomic Boolean conditions a, b,

c, and d evaluate to true and false. For this decision, test input (TTTF),(FFFT)

would achieve Condition Coverage.

Note that achieving one form of coverage does not always imply that others are

fulfilled as well. The test input given above would achieve Condition Coverage, but

not Decision Coverage, as both test inputs result in the decision evaluating to false.

Similarly, the input provided earlier for Decision Coverage—(TTTT),(TTTF)—would

not achieve Condition Coverage, as only d evaluates to both outcomes. Therefore,

stronger criteria—such as Modified Condition/Decision Coverage—require that the

obligations of both Decision and Condition Coverage be met.

Modified Condition/Decision Coverage (MC/DC) Criterion The MC/DC

criterion is used as an exit criterion when testing software for critical software in the

avionics domain, and is required for safety certification in that domain [55]. MC/DC

further strengthens Condition and Decision Coverage by requiring that each decision

1Such as the popular Cobertura and EMMA IDE plug-ins—see http://cobertura.github.io/

cobertura/ and http://www.eclemma.org/
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evaluate to all possible outcomes, each condition take on all possible outcomes, and

that each condition within a decision be shown to independently impact the outcome

of the decision.

Independent effect is defined in terms of masking, which means that the condition

has no effect on the value of the decision as a whole; for example, given a decision

of the form x and y, the truth value of x is irrelevant if y is false, so we state that

x is masked out. A condition that is not masked out has independent effect for the

decision.

Consider again the expression ((a and b) and (not c or d)). Suppose we ex-

amine the independent affect of d in the example; if (a and b) evaluates to false,

than the entire decision will evaluate to false, masking the effect of d; Similarly, if

c evaluates to false, then (not c or d) evaluates to true regardless of the value of

d. Only if we assign a, b, and c the value of true does the value of d affect the

outcome of the decision. Showing independent impact requires a pair of test cases

where all other conditions hold fixed values and our condition of interest flips values.

If changing the value of the condition of interest changes the value of the decision as a

whole, then the independent impact has been shown. In this example, the test inputs

(TTTT), (TTTF), (FTTT), (TFTT), and (TTFF) satisfies MC/DC. Tests inputs 1

and 3 show the effect of a, 1 and 4 show b, 2 and 5 show c, and 1 and 2 show d.

MC/DC can be achieved in (number of conditions + 1) test cases if care is taken in

selecting test input.

Because both decisions and conditions are covered, we state that MC/DC sub-

sumes the previously-defined forms of coverage. Achieving MC/DC also achieves

Decision and Condition Coverage. This comes at a cost—satisfying MC/DC requires

more test cases and more effort than satisfying any of the above criteria. Therefore,

if no benefit is perceived from the additional requirements of MC/DC, testers often

elect to satisfy a simpler criterion instead.
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Several variations of MC/DC exist—for this study, we use Masking MC/DC, as

it is a common criterion within the avionics community [7].

2.3 Reactive Systems and Dataflow Languages

Increasingly, our society is powered by sophisticated software systems—such systems

manage factories and power plants, coordinate the many systems driving automobiles

and airplanes, and even make life-saving decisions as part of medical devices implanted

in human bodies. Many of these systems are what we refer to as reactive systems—-

embedded systems that interact with physical processes. Reactive systems operate in

cycles—receiving new input from their environment, to which they react by issuing

output.

Such systems are commonly designed using modeling languages, which are trans-

lated into C code that can be directly flashed to the embedded hardware. Models

can be developed using visual notations, such as Simulink [42], Stateflow [43] and

SCADE [11]. They can also be directly expressed using dataflow languages, such as

Lustre.

Lustre is a synchronous dataflow language used in a number of domains to model

or directly implement embedded systems [29]. It is a declarative programming lan-

guage for manipulating data flows—infinite streams of variable values. These vari-

ables correspond to traditional data types, such as integers, booleans, and float-

ing point numbers. Lustre offers an intermediate representation between behavioral

model and traditional source code that is useful for specification, design, and analysis

purposes. Because of the simplicity and declarative nature of Lustre, it is well-suited

to model checking and verification, in particular with regards to its safety proper-

ties [27]. Lustre programs can be automatically generated from visual notations such

as Simulink, and can be automatically compiled to target languages such as C/C++,

VHDL, as well as to input models for verification tools such as model checkers.
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A Lustre program is structured into a network of control modules (nodes) that

specify relations between inputs and outputs of a system. A node is the specification

of a stream transformer, mapping the streams of input variables to the streams of

internal and output variables using a set of defined expressions. Lustre nodes have

cyclic behavior—at execution cycle i, the node takes in the values of the input streams

at instant i, manipulates those values, and issues new values for the internal and out-

put variables. Nodes have a limited form of memory, and can access input, internal,

and output values from previous instants (up to a statically-determined finite limit).

To update program state within one computational step, combinatorial variables are

used; to store current program state for the reference by later cycle or cycles, de-

lay variables are used (i.e., 1

z
blocks in Simulink). During a cycle, all variables are

calculated according to their definitions: combinatorial variables are computed com-

binatorially using values at the current computational step, and delay variables are

computed combinatorially using values from previous step or steps.

The body of a Lustre node consists of a set of equations of the form x = expr

where x is a variable identifier, and t is the expression defining the value of x at

instant i. Like in most programming languages, expression t can make use of any of

the other input, internal, or output variables in defining x—as long as that variable

has already been assigned a value during the current cycle of computation. The order

of equations does not matter in Lustre, except for data dependencies. That is, within

a computational step, as long as all the variables involved in an equation have already

been computed, the equation can be evaluated.

Lustre supports many of the traditional numerical and boolean operators, includ-

ing +, −, ∗, /, <, >, %, etc. Lustre also supports two important temporal operators:

pre(x) and →. The pre(x) operator, or "previous", evaluates to the value of x at

instant (i− 1). The → operator, or "followed by", allows initialization of variables in

the first instant of execution. For example, the expression x = 0→ pre(x)+1 defines
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the value of x to be 0 in instant 0, then defines it as 1 at instant 1—or, the value at

instant 0 plus one—and so forth.

v1 = (0 -> (pre in1));

v2 = (v1 > 1);

v3 = (false -> (pre v2));

out = (if in2 then v2 else v3);

Figure 2.1: Sample Lustre Code Fragment

For example, given following code fragment 2.1, in which in1 and in2 are input

variables, v1, v2, and v3 are internal variables, and out is an output variable. Vari-

ables in1 and v1 are type of int and all the rests are type of boolean. Variables

in1 and v2 are delay variables, values stored in them will be used by v1 and v3 in

the next cycle, respectively. Variable v1 is initially assigned to 0 followed by (rep-

resented by operator arrow) in1 ’s value from the previous cycle, at each subsequent

cycle. Similarly, values of variable v3 is a stream of boolean values, which starts with

a false followed by v2 ’s value from the previous computational step.

2.3.1 Test Case Structure for Reactive Systems

There are two key artifacts necessary to construct a test case, the test inputs, or test

data—inputs given to the system under test—and the test oracle—a judge on the

resulting execution [32, 63]. A test oracle can be defined as a predicate on a sequence

of stimuli to and reactions from the SUT that judges the resulting behavior according

to some specification of correctness [6].

As reactive systems compute in cycles, multiple test inputs must generally be

provided. Therefore, tests are divided into a series of test steps, where input and

expected output is provided for each step. In each step, specific values are given for

each input variable, then the internal and output variables are computed accordingly.

The output at each step is compared to the expected output provided as part of the
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test oracle. Table 2.1 shows example test input that contains four steps together with

corresponding evaluations of all internal and output variables. From this example,

we can see how the values of delay variables impact other variables.

Table 2.1: Sample Lustre Program Evaluation

step
inputs

(in1, in2)
internals

(v1, v2, v3)
outputs
(out)

1 (1, T) (0, F, F) (F)

2 (2, T) (1, F, F) (F)

3 (3, F) (2, T, F) (F)

4 (4, F) (3, T, T) (T)
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Chapter 3

Observability-Based Test Generation

In this chapter, we will illustrate the common issue impacting the efficacy of test

suites generated to satisfy structural coverage criteria—masking—and formally de-

fine our solution—observability [65]. We then will describe how extending common

structural coverage criteria to require observability can overcome masking, and con-

sequently, sensitivity to program structure and oracle. Finally, we will describe how

we implemented our tool to generate test obligations for observability-based coverage

criteria.

3.1 Masking

Previous research has shown that the efficacy of test suites satisfying structural cov-

erage criteria—defined over specific program elements such as control-flow branches,

conditions, or decisions—can be highly sensitive to how expressions are written [23,

25, 50] and the selection of variables monitored by the test oracle [24, 59, 61]. This is

due to masking, when the value of a program element—a variable or subexpression—is

prevented from influencing the outcome of another expression.

In this work, we are primarily concerned with masking in terms of Boolean ex-

pressions. Masking occurs when the value of a condition (an atomic variable or

subexpression) in a Boolean decision hides the effects of other conditions. We state

a condition is masked if the outcome of a Boolean decision cannot by changed by

varying the value of the condition while holding the rest of the conditions fixed (i.e.,

no matter what value the condition is, the final outcome of syntactic element of in-
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terest does not change). For example, input a = true masks b in the decision (a

or b). As the decision’s outcome is always true, regardless of the value of b, a is

masked. Similarly, a = false masks b in decision (a and b), as the decision will

always evaluate to false.

By requiring that each condition demonstrate an independent influence on its

decision’s outcome, MC/DC is designed to prevent masking within an expression.

Test cases must exist where, if we flip the value of a single condition while the others

are held constant, the outcome of that decision must be changed. Branch, Decision,

and Condition Coverage lack any such guarantee. This is one reason MC/DC is often

required for testing of avionics and other safety critical systems—its requirements are

more strenuous, but the additional assurances of the independent impact requirement

theoretically increase the probability that logic faults will be detected.

1. v1 = in1 and in2;

2. out = v1 or in3;

Figure 3.1: Non-inlined Sample Code for MC/DC Criterion

1. out = ((in1 and in2) or in3);

Figure 3.2: Inlined Sample Code for MC/DC Criterion

However, how the code is structured has a major impact on the formulation of the

test obligations for a criterion and the efficacy of the suites satisfying such obligations.

Consider the code fragments in Figures 3.1 and 3.2. The two code fragments are

semantically identical—they offer the same outcome—but are written in two different

styles. The fragment in Figure 3.1 is split over two separate, simple equations (a non-

inlined style). The fragment in Figure 3.2 is inlined—written as a single, complex

expression.
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As the obligations for criteria such as MC/DC are posed over individual program

elements, the MC/DC obligations for the non-inlined version will be much simpler—

and much more trivially satisfied—than the obligations for the inlined version. In

the non-inlined version, for example, in1 must be shown to overcome any masking

from the value of in2. However, in the inlined version, in1 must overcome masking

from both in2 and in3. As a result, MC/DC is much harder to satisfy over inlined

implementations, and requires a larger number of test cases. However, the produced

test suites tend to be far more effective [23, 50]. Therefore, we can see that traditional

coverage criteria are sensitive to program structure.

Table 3.1: Sample Test Suites Satisfying MC/DC Criterion

TestSuite1 = {(F, T, T), (T, T, T), (T, F, F), (F, F, F)}
TestSuite2 = {(F, T, F), (T, T, F), (T, F, F), (F, F, T)}

Further, just because a condition is shown to influence the outcome of the decision

it resides within, there is no assurance that the condition will influence the program

output. Consider again the sample code fragment in Figure 3.1. For this code, we can

create two sample test suites for (in1, in2, in3) that satisfy the MC/DC criterion.

The test suites are listed in Table 3.1. In the first two test cases in TestSuite1, the

influence of in1 and in2 are masked out by in3 = T in the second statement. As

a result, a fault that corrupts either condition would not be observed by monitoring

the value of out. Unless our test oracle also monitors internal variable v1, the fault

is masked. However, with in3 = F in the first two cases in TestSuite2, the values of

in1 and in2 in the first statement can have an impact on the final outcome of the

program.

Because obligations are posed over individual program elements, and make no

demands on what happens after that element is executed, masking can prevent trig-

gered faults from being observed. Masking can be addressed through selection of the
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correct oracle. For instance, by monitoring all internal state variables as well as all

the outputs, making between statements is not an issue [60, 61, 24]. For example, in

the case of Figure 3.1, if we monitor the value of v1 during testing, failures introduced

by in1 or in2 can be detected without changing test suites. However, monitoring

and specifying expected values for all variables is generally prohibitively expensive

(or outright infeasible). A subset of variables could be used, if carefully chosen, but

this selection is also non-trivial to make.

An alternative approach is to strength the coverage criteria with conditions on

execution along the path from the program element of interest to the output (or other

chosen oracle variables). Such path conditions can ensure the observability of such

elements when we test.

3.2 Observability

The observability of a program is the degree to which it is possible to infer the inter-

nal state of a system given the information that we can monitor from the program—

generally through program output [61]. We say an expression in a program is observ-

able in a test case if we can change only its value, keeping the rest fixed, and see the

influence of this change in the result of the test case. Otherwise, if this update has

no visible influence, we say the expression is not observable in that test case.

In theory, masking can be overcome by requiring observability from a test suite—

in addition to the existing test obligations of a host coverage criterion. Informally,

we can obtain observability of test obligations by requiring that the variable whose

assignment contains a particular element of interest remains unmasked through a

path to a variable monitored by the test oracle.

Although this notion of observability was previously defined as an explicit exten-

sion to MC/DC [65], such requirements can be imposed on any existing criterion over

Boolean expressions. The path conditions of observability establish a masking-clear
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path from an expression containing a program element of interest—one with obliga-

tions defined over it—to a monitored variable. In this study, we apply observability

to Branch, Condition, Decision, and MC/DC Coverage.

To formally define how observability is established, we can view a deterministic

program P containing expression e as a transformer from inputs I to outputs O :

P : I → O. We write P [v/en] for program P where the computed value for the nth

instance of expression e is replaced by value v. Note that this is not a substitution.

Rather, we replace a single instance of expression e rather than all instances, which

is more akin to mutation. We state e is observable in test t if ∃v.P (t) 6= P [v/en](t).

This idea can be straightforwardly lifted from test cases to test suites.

This formulation is a generalization of the semantic idea behind masking MC/DC

criterion [7], lifted from decisions to programs. In masking MC/DC, the main obli-

gation is that, for each condition c in given decision D, there are a pair of test cases

ti and tj ensuring that c is observable in D’s outcome for both outcomes (true and

false): ((D(ti) 6= D[true/cn](ti)) ∧ ((D(tj) 6= D[false/cn](tj))).

As implemented then, an observable path is one where the value of the expression

of interest can influence the output. As we are concerned with obligations established

over Boolean expressions, observability requires that the outcome of each assigned

Boolean variable influence program output:

(3.1)(∀bn ∈ Bool(P )).
((∃t ∈ T. (P (t) 6= P [true/bn](t))) ∧ (∃t ∈ T. (P (t) 6= P [false/bn](t))))

where T is a given test suite and Bool(P ) is the collection of all variables correspond-

ing to Boolean expressions within the program for which we establish test obligations

from the host criterion. For Decision, Condition, and MC/DC Coverage, this is all

decisions in the program. For Branch Coverage, this is the subset of control-altering

decisions.
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Note that, under this definition, observability eliminates masking from the point

where the expression as a whole is assigned a value to the program output. Within

that expression, masking can still occur as impacted by the choice of host criterion.

For instance, the obligations of MC/DC require that masking be overcome within

that expression, but the obligations of Condition Coverage do not.

3.2.1 Tagged Semantics

The semantic definition for observability, defined above, is unwieldy for test genera-

tion and test measurement. The analysis would require two versions of the program

running in parallel to check that the results match. Then, for test measurement, the

test suite must be executed separately for each pair of modified programs.

In order to define an observability constraint that efficiently supports monitoring

and test generation, we can approximate semantic observability using a tagged se-

mantics approach [13]. Although we have separated the concept of observability from

MC/DC to an addition to any host criterion, the tagged semantics can still be used

directly with any existing observability-based criterion.

Each variable corresponding to a Boolean expression or atomic value in the pro-

gram is assigned a tag, the observability of which is tracked through the execution

of the a program. If a tag is propagated to the output—or any “monitored” internal

variable—the corresponding path condition is considered to be fulfilled. More pre-

cisely, we track pairings of tag and concrete outcome. If a tagged variable appears

more than once in a decision, a tag is assigned to each occurrence uniquely. We then

examine the number of all possible pairs that have reached as output in some test in

order to evaluate the coverage level for a test suite.

Formal tagging semantics have been defined for a set of expressions, an imperative

command language, as well as a simple dataflow language (shown in Table 3.4). A

reduction semantics with evaluation contexts (RSEC) [14] is used for presentation,

18



and the K tool suite [53] is used to check for consistency. The rules, which run over

configurations containing K (the syntax being evaluated) and a set of configuration

parameters being labeled, operate by applying rewrites at positions in syntax where

the evaluation context allow. A context can be a program or program fragment

with a hole (represented by �)—a placeholder where a rewrite can occur. In their

definition, maps are assumed to have operations—lookup (σ x) and update σ[x← ν],

the empty map ∅, and lists with concatenation x.y and cons elem :: x, and operators.

Additional syntax, which will be formatted as gray background to distinguish from

user-level syntax, may be introduced during rewriting.

Table 3.2: Expression syntax, context, and semantics

E ::= V al | Id | E op E | not E |

E ? E : E | tag(E, T ) | (Val, TS) | addTags(E, TS)

Context ::= ✷ | Context op E | E op Context | not Context |

Context ? E : E | addTags(Context, TS) |

〈κ : Context, ǫ : Env, ...〉
lit n⇒ (n, ∅)

var 〈ǫ : σ〉 [x]⇒ 〈ǫ : σ〉 [(σx)] if x ∈ dom(σ)
op (n0, l0)⊕ (n1, l1)⇒ (n0 ⊕ n1, l0 ∪ l1)

and1 (tt, l0) and (tt, l1)⇒ (tt, l0 ∪ l1)
and2 (tt, l0) and (ff, l1)⇒ (ff, l1)
and3 (ff, l0) and _⇒ (ff, l0)

or1 (ff, l0) and (ff, l1)⇒ (ff, l0 ∪ l1)
or2 (ff, l0) and (tt, l1)⇒ (tt, l1)
or3 (tt, l0) and _⇒ (tt, l0)
ite1 (tt, l0) ? et : ee ⇒ addTags(et, l0)
ite2 (ff, l0) ? et : ee ⇒ addTags(ee, l0)
tag tag(t, (v, l))⇒ (v, l ∪ {(t, v)})
adt addTags((v, l0), l1)⇒ (v, l0 ∪ l1)

In Tables 3.2, 3.3, and 3.4, expressions yield (V al, TS) pairs, where TS is a set

of tags, and are evaluated in a context containing environment ε of type Env =

(id→ (V al x TS)). The expressions are standard, except the tag(E, T ) which adds

a tag to the set of tags associated with the expression e. For any structural coverage,
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Table 3.3: Imperative command syntax, context, and semantics

S ::= skip | S; S | if E then S else S |

Id := E | while E do S | end(List Id, TS)

Context ::= · · · | Id := Context | if Context then S else S |

Context; S | 〈κ : Context, ǫ : Env, C : TS〉
asgn 〈ǫ : σ > [x := (n, l)]⇒< ǫ : σ [x← (n, l)]〉 [skip]

seq skip; s2 ⇒ s2

cond1 〈C : c〉 [if (tt, l) then s1 else s2]⇒

〈C : c ∪ l〉 [s2; end (V, c)]

where V = (Assigned s1) . (Assigned s2)
cond2 〈C : c〉 [if (ff, l) then s1 else s2]⇒

〈C : c ∪ l〉 [s1; end (V, c)]

where V = (Assigned s1) . (Assigned s2)
while while (e) s⇒ if (e) then (s; while (e) s) else skip

endcond1 〈C : c′〉 [end (nil, c)]⇒ 〈C : c〉 [skip]
endcond2 〈ǫ : σ, C : c′〉 [end (x :: V, c)]⇒ 〈ǫ : σ′, C : c′〉 [end (V, c)]

where (σ x) = (n, l) and σ′ = σ [x⇐ (n, l ∪ c′)]
prog s⇒ 〈κ : s, ǫ : ∅, C : ∅〉

it is assumed that each Boolean variable is wrapped in a tag expression. Masking

is defined by operators: 1) and—given (a and b), for a is not masked out, b has to

be true, so the tag assigned to a propagates only when b is true (and vice-versa); 2)

or—given (a or b), for a is not masked out, b has to be false, so the tag assigned

to a propagates only if b is false (and vice-versa); 3) ite—given (if a then b else c),

for b is not masked out, a must be true, therefore b’s tag propagates when a is true;

similarly, c’s tag propagates when a is false; 4) relation expressions such as a > b, a

and b are never masked out by each other; these will not be shown in table 3.2.

The imperative language semantics define the way tags broadcast through com-

mands: tags need to propagate through all variables assigned in either branch in

conditional statements, for the value of a variable can be influenced by not being

assigned by the condition. C : TS is introduced into the expression configuration

to store the set of variable tags. Once a statement has been executed, the tags added
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Table 3.4: Dataflow program syntax, context, and semantics

EQ ::= Id = E | id = pre (E)
Prog ::= (I, Env, List EQ)

Context ::= · · · | Context; List EQ | Context :: List EQ |

EQ :: Context | Id = Context | Id = pre(Context) |

〈κ : Context, τ : List Env, O : List Env, ǫ : Env, S : Env〉
comb 〈ǫ : σ〉 eqs0. ((x = (n, l)) :: eqs1)⇒

〈ǫ : σ [x← (n, l)]〉 eqs0.eqs1

state 〈S : σ〉 eqs0. ((x = (n, l)) :: eqs1)⇒

〈S : σ [x⇐ (n, l)]〉 eqs0.eqs1

write 〈O : κ, ǫ : c〉 nil; eqs⇒ 〈O : κ. [c] , ǫ : c〉 eqs
cycle 〈τ : σi :: l, ǫ : _, S : σl〉 eqs⇒

〈τ : i, ǫ : (σi ∪ σl) , S : ∅〉 eqs; eqs
prog (i, s, eqs)⇒ 〈τ : i, O : nil, S : s, ǫ : ∅, κ : eqs〉

to C by conditional statements will be removed. An end statement is introduced

to implement that—it is appended to clear C and propagate the conditional tags to

all variables assigned in the conditional body. A helper function (Assigned s) will

then return the list of variables assigned in s. Given a program (or program frag-

ment) containing inputs, the rules defined in table 3.3 will determine the set of tags

propagating to output.

Dataflow languages, such as Simulink and SCADE, are popular for model-based

development, and assign values to a set of equations in response to periodic inputs. To

store system state, state variables (1

z
blocks in Simulink) are used. Our dataflow lan-

guage consists of assignments to combinatorial and state variables, and the semantics

are defined over lists (traces) of input variable values. The expression configuration

is extended to contain an input trace I, output trace O, and state environments S.

Evaluation proceeds by cycles: at the beginning of a cycle, the cycle rule constructs

the initial evaluation environment.

During a cycle, variable values are recorded using the comb and state rules. Note

that the context does not force an ordering on evaluation of equations; instead, an
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equation can evaluate as soon as all variables it uses have been stored in the en-

vironment. When all equations have been computed, the write rule appends the

environment to the output list. The prog rule, given an input list, an initial state

environment, and a list of equations, initializes the configuration for the cycle rule.

Coverage can be determined by examining the tags stored in the output environment

list.

Note that both the tagging semantics are optimistically inaccurate with respect

to observability; that is, they may report that certain conditions are observable when

they are not. This is easily demonstrated by a small code fragment:

if (c) then out := 0 else out := 0 ;

The semantic model of observability will correctly report that c is not observable;

it cannot affect the outcome of this code fragment. However, the tagging model

propagates the tags of c to the assignments in the then and else branches.

3.3 Model-Based Test Generation

In model-based test generation, models are annotated with trap properties. A prop-

erty of interest is negated, then the model checker returns a counterexample—a test

input sequence demonstrating that the property can be met. In order to generate

tests that meet the conditions of observability, we need to be able to annotate the pro-

gram with trap properties that track the tags described above. This is accomplished

by conjoining the coverage obligations of the host criterion with a path condition

representing the variable in which the test obligation’s target resides. Observability

can be attained either immediately—within the current computational cycle—or after

a delay. Path conditions must reflect either case. In this section, we describe this

annotation for the Lustre dataflow language [29].
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3.3.1 Immediate Non-Masking Paths

A variable x is observable if a computational path can be found from x to a monitored

variable z in which x is not masked. If such a path can be taken entirely within

one computational step, we call it a immediate non-masking path, and variable x

is immediately observable. Such paths can be defined inductively by examining the

variables that use x in their definition. For example, if x is used in the definition of

variable y, and x is not masked by other variables within that definition, then x is

immediately observable at y. We can then consider the variables that use y in their

definition, and apply the same criteria.

We track such notions by introducing additional variables. First, combinato-

rial usage expressions—x_COMB_USED_BY_y—determine whether a variable is masked

within a definition. The variable is true if x is not masked by other elements of y’s

definition. Second, immediate observability expressions—x_COMB_OBSERVED—which

offer a way to check the status of the non-masking path. For each Boolean variable

in the program, there could exist one or more immediate non-masking paths.

Consider the code fragment in Figure 3.3, where out is an output variable, in1

and in2 are input variables, and v1, v2, and v3 are internal variables.

v1 = in1 and in2;

v2 = if (in3) then v3 else v1;

v3 = not in2;

out = v1 or v2;

Figure 3.3: Sample Lustre code

From the equations, we can generate additional definitions to track the observabil-

ity of variables as in Figure 3.4. Variable v1 is used by two variables—v2 and out—in

their definitions and therefore has two potential immediate non-masking paths: di-

rectly through the output variable out or through v2. Variable in2 also has two
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potential immediate non-masking paths: either through v1 or through v3. All the

other variables are each used once, so each has only one immediate non-masking path.

in1_COMB_USED_BY_v1 = in2;

in2_COMB_USED_BY_v1 = in1;

in3_COMB_USED_BY_v2 = true;

v3_COMB_USED_BY_v2 = in3;

v1_COMB_USED_BY_v2 = (not in3);

in2_COMB_USED_BY_v3 = true;

v1_COMB_USED_BY_out = (not v2);

v2_COMB_USED_BY_out = (not v1);

out_COMB_OBSERVED = true;

in1_COMB_OBSERVED = (in1_COMB_USED_BY_v1 and v1_COMB_OBSERVED);

in2_COMB_OBSERVED = ((in2_COMB_USED_BY_v1 and v1_COMB_OBSERVED) or

(in2_COMB_USED_BY_v3 and v3_COMB_OBSERVED));

in3_COMB_OBSERVED = (in3_COMB_USED_BY_v2 and v2_COMB_OBSERVED);

v3_COMB_OBSERVED = (v3_COMB_USED_BY_v2 and v2_COMB_OBSERVED);

v1_COMB_OBSERVED = ((v1_COMB_USED_BY_v2 and v2_COMB_OBSERVED) or

(v1_COMB_USED_BY_out and out_COMB_OBSERVED));

v2_COMB_OBSERVED = (v2_COMB_USED_BY_out and out_COMB_OBSERVED);

Figure 3.4: Introduced variables to track immediate non-masking paths

3.3.2 Delayed Non-Masking Paths

Reactive systems compute in cycles, and variable values from the previous cycle can

be referred to. As a result, the effect of a variable on output may not be observed until

several computation cycles after a value is computed. In each of these intermediate

computational steps, the system state is stored in a delay variable, until it propagates

to an output eventually. We call such a path—propagating influence through a delay

variable to an output—a delayed non-masking path and the variable is delay observ-

able. A delayed non-masking path can be built over multiple immediate non-masking

paths: from a variable to a latch—a delay variable—then from the latch to another

latch, and so on, until an output is reached.
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Suppose we have a sample code fragment in Figure 3.5, where delay1 and delay2

are delay expressions.

delay1 = (0 -> pre(in1));

v1 = (if (delay1 > 0) then true else in2);

delay2 = (false -> pre(v1));

Figure 3.5: Sample Lustre code

As with immediate non-masking paths, we can inductively build paths involving

delay expressions. An example can be seen in Figure 3.6. Variable v1, which uses

delay1 and in2 in its definition, is a used in the definition of delay expression delay2.

Therefore, a delayed non-masking path from delay1 to delay2 is composed of the

immediate non-masking path from delay1 to v1, then a delayed non-masking path

from v1 to delay2.

delay1_COMB_USED_BY_v1 = true;

in2_COMB_USED_BY_v1 = (not (delay1 > 0));

in1_SEQ_USED_BY_delay1 = true;

v1_SEQ_USED_BY_delay2 = true;

delay1_SEQ_USED_BY_delay2 = (delay1_COMB_USED_BY_v1 and

v1_SEQ_USED_BY_delay2);

in2_SEQ_USED_BY_delay2 = (in2_COMB_USED_BY_v1 and

v1_SEQ_USED_BY_delay2);

Figure 3.6: Introduced variables to track delayed non-masking paths

This annotation gives us the means to track immediate paths to latches. However,

it is still necessary to establish the means to knit these paths together to form the

sequential path over one or more delays passed on the path to output. To do so, we

introduce a token mechanism—a special variable to mark the current delay location.

Once the token is initialized to a delay variable x, it can non-deterministically move

to any other delay location—as long as x can be sequentially used by that location.
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It can also move to a special TOKEN_OUTPUT_STATE, is a monitored variable is

reached or TOKEN_ERROR_STATE is the token can no longer possible be observed

through a monitored variable or another delay.

We generate token equations to track the path taken through delay variables.

Consider the code fragment in Figure 3.7.

v1 = (false -> (not (pre v2)));

v2 = (false -> (pre v1));

v3 = (0 -> (if ((pre v3) = 3)

then 0

else ((pre v3) + 1)));

out = (((v1 and v2) and (v3 = 2)) or

((not (v1 and v2)) and (not (v3 = 2))));

Figure 3.7: Sample Lustre code

We can generate the token equations shown in Figure 3.8. In this case, if we are

currently at TOKEN_D1, and v1 is immediately observable, then we reach the output.

Otherwise, if v1 can be delay observed through v2, then the token moves to TOKEN_D3.

token_next = (if ((pre token) = TOKEN_INIT_STATE) then token_first

else (if ((pre token) = TOKEN_ERROR_STATE) then TOKEN_ERROR_STATE

else (if ((pre token) = TOKEN_OUTPUT_STATE) then TOKEN_OUTPUT_STATE

else (if ((pre token) = TOKEN_D1) then

(if v1_COMB_OBSERVED then TOKEN_OUTPUT_STATE

else (if ((token_nondet = TOKEN_D3) and v1_SEQ_USED_BY_v2)

then TOKEN_D3 else TOKEN_ERROR_STATE))

else (if ((pre token) = TOKEN_D2) then

(if v3_COMB_OBSERVED then TOKEN_OUTPUT_STATE

else (if ((token_nondet = TOKEN_D2) and v3_SEQ_USED_BY_v3)

then TOKEN_D2 else TOKEN_ERROR_STATE))

else (if ((pre token) = TOKEN_D3) then

(if v2_COMB_OBSERVED then TOKEN_OUTPUT_STATE

else (if ((token_nondet = TOKEN_D1) and v2_SEQ_USED_BY_v1)

then TOKEN_D1 else TOKEN_ERROR_STATE))

else TOKEN_ERROR_STATE))))));

Figure 3.8: Example token equations
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3.3.3 Test Obligations

A test obligation serves as a partial test case specification which requires some prop-

erty deemed important to thorough testing. Observability-based test obligations con-

join the base obligations fulfilling the host coverage criterion (e.g., MC/DC) with the

path conditions required to establish either an immediate non-masking path or a de-

layed non-masking path from the expression where the base obligation is established

to a monitored variable. An example obligation is shown in Figure 3.9.

v2_AT_v1_TRUE = in1 and delay2;

v2_AT_v1_TRUE_AFFECTING_AT_CAPTURE = v2_AT_v1_TRUE and

(v1_SEQ_USED_BY_delay1 and token=delay1);

v2_AT_v1_TRUE_CAPTURED = v2_AT_v1_TRUE_AFFECTING_AT_CAPTURE ->

(v2_AT_v1_TRUE_AFFECTING_AT_CAPTURE or

pre(v2_AT_v1_TRUE_AFFECTING_AT_CAPTURE));

obligation_0 = ((v2_AT_v1_TRUE and v1_COMB_OBSERVED) or

(v2_AT_v1_TRUE_CAPTURED and token = TOKEN_OUTPUT_STATE));

Figure 3.9: Sample test obligations

Expression v2_AT_v1_TRUE is a base obligation from a host criteria, defining an

MC/DC obligation in expression v1. For delayed non-masking paths, we have to

define the instant in which the expression would be immediately observable at a

delay (the moment of capture). We then must latch this fact for the remainder

of execution, in case the execution path hits a monitored variable. Expressions

v2_AT_v1_TRUE_AFFECTING_AT_CAPTURE and v2_AT_v1_TRUE_CAPTURED define this

concept of capture for delayed non-masking paths. Finally, the full obligation is de-

fined in expression obligation_0. In the obligation, the subexpression before the

or operator defines immediate observability, and the second subexpression defines

delayed observability. If either path is observed, then the obligation is met.
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Figure 3.10: Components of Lustre project

3.4 Test Generation Framework

We choose Lustre, an open source project developed in Java language based on the

JKind model checker, as the framework. Lustre provides a set of tools (four major

features) to generate tests for Lustre programs: static program translation, coverage

obligation generation (for traditional structural coverage criteria), coverage measure-

ment, and Lustre program simulation. We implemented our work in this framework

to provide test obligation generation for observability-based coverage criteria and

model complexity measurement (main functional components of Lustre are shown in

Figure 3.10). In this section, we will briefly describe the implementation of our work.

3.4.1 Observability-Based Coverage Obligation Generation

As we discussed in previous section, we generate test obligations for observable cov-

erage criteria, by combining observability with original coverage obligations. To im-

plement the feature, we introduced an agent—ObservabilityCoverage—to take over

task regarding observable coverage obligation generation. It first gathered all path-

constraint related information by calling corresponding functions then generated ob-

28



servable coverage obligations by requiring observable path constraints over the origi-

nal obligations, and returned to LustreCoverage where the generated obligations, as

part of the output program, would be written into a file.

Figure 3.11: Simplified class diagram of coverage obligation generation model

Figure 3.12 presents the class diagram of the model of observability coverage obli-

gations and the sequence diagram is shown in figure 3.13. When LustreCoverage

detected an observability-based coverage, it dispatched the obligation generation job

to ObservabilityCoverage. ObservabilityCoverage first collected the corresponding

original obligation from related generation function, and called ObservabilityParser

first to parse the program, node by node, crawling all the definition-dependent rela-

tions between variables, from an output or a latch (i.e., delay-containing expression).

Tracks starting from an output form a combinatorial observable tree (referred as
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combUsedTree) for the output, a delay observable tree (referred as seqUsedTree) for

a latch. After collected all the observable trees, ObservabilityCoverage then passed

them to some functions to build combinatorial non-masking paths and delayed non-

masking paths. At last, ObservableCoverage called ObservableObligation to generate

observable obligations by combining the original coverage obligations and the non-

masking path constraints.

Figure 3.12: Simplified class diagram of observability coverage generation model
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Figure 3.13: Simplified sequence diagram of observability coverage generation model
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Parse

We first parsed given node, extracting the definition-dependent relations between

variables from each output to inputs or latches, then formed an immediately combi-

natorial observable tree (i.e., combUsedTree) for one output. The core algorithm of

building a combUsedTree is presented in Algorithm 1 and 2. Each combUsedTree is

rooted by an output and for each node in such tree, all the children are used in the

node’s definition. We stopped building such tree when an input or a latch (delay-

containing equation) was met. Therefore, a bottom-up path, from any node in the

path to the root, in a combUsedTree represents the combinatorial non-masking path,

from the certain variable to an output.

Algorithm 1 Build combinatorially observable trees, one tree per output variable.

1: function combUsedTree

2: for each output ∈ outputs do
3: root← TreeNode (output)
4: buildTree (root)
5: trees← 〈output, root〉
6: end for
7: return trees
8: end function

Algorithm 2 Given a root node, build a parse tree to record all the definition-
dependent relations from the root to inputs or a delay expression.

1: procedure buildTree(root)
2: queue← root
3: while queue 6= ∅ do
4: node← queue.head
5: node.children← var ∈ def (node) ⊲ var is used in the definition of node
6: queue← child ∈ node.children
7: end while
8: end procedure

A delay observable tree (i.e., seqUsedTree) tracked the delayed non-masking paths

from inputs or latches to a latch. A seqUsedTree is rooted by a latch, it first records

the immediately observations between the latch and delay variables used in its def-
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Algorithm 3 Build delay observable trees from each delay state to inputs and non-
directly observable delay variables.

1: function seqUsedTree

2: seqRoots← id with a delay-containing definition
3: for each seqRoot ∈ seqRoots do
4: root← TreeNode (seqRoot)
5: root.children← var ∈ def (seqRoot) ⊲ var is used in the definition of

seqRoot
6: for each subroot ∈ root.children do
7: buildTree (subroot)
8: end for
9: trees← 〈seqRoot, root〉

10: end for
11: return trees
12: end function

inition (the first two levels in the tree), then the immediately observations between

variables (from nodes in the second level to leaf nodes) which is the same logic in a

combUsedTree. The core algorithm of building a seqUsedTree is shown in Algorithm 3

(the first two levels) and Algorithm 2 (the rest levels). Therefore, a bottom-up path

in a seqUsedTree, from any node to the root, represents the path the variable is imme-

diately observable at some delay variable (i.e., the children of the root latch) which

is sequentially used by the root latch.

Draw Token Transitions

Token transition is the mechanism to knit all the non-masking paths to to form

a delayed non-masking path through one or more delays to an output. Algorithm 4

shows the core algorithm of generating the state automaton of tokens. For a latch (i.e.,

the current token state, denoted as TOKEN_D1 and the like in tagged semantics), we

crawl the program for all the latches or some output that used it in their definitions,

each of which is the next token state (for another latch) or output state (for an

output). That is, under certain condition—the latch or output uses current latch in

its definition, and the computational or delayed path to the latch or output is not
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masked out—the affect of some variable propagated to current delay state can be

passed to next delay state (if some delay observable path found) or directly to output

state (if some immediately observable path found), or an error state (if no observable

path found or some error occurred).

Algorithm 4 Draw token transition.

1: function tokenTrans

2: trans ← ∅
3: for each token ∈ token do
4: for each next ∈ {token’ | token’ ∈ token & token’ ∈ depend (token)} do
5: ⊲ token’ is a token and token is used in the definition of token’
6: trans ← ite(token_next = next & next.seqUsed(token), next, trans)
7: end for
8: trans ← ite(combObservable(token), out_state , trans)
9: trans ← ite(pre_token = token, trans, err_state)

10: end for
11: return trans
12: end function

Generate Observable Coverage Obligations

Algorithm 5 Add tags for original coverage obligations.

1: function addTag(coverage)
2: tags ← ∅
3: for each obligation ∈ {o | o is an obligation satisfying the original coverage}

do
4: exprTag ← ∅
5: for each component ∈ {e | e ∈ obligation.expr and

e is a concern of specifying coverage} do
6: ⊲ tag, 〈value of the component, tag assigned to the component〉
7: for each value ∈ {true, false} do
8: exprTag ← 〈component.id, value〉
9: end for

10: end for
11: ⊲ tag, 〈equation, list of tags of component in the equation〉
12: tags ← 〈obligation.id, exprTag〉
13: end for
14: return tags
15: end function
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From the original coverage obligations (an obligation is represented as an equa-

tion), We first extract the definition-dependent relations between each variable and

the component that is concerned by the specifying coverage. The core algorithm is

shown in Algorithm 5. First, for each component under concern in an equation, we

track the pair of a tag assigned to the component and the value of the component. We

then add a tag to the set of tags associated with the equation once we have labeled

all concerned components in it. This process is repeated until all equations have been

tagged.

Algorithm 6 Generate “capture” equations

1: function captureEquation

2: capture ← ∅
3: for affect ∈ tags.keyset do
4: for var ∈ tags.get(affect) do
5: for i = 0 to var.occurrence do ⊲ each occurrence is distinct
6: for value ∈ {true, false} do
7: var.affectAt(value, affect)
8: for each latch ∈ latch and

affect is sequentially observable at latch do
9: 1. build a sequential observable path (for specifying value)

from affect to each latch
10: 2. concatenate all such paths with or operation
11: 3. assign the final result of step 2 to equation
12: end for
13: capture ← 〈var.affect, equation〉
14: end for
15: end for
16: end for
17: end for
18: return capture
19: end function

Usually, given a Lustre program, we can propagate the affect on a variable (i.e.,

internal state of the program) to more than one target states in a certain execution

step and for a certain latch, it could have several source latches propagating affect

from. So the delay observable equations are not enough, we need a means to determine

where the affect was propagated from in a computational cycle.
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As it is shown in the core algorithm (Algorithm 6), To generate these “capture”

equations, we iterate all the tag sets we just extracted,

1. for each tag in a set, we backtracked from each tag—each tag is associated with

a component which was concerned by the coverage, searching for latches that

used the corresponding component in their definitions;

2. we then connected all immediate and delayed non-masking paths (with the

corresponding token states) with an or operation, which represents the multiple

possible paths to propagate the affect to following step.

3. at last we use the result of step 2 to form the equation describing in current

execution cycle through which path the influence was passed.

Algorithm 7 Generate observable coverage obligations.

1: function generateObligation(coverage)
2: obligations ← ∅
3: for key ∈ affectAtCaptures do
4: for var ∈ affectAtCaptures.get(key) do
5: for i = 0 to var.occurrence do ⊲ each occurrence is distinct
6: var.notMasked(value, key, coverage)
7: 1. build a non-masking path (for specifying value)

from var to key
8: 2. concatenate the non-masking path with token transition
9: 3. assign the final result of step 2 to obligation

10: obligations ← 〈id, obligation〉
11: end for
12: end for
13: end for
14: return obligations
15: end function

After we have collected the original coverage obligations, added all observable

path constraints, and defined how values of concerned code component propagate

through one or more delays to an output, we can start generating obligations for

corresponding observable version. The core algorithm is described in Algorigthm 7.
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3.4.2 Model Complexity Measurement

Figure 3.14: Simplified class diagram of Lustre model complexity measurement

Figure 3.15: Simplified flowchart of Lustre model complexity measurement

Addition to observable coverage generation, we implemented a standalone func-

tion to measure the complexity—maximum depth of immediately observable paths

and maximum number of immediately observable delay states—of given Lustre pro-

gram. Rather than output the two maximum values, we output the depth and the
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Algorithm 8 Complexity measurement—get the depth of immediately observable
paths from each output

1: function height

2: if root = null then return 0
3: end if
4: queue← root
5: height← 0
6: while queue 6= ∅ do
7: height← height + 1
8: size← queue.size
9: for i = 0 to size do

10: node← queue.head
11: queue← node.children
12: end for
13: end while
14: return height
15: end function

Algorithm 9 Complexity measurement—get the number of latches that is immedi-
ately observable to each output

1: function numOfLatches(root)
2: count← 0

3: for each leaf ∈ root.leaves do
4: if leaf ∈ set (latchs) then
5: count++
6: end if
7: end for
8: return count
9: end function

number of immediately observable delays instead, to show more details of the model.

We show the simplified class diagram and sequence diagram in Figure 3.14 and 3.15.

Algorithm 8 presents the core algorithm of calculating the maximum depth of imme-

diately non-masking paths starts from the chosen output. Algorithm 9 presents the

core algorithm of counting the number of delay states that are immediately observable

at a specifying output.
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Chapter 4

Study

We wish to assess the quality—in terms of fault finding—of test suites generated to

satisfy both observable and traditional versions of the studied coverage criteria. We

also want to evaluate the effect of observability on the effectiveness of test suites.

Thus, we address the following questions:

1. Which criterion has the highest average likelihood of fault detection?

2. Are test suites generated to satisfy observable variants of coverage criteria more

effective than the test suites generated to satisfy the original criterion?

The first question allows us to establish a baseline for discussion, and a general ranking

of criteria. Which criterion—whether observable or traditional—returns the best

results, on average? In the second case, we wish to understand whether observability

generally offers a beneficial effect—does it consistently improve the likelihood of fault

detection?

Additionally, we are interested in the nature of the tests generated to satisfy

observable and traditional coverage criteria, and the effect of adding observability

constraints to a coverage criterion:

3. What impact does observability have on the average size of the generated test

suites and the average percentage of satisfied obligations for each criterion?

4. Across the studied criteria, does observability have a consistent effect on efficacy

in terms of factors such as likelihood of fault detection, oracle and structure
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sensitivity, and satisfiability of obligations?

Question 3 allow us to examine how the addition of observability impacts suite

size and the ability of the test case generation process to satisfy the imposed test

obligations. Question 4 allows us to examine the impact of the choice of criterion.

That is, does it matter whether we start with MC/DC or Branch Coverage? Does

observability consistently impact generated test suites?

In order to answer these questions, we have performed the following experiment

for two sets of case examples (see Section 4.1):

1. Generated mutants: We generated up to 500 mutants, each containing a

single fault. (Section 4.2.)

2. Generated structural tests: We generated test suites intended to satisfy

Branch, Condition, Decision, and MC/DC Coverage—as well as observable vari-

ants of each—using counterexample-based test generation. (Section 4.3.)

3. Reduced test suites: We generated 50 reduced test suites using the test data

generated in the previous step. (Section 4.4.)

4. Computed effectiveness: We computed the fault finding effectiveness of each

test suite using both an output-only oracle and an oracle considering all outputs

and internal state variables (a maximally powerful oracle) against the set of

mutants. (Section 4.5.)

4.1 Case Examples

In this study, we have made use of two pools of systems. The studied systems were

originally modeled using the Simulink and Stateflow notations [42, 43]. Then, each

was translated to the Lustre synchronous programming language [28] to take advan-

tage of existing automation. In practice, Lustre would be automatically translated
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to C code. This is a syntactic transformation, and if applied to C, the results of this

study would be identical.

Note that Lustre systems, and the original Simulink and Stateflow systems from

which they were translated, operate in a sequence of computational steps. In each

step, input is received, internal computations are performed sequentially, and output

is produced. Within a step, no iteration or recursion is done—each internal variable

is defined, and the value for it computed, exactly once. The system itself operates as

an large loop.

4.1.1 Rockwell Collins Dataset

Table 4.1: Rockwell (Non-inlined) Example Information

Model # Inputs # Internal Variables # Outputs
DWM1 11 569 7
DWM2 31 115 9
Latctl_Batch 23 128 1
Microwave 13 162 4
Vertmax 40 30 2

Table 4.2: Rockwell (Inlined) Example Information

Model # Inputs # Internal Variables # Outputs Average Complexity
DWM1 11 21 7 95.89285714
DWM2 31 10 9 21.36842105
Latctl_Batch 23 19 1 5.714285714
Microwave 13 99 4 9.15
Vertmax 40 30 2 720.5

The first set of systems consists of four industrial systems developed by Rockwell

Collins engineers. Two of these systems, DWM_1 and DWM_2, represent portions of

a Display Window Manager for a commercial cockpit display system. The other two

systems—Vertmax_Batch and Latctl_Batch—represent the vertical and lateral mode

logic for a Flight Guidance System (FGS). In addition, we have used a Microwave

System—control software for a generic microwave oven developed as a non-proprietary

teaching aid at Rockwell Collins. This set of benchmarks has been used in previous
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model-based test generation research [23, 24, 25, 22, 62, 60, 61], including previous

work studying Observable MC/DC [65].

Previous work has found that, due to masking, the structure of the model can have

a significant impact on the resulting efficacy of generated test suites for MC/DC [23,

50]. In theory, observability can assist in overcoming masking. To study this, we

have generated two variants of each of the Rockwell Collins systems:

• Maximally Non-Inlined: Each expression is as simple as it can possibly be,

with sub-expressions split into independent intermediate variable calculations.

• Maximally Inlined: Each expression is as complex as it can possibly be, with

no intermediate sub-expressions used.

We repeat the entire experiment with both variants, in order to more thoroughly

study the interaction between program structure and observability.

Information related to the non-inlined version of each system is provided in Ta-

ble 4.1, and information related to the inlined versions is provided in Table 4.2. In

both cases, we list the number of input variables, number of internal variables, and

number of output variables. The latter two numbers give an indication of the size

of the model, as each internal and output variable corresponds to an expression that

must be calculated each computational cycle. For the inlined versions, we also list the

average complexity of the inlined expressions—that is, the average number of boolean

operations in each expression for that model.

4.1.2 Benchmarks Dataset

While the Rockwell Collins systems allow us to take a detailed look at the effect

of program structure, the number of systems is relatively low. In order to more

thoroughly analyze the effects of observability, we have also chosen an additional 40
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Table 4.3: Benchmark Example Information

Model # Inputs # Internal Variables # Outputs Average Complexity
6counter 1 4 1 3.5
AlarmFunctionalR2012 44 182 5 9.086666667
CarAll 2 8 1 4.125
cd 1 6 1 3.833333333
DockingApproach 13 1410 11 1.853754941
DragonAll 13 22 1 19.47619048
DragonAll2 13 27 1 20.77272727
durationThm1 5 7 1 3.333333333
ex3 2 5 1 3.6
ex8 2 5 1 3.4
fast_1 14 19 1 4.166666667
fast_2 14 30 1 4.37037037
FireFly 9 17 1 9.125
Gas 2 8 1 2.444444444
HysteresisAll 2 5 1 5.4
IllinoisAll 10 16 1 11.85714286
Infusion 20 861 5 2.745823389
MesiAll 4 10 1 5.545454545
Metros1 3 16 1 3.533333333
Microwave01 13 126 1 6.417647059
MoesiAll 5 12 1 4.071428571
PetersonAll 12 28 1 14.65517241
ProducerConsumerAll 4 12 1 3.153846154
ProductionCell 3 15 1 3.214285714
Readwrit 9 24 1 12.04
RtpAll 12 24 1 15.96
Speed2 2 5 1 3.6
Stalmark 1 3 1 21
SteamBoilerNoArr1 33 99 1 14.85
SteamBoilerNoArr2 19 3 1 30.66666667
Swimmingpool1 8 21 1 8.1875
Switch 3 2 1 3.333333333
Switch2 3 2 1 3.333333333
SynapseAll 4 10 1 4.555555556
Ticket3iAll 13 20 1 11.45454545
Traffic 1 3 1 5.666666667
Tramway 4 23 1 2.727272727
TwistedCounters 1 4 1 5
Two Counters 1 3 1 2
UMS 5 39 1 2.837837838

systems from the Benchmarks dataset1. Several of these models have been used in

previous work, including a NASA example, Docking_Approach, which describes the

behavior of a space shuttle as it docks with the International Space Station [25]. Two

other systems, Infusion_Mgr and Alarms—which represent the prescription man-

1Available from https://github.com/Greg4cr/Reworked-Benchmarks/tree/SingleNode
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agement and alarm-induced behavior of an infusion pump device—were also used in

previous work [24, 25, 20].

Information related to each system is provided in Table 4.3, where we again list

the number of input variables, number of internal variables, and number of output

variables. In this case, we lack the original models, and cannot control the level of

inlining. Therefore, we also list the average complexity of expressions to give an idea

of how inlined each model is.

4.2 Mutant Generation

Table 4.4: Mutants Information for Rockwell Models (Inlined Versions)

Model #Total #Boolean #Const #Delay #Not #VarReplace #Arithmetic #Relational

DWM1 499 4 117 187 74 67 21 29

DWM2 500 51 30 181 154 64 0 20

Latctl_Batch 500 45 44 184 159 49 0 19

Microwave 500 31 20 180 161 106 0 2

Vertmax 499 64 22 181 163 52 0 17

Table 4.5: Mutants Information for Rockwell Models (Non-Inlined Versions)

Model #Total #Boolean #Const #Delay #Not #VarReplace #Arithmetic #Relational

DWM1 500 1 90 204 61 103 0 41

DWM2 501 24 29 181 156 103 0 8

Latctl_Batch 500 31 20 178 164 106 0 2

Microwave 500 11 46 193 134 99 7 10

Vertmax 501 51 10 171 164 103 0 2

We have created mutants (faulty implementations) for each case example by auto-

matically introducing a single fault into the correct implementation. Each fault was

seeded by either inserting a new operator into the system or by replacing an existing

operator or variable with a different operator or variable. The following mutation

operators were used in this study:

• Arithmetic: Changes an arithmetic operator (+, -, /, *, mod, exp).

• Relational: Changes a relational operator (=, 6=, <, >,≤,≥).
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Table 4.6: Mutants Information for Benchmark Models

Model #Total #Boolean #Const #Delay #Not #VarReplace #Arithmetic #Relational

6counter 118 7 5 44 49 13 0 0

AlarmFunctionalR2012 500 7 92 200 69 89 2 41

CarAll 210 14 18 82 55 30 3 8

cd 159 8 20 59 40 19 2 11

DockingApproach 500 19 53 200 85 101 0 42

DragonAll 502 41 15 212 136 80 11 7

DragonAll2 501 42 15 211 135 80 10 8

durationThm1 155 8 12 66 34 26 4 5

ex3 120 4 13 46 34 18 1 4

ex8 118 4 13 45 33 18 1 4

fast_1 517 41 25 180 201 68 0 2

fast_2 797 66 37 278 307 105 0 4

FireFly 499 36 18 217 121 84 13 10

Gas 173 6 20 73 40 24 6 4

HysteresisAll 172 10 16 65 50 24 1 6

IllinoisAll 500 37 17 216 127 83 13 7

Infusion 501 21 47 204 89 108 0 32

MesiAll 449 17 27 214 79 89 14 9

Metros1 398 14 38 158 109 58 7 14

Microwave01 500 37 35 191 152 69 5 11

MoesiAll 502 14 27 243 80 107 25 6

PetersonAll 500 40 19 213 133 80 8 7

ProducerConsumerAll 318 18 16 142 68 60 7 7

ProductionCell 311 22 7 113 120 49 0 0

Readwrit 500 36 25 217 119 82 10 11

RtpAll 500 45 17 204 144 76 6 8

Speed2 120 4 13 46 34 18 1 4

Stalmark 128 14 3 45 48 18 0 0

SteamBoilerNoArr1 500 34 70 186 97 67 4 42

SteamBoilerNoArr2 420 39 51 147 93 48 0 42

Swimmingpool1 501 29 23 224 113 90 14 8

Switch 81 2 5 28 33 13 0 0

Switch2 81 2 5 28 33 13 0 0

SynapseAll 343 12 19 162 55 71 15 9

Ticket3iAll 500 43 17 207 140 80 3 10

Traffic 100 6 10 40 20 14 2 8

Tramway 424 29 19 149 168 59 0 0

TwistedCounters 165 11 11 66 57 16 1 3

Two Counters 51 1 7 21 15 4 1 2

UMS 813 64 23 285 308 133 0 0

• Boolean: Changes a boolean operator (∨,∧, XOR).

• Negation: Introduces the boolean ¬ operator.

• Delay: Introduces the delay operator on a variable reference (that is, use the

stored value of the variable from the previous computational cycle rather than

the newly computed value).

• Constant: Changes a constant expression by adding or subtracting 1 from int

and real constants, or by negating boolean constants.

• Variable Replacement: Substitutes a variable occurring in an equation with

another variable of the same type.
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The mutation operators used in this study are discussed at length in [51]. This method

is designed such that all mutants produced are both syntactically and semantically

valid. That is, the mutants will compile, and no mutant will “crash” the system under

test.

The type of faults used to create mutants may impact the effectiveness of the

selected oracle data when used to test the actual system under test. Note that the

type of mutants used in the evaluation in this report are similar to those used by

Andrews et al., where the authors found that generated mutants are a reasonable

substitute for actual failures in testing experiments [4]. Additionally, recent work

from Just et al. suggests a significant correlation between mutant detection and

real fault detection [37]. This offers evidence that mutation-based techniques will be

useful for supporting the creation of oracles for real-world systems.

In order to control experiment costs, we do not use all possible mutants for each

model. Instead, we employ the following rule-of-thumb—if a model has fewer than

500 possible mutations, we use all possible mutations. If over 500 mutations are

possible, we choose 500 of them for use in the experiment. In order to select mutants,

we first gather a list of all possible mutations. Then, we use the proportions of each

mutation type in the full set to select the number of mutants for the reduced set of

500, or a little bit greater than 500 due to some calculating error. The only violation

is ums.lus, for which we generated the whole pool of 813 mutations as it’s stuck when

trying to generate a reduced set. Mutants of each type are then chosen randomly

until the determined number are chosen for that type. This process prevents biasing

towards particular types of mutations. Instead, the proportion of each fault type is

maintained, despite not using the full set of mutations. In Tables 4.5, 4.4, and 4.6, we

list the number of mutants used for each model from the Rockwell Collins (non-inlined

and inlined variants) and Benchmarks datasets.
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4.3 Test Data Generation

In this research, we explore four structural coverage criteria: Condition Coverage,

Decision Coverage, Branch Coverage, and Modified Condition/Decision Coverage

(MC/DC) [35, 8]. These criteria are defined in Section 2.2.

For each criterion, we generate tests for both the traditional criterion as well as a

version requiring observability. We refer to the observable versions of each criterion

as Observable Condition Coverage (OCondition), Observable Decision Coverage

(ODecision), Observable Branch Coverage (OBranch), and Observable MC/DC

(OMC/DC).

For our directed test generation approach, we used counterexample-based test

generation to generate tests satisfying the four coverage criteria and their observable

variants [19, 52]. In this approach, each coverage obligation is encoded as a temporal

logic formula in the model, and a model checker is used to produce a counterexample

illustrating how the coverage obligation can be covered. This counterexample offers

test input—a series of values for each input variable for one or more test steps. By

repeating this process for each coverage obligation for the system, we can use the

model checker to derive test sequences intended to achieve the maximum possible

coverage of the model. We have used the JKind model checker [27, 18] in our exper-

iments because we have found that it is efficient and produces tests that are easy to

understand [31].

4.4 Test Suite Reduction

Counterexample-based test generation results in a separate test for each coverage

obligation. This leads to a large amount of redundancy in the tests generated, as

each test likely covers several obligations. Consequently, the test suite generated for

each coverage criterion is generally much larger than is required to provide coverage.
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Given the correlation between test suite size and fault finding effectiveness [47], this

has the potential to yield misleading results—an unnecessarily large test suite may

lead us to conclude that a coverage criterion has led us to select effective tests, when

in reality it is the size of the test suite that is responsible for its effectiveness. To

avoid this, we reduce each naïvely generated test suite while maintaining the coverage

achieved. To prevent us from selecting a test suite that happens to be exceptionally

good or exceptionally poor relative to the possible reduced test suites, we produce 50

different reduced test suites for each case example using the process described below.

Reduction is performed using a simple greedy algorithm. We determine the cov-

erage obligations satisfied by each test generated, and initialize an empty test set

reduced. We then randomly select a test from the full set of tests; if it satisfies obli-

gations not satisfied by any test input in reduced, we add it to reduced. We continue

until all tests have been examined in the full set of tests.

When generating tests suites to satisfy a structural coverage criterion, the suite

size can vary from the minimum required to satisfy the coverage criterion (generally

unknown) to infinity. Previous work has demonstrated that test suite reduction

can have a negative impact on test suite effectiveness [30]. Despite this, we believe

the test suite size most likely to be used in practice is one designed to be small—

reduced with respect to coverage—rather than large (every test generated in the case

of counterexample-based generation or, even more arbitrarily, 1,000 random tests).

Note that one could build a counterexample-based test suite generation tool that,

upon generating a test, removes from consideration all newly covered obligations,

and randomly selects a new uncovered obligation to try to satisfy, repeating until

finished. Such a tool would produce test suites equivalent to our reduced test suites,

and thus require no reduction; alternatively, we could view such test suites as pre-

reduced.
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4.5 Computing Effectiveness

In order to compute effectiveness of the generated test suites, we produce traces of

execution by executing each test case against the original program and each mutant—

recording the value of all variables at each step.

In our study, we use what are known as expected value oracles as our test ora-

cles [24]. Consider the following testing process for a software system: (1) the tester

selects inputs using some criterion—structural coverage, random testing, or engineer-

ing judgment; (2) the tester then defines concrete, anticipated values for these inputs

for one or more variables (internal variables or output variables) in the program. Past

experience with industrial practitioners indicates that such oracles are commonly used

in testing critical systems, such as those in the avionics or medical device fields.

We explore the use of two types of expected value oracles: an output-only oracle

that defines expected values for all outputs, and a maximum oracle that defines

expected values for all outputs and all internal state variables. The output-only

oracle represents the oracle most likely to be used in practice. Both oracles have

been used in previous work, and thus we use both to allow for comparison [23, 24].

To produce and oracle, we use the values of the monitored variables from the

traces gathered by executing test cases on the original program, and we compare

those values to those recorded for each mutant. The fault finding effectiveness of

the test suite and oracle pair is computed as the number of mutants detected (or

“killed”). For all studied systems, we assess the fault-finding effectiveness of each

test suite and oracle combination by calculating the ratio of mutants killed to total

number of mutants.

Test generation and trace generation are performed using in-house automation.

This framework is open-source and freely available from the project repository:

https://github.com/MENG2010/lustre.
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Chapter 5

Results and Discussion

In this section, we will address our research questions and discuss the implications of

the results. As a reminder, we are interested in the following:

1. Which criterion has the highest average likelihood of fault detection? (Sec-

tion 5.1)

2. Are test suites generated to satisfy observable variants of coverage criteria more

effective than the test suites generated to satisfy the original criterion? (Sec-

tion 5.2)

3. What impact does observability have on the average size of the generated test

suites and the average percentage of satisfied obligations for each criterion?

(Section 5.3)

4. Across the studied criteria, does observability have a consistent effect on efficacy

in terms of factors such as likelihood of fault detection, oracle and structure

sensitivity, and satisfiability of obligations? (Section 5.4)

5.1 Overall Efficacy

Table 5.5 lists the average percentage of faults detected by test suites generated for

each of the eight coverage criteria, separated by oracle type, for the Rockwell and

Benchmarks datasets. Tables 5.1-5.4 list the average results for each individual model

from each dataset. These results are also plotted in Figure 5.1. From these results,
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Figure 5.1: Percent of mutants killed for each combination of test suite and oracle. b
= Branch Coverage, c = Condition, d = Decision, m = MC/DC, o = Observable.
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Table 5.1: Percentage of mutants killed for each combination of Rockwell (inlined)
model and oracle.

Model Branch Obranch Condition OCondition Decision ODecision MC/DC OMC/DC

MX Oracle

DWM1 99.60% 88.00% 94.23% 87.00% 93.62% 87.60% 88.66% 87.40%
DWM2 27.09% 25.60% 64.02% 64.90% 38.71% 38.43% 93.28% 94.06%
Latctl_Batch 100.00% 100.00% 70.30% 93.04% 98.09% 92.42% 100.00% 100.00%
Microwave 94.31% 95.98% 90.99% 96.96% 94.74% 98.46% 92.45% 96.57%
Vertmax 100.00% 100.00% 35.47% 100.00% 100.00% 100.00% 99.87% 100.00%

OO Oracle

DWM1 87.84% 88.00% 87.40% 87.00% 88.11% 87.60% 88.20% 87.40%
DWM2 25.89% 24.20% 63.38% 64.79% 38.71% 38.43% 93.28% 94.05%
Latctl_Batch 60.27% 73.56% 46.50% 68.48% 60.38% 69.06% 82.61% 86.15%
Microwave 36.86% 68.19% 53.14% 73.25% 50.21% 70.30% 68.24% 73.78%
Vertmax 28.69% 31.55% 28.14% 48.97% 29.98% 36.26% 92.37% 93.77%

Table 5.2: Average percentage of mutants killed for each combination of Rockwell
(non-inlined) model and oracle.

Model Branch Obranch Condition OCondition Decision ODecision MC/DC OMC/DC

MX Oracle

DWM1 80.39% 96.39% 80.58% 96.89% 79.84% 96.38% 83.23% 96.36%
DWM2 66.91% 87.90% 98.38% 99.03% 97.78% 98.69% 99.49% 99.60%
Latctl_Batch 100.00% 100.00% 97.48% 99.49% 96.65% 98.66% 99.20% 99.24%
Microwave 88.57% 99.89% 94.63% 99.35% 95.32% 98.10% 94.64% 99.47%
Vertmax 100.00% 100.00% 95.82% 100.00% 96.99% 100.00% 97.78% 99.60%

OO Oracle

DWM1 4.94% 86.60% 4.77% 86.91% 4.66% 86.70% 5.04% 86.93%
DWM2 34.91% 68.84% 79.43% 94.10% 73.26% 93.61% 86.01% 96.69%
Latctl_Batch 51.90% 73.01% 56.26% 84.77% 52.90% 79.68% 71.58% 84.92%
Microwave 34.50% 64.48% 49.57% 70.28% 50.63% 67.85% 53.26% 71.16%
Vertmax 33.99% 58.05% 48.17% 91.97% 47.21% 89.36% 53.54% 89.70%

we can see that—on average—test suites generate to satisfy OMC/DC tend to kill a

larger percent of mutants than test suites satisfying all other coverage criteria. For

both variants of the Rockwell systems—with any oracle—test suites generated to

satisfy OMC/DC kill the most mutants. The sole exception is for the non-inlined

variant—with the maximum oracle—where OCondition suites outperform OMC/DC

by 0.1%. For the Benchmark models—with any oracle—OMC/DC-satisfying suites

have the highest overall average possibility of revealing faults.

Test suites satisfying Observable MC/DC are generally the most effective,

killing 95.61% of mutants on average (MX oracle) and 87.03% (OO oracle) for

the inlined Rockwell models, 98.85% (MX)/85.88% (OO) for the non-inlined

Rockwell models, and 89.62% (MX)/65.14% (OO) for the Benchmarks models.

We can examine this question further through statistical analysis. To address
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Table 5.3: Average percentage of mutants killed for each Benchmark model with MX
oracle. NA means there were no obligations for that criterion for that particular
model.

Model Branch Obranch Condition OCondition Decision ODecision MC/DC OMC/DC
6counter NA NA 99.16% 99.16% 99.16% 99.16% 99.16% 99.16%
AlarmFunctionalR2012 72.51% 74.62% 72.18% 73.73% 72.75% 73.46% 72.87% 74.46%
CarAll 100.00% 100.00% 91.10% 100.00% 89.30% 93.20% 90.43% 85.15%
cd 53.58% 83.02% 84.81% 89.31% 72.38% 72.38% 88.59% 90.57%
DockingApproach 72.37% 89.70% 75.85% 51.87% 75.91% 100.00% 77.63% 74.23%
DragonAll 33.16% 64.67% 44.88% 73.92% 48.43% 69.17% 88.18% 93.72%
DragonAll2 38.25% 62.48% 50.05% 77.65% 39.60% 69.48% 87.06% 91.64%
durationThm1 25.16% 83.23% 71.81% 84.45% 56.13% 83.87% 83.23% 87.74%
ex3 65.83% 69.17% 63.10% 69.13% 61.67% 68.07% 68.33% 68.33%
ex8 72.03% 75.42% 69.47% 74.54% 66.37% 74.58% 72.88% 75.22%
fast_1 78.60% 96.15% 95.64% 100.00% 79.23% 100.00% 100.00% 100.00%
fast_2 80.41% 100.00% 92.08% 96.10% 85.41% 100.00% 96.54% 96.74%
FireFly 63.76% 71.40% 59.38% 76.07% 60.98% 72.76% 81.02% 89.23%
Gas 52.02% 77.62% 73.41% 84.62% 81.92% 79.38% 89.02% 85.48%
HysteresisAll 99.42% 99.42% 99.42% 99.42% 98.81% 99.42% 99.42% 99.42%
IllinoisAll 42.48% 71.60% 64.05% 79.47% 46.83% 74.84% 87.18% 89.85%
Infusion 61.84% 82.10% 70.08% 84.61% 69.65% 82.12% 73.31% 84.04%
MesiAll 59.99% 99.33% 66.45% 77.67% 60.20% 87.81% 62.74% 76.17%
Metros1 96.65% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50%
Microwave01 48.96% 95.80% 76.22% 87.92% 78.80% 91.73% 98.80% 96.08%
MoesiAll 69.73% 69.35% 60.25% 62.32% 63.97% 57.99% 62.87% 67.98%
PetersonAll 53.48% 87.67% 60.81% 73.41% 65.83% 82.72% 86.10% 76.02%
ProducerConsumerAll 100.00% 100.00% 92.09% 96.35% 100.00% 100.00% 97.18% 100.00%
ProductionCell 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Readwrit 72.42% 93.21% 83.74% 88.08% 81.86% 94.88% 98.00% 95.28%
RtpAll 98.80% 95.20% 79.90% 97.66% 87.38% 95.05% 98.80% 96.96%
Speed2 65.48% 69.17% 63.05% 69.02% 61.67% 68.17% 67.50% 68.33%
Stalmark NA NA 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SteamBoilerNoArr1 83.24% 99.60% 78.60% 97.08% 99.40% 99.40% 95.96% 99.40%
SteamBoilerNoArr2 44.29% 49.05% 60.08% 58.28% 43.95% 49.85% 84.76% 85.53%
Swimmingpool1 75.97% 74.31% 71.76% 79.00% 71.43% 75.54% 84.91% 86.24%
Switch 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Switch2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SynapseAll 62.10% 62.10% 60.92% 63.06% 58.68% 58.60% 64.02% 64.14%
Ticket3iAll 98.21% 100.00% 61.97% 100.00% 100.00% 100.00% 94.54% 100.00%
Traffic 68.00% 68.00% 83.46% 87.14% 75.76% 76.00% 86.00% 90.00%
Tramway 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
TwistedCounters 99.39% 99.39% 99.39% 98.23% 99.39% 99.39% 98.08% 98.08%
Two Counters 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
UMS NA NA 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

this, we first formulate our hypothesis as follow:

H1: For each system in our study—with any oracle—the OMC/DC criterion

produces test suites with the highest likelihood of fault detection.

The paired null hypothesis is,

Hθ: For each system in our study—with any oracle—the OMC/DC criterion pro-

duces test suites with a likelihood of fault detection drawn from the same distribution

as another criterion’s suites.

We have performed a one-sided (strictly greater) Mann-Whiteney-Wilconxon rank-
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Table 5.4: Average percentage of mutants killed for each Benchmark model with OO
oracle. NA means there were no obligations for that criterion for that particular
model.

Model Branch Obranch Condition OCondition Decision ODecision MC/DC OMC/DC
6counter NA NA 99.16% 99.16% 99.16% 99.16% 99.16% 99.16%
AlarmFunctionalR2012 29.59% 44.75% 29.30% 44.22% 29.21% 45.01% 28.02% 45.48%
CarAll 98.28% 100.00% 54.88% 100.00% 57.07% 73.00% 50.20% 26.40%
cd 28.10% 48.43% 51.14% 56.60% 40.57% 41.56% 53.37% 57.23%
DockingApproach 33.07% 70.01% 33.42% 25.82% 35.35% 100.00% 37.49% 60.02%
DragonAll 1.80% 22.71% 1.80% 26.54% 5.08% 23.35% 9.91% 35.36%
DragonAll2 6.00% 28.54% 12.80% 36.09% 6.00% 25.87% 16.89% 40.53%
durationThm1 11.61% 37.47% 16.80% 44.17% 14.19% 39.14% 20.65% 38.06%
ex3 30.83% 32.50% 28.38% 32.47% 25.00% 31.53% 31.67% 31.67%
ex8 65.25% 69.49% 62.88% 68.61% 36.44% 66.10% 66.10% 69.29%
fast_1 47.21% 89.04% 86.68% 100.00% 40.74% 100.00% 100.00% 100.00%
fast_2 61.30% 100.00% 80.79% 89.14% 64.11% 100.00% 86.44% 88.46%
FireFly 11.42% 30.00% 9.08% 34.40% 10.82% 35.44% 10.10% 45.80%
Gas 12.14% 50.87% 15.61% 53.99% 51.45% 51.61% 69.36% 71.68%
HysteresisAll 99.42% 99.42% 99.42% 99.42% 98.73% 99.42% 99.42% 99.42%
IllinoisAll 5.00% 31.60% 6.28% 35.06% 7.60% 31.80% 11.85% 42.13%
Infusion 11.59% 27.23% 8.54% 30.28% 8.98% 27.22% 10.23% 29.81%
MesiAll 16.48% 99.33% 26.79% 57.85% 16.37% 77.33% 14.56% 58.70%
Metros1 87.36% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50%
Microwave01 8.60% 14.00% 8.70% 14.00% 9.00% 13.40% 9.80% 14.28%
MoesiAll 58.96% 58.69% 32.38% 46.98% 43.31% 45.24% 34.61% 55.03%
PetersonAll 8.54% 63.69% 8.68% 19.17% 20.62% 50.76% 8.71% 19.44%
ProducerConsumerAll 9.06% 12.58% 6.24% 13.52% 6.71% 13.52% 14.47% 14.47%
ProductionCell 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Readwrit 34.22% 81.92% 52.74% 56.55% 58.57% 85.88% 98.00% 87.96%
RtpAll 98.80% 90.73% 61.24% 95.55% 79.44% 89.10% 98.80% 93.99%
Speed2 31.67% 33.33% 29.70% 33.23% 25.00% 32.42% 32.50% 32.50%
Stalmark NA NA 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SteamBoilerNoArr1 7.55% 11.36% 7.32% 11.38% 6.60% 11.25% 8.15% 11.98%
SteamBoilerNoArr2 44.29% 49.05% 59.84% 58.28% 43.71% 49.85% 84.76% 85.53%
Swimmingpool1 4.57% 62.20% 6.30% 62.91% 53.99% 59.35% 54.01% 64.07%
Switch 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Switch2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
SynapseAll 43.15% 43.15% 28.88% 42.86% 9.61% 40.82% 33.07% 44.90%
Ticket3iAll 96.17% 100.00% 16.30% 100.00% 100.00% 100.00% 60.57% 100.00%
Traffic 19.00% 19.00% 31.46% 32.86% 19.00% 30.00% 37.00% 45.00%
Tramway 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
TwistedCounters 99.39% 99.39% 99.39% 96.65% 99.39% 99.39% 97.04% 97.95%
Two Counters 100.00% 100.00% 97.84% 100.00% 98.82% 100.00% 98.63% 100.00%
UMS NA NA 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

sum test [66], a non-parametric hypothesis test used to determining whether two in-

dependent samples were selected from populations having the same distribution, to

verify our hypothesis. Since we cannot generalize across non-randomly selected case

examples, we apply the statistical test over various pairs of coverage criteria (i.e., any

of the coverage criteria versus the rest of the coverage criteria respectively, therefore,

we have 56 pairs of metrics in total), for each pairing of model and oracle type, with

α = 0.05.

The statistical results are presented in Table 5.6. In this table, we list the percent-
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Table 5.5: Average percentage of mutants killed for each pairing of criterion and
oracle over all models in each dataset.

Rockwell (Inlined) Rockwell (Non-inlined) Benchmark
MX OO MX OO MX OO

OMC/DC 95.61% 87.03% 98.85% 85.88% 89.62% 65.14%
OCondition 88.38% 68.50% 98.95% 85.61% 86.22% 62.93%
ODecision 83.38% 60.33% 98.37% 83.44% 86.21% 64.70%
OBranch 81.92% 57.10% 96.84% 70.19% 85.47% 62.70%
MC/DC 94.85% 84.94% 94.87% 53.89% 88.36% 57.13%
Condition 71.00% 55.71% 93.38% 47.64% 79.37% 50.50%
Decision 85.03% 53.48% 93.32% 45.73% 78.81% 49.26%
Branch 84.20% 47.91% 87.17% 32.05% 73.19% 46.50%

age of cases for each dataset where we can reject Hθ—that is, where we can confirm

that OMC/DC outperforms the compared criterion. We also list the percentage of

cases where the reverse is true—where we can state that the other criterion out-

performs OMC/DC with significance. For example, for the Rockwell (Non-inlined)

models, with an output-only oracle, OMC/DC outperforms all criteria except OCon-

dition in 100% of cases, with statistical significance.

Table 5.6: Percent of cases where OMC/DC suites outperform suites satisfying other
criteria with significance, and percent of cases where suites satisfying the other criteria
outperform OMC/DC suites.

MX Oracle OO Oracle
more effective less effective more effective less effective

Benchmark

ODecision 45.00% 10.00% 45.00% 15.00%
OCondition 52.50% 15.00% 47.50% 15.00%
OBranch 37.84% 28.95% 45.95% 21.05%
MC/DC 45.00% 15.00% 55.00% 5.00%
Decision 57.50% 2.50% 67.50% 2.50%
Condition 65.00% 5.00% 72.50% 2.50%
Branch 65.79% 7.69% 71.05% 7.69%

Rockwell (Inlined)

ODecision 40.00% 40.00% 80.00% 20.00%
OCondition 60.00% 0.00% 100.00% 0.00%
OBranch 20.00% 20.00% 80.00% 20.00%
MC/DC 40.00% 20.00% 80.00% 20.00%
Decision 40.00% 20.00% 80.00% 20.00%
Condition 80.00% 20.00% 80.00% 0.00%
Branch 20.00% 20.00% 80.00% 20.00%

Rockwell (Non-inlined)

ODecision 80.00% 20.00% 100.00% 0.00%
OCondition 20.00% 20.00% 40.00% 20.00%
OBranch 40.00% 60.00% 100.00% 0.00%
MC/DC 80.00% 0.00% 100.00% 0.00%
Decision 100.00% 0.00% 100.00% 0.00%
Condition 100.00% 0.00% 100.00% 0.00%
Branch 60.00% 40.00% 100.00% 0.00%
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For Benchmarks, with any oracle, the percentage of cases where OMC/DC suites

outperform suites satisfying other coverage criteria is always higher than the per-

centage of suites satisfying other criteria outperforming OMC/DC suites. That is,

OMC/DC always has a highest average likelihood of fault detection. This is also

true in all situations for both variants of the Rockwell models with an output-only

oracle. Results are a little less clear-cut for the Rockwell models when paired with a

maximum oracle, where other criteria occasionally tie or outperform OMC/DC. For

instance, for the inlined variants, ODecision, OBranch, and Branch suites outperform

OMC/DC suites as often as OMC/DC suites outperform their counterparts.

Intuitively, these results makes sense. There is a clear boost in performance from

the addition of observability. As Table 5.5 shows, the observable versions of criteria

almost always outperform both their non-observable counterpart and all other non-

observable criteria, except the original MC/DC. MC/DC suites outperform all of the

other non-observable versions of the studied criteria, and is the only non-observable

criterion to produce suites that occasionally outperform the observable counterparts.

The addition of observability boosts the efficacy of the generated test suites, generally

with the end result that Observable MC/DC produces the most effective test suites.

OMC/DC does not always produce the best suites, but it is the safest choice of any

of the studied criteria.

Across the board, efficacy tends to be higher for the maximum oracle, and the

gap between observable and non-observable criteria tends to be less. This can be

explained by examining the concept of masking. With an output-only oracle, input

must trigger a fault, and the effect of a fault must not be masked by expressions on

the path to the output. Observability is intended to overcome masking, and clearly

does assist—given the results for output-only oracles. However, with a maximum

oracle, we already have expression-level observability. Masking along the path to the

output does not need to be overcome. The observable criteria generally produce more
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effective suites even in these cases, but the possibility for improvement is smaller.

In general, however, maximum oracles are prohibitively expensive to employ [24].

A tester would need to specify expected values for all variables, for each test step.

This is not usually a realistic goal. Output-only oracles are the most common, and

OMC/DC appears to be the most effective criterion when paired with this common

oracle.

5.2 Efficacy Impact of the Addition of Observability

Table 5.7: Average improvement in mutant detection for each combination of Rockwell
(inlined) model and oracle

Model Branch Condition Decision MC/DC

MX Oracle

DWM1 -11.65% -7.67% -6.43% -1.42%
DWM2 -5.51% 1.37% -0.71% 0.84%
Latctl_Batch 0.00% 32.36% -5.78% 0.00%
Microwave 1.77% 6.56% 3.93% 4.45%
Vertmax 0.00% 181.95% 0.00% 0.13%

OO Oracle

DWM1 0.18% -0.46% -0.58% -0.91%
DWM2 -6.53% 2.23% -0.71% 0.83%
Latctl_Batch 22.05% 47.26% 14.38% 4.29%
Microwave 84.98% 37.85% 40.01% 8.11%
Vertmax 9.97% 74.03% 20.95% 1.52%

Table 5.8: Average improvement in mutant detection for each combination of Rockwell
(non-inlined) model and oracle

Model Branch Condition Decision MC/DC

MX Oracle

DWM1 19.91% 20.23% 20.72% 15.77%
DWM2 31.38% 0.67% 0.92% 0.12%
Latctl_Batch 0.00% 2.06% 2.09% 0.04%
MicrowaveI 12.78% 4.99% 2.92% 5.10%
Vertmax 0.00% 4.36% 3.10% 1.86%

OO Oracle

DWM1 1654.38% 1722.82% 1760.52% 1623.39%
DWM2 97.18% 18.47% 27.77% 12.42%
Latctl_Batch 40.69% 50.67% 50.62% 18.62%
Microwave 86.91% 41.78% 34.02% 33.60%
Vertmax 70.79% 90.93% 89.28% 67.54%

In Table 5.10, we present the average improvement in efficacy when moving from a

traditional criterion—such as MC/DC—to its observable counterpart over all models

for each dataset. Tables 5.7-5.9 list the average improvement for each individual
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Table 5.9: Average improvement in mutant detection for each combination of Bench-
mark model and oracle

Model
MX Oracle OO Oracle

Branch Condition Decision MC/DC Branch Condition Decision MC/DC
6counter N/A 0.00% 0.00% 0.00% N/A 0.00% 0.00% 0.00%
AlarmFunctionalR2012 2.91% 2.14% 0.98% 2.18% 51.24% 50.91% 54.07% 62.35%
CarAll 0.00% 9.78% 4.37% -5.83% 1.75% 82.23% 27.92% -47.41%
cd 54.93% 5.31% 0.00% 2.23% 72.34% 10.67% 2.45% 7.24%
DockingApproach 23.96% -31.62% 31.73% -4.38% 111.73% -22.75% 182.87% 60.10%
DragonAll 95.05% 64.72% 42.83% 6.27% 1161.78% 1374.67% 359.97% 256.78%
DragonAll2 63.35% 55.16% 75.43% 5.26% 375.73% 182.03% 331.20% 140.00%
durationThm1 230.77% 17.61% 49.43% 5.43% 222.67% 162.90% 175.73% 84.37%
ex3 5.06% 9.56% 10.38% 0.00% 5.41% 14.39% 26.13% 0.00%
ex8 4.71% 7.29% 12.36% 3.21% 6.49% 9.11% 81.40% 4.82%
fast_1 22.33% 4.56% 26.21% 0.00% 88.58% 15.36% 145.49% 0.00%
fast_2 24.36% 4.37% 17.09% 0.21% 63.12% 10.34% 55.97% 2.34%
FireFly 11.98% 28.11% 19.33% 10.13% 162.79% 279.02% 227.42% 353.47%
Gas 49.20% 15.28% -3.10% -3.97% 319.05% 245.93% 0.31% 3.33%
HysteresisAll 0.00% 0.00% 0.61% 0.00% 0.00% 0.00% 0.69% 0.00%
IllinoisAll 68.53% 24.07% 59.81% 3.06% 532.00% 457.86% 318.64% 255.57%
Infusion 32.77% 20.74% 17.90% 14.63% 135.00% 254.61% 202.98% 191.32%
MesiAll 65.58% 16.88% 45.87% 21.41% 502.87% 115.96% 372.41% 303.27%
Metros1 2.95% 0.00% 0.00% 0.00% 13.90% 0.00% 0.00% 0.00%
Microwave01 95.65% 15.36% 16.41% -2.76% 62.79% 60.85% 48.89% 45.67%
MoesiAll -0.54% 3.44% -9.35% 8.13% -0.45% 45.09% 4.44% 58.97%
PetersonAll 63.91% 20.72% 25.65% -11.70% 645.76% 120.98% 146.10% 123.24%
ProducerConsumerAll 0.00% 4.62% 0.00% 2.90% 38.79% 116.73% 101.50% 0.00%
ProductionCell 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Readwrit 28.71% 5.18% 15.91% -2.78% 139.41% 7.22% 46.64% -10.24%
RtpAll -3.64% 22.23% 8.78% -1.86% -8.17% 56.02% 12.16% -4.87%
Speed2 5.62% 9.46% 10.54% 1.23% 5.26% 11.90% 29.67% 0.00%
Stalmark N/A 0.00% 0.00% 0.00% N/A 0.00% 0.00% 0.00%
SteamBoilerNoArr1 19.65% 23.52% 0.00% 3.59% 50.45% 55.49% 70.42% 46.98%
SteamBoilerNoArr2 10.75% -3.00% 13.41% 0.90% 10.75% -2.61% 14.03% 0.90%
Swimmingpool1 -2.19% 10.09% 5.76% 1.57% 1259.67% 898.10% 9.92% 18.63%
Switch 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Switch2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SynapseAll 0.00% 3.50% -0.13% 0.19% 0.00% 48.39% 324.76% 35.78%
Ticket3iAll 1.82% 61.37% 0.00% 5.78% 3.98% 513.35% 0.00% 65.10%
Traffic 0.00% 4.41% 0.32% 4.65% 0.00% 4.45% 57.89% 21.62%
Tramway 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
TwistedCounters 0.00% -1.17% 0.00% 0.00% 0.00% -2.76% 0.00% 0.94%
Two Counters 0.00% 0.00% 0.00% 0.00% 0.00% 2.20% 1.19% 1.39%
UMS N/A 0.00% 0.00% 0.00% N/A 0.00% 0.00% 0.00%

model. In general, we see an increase in efficacy. That is, regardless of the underlying

coverage criterion, observability seems to have a positive impact on the likelihood of

detecting faults.

This is especially true when an output-only oracle—the most common oracle [24]—

is used. When using an output-only oracle, masking is an especially prevalent prob-

lem. Observability is intended to overcome masking, and our results show that this

is the case. This can be clearly seen in the Rockwell (non-inlined) models, where the

addition of observability improves efficacy up to 392.44%. Results are more subdued
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Table 5.10: Average improvement in the likelihood of fault detection, after adding
observability constraints

MX Oracle OO Oracle

Benchmark

MC/DC 1.79% 53.38%
Decision 12.78% 88.03%
Condition 11.12% 132.79%
Branch 26.44% 163.10%

Rockwell (Inlined)

MC/DC 0.80% 2.77%
Decision -1.80% 14.81%
Condition 42.92% 32.18%
Branch -3.08% 22.13%

Rockwell (Non-inlined)

MC/DC 4.58% 351.12%
Decision 5.95% 392.44%
Condition 6.46% 384.93%
Branch 12.81% 389.99%

for the inlined variants—up to a 32.18% improvement.

We can see from these results that the structure of the system—how code is

written—has some impact on the impact of adding observability. The Rockwell

examples offer two extremes—either entirely inlined or with the simplest possible

expressions. At the later end, there is tremendous improvement from adding observ-

ability. If there are a large number of simple expressions, then masking along the path

to the output is far more likely than if there are a smaller number of expressions. As

a result, observability has a major impact, propagating the effect of a fault to the

output variables. On the other hand, if there are a small number of expressions,

then the path to output will be shorter. Therefore, observability will have a smaller

impact.

In addition, past work has shown that the test cases generated for heavily inlined

systems may be more effective from the start [23, 50]. Criteria such as MC/DC require

that an independent impact be shown for each condition within a decision. That is,

if MC/DC is fulfilled, then a condition will not be masked within the expression

that it appears in. Its impact can be masked on the path to output, but will effect

the outcome of the decision that it falls within. If a model is more heavily inlined,

then the requirements of standard MC/DC are more strenuous—independent impact

must be shown for more complex expressions. At the same time, the path to output
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is shorter, limiting further opportunities for masking. Therefore, the test cases may

be more effective from the start, and the further impact of observability may be more

limited.

We can see some evidence from this that observability helps bridge the gap from

output-only oracle to maximum oracle—without adding additional human oracle

cost [45], and the gap from non-inlined to inlined program structure. The Bench-

marks examples are varied in terms of structure. As a result, the impact of adding

observability falls between the two extremes of the Rockwell models—with improve-

ments of up to 163.10% for the output-only oracle.

As noted earlier, improvements tend to be smaller when employing a maximum

oracle. For non-inlined implementation of Rockwell models, we see average improve-

ments of up to 12.81%. For the inlined variants, we see up to a 42.92% average

improvement, and even see small performance downgrades of up to 3.08%. For the

Benchmarks dataset, we see average improvements of up to 26.44%.

Adding observability tends to improve efficacy over satisfaction of the

traditional criteria, with average improvements of up to 392.44% in mutation

detection and per-model improvements of up to 1654.38%.

We can establish evidence by performing statistical analysis, employing the same

test used previously. We formulate our hypotheses as follow:

H2: For each system in our study—with any oracle—the observable version of

a criterion produces test suites with a higher likelihood of fault detection than the

traditional variant.

The paired null hypothesis is:

Hθ2: For each system in our study—with any oracle—the observable version of

a criterion produces test suites with a likelihood of fault detection drawn from the
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same distribution as the traditional variant.

Table 5.11: Cases where the observable criterion produces suites outperforming the
non-observable variant with significance, and when the non-observable variant pro-
duces more effective suites.

MX Oracle OO Oracle
Observable Metric Traditional Metric Observable Metric Traditional Metric

Benchmarks

MC/DC 45.00% 15.00% 55.00% 5.00%
Decision 57.50% 5.00% 67.50% 2.50%
Condition 65.00% 7.50% 67.50% 7.50%
Branch 60.53% 5.26% 71.05% 2.63%

Rockwell (Inlined)

MC/DC 40.00% 20.00% 80.00% 20.00%
Decision 20.00% 40.00% 60.00% 20.00%
Condition 60.00% 20.00% 80.00% 20.00%
Branch 0.00% 40.00% 80.00% 20.00%

Rockwell (Non-inlined)

MC/DC 80.00% 0.00% 100.00% 0.00%
Decision 100.00% 0.00% 100.00% 0.00%
Condition 100.00% 0.00% 100.00% 0.00%
Branch 60.00% 0.00% 100.00% 0.00%

The statistical results are presented in Table 5.11, where we list the percent of

cases where we can reject Hθ2—we can provide evidence that the observable criterion

produces more effective test suites—along with the percentage of cases where we

can state with significance that the reverse is true—that the traditional criterion is

more effective. For example, for the Benchmark models—with a maximum oracle—

suites satisfying the OMC/DC criterion outperform MC/DC-satisfying suites with

significance in 45% of cases, while the reverse is true for only 15% of cases. For the

remaining 40% of the models, neither outperforms the other with significance.

Almost universally, the observable variant outperforms the traditional variant—

with significance—in more cases. The only two situations where this is reversed are

for Decision Coverage and Branch Coverage on the inlined Rockwell models, paired

with a maximum oracle. As highlighted above, this is the exact situation where we

would expect the least benefit from the addition of observability. However, with the

more realistic output-only oracle, the observable variant of the criterion produces

more effective suites in the vast majority of cases.

We can further examine the impact of observability by looking at two situations—

when observability had the most impact on efficacy, and when it had the least—or
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Table 5.12: Lowest improvement (or worst downgrade) in fault detection when tran-
sitioning from traditional to observable criteria.

MX Oracle OO Oracle

Benchmark

MC/DC -11.7%, PetersonAll -47.41%, Car_All

Decision -9.35%, MoesiAll
0.00%, 6counter/Metros1/ProductionCell/
Stalmark/Switch/Switch2/Ticket3iAll/
Tramway/TwistedCounters

Condition -31.62%, DockingApproach -22.75%, DockingApproach
Branch -3.64%, Rtp_All -8.17%, Rtp_All

Rockwell (Inlined)

MC/DC -1.42%, DWM1 -0.91%, DWM1
Decision -6.43%, DWM1 -0.71%, DWM2
Condition -7.67%, DWM1 -0.46%, DWM1
Branch -11.65%, DWM1 -6.53%, DWM2

Rockwell (Non-inlined)

MC/DC 0.04%, Latctl_Batch 12.42%, DWM2
Decision 0.92%, DWM2 27.77%, DWM2
Condition 0.67%, DWM2 18.47%, DWM2
Branch 0.00%, Latctl_Batch/Vertmax 40.69%, Latctl_Batch

Table 5.13: Max improvement in fault detection when transitioning from traditional
to observable criteria.

MX Oracle OO Oracle

Benchmark

MC/DC 21.41%, MesiAll 353.47%, FireFly
Decision 75.43%, DragonAll2 372.41%, MesiAll
Condition 64.72%, DragonAll 1374.67%, DragonAll
Branch 230.77%, durationThm1 1259.67%, Swimmingpool1

Rockwell (Inlined)

MC/DC 4.45%, Microwave 8.11%, Microwave
Decision 3.93%, Microwave 40.01%, Microwave
Condition 181.95%, Vertmax 74.03%, Vertmax
Branch 1.77%, Microwave 84.98%, Microwave

Rockwell (Non-inlined)

MC/DC 15.77%, DWM1 1623.39%, DWM1
Decision 20.72%, DWM1 1760.52%, DWM1
Condition 20.23%, DWM1 1722.82%, DWM1
Branch 31.38%, DWM2 1654.38%, DWM1

even negative—impact on results.

First, we can examine the “minimal improvements” to examine situations where

suites satisfying the observable criteria are worse than their non-observable coun-

terparts. In Table 5.12, we list the smallest improvement seen—or largest loss in

efficacy, if there was one—and the affected model, for each criterion and oracle. With

an output-only oracle, we see a small loss in performance in the worst cases for the

inlined Rockwell models, with drops of 0.56-6.53% in efficacy. For the Benchmarks

models, we see losses of 0.00-47.41% in the worse cases. With a maximum oracle,

we see losses of 1.42-11.65% for the inlined Rockwell models and 3.64-11.70% for the
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Benchmarks models.

In cases where the loss in performance—or gain—are small, one factor that may

contribute is the test suite reduction process. Tests are chosen randomly for the

reduced suite, based on their ability to cover obligations. In general, efficacy may be

essentially identical between the observable and non-observable suites, and poor test

cases choices push the average slightly lower—but not in a statistically significant

manner. This would explain most of the Rockwell scenarios, as well as Branch-

satisfying suites on the Rtp_All system from the Benchmarks dataset. This is a case

where Branch and OBranch attain generally the same results—the if statements in

the model are easily observable—but the average for OBranch is slightly lower due

to poor test selection during suite reduction.

Note that performance is never worse for the non-inlined Rockwell models, so the

structure of the model may have some impact. This ties into earlier observations on

the results. Heavily inlined systems tend to see less improvement from the addition

of observability, as there is a shorter path to system output. If there is less potential

for improvement in the first place, the additional complexity of observability can

downgrade performance if it results in fewer fulfilled obligations.

This can clearly be seen for the Docking_Approach model, which tends to see

a large downgrade in performance when Observable Condition Coverage is used to

generate suites instead of traditional Condition Coverage. Only 16.98% of the obli-

gations are satisfied for OCondition, rather than 96.04% for Condition. This is also

true in MC/DC case, where 35.98% of OMC/DC obligations are covered for for Pe-

terson_All, rather than vs 93.56% for traditional MC/DC—or 56.86% OMC/DC

versus 82.00% MC/DC for Car_All. This is also a factor in Decision Coverage for

the UMS model, where 3.13% of ODecision obligations are fulfilled, and 92.19% of

the obligations are fulfilled for traditional Decision coverage.

If a significantly lower percent of the obligations are fulfilled, the performance will
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downgrade. The observable versions of criteria impose much more difficult obliga-

tions, so some drop is not surprising. However, if there is a major drop in obligation

satisfaction, then it is not unreasonable to also observe some loss in performance.

Fortunately, although there are some drawbacks in performance by requiring observ-

ability, the worst drops are still not major. This is especially true given the dip in

satisfaction. In the Docking_Approach example, we lose only 31% in efficacy, despite

losing 89% of the obligation satisfaction. This fits with the observation above that

observability generally improves results significantly, especially with an output-only

oracle.

At first glance, the structure of the model—the level of inlining—appears to have

some impact. With the Rockwell models, we never see a downgrade in performance for

the non-inlined variants. Similarly—from the Benchmarks examples—Peterson_All,

Rtp_All, and Moesi_All are relatively heavily inlined. Docking_Approach and

Car_All are more non-inlined. However, those are both cases where the drop is

clearly due to low satisfaction of obligations.

However, we do not believe that this is due to inlining alone, but because inlining

is a factor informative of the overall model complexity. Inlined models tend to see

less improvement from observability because they have more complex expressions.

Regardless of the length of the path to output, complex expressions suffer more

from masking, making it harder to guarantee a clear path to output. In turn, this

potentially leads to lower levels of overall satisfaction for the observable variants.

Even though Docking_Approach is not inlined, it does have a deep state space—a

series of gated conditions—which results in a longer path to establish to ensure ob-

servability. Therefore, we get lower satisfaction of the obligations for the observable

variant than the original, which must simply satisfy obligations on individual expres-

sions. The problem, then—inlined or not—is establishing a masking-free path from

the expression to the output.
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Non-inlined models can offer complex observability requirements because the path

length is long—a failure must propagate through a long series of expressions to impact

the output. Each individual expression is simple, but there are a large number of

them to pass through un-masked. Therefore, the path length can be informative of

the difficulty of achieving observability—impacting both obligation satisfaction and

efficacy. In non-inlined models, the individual statements are simple. This results

in trivial satisfaction of traditional coverage criteria, and weaker tests. Even if tests

trigger a fault, they tend to be masked on the path to output. As a result, there

tends to be a greater performance boost from observability.

Inlined models tend to have a shorter path-to-output, but each expression is much

more complex. Therefore, at each expression from activation to output, a failure could

be easily masked. As a result, statement complexity—which can be judged by the

level of inlining—impacts obligation satisfaction as well as the efficacy gap between

observable and traditional variants. Suites satisfying the traditional criterion must

satisfy much more difficult obligations, and there are fewer opportunities for masking

on the path to output. Therefore, the efficacy of the suites satisfying the traditional

criterion tend to be relatively effective even without observability. Observability

can boost efficacy, but the difficulty of finding a path through the more complex

expressions can also cause issues.

The above only discussed combinatorial paths—from expression to output in a

single computation cycle. Complexity must also be considered over multiple compu-

tation cycles, as observability can be established after delays. One additional factor

impacting the path to output are the number of delay expressions. Failures can be

propagated across computation cycles. However, the use of such expressions intro-

duces an additional source of complexity to a model, and test obligations that require

a delay observable path can be harder to satisfy.
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Factors that can harm efficacy—generally resulting in a reduction in the number

of fulfilled obligations—include expression complexity, the length of the

combinatorial path from expression to output, and the length of the delayed

path from expression to output.

In Table 5.13, we list the maximum improvement seen, and the affected model,

for each criterion and oracle. We generally see excellent levels of maximum improve-

ments. With an output-only oracle, we see improvements from 8.11-84.98% for the

inlined Rockwell models, 1623.39-1760.52% for the non-inlined Rockwell models, and

353.47-1374.67% for the Benchmark models. As expected, results are more subdued

with a maximum oracle. However, we still see improvements of 1.77-181.95% for

the inlined Rockwell models, 15.77-31.38% for the non-inlined Rockwell models, and

21.41-230.66% for the Benchmark models.

There are a few observations that can be made from these results. First, the

largest improvements tend to be smaller for the MC/DC criterion than for the other

criteria. This is reasonable, as the baseline efficacy of MC/DC-satisfying suites tends

to be higher to begin with, limiting the potential gains. The largest improvements

tend to be for Branch or Condition-satisfying suites. This too is reasonable, as such

criteria are weaker to begin with.

Improvements for non-inlined Rockwell models are clearly much greater than the

improvements for inlined versions. As discussed above, this can be explained by

looking at model complexity. Suites satisfying the traditional criterion must satisfy

much more difficult obligations, and there are fewer opportunities for masking on the

path to output. Therefore, the efficacy of the suites satisfying the traditional criterion

tend to be relatively effective even without observability. For the non-inlined models,

the individual expressions are simple—and the traditional criteria can be satisfied

relatively trivially. As a result, failures can be more easily masked on the path to
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output. However, observability overcomes masking along the path with relative ease.

Ultimately, observability produces much more effective test suites for non-inlined

models than the traditional criteria.

However, for the Benchmark examples, inlining alone is not always the biggest

factor in the max improvement. Almost all of the models that had the maximum

improvements from this dataset were relatively inlined. Despite inlining, the level

of obligation satisfaction is still high for the observable versions of the criteria. For

example, 92.11% versus 96.49% for Moesi_All and 90.07% versus 91.49% for FireFly

for OMC/DC and MC/DC. From this, we can see that the complexity of individual

statements can limit efficacy—by making it difficult to find masking-clear paths—it

does not guarantee weaker results. As long as coverage can be achieved by the test

generator, observability seems to have a positive impact. Other factors, like those

discussed above, may have more of an impact on satisfaction of obligations than the

statement complexity alone.

5.3 Impact of Observability on Test Suite Size and Obligation

Satisfaction

Table 5.14: Average Changes in Size of Test Suites and Percentage of Satisfied Obli-
gations

Size of Test Suites Obligation Satisfaction

Benchmark

MC/DC 26.45% -20.44%
Decision 67.52% -10.22%
Condition 55.38% -18.51%
Branch 69.68% -8.02%

Rockwell (Inlined)

MC/DC 25.51% -4.20%
Decision 23.02% -5.72%
Condition 49.97% -4.17%
Branch 7.73% -3.29%

Rockwell (Non-inlined)

MC/DC 307.88% -6.49%
Decision 392.46% -8.11%
Condition 376.25% -6.30%
Branch 343.54% -4.82%

In Table 5.14, we present the average change in size of test suites and percentage
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of fulfilled obligations when observability is required for each coverage criterion. Re-

gardless the underlying coverage criterion, we see an increase in the number of test

cases required for the observable version of the test suite. Fundamentally, observable

criteria require more test cases to fulfill their obligations than the traditional variants.

Because of the highly specific path to output required for each obligation, there is

less overlap between test cases in terms of the obligations satisfied.

We can see that program structure seems to have an impact on the magnitude

of the size increase. Moving to an observable criterion results in a massive increase

in test suite size for the non-inlined Rockwell models—307.87-392.46%—while there

is only a modest increase of 7.73-49.97% for the inlined models. Similarly, on a per-

model basis for the Benchmarks examples, many of the models with smaller increases

in suite size tend to also be heavily inlined.

This observation makes sense given the discussion above. The obligations for

non-observable criteria are formed over individual expressions. If those expressions

are simple, the obligations too will be simple. As a result, each test case may cover

a variety of obligations with ease. If the model is more heavily inlined, then each

obligation will be more complex, and more specialized. There will be less overlap in

coverage between test cases [23]. The more heavily inlined the model, the larger the

test suite tends to be.

Therefore, model structure has a major impact on the size of the test suite for

suites satisfying the non-observable criteria. Inlined models start with larger test

suites. Then, regardless of the model structure, the addition of observability, increases

the size further.

The primary factor influencing the size increase from observability is the length of

the path. Each expression encountered along the path imposes additional conditions

on maintaining a non-masking path. Therefore, the longer the path length, the more

complex the requirements are on the test case. As a result, we see a similar effect
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to changing the program structure. The individual test cases are more specialized,

and there is less of a chance of overlap in covered obligations. This further explains

the larger increase in size for non-inlined models. Non-inlined models have simpler

expressions, but much more of them. As a result, the satisfaction complexity is

in satisfying path constraints rather than in fulfilling the original expression-level

obligations.

The addition of observability results in an increase in the size of test suites. The

magnitude of that increase depends on the length of the path from each

expression to the output.

Previous work has shown that observability imposes an additional complexity

burden on the test case generator, generally resulting in some loss in obligation sat-

isfaction [65, 25]. The results of this study further confirm this. Table 5.14 shows

that—on average—there is a loss in obligation satisfaction regardless of the criterion.

For the inlined Rockwell models, this average loss ranges from 3.29-5.72%. For the

non-inlined versions, this ranges from 4.82-8.11%. Then, for the Benchmarks dataset,

the average loss ranges from 8.02-20.44%.

As discussed earlier, a loss in obligation satisfaction is to be expected—the test

obligations requires to ensure observability are far more complex than the equivalent

obligations when observability is not required. This loss can occur for two reasons.

First, if there is no masking-free path, then the obligation will be unfulfillable. This

means that observability cannot be established, and thus, a fault in that statement

cannot influence the output. Generally, this indicates dead code—code that, inten-

tionally or not, cannot affect program output. Occasionally, this is a byproduct of

either code reuse—where existing code is reused wholesale—or defensive program-

ming.
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However, in some cases, obligations may be too complex for the test generator

to fulfill. In such cases, the generator will eventually return an “unknown” verdict.

This is an indication that the generator was unable to meet the obligation, and was

unable to conclusively determine that it could not be met (the case above). If the

obligations are too complex, then the test generator can return weaker test suites

because it eventually gives up on finding solutions that fulfill these obligations.

Table 5.15: % of obligations fulfilled, and the % of the unfulfilled obligations that
were due to an “unknown” verdict being returned by the test generation for the
Benchmarks dataset (Branch and Condition). An NA means there were no obligations
for that criterion.

Branch OBranch Condition OCondition
% Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown

6counter NA NA NA NA 100.00% 0.00% 100.00% 0.00%
AlarmFunctionalR2012 92.43% 0.00% 77.55% 22.45% 93.46% 0.00% 80.23% 19.77%

CarAll 100.00% 0.00% 100.00% 0.00% 86.00% 0.00% 65.38% 0.00%
cd 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 88.24% 0.00%

DockingApproach 97.83% 0.00% 36.64% 63.04% 96.04% 0.00% 19.57% 80.37%
DragonAll 99.18% 0.00% 99.18% 0.00% 99.40% 0.00% 99.00% 0.00%
DragonAll2 99.18% 0.00% 99.18% 0.00% 98.73% 0.00% 98.55% 0.00%

durationThm1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 93.33% 0.00%
ex3 83.33% 0.00% 83.33% 0.00% 78.57% 0.00% 75.00% 0.00%
ex8 83.33% 0.00% 83.33% 0.00% 78.57% 0.00% 75.00% 0.00%

fast_1 100.00% 0.00% 100.00% 0.00% 99.29% 0.00% 93.84% 0.00%
fast_2 100.00% 0.00% 100.00% 0.00% 95.41% 0.00% 91.15% 0.00%
FireFly 97.50% 0.00% 97.50% 0.00% 98.94% 0.00% 98.23% 0.00%

Gas 100.00% 0.00% 8.33% 66.67% 97.06% 0.00% 31.58% 52.63%
HysteresisAll 91.67% 0.00% 91.67% 0.00% 95.00% 5.00% 92.50% 5.00%

IllinoisAll 100.00% 0.00% 100.00% 0.00% 99.38% 0.00% 99.06% 0.00%
Infusion 99.69% 0.00% 36.08% 0.00% 99.54% 0.00% 41.33% 0.00%
MesiAll 93.75% 0.00% 87.50% 0.00% 92.98% 0.00% 59.65% 0.00%
Metros1 100.00% 0.00% 26.67% 0.00% 96.59% 1.14% 30.68% 0.00%

Microwave01 88.11% 3.16% 75.49% 0.00% 93.68% 1.53% 35.90% 0.00%
MoesiAll 0.00% 0.00% 100.00% 0.00% 98.25% 0.00% 95.61% 0.00%

PetersonAll 100.00% 0.00% 100.00% 0.00% 98.48% 0.76% 37.50% 60.42%
ProducerConsumerAll 100.00% 0.00% 81.82% 0.00% 100.00% 0.00% 94.74% 0.00%

ProductionCell 100.00% 0.00% 100.00% 0.00% 98.98% 0.00% 90.00% 0.00%
Readwrit 100.00% 0.00% 100.00% 0.00% 94.36% 3.08% 41.28% 52.05%
RtpAll 98.98% 0.00% 98.98% 0.00% 95.64% 1.66% 27.80% 68.05%
Speed2 83.33% 0.00% 83.33% 0.00% 78.57% 0.00% 75.00% 0.00%

Stalmark NA NA NA NA 100.00% 0.00% 100.00% 0.00%
SteamBoilerNoArr1 99.47% 0.00% 98.40% 0.00% 99.69% 0.00% 87.46% 0.00%
SteamBoilerNoArr2 100.00% 0.00% 100.00% 0.00% 97.87% 0.00% 97.87% 0.00%

Swimmingpool1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 98.90% 0.00%
Switch 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
Switch2 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

SynapseAll 100.00% 0.00% 100.00% 0.00% 95.95% 0.00% 68.92% 0.00%
Ticket3iAll 98.65% 0.00% 86.49% 0.00% 96.50% 0.00% 31.85% 0.00%

Traffic 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
Tramway 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 97.62% 0.00%

TwistedCounters 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
Two Counters 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

UMS 100.00% 0.00% NA NA 95.86% 0.00% 18.62% 0.00%

To better understand the reasons we lose coverage, we have listed the percent

of obligations fulfilled and the percent of obligations that resulted in “unknown”
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Table 5.16: % of obligations fulfilled, and the % of the unfulfilled obligations that
were due to an “unknown” verdict being returned by the test generation for the
Benchmarks dataset (Decision and MC/DC).

Decision ODecision MC/DC OMC/DC
% Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown

6counter 100.00% 0.00% 100.00% 0.00% 93.33% 0.00% 93.75% 0.00%
AlarmFunctionalR2012 92.27% 0.00% 77.06% 22.94% 92.25% 0.00% 78.02% 21.98%

CarAll 95.00% 0.00% 77.27% 0.00% 82.00% 0.00% 59.62% 0.00%
cd 91.67% 0.00% 75.00% 0.00% 94.12% 0.00% 70.59% 0.00%

DockingApproach 95.08% 0.00% 32.90% 62.18% 91.20% 0.00% 14.84% 85.12%
DragonAll 98.68% 0.00% 98.03% 0.00% 94.00% 0.00% 93.20% 0.00%
DragonAll2 98.05% 0.00% 97.40% 0.00% 89.09% 0.00% 88.55% 0.00%

durationThm1 91.67% 0.00% 83.33% 0.00% 90.00% 0.00% 76.67% 0.00%
ex3 83.33% 0.00% 83.33% 0.00% 71.43% 0.00% 64.29% 0.00%
ex8 91.67% 0.00% 91.67% 0.00% 78.57% 0.00% 71.43% 0.00%

fast_1 96.00% 0.00% 87.50% 0.00% 96.43% 0.00% 90.41% 0.00%
fast_2 92.31% 0.00% 84.88% 0.00% 93.58% 0.00% 87.17% 0.00%
FireFly 97.06% 0.00% 95.10% 0.00% 91.49% 0.00% 90.07% 0.00%

Gas 100.00% 0.00% 16.67% 70.83% 94.12% 2.94% 81.58% 2.63%
HysteresisAll 91.67% 0.00% 91.67% 0.00% 80.00% 5.00% 75.00% 5.00%

IllinoisAll 99.15% 0.00% 98.31% 0.00% 92.81% 0.00% 91.88% 0.00%
Infusion 99.23% 0.00% 39.44% 0.00% 99.08% 0.00% 38.37% 0.00%
MesiAll 93.59% 0.00% 80.77% 0.00% 89.47% 0.00% 56.14% 0.00%
Metros1 94.12% 0.00% 29.41% 0.00% 86.36% 0.00% 23.86% 0.00%

Microwave01 83.07% 3.65% 60.42% 0.00% 75.15% 13.15% 33.79% 0.00%
MoesiAll 97.62% 0.00% 96.43% 0.00% 96.49% 0.00% 92.11% 0.00%

PetersonAll 99.43% 0.00% 97.13% 0.00% 93.56% 0.57% 35.98% 61.55%
ProducerConsumerAll 97.22% 0.00% 86.11% 0.00% 76.32% 0.00% 71.05% 0.00%

ProductionCell 96.88% 0.00% 97.73% 0.00% 86.73% 0.00% 79.09% 0.00%
Readwrit 99.34% 0.00% 96.71% 0.00% 89.74% 3.08% 41.28% 52.05%
RtpAll 98.44% 0.00% 95.31% 0.00% 90.25% 1.66% 27.39% 68.05%
Speed2 83.33% 0.00% 83.33% 0.00% 71.43% 0.00% 64.29% 0.00%

Stalmark 87.50% 0.00% 87.50% 0.00% 41.67% 0.00% 41.67% 0.00%
SteamBoilerNoArr1 99.09% 0.00% 90.00% 0.00% 91.38% 0.00% 78.84% 0.00%
SteamBoilerNoArr2 87.50% 0.00% 87.50% 0.00% 91.49% 0.00% 91.49% 0.00%

Swimmingpool1 100.00% 0.00% 100.00% 0.00% 92.31% 0.00% 91.21% 0.00%
Switch 100.00% 0.00% 100.00% 0.00% 93.33% 0.00% 93.33% 0.00%
Switch2 100.00% 0.00% 100.00% 0.00% 93.33% 0.00% 93.33% 0.00%

SynapseAll 97.92% 0.00% 89.58% 0.00% 90.54% 0.00% 63.51% 0.00%
Ticket3iAll 97.96% 0.00% 84.69% 0.00% 90.13% 0.00% 31.21% 0.00%

Traffic 87.50% 0.00% 75.00% 0.00% 85.00% 0.00% 70.00% 0.00%
Tramway 98.21% 0.00% 96.67% 0.00% 91.80% 0.00% 88.10% 0.00%

TwistedCounters 92.86% 0.00% 92.86% 0.00% 81.82% 0.00% 81.82% 0.00%
Two Counters 87.50% 0.00% 87.50% 0.00% 66.67% 0.00% 66.67% 0.00%

UMS 92.19% 0.00% 2.63% 0.00% 84.96% 0.00% 1.72% 0.00%

verdicts—where the test generator gave up on finding a solution—for each model

from the Benchmarks dataset in Tables 5.15-5.16. We do the same for the inlined

Rockwell examples in Table 5.17 and the non-inlined variants in Table 5.18. Finally,

we list averages for each dataset in Table 5.19.

First, we can see again from Table 5.19 that the observable variants see a lower

rate of obligation fulfillment than the traditional criteria. Again, this is expected. In

the case of the Rockwell models, we see that there are no situations where the test

generator returned an unknown verdict. This means that any loss in such situations

is due to provably unfulfillable obligations—dead code. This reduction in fulfillment
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Table 5.17: % of obligations fulfilled, and the % of the unfulfilled obligations that were
due to an “unknown” verdict being returned by the test generation for the Rockwell
(inlined) dataset.

Branch OBranch Condition OCondition
% Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown

DWM_1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
DWM_2 100.00% 0.00% 100.00% 0.00% 99.73% 0.00% 99.73% 0.00%

Microwave 89.41% 0.00% 74.71% 0.00% 94.66% 0.00% 75.64% 0.00%
Latctl_Batch 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 99.23% 0.00%

Vertmax 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
Decision ODecision MC/DC OMC/DC

% Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown
DWM_1 100.00% 0.00% 100.00% 0.00% 98.74% 0.00% 98.74% 0.00%
DWM_2 100.00% 0.00% 100.00% 0.00% 93.93% 0.00% 93.93% 0.00%

Microwave 94.66% 0.00% 69.66% 0.00% 94.02% 0.00% 75.00% 0.00%
Latctl_Batch 100.00% 0.00% 97.83% 0.00% 99.62% 0.00% 98.85% 0.00%

Vertmax 100.00% 0.00% 100.00% 0.00% 96.99% 0.00% 96.99% 0.00%

Table 5.18: % of obligations fulfilled, and the % of the unfulfilled obligations that were
due to an “unknown” verdict being returned by the test generation for the Rockwell
(non-inlined) dataset.

Branch OBranch Condition OCondition
% Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown

DWM_1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
DWM_2 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 97.74% 0.00%

Microwave 100.00% 0.00% 75.90% 0.00% 99.15% 0.00% 72.25% 0.00%
Latctl_Batch 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 97.89% 0.00%

Vertmax 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
Decision ODecision MC/DC OMC/DC

% Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown
DWM_1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 99.90% 0.00%
DWM_2 100.00% 0.00% 94.87% 0.00% 98.68% 0.00% 96.42% 0.00%

Microwave 99.73% 0.00% 66.76% 0.00% 98.73% 0.00% 71.61% 0.00%
Latctl_Batch 100.00% 0.00% 97.64% 0.00% 100.00% 0.00% 97.63% 0.00%

Vertmax 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 99.77% 0.00%

is acceptable, as such obligations can never be fulfilled.

However, for the complex Benchmarks models, we do see some loss due to the test

generator. On average, 4.11% (OBranch), 8.46% (OCondition), 3.90% (ODecision),

and 7.41% (MC/DC) of obligations return “unknown” verdicts during test generation.

We wish to avoid such situations, as they are situations where we cannot prove that

the obligation cannot be fulfilled—the test generator just did not find a solution in

time. Some of these obligations may have test cases meeting them. Many will not,

but we lack proof in one direction or another.

In the Benchmarks dataset, even the traditional criteria have obligations that

result in unknown verdicts—on average, 0.08% (Branch), 0.33% (Condition), 0.09%
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Table 5.19: Average % of obligations fulfilled, and the average % of the unfulfilled
obligations that were due to an “unknown” verdict being returned by the test gener-
ation for each dataset.

Branch OBranch Condition OCondition
% Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown

Benchmarks 94.91% 0.08% 87.88% 4.11% 96.22% 0.33% 75.78% 8.46%
Rockwell (inlined) 97.88% 0.00% 94.94% 0.00% 98.88% 0.00% 94.92% 0.00%

Rockwell (non-inlined) 100.00% 0.00% 95.18% 0.00% 99.83% 0.00% 93.58% 0.00%
Decision ODecision MC/DC OMC/DC

% Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown
Benchmarks 94.60% 0.09% 81.17% 3.90% 86.84% 0.66% 67.08% 7.41%

Rockwell (inlined) 98.93% 0.00% 93.50% 0.00% 96.66% 0.00% 92.70% 0.00%
Rockwell (non-inlined) 99.95% 0.00% 91.85% 0.00% 99.48% 0.00% 93.07% 0.00%

(Decision), and 0.66% (MC/DC) of the obligations time out. However, these percent-

ages are far lower than for the observable variants. This speaks to the complexity of

establishing observability, which is often far beyond that of covering the obligations

of the host criterion.

The two driving factors in these unknown verdicts are the length of the combi-

natorial path from expression and output and the number of delay expressions—the

length of the delayed path—between the expression and the output. Both increase

the complexity of finding a masking-free path between the expression that is the

source of the base obligation and an output variable. If the path is more complex,

the generator will have a harder time satisfying the test obligations.

Although paths are shorter in inlined models, the individual expressions are more

complex than in non-inlined models. Although expressions are simple in non-inlined

models, the paths are longer than in inlined models. As a result, the level of inlining

does not play a major role in the loss in obligation satisfaction. The level of correlation

between inlining and loss in satisfaction is relatively low. The length of the path—

whether delayed or immediate—is of far more importance.

The addition of observability results in an decrease in the number of fulfilled

obligations. This loss is due to either the discovery of dead code that cannot

influence the output or obligations that are too complex for the test generator to
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solve.

5.4 The Effect of Observability

For our final research question, we wish to take a look at the effect of observability

itself. Regardless of the underlying host criterion, does observability have a consis-

tent impact on suite efficacy, oracle sensitivity, structure sensitivity, and obligation

fulfillment?

5.4.1 The Choice of Host Criterion

The choice of coverage criterion is often made based on the perceived strength of that

criterion. MC/DC is more strenuous to fulfill than Branch Coverage, and therefore,

suites satisfying it should be more effective. While there are exceptions, this generally

bears out in practice. In our study, MC/DC satisfaction results in stronger test suites

than Branch Coverage satisfaction.

However, one question we are curious about is—when observability is required,

does the choice of host criterion matter? Does observability consistently improve

results, and is there still reasonable differentiation in the final results to see an impact

from the choice of host criterion.

From the results in Tables 5.5 and 5.10, we can still see that the choice of cri-

terion matters. Observability generally results in better test suites, but there is no

real consistency in the magnitude of that impact across criteria, oracles, and system

structures. The choice of criteria does impact the end result. OMC/DC satisfaction

does tend to result in better test suites than OBranch satisfaction. The gap between

criteria is often narrower for the observable variants than their traditional variants,

but there is still a gap. Therefore, we can conclude that the choice of host criterion

still influences the final result.
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With traditional coverage criteria, weaker criteria may be chosen for use because

they offer enough benefit, but are less expensive to fulfill. This is particularly true

when test cases are written by human developers. Branch Coverage is easier to

understand and explain than MC/DC, and proving that your test cases meet the more

strenuous requirements of MC/DC requires more time and effort. If satisfaction of

Branch Coverage can be achieved within the time period alloted to testing and offers

benefits to the testing process, it may be better to make use of it than to spend

the same amount on time attaining partial coverage of MC/DC. Even in the case of

automated generation, it may be reasonable to choose to maximize Branch Coverage

over attaining partial coverage of MC/DC. If the test generator is unable to satisfy

the requirements of MC/DC, then attaining a higher level of Branch Coverage could

lead to better suite efficacy.

However, this same trade-off does not necessarily function in an equivalent manner

once observability is required. As we can see from the discussion in Section 5.3, the

added complexity of observability vastly outweighs the complexity added by the use

of a criterion such as MC/DC over Branch Coverage. If the test generation framework

employed in this study can satisfy Branch Coverage for a model, it can usually attain

similar levels of MC/DC. There is a far more perceptible drop when moving to any of

the observable criteria. A gap still exists between Observable Branch and Observable

MC/DC, but the leap from non-observable to observable is much greater.

It follows then that—rather than asking which criterion to employ—the more

important questions is whether to require observability. In the context of manual test

creation, employing observability without tool support is likely to be too expensive

to consider in any situation except when safety is absolutely crucial. In the case of

automated generation, observability is—at least for the studied programs—reasonable

to require. Although there are situations where the loss in coverage due to unknown

verdicts is unacceptably high, for most of the studied programs, there were clear
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benefits in efficacy.

These results also show that—as long as the test generator can handle the com-

plexity of observability at all—the additional loss from choosing a more complex host

criterion is minor. Therefore, we would recommend the use of stronger criteria such

as MC/DC over weaker ones when observability can be handled by the test generator.

That said, if the combined complexity of observability and criterion is too much for

generation to handle, then a tester could first change the host criterion—then drop

the observability requirement.

The choice of host criterion influences the final efficacy, but the largest increase

in complexity comes from the addition of observability itself. Varying both

dimensions—criterion and observability—may allow testers to find an optimal

level of efficacy and complexity.

5.4.2 Oracle Sensitivity

Table 5.20: Average improvement in mutation detection when changing from OO to
MX oracle.

Benchmark Rockwell (Inlined) Rockwell (Non-inlined)
OMC/DC 96.77% 10.73% 16.31%
ODecision 93.33% 49.94% 19.38%
OCondition 96.81% 34.53% 16.83%
OBranch 102.69% 59.89% 40.63%
MC/DC 208.76% 13.03% 352.92%
Decision 233.13% 78.20% 384.62%
Condition 297.46% 31.45% 375.41%
Branch 278.98% 97.67% 412.78%

In normal situations, the results of testing are sensitive to the choice of variables

monitored as part of the test oracle. We can see this in comparing the results of the

maximum and output-only oracles for suites satisfying the traditional non-observable

criteria. When results are checked with the maximum oracle, efficacy tends to be

much high. This is because masking can prevent program elements from influencing
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other variables. With any oracle other than the maximum oracle, suite efficacy de-

pends on the selection of variables monitored by the oracle [24]. This complicates the

testing process, as it is not obvious which variables should be monitored, and coming

up with expected values for any variables other than the output variables can be very

difficult.

In theory, observability should be a powerful tool in overcoming oracle sensitivity.

By requiring a masking-free path from any targeted expression to the output, we

should be able to increase the efficacy of using an output-only oracle. In Table 5.20,

we present the average improvement in fault finding when moving from an output-

only oracle to the maximum oracle for each coverage criterion, and for each of the

three datasets.

From these results, we can see that for the non-inlined Rockwell systems, oracle

sensitivity is greatly reduced when we require observability—for instance, Branch-

satisfying suites improve by 412.78% when changing oracles, but OBranch-satisfying

suites only improve by 40.63%. As discussed earlier, non-inlined systems tend to

have a large number of simple expressions and long paths to output. These results

make sense. The maximum oracle monitors every single expression in the program.

Therefore, the size of the maximum oracle is much larger than the output-only or-

acle, as it is much easier to detect faults. When paired with an output-only oracle,

suites satisfying traditional criteria will suffer greatly from masking. Observability

overcomes this masking by requiring that each expression be able to influence the

output.

We do not see the same magnitude of effect for the aggressively inlined versions of

the Rockwell models. Except in the case of Condition Coverage, there is a reduction in

oracle sensitivity, but the impact is less. Again, however, these results make intuitive

sense. An inlined implementation has fewer expressions. Therefore, the maximum

oracle is also smaller—with fewer points of observation. The observable versions of
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criteria still produce suites that are less sensitive to the choice of oracle, but there is

also potentially less oracle sensitivity to overcome in the first place.

The Benchmark models again fall in between the two extremes. However, we do

clearly see the effect of adding observability. The suites satisfying the observable

criteria are less sensitive to the choice of oracle than suites satisfying the traditional

counterparts. For instance, suites satisfying traditional Branch Coverage improve

by 273.10% from the shift in oracle, while suites satisfying OBranch Coverage only

improve by 102.51%.

Observability reduces sensitivity to the choice of oracle, by ensuring a

masking-free path from expression to the variables monitored by the test oracle.

5.4.3 Structural Sensitivity

Table 5.21: Average change in mutation detection when switching from non-inlined
to inlined versions of the Rockwell models.

Max Oracle OO Oracle
OMC/DC -3.32% 1.50%
ODecision -15.23% -25.41%
OCondition -10.71% -18.56%
OBranch -16.70% -20.47%
MC/DC 0.18% 354.62%
Decision -7.83% 344.09%
Condition -22.54% 332.22%
Branch -5.83% 332.24%

Traditional coverage criteria—particularly MC/DC—are known to be sensitive to

program structure [23, 50]. With an output-only oracle, suites generated using the

inlined version of the program will be far more effective at finding faults than suites

generates using the non-inlined version of the program. Because individual expres-

sions are more complex in the inlined program, their test obligations are more com-

plex. There are also, often, fewer opportunities for masking on the path to output, as

there are fewer expressions along that path. Observability should help overcome that
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sensitivity to structure. Although the individual expressions are simpler, overcoming

masking along the path should result in a more robust test suite.

In our experiments, this seems to be the case. Table 5.21 lists the average change in

efficacy when switching from non-inlined to inlined version of the Rockwell models—

the only models where we can compare multiple structures. On average, we see

that—for the traditional suites—there is a major improvement in efficacy when we

change program structures. For suites satisfying the observable variants, we actually

see a slight downgrade in performance.

For the traditional criteria, if we use a maximum oracle, we see a downgrade in

performance when changing program structure instead of the upgrade we saw with

an output-only oracle. This is because, with a non-inlined program, the size of the

maximum oracle is very large. Each of the many simple expressions is monitored and

checked. With an inlined program, the maximum oracle is much smaller—there are

fewer expressions. Therefore, with a maximum oracle, changing to an inlined program

structure is somewhat detrimental to performance. With traditional criteria—as the

maximum oracle is generally prohibitively expensive—we would recommend inlining

code to improve the performance of the output-only oracle.

The above results make sense then as, with observability, we essentially see the

same effect. There is no benefit from changing program structure, as the increased

complexity of individual statements is replicated in the masking-free path to output

required to attain observability. Instead, there is a slight downgrade in performance

because the individual statements are more complex. When observability is required,

a simpler program structure may be slightly preferable.

Observability reduces sensitivity to the program structure by capturing the

complexity benefits of inlining in the path from expression to output.
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5.5 Threats to Validity

External Validity: Our study has focused on a relatively small number of systems

but, nevertheless, we believe the systems are representative of the critical systems

domain, and our results are generalizable to other systems in that domain.

We have used one method of test generation—counterexample-based generation.

There are many methods of generating tests and these methods may yield different

results. Counterexample-based testing is used to produce coverage-directed test cases

because it is a method used widely in testing safety-critical systems.

For each model and criteria, we have built 50 reduced test suites reduced using

a simple greedy algorithm. It is possible that larger sample sizes may yield different

results. However, in previous studies, smaller numbers of reduced test suites have

been seen to produce consistent results [50].

Construct Validity: In our study, we primarily measure fault finding over seeded

faults, rather than real faults encountered during development. However, Andrews

et al. showed that seeded faults lead to similar conclusions to those obtained using

real faults [4] for the purpose of measuring test effectiveness and Just et al. found

a positive correlation between mutant detection and fault detection [37]. We have

assumed these conclusions hold true in our domain/language, where examples of real

faults are rare.

To control experiment costs, we limited the number of mutants used per model

to 500. When more than 500 mutants exist, a random selection was used to avoid

bias in mutant selection. While the selection of specific mutants is randomized, the

distribution is matched to the full distribution of possible mutants in the model. In

our experience, mutants sets greater than 100 result in very similar fault finding; we

generated up to 500 to further increase our confidence that no bias was introduced.

Conclusion Validity: When using statistical analyses, we have attempted to

ensure the base assumptions beyond these analyses are met, and have favored non-
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parametric methods. In cases in which the base assumptions are clearly not met, we

have avoided using statistical methods. Notably, we have avoided statistical inference

across case examples.
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Chapter 6

Relate Work

In this chapter, we will discuss our prior work on observability, the role of adequacy

criteria in test case generation, other notions of observability, and other topics related

to this work.

6.1 Prior Work on Observability

This work is an extension of our prior work defining and exploring the concept of ob-

servability [65, 25, 67]. We first proposed the concept of observability as an extension

of the MC/DC coverage criterion [65]. An extended study found that that OMC/DC

was more effective—and overcame many of the weaknesses of—traditional coverage

criteria [25].

In a recent study, we extended the original tagging semantics of MC/DC in order

to generate path conditions as part of Dynamic Symbolic Execution [67]. This work

used OMC/DC purely as a test generation target rather than a general adequacy

measurement approach. A source of optimistic inaccuracy in the original definition

of OMC/DC was addressed by requiring value inequality of expressions from two

branches when propagating if conditions. This approach was also able to explicitly

terminate when there is no feasible paths. In the regular model-based test generation

approach used in this and the other past work, a timeout is usually estimated and

manually set in order to terminate the generation process. The DSE-based approach,

as a result, could complete generation in a more efficient manner.

This work extends previous efforts by decoupling the notion of observability from
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MC/DC and exploring its application as a generic addition to any coverage criterion.

While we found that MC/DC was still the most effective host criterion in many

applications, this was not a universal case. This decoupling allows us to explore the

impact of choosing a host criterion and to explore the efficacy of observability as a

general construct of adequacy criteria. Our experimental work also considers a far

wider range of programs than previously explored in order to better understand the

general efficacy of observability-based coverage criteria.

6.2 Adequacy Criteria Efficacy in Test Generation

Automated test generation relies on the selection of a measurable test goal. Adequacy

criteria, such as the coverage criteria that are the focus of this study are commonly

used for this purpose. However, coverage is merely an approximation of a harder to

quantify goal—“finding faults”. The need to rely on approximations leads to two ques-

tions that researchers have examined multiple times. First, do such proxies produce

effective tests? If so, which criteria should be used to generate tests?

Answers to these two questions are—to date—inconclusive. Some studies have

noted positive correlation between coverage level and fault detection [21, 47, 46],

while other work paints a negative portrait of coverage [33]. Our prior work in search-

based test generation for Java programs has found that coverage level is more strongly

indicative of efficacy than factors such as suite size [21]. However, in our prior studies

of model-based generation, tests generated specifically to achieve coverage were often

outperformed by randomly-generated tests [25, 22, 62].

Results to date are promising, given the complexity of some of the faults de-

tected [58, 2, 21, 3]. However, automated generation does not yet produce human

competitive results [17]. Ultimately, if automated generation is to have an impact

on testing practice, it must produce results that match—or, ideally, outperform—

manual testing efforts. The efficacy of suites generated for many coverage criteria is
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limited by issues such as masking. Choices about how code is written [23, 50] and the

selection of test oracle [24, 60, 61] impact the efficacy of some criteria. The notion of

observability was designed to address both issues.

6.3 Coverage Criteria in Lustre and Function Block Diagram

Lustre and Function Block Diagram (FBD) are data-flow languages that describe

how inputs are transformed into outputs instead of describing the control flow of the

program. Researchers studying coverage criteria for Lustre [39] and FBD [34] implic-

itly investigated observability by examining variable propagation from the inputs to

the outputs.

Some of the structural coverage criteria proposed specifically for Lustre are based

on activation conditions that are defined as the condition upon which a data flow is

transferred from the input to the output of a path. When the activation condition of

a path is true, any change in input causes modification of the output within a finite

number of steps [39]. Coverage metrics for FBD are based on a d-path condition that

is similar to activation conditions in Lustre [34].

These coverage criteria in Lustre and FBD are different from the notion of ob-

servability in several respects. First, these metrics check if specific inputs affect the

outputs and measure the coverage of variable propagation on all possible paths. Ob-

servability, on the other hand, checks if each test obligation from the host criterion

affects the monitored variables, and determines if a path exists which propagates the

effect of the obligation. Second, observability requires a stronger notion of how a

decision must be exercised.

6.4 Observability in Hardware Testing

Observability has been studied in testing of hardware logic circuits. Observability-

based code coverage metric (OCCOM) is a technique where tags are attached to
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internal states in a circuit and the propagation of tags is used to predict the actual

propagation of errors (corrupted state) [10, 13]. A variable is tagged when there

is a possible change in the value of the variable due to an fault. The observability

coverage can be used to determine whether erroneous effects that are activated by

the inputs can be observed at the outputs.

The key differences between our notion of observability and OCCOM are twofold:

(1) our notion of observability investigates variable value propagation, while OCCOM

investigates fault propagation and (2) OCCOM has pessimistic inaccuracy because of

tag cancellation. When both positive and negative tags exist in the same assignment

(e.g., different tags in an ADDER or the same tags in a COMPARATOR cancel

each other out), no tag is assigned [10] or an unknown tag “?”[13] is used. Variables

without tags or with unknown tags are not considered to carry an observable error.

In this work—since we do not make a distinction between positive and negative

tags—we do not have tag cancellation or the corresponding pessimistic inaccuracy.

Extended work in [12] may fix pessimistic inaccuracy by producing test vectors with

specific values, but is highly infeasible.

6.5 Strong Mutation Coverage

Mutants are copies of programs where synthetic faults are inserted either through

automated code transformation or by hand [37, 4]. Mutants are a common method

of test suite evaluation in test generation research when real faults are not available

for a system. The mutations introduced generally match one or more models of the

types of mistakes that real developers make when building code. Generally, mutants

are introduced with the intent that they not be trivially detected—they are both

syntactically and semantically valid [49]. That is, the mutants will compile, and no

mutant will “crash” the system. Detection of mutants has also been the basis of

multiple adequacy criteria [16, 36]. In theory, if a suite detects more mutants, it will
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also be more adequate at fault detection.

Commonly, the concept of mutation detection is measured in two ways. In weak

mutation coverage, a mutant is considered detected if the mutated statement is

reached, and the value of that expression is corrupted [40]. In strong mutation cov-

erage, the resulting corruption must influence an output variable. This is a direct

parallel to traditional and observable coverage criteria. In traditional criteria, the

targeted statement must execute in a desired manner. In observable criteria, the

exercised statement must influence the output. If strong mutation coverage is to be

achieved, then we must have observability on the mutated statement.

Strong mutation coverage is very difficult to ensure, and expensive to measure [16].

Therefore, weak mutation coverage is often used instead, as a high level of weak mu-

tation coverage can be more easily reached. Observability, as proposed in this work,

offers a means to increase strong mutation coverage of faults in Boolean decisions.

Although this is only a subset of all possible mutations, the results of our experiments

do show that observability increases the strong mutation coverage of test suites.

6.6 Dynamic Taint Analysis

Dynamic taint analysis, or dynamic information flow analysis, marks and tracks data

in a program at runtime, similar to our tagging semantics. This technique has been

used in security as well as software testing and debugging [41, 9]. Taint propaga-

tion occurs in both explicit information flow (i.e., data dependencies) and implicit

information flow (control dependencies). Although the way in which markings are

combined varies based on the application, the default behavior is to union them [9].

Thus, dynamic taint analysis is conservative and does not consider masking. More

accurate techniques for information flow modeling, such as [64], define path condi-

tions quite similar to those used in this paper to prove non-interference, that is, the

non-observability of a variable or expression on a particular output.
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6.7 Dynamic Program Slicing

Dynamic program slicing [1] computes a set of statements that influence the variables

used at a program point for a particular execution. This can identify all variables

that contribute to a specific program point, including output. However, similarly to

dynamic taint analysis, it does not consider masking. Checked coverage uses dynamic

slicing to assess oracle quality, where oracles are program assertions [57]. Given a

test suite, it yields a percentage of all statements that contribute to the value of any

assertion (i.e., are observable at that assertion) vs. the total number of statements

covered by the test suite. This work is designed to assess the oracle, not the test

suite.
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Chapter 7

Conclusions and Future Work

Many test adequacy criteria are highly sensitive to how statements are structured

or the choice of test oracle. This sensitivity is caused by the fact that the obliga-

tions for structural coverage criteria are only posed over specific syntactic elements—

statements, branches, conditions. Such obligations ensure that execution reaches the

element of interest, and exercises it in the prescribed manner. However, no con-

straints are imposed on the execution path after this point. We are not guaranteed

to observe a failure just because a fault is triggered.

To address this issue, we have proposed the concept of observability—an exten-

sion to coverage criteria based on Boolean expressions that has the potential to elim-

inate masking. Observable coverage criteria combine the test obligations of their

host criterion with an additional path condition that increases the likelihood that a

fault encountered when executing the element of interest will propagate to a variable

monitored by the test oracle. We hypothesize that this additional observability con-

straint will improve the effectiveness of the host criterion—no matter which criterion

is chosen—particularly when used as a test generation target, paired with common

output-based test oracles.

Our study, conducted over five industrial systems from Rockwell Collins and an

additional forty open-source systems, has revealed that test suites satisfying Observ-

able MC/DC are generally the most effective, killing 95.61% of mutants on aver-

age (MX oracle) and 87.03% (OO oracle) for the inlined Rockwell models, 98.85%

(MX)/85.88% (OO) for the non-inlined Rockwell models, and 89.62% (MX)/65.14%
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(OO) for the Benchmarks models. Overall, we found that adding observability tends

to improve efficacy over satisfaction of the traditional criteria, with average improve-

ments of up to 392.44% in mutation detection and per-model improvements of up to

1654.38%.

Some of the factors that can harm efficacy—generally resulting in a reduction in

the number of fulfilled obligations—include expression complexity, the length of the

combinatorial path from expression to output, and the length of the delayed path

from expression to output. The addition of observability results in an increase in

the size of test suites. The magnitude of that increase depends on the length of the

path from each expression to the output. In addition, the addition of observability

results in an decrease in the number of fulfilled obligations. This loss is due to either

the discovery of dead code that cannot influence the output or obligations that are

too complex for the test generator to solve. The choice of host criterion influences

the final efficacy, but the largest increase in complexity comes from the addition of

observability itself. Varying both dimensions—criterion and observability—may allow

testers to find an optimal level of efficacy and complexity. Ultimately, our hypothesis

has proven accurate—observability reduces sensitivity to the choice of oracle and to

the program structure.

Based on our results, observability is a valuable extension—regardless of the chosen

host criterion. The addition of observability increases test efficacy and produces test

suites that are robust to changes in the structure of program or the variables under

monitored by test oracle. While our results are encouraging, there are areas open for

exploration in future research:

• Extension to other coverage criteria: A variety of coverage criteria have been

proposed for logical expressions, some potentially more effective than

MC/DC [68]. We will explore the effect of extending such criteria to offer

observability.
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• Oracle data selection: We used two types of oracles representing different ex-

tremes. Maximum oracles monitor all internal and output variables, and output-

only oracles monitor only the output variables. However, we have found that

some level of oracle sensitivity could be overcome with intelligently constructed

oracles [24]. We intend to further consider whether such oracles could be more

effective in situations where observability constraints are too difficult for the

test generator.

• Selection of solver used for test generation: While conducting out study, we

found that the model checker had difficulties with satisfying the observability

constraints for some models. Further, we witnessed varying efficacy performance

between the underlying solvers powering out employed test generation approach.

We will extend our work in the future to quantify and further explore the choice

of solver and its effect on suite efficacy.

• Method of test generation: In this work, we have used model-based test gen-

eration. In past work, we also used Dynamic Symbolic Execution to generate

test suites satisfying Observable MC/DC [67]. In the future, we would like

to explore other methods of generating tests for observable criteria, such as

search-based generation.
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