
RIGHT:
URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:Entailment as a Logical Basis forDeductive Reasoning

CHENG, Jingde

CHENG, Jingde. Entailment as a Logical Basis for Deductive Reasoning.数理解析研究所講究録 1989, 709: 199-220

1989-12

http://hdl.handle.net/2433/101655



199

Entailment as a Logical Basis

for Deductive Reasoning
程 京徳

Jingde CHENG
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Abstract

This paper proposes to use the entailment that is a logical

connective in entailment logic and relevance logics as a logical basis

for deductive reasoning. The proposal is based on two ideas

concerning the use of logic in computer science. One is that logic

should be regarded as a description tool to represent an entailment

relation between propositions. The other is that logic should be

regarded as a reasoning tool to guarantee a logical validity of

deductive reasoning in the sense of the entailment, $i.e.$ , the

conclusion of a valid deductive reasoning should not be a tautological

consequence but an entailment consequence for given premises.

Using the entailment as a logical basis for deductive reasoning

makes it possible for us to construct such logic systems where the

validity of a conclusion of a deductive reasoning is dependent only on

the validity of given premises and the correctness of the reasoning

and independent of the concrete content of the conclusion.

Key words Entailment logic, Relevance logic,

Deductive reasoning, Validity ofdeductive reasoning
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1. Introduction

In recent years, various deductive reasoning methods have extensively been

used in many areas of computer science, both in theoretical researches and in

practical applications, such as logic programming systems, deductive

databases, expert systems, and knowledge-based systems. Many of them are
fundamentally based on the classical nathematical logic where the modus

ponens with the material implication is used as a logical basis for deductive

reasoning. The modus ponens has such a form: from X and $Xarrow Y$ to infer $Y$

where X and $Y$ are logical formulas and $arrow$ is the material implication$\cdot$.

Logic deals with what follows from what. It is the systematic study of the

fundamental principles that underlie correct, necessary pieces of reasoning, as
these occur in proofs, arguments, inferences, and deductions. The correctness of

a piece of reasoning does not depend on what the reasoning is about so much as
on how the reasoning is done; on the pattern of relationship between the

various constituent ideas rather than on the actual ideas themselves. To get at

the relevant aspects of such reasoning, logic must abstract its form from its

content. A basic idea of logic is regarding a deductive reasoning form is valid if

there is no reasoning of that form whose premisses are true and whose

conclusion is false without regard for the concrete contents of the premisses and

conclusion [Robinson-79].

The classical mathematical logic is the study of logic as a mathematical

theory. Its function is to provide formal languages for describing the structures

with which mathematicians work, and the methods of proof available to them.

Mathematicians construct mathematical logic as a mathematical model of the

systems to be studied, and then conduct what is essentially a pure

mathenatical investigation of the properties of this model. Therefore, An

important feature of the classical mathematical logic is that it need not concern
the nature of the real world in the sense that the world mathematicians study is

the purely conceptual one of pure mathematics [Kleene-67, Barnes-75,

Johnstone-87].

On the other hand, it is clear that computer science, both its theoretical
aspect and its practical aspect, is not purely nathematical. According to ISO

Standard 2382/1 (1984), computer science is “the branch of science and
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technology that is concerned with methods and techniques relating to data

processing performed by automatic means“. Today, the word “data processing”

has included, in a broad sense, the meaning of processing “information“ and

“knowledge” which are closely concerned with the nature of our real world.

Any problem or project on which computer scientists or engineers work is

certainly concerned with processing information $and/or$ knowledge. Therefore,

we may and should require that use of logic in computer science, especially in

deductive reasoning, is consistent with our ordinary logical thinking. In fact,

logic is extensively used in computer science precisely because it is ordinarily

used by us with a natural language forn just as a basic tool in presentation and

analysis of arguments.

However, from the viewpoint of our ordinary logical thinking, there is a

theoretical problem in using the material implication as a logical basis for

deductive reasoning. That is, some formulas, such as $Xarrow(Yarrow X)$ and
“

$\neg Xarrow(Xarrow Y)$ which may be axioms or provable formal theorems in the

classical mathematical logic, are regarded as “implicational paradoxes“ in the

sense of our ordinary logical thinking. As a result, for a conclusion of such a

deductive reasoning, we cannot directly accept it as a “valid” conclusion in the

sense of our ordinary logical thinking, even if each of given premises is “valid”

in the sense of our ordinary logical thinking. In order to evaluate whether the

conclusion is valid, we have to investigate the concrete content of the

conclusion.

We consider the use of logic in computer science should be based on such a
logical basis as is consistent with our ordinary logical thinking. A basic

requirement for a software system working with a deductive reasoning

mechanism should be that it is possible for users to directly accept a deductively

reasoned conclusion as a “valid” conclusion in the sense of our ordinary logical

thinking if each of given premises is “valid”. This paper proposes to use the

entailment that is a logical connective in entailment logic and relevance logics

as a logical basis for deductive reasoning. The proposal is based on two ideas

concerning the use of logic in computer science. One is that logic should be

regarded as a description tool to represent an entailment relation between

propositions. The other is that logic should be regarded as a reasoning tool to

guarantee a logical validity of deductive reasoning in the sense of the

entailment, i.e., the conclusion of a valid deductive reasoning should not be a
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tautological consequence but should be an entailment consequence for g\’iven

premises.

In Section 2, we point out some problems in using the material implication as
a logical basis for deductive reasoning. In Section 3, we review briefly

relevance logics [Anderson-75] and entailment logic [Lin-85a,b]. In Section 4,

we summarize propositional aspect of entailment logic. In Section 5, we present

a formal semantics for a subclass of propositional entailment logic. In Section

6, we discuss the problem of validity of deductive reasoning. Concluding

remarks are given in Section 7.

2. Problems ofUsing the Material Inplication as a Logical Basi $s$

for Deductive Reasoning

In our ordinary logical thinking, the notion of entailment, which is often

informally said “entails” or if $\cdots$ then”, plays a central role. The entailment

relation between two propositions, for instance, “X entails $Y$’ or “if X then $Y’$ ,

depends not only on the truth of X and $Y$ but also more essentially on a

necessarily relevant relation between X and Y. On the other hand, in the

classical mathematical logic, the material implication relation between two

propositions depends only on the truth of X and $Y$ and is independent of any

necessarily relevant relation between X and Y. There is no problem if one use
the material implication accurately and strictly according to its formal truth

functional interpretation, as mathematical logicians do. But unfortunately,

many people often use the material implication with an informal interpretation

of the entailnent notion, e.g., if $\cdots$ then”, and even some texts suggest such use

to readers. This brings about the problem of implicational paradoxes.

For example, $parrow(qarrow p)$ , which is generally as an axiom in the classical

mathematical logic, is equivalent to $qarrow(\neg p\vee P))$ . In terms of the logic, this

means that “a identically true proposition is implied by any proposition”.

$\neg parrow(parrow q)$ , which is a provable formal theorem in the logic, is equivalent to
$(\neg p\wedge p)arrow q$ . This means that “a identically false proposition implies any

proposition”. However, in the sense of our ordinary logical thinking, we can
accept neither proposition “if $p$ then $t$ for a identically true proposition $t$ and

any proposition $p$

’ nor proposition “if $f$ then $p$ for a identically false proposition $f$

and any proposition $p$

’ as a “valid” proposition.
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Due to the problem of implicational paradoxes, when using the material

implication as a logical basis for deductive reasoning, we may confront with the

following dilemma. On the one hand, if we use the material implication

accurately and strictly according to its formal truth functional interpretation,

then a material implication proposition, e.g., “if snow is black then $3+4=7$ ’ or

“if snow is white then $3+4=7’$ , each of which is “invalid“ in the sense of our
ordinary logical thinking, can be accepted as a valid proposition used in a

deductive reasoning. On the other hand, if we use the material implication

with an if $\cdots$ then” interpretation of the entailment, then we cannot expect to

obtain a “valid” conclusion with respect to entailment between two

propositions, e.g., “if X then $Y’$ , from a deductive reasoning even if each of

given premises is ”valid” in the sense of our ordinary logical thinking. The

classical mathematical logic does not provide such a guarantee.

Therefore, in the framework of the classical mathematical logic, for a
deductively reasoned conclusion, we cannot directly accept it as a valid

conclusion in the sense of our ordinary logical thinking even if each of given

premises is “valid” in the sense of our ordinary logical thinking. In order to

evaluate whether the conclusion is valid, we have to investigate the concrete

content of the conclusion. This is inconsistent with the basic idea of logic that

the validity of a conclusion of a reasoning should be dependent only on the

validity of given premises and the correctness of the reasoning and independent

of the concrete content of the conclusion. If the validity of a conclusion reasoned

by a software system has to be evaluated based on the investigation of the

concrete content of the conclusion, then this is just as the correctness of codes

generated by a compiler has to be guaranteed by checking the codes by users
themselves !

The cause of the problem of implicational paradoxes is that the material

implication notion is intrinsically different from the entailment notion of

human ordinary logical thinking in senantics. Therefore, there is a key

question. Can we have a logical connective whose meaning is consistent with

the entailment notion of human ordinary logical thinking and has a formal

interpretation? In order to construct more “natural” $and/or$ “logical” deductive

reasoning mechanism, we have to answer this $prob_{\wedge}^{1}em$ .
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3. Relevance logics and Entailment Logic

An obvious strategy for solving the problem of implicational paradoxes in the

classical mathematical logic is to formalize the notion of ”entailment” as a
relation stronger than the notion of “material implication” such that all

implicational paradoxes are unprovable in an axiom system based on the

formalization. Based on this idea, a number of “paradox-free” logics have been

proposed. However, “the simple avoidance of paradox is hardly sufficient to

characterize what we mean by entailment, and most of the formalized proposals

based on this single aim have been so artificial as to make it virtually

impossible to get a clear grasp of their formal properties” [Anderson-60].

The first interesting proposal for “paradox-free” logics is Ackermann’s logic

system which provably avoids the implicational paradoxes [Ackermann-56].

Ackermann introduced a new logical connective called ”strenge

implikation(rigorous implication)”, which provides a strong and natural sort of

implication relation, and construct a calculus $\Pi$ of “strenge implikation”.

Unlike the previous proposals, “Ackermann’s system, which has the required

property, seems intuitively natural, and strong enough to be of interest”
[Anderson-57]. However, Ackermann has not given a semantical definition for

his rigorous implication and a formal model for his calculus $\Pi$ of “strenge

implikation“. Anderson and Belnap modified and reconstructed Ackermann’s

system into an equivalent logic system, called “system $E$ of entailment”

[Anderson-58,60,751. They also interested $E’ s$ some neighboring logic systems

which are obtained by adding (dropping) some axioms into (from) system $E$

[Anderson-75]. These logic systems are generally called “relevance logics”

[Anderson-75, Morgan-76, Routley-84, Thistlewaite-88].

Lin’s “entailment logic” [Lin-85a,b] is another interesting proposal which is

independent of the work of Ackermann et al. Lin investigated logical meaning

of the sufficient conditional relation in human ordinary logical thinking and

introduced a new logical connective, called ”entailment”, as a logical

abstraction of the sufficient conditional relation. He proposed two new logical

concepts, i.e., the first independence in the entailment relation between two

propositions and the second independence in a deductive inference. He also

constructed a propositional calculus, denoted by $Cm$ , which provably avoids the

implicational paradoxes, and a notional calculus, denoted by $Cn$ , with $Cm$ as
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the underlying propositional logic. However, Lin has not given a formal model
for his entailment logic system.

The above studies by philosophers $and/or$ logicians are presented in the
philosophical literature. However, such studies has received little attention
from conputer scientists [Morgan-76, Thistlewaite-88].

We compare the main deference between the relevance logics and the

entailment logic in their three aspects, i.e., claim, syntax, and semantics. Both

constructors of the relevance logics and the entailment logic claim that one

should take the heart of logic to lie in the notion of entailment [Anderson-75,

Lin-85a]. But, the constructors of relevance logics regard the relevance logics

as a branch of mathematical logic [Anderson-75] and the constructor of

entailment logic rejects mathematical logic and regard the entailment logic as
a modern development of classical formal logic [Lin-85a]. Therefore, the

approach of Ackermann et al is “syntactical” or “proof-theoretical”, i.e., they

investigate syntactic features of the implicational paradoxes and constructs

formal axiom systems which provably avoids the paradoxes at first and then

investigate formal semantics for the axiom systems. On the other hand, Lin’s

approach is “semi-semantical” or “semi-model-theoretical”, i.e., he investigate

logical meaning of the notion of entailment in human ordinary logical thinking

and introduced a new logical connective as a logical abstraction of the

entailment at first and then construct the propositional calculus and the

notional calculus for the entailment. From a syntactical view point, a

propositional entailment logic can be regarded as a relevance logic because it

can be obtained by dropping some axioms from system $E$ and adding some

axioms. A complete entailment logic is a notional logic and includes no

quantifiers. But there are no notional calculus of the relevance logics. The

main difference between the relevance logics and the entailment logic in

semantics is that Lin first explicitly introduced the concepts of the first

independence and the second independence in constructing entailment logic.

Based on these concepts, Lin successfully solved the failure problem of

disjunctive syllogism [Hughes-72, Thistlewaite-88, Lin-85a].

We consider the concepts of the first independence and the second

independence are important for discussing the validity of a deductive

reasoning. Therefore, below we will investigate what is a valid deductive

reasoning based on Lin’s entailment logic.
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4. Propositional Entailment Logic

A formal axiom system for the propositional entailment logic, denoted by $Cm$

[Lin-85a,b], is summarized as follows, where X, $Y$ , and $Z$ are syntactical

variables.

Alphabet:

(1) a denumerable set ofproposition variable symbols;

(2) the logical connective symbols $\neg(negation),$ $\wedge(conjunction)$ , and
$\Rightarrow(entailment)$ ;

(3) brackets (and).

Formulas:

(1) every proposition variable, also called atomic formula, is a formula;

(2) if X and $Y$ are formulas then $\neg X,$ $(X\wedge Y),$ $(X\Rightarrow Y)$ are formulas, where

the outermost brackets of a formula can be omitted;

(3) only those defined by (1) and (2) are formulas.

Axiom Schemata:
$A_{1}$ $X\Rightarrow\neg\neg X$

$A_{2}$ $(X\Rightarrow(Y\Rightarrow Z))\Rightarrow(Y\Rightarrow(X\Rightarrow Z))$

$A_{3}$ $(Y\Rightarrow Z)\Rightarrow((X\Rightarrow Y)\Rightarrow(X\Rightarrow Z))$

A4 $(\neg X\Rightarrow Y)\Rightarrow(\neg Y\Rightarrow X)$

$A_{5}$ $(X\wedge\neg Y)\Rightarrow\neg(X\Rightarrow Y)$

$A_{6}$ $X\Rightarrow(X\wedge X)$

$A_{7}$ $(X\wedge Y)\Rightarrow X$

$A_{8}$ $(X\wedge Y)\Rightarrow(Y\wedge X)$

$A_{9}$ $((X\Rightarrow Y)\wedge(X\Rightarrow Z))\Rightarrow(X\Rightarrow(Y\wedge Z))$

$A_{10}$ $((X\wedge\neg(\neg Y\wedge\neg Z))\Rightarrow\neg(\neg(X\wedge Y)\wedge\neg(X\wedge Z)))$

Inference Rules:
$R_{1}$ From X and $X\Rightarrow Y$ to infer $Y$

$R_{2}$ From X and $Y$ to infer XAY

The meanings of logical connectives of the propositional entaihnent logic are

as follows.
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$\neg X$ : “Xdoes not hold”
$X\wedge Y$ : “Both X and $Y$ hold“

$X\Rightarrow Y$ : ) “It can be determined that there is no such case as X holds and $Y$

does not hold with neither determining whether X holds or not nor

determining whether $Y$ holds or not”

The entailment $\Rightarrow$ requires that every entailment formula satisfies the

following two conditions in semantics:

(1) there is no such case as the antecedent is true and the consequent is false;

(2) condition (1) can be determined with neither determining whether

antecedent is true or false nor determining consequent is true or false.

The above condition (2) is called first independence [Lin-85a,b]. The most

intrinsic difference between the entailment and the material implication is

that the former has the first independence which is a requirement for a
necessary relevant relation between two propositions but the latter does not

have such requirement.

There may be two possible extensions with $Cm$ as the underlying

propositional logic. One is to extend $Cm$ into a notional logic ILin-85a,b]. The

other is to extend $Cm$ into a first order logic.

Now, we give some definitions for future discussion.

Definition 4.1 We call a formula a classical formula if no entailment

connective occurs in it. We use $C_{c}$ to denote the set of all classical formulas. We

call a formula with form $X^{o}\Rightarrow Y$ an entailment formula, where X is called the

antecedent of this entailment formula and $Y$ is called the consequent. $\square$

We inductively define the degree of an entailment connective.

Definition 4.2 We say the degree of the entailment connective in an

entailment formula $X\Rightarrow Y$ is 1 if both X and $Y$ are classical formulas. We say

the degree of the entailment connective in an entailment formula $X\Rightarrow Y$ is $k+1$

if there exists a positive integer $k$ such that $k$ is the highest degree of

entailment connectives in X and Y. We call a formula a first degree entailment

formula if the highest degree of its entailment connectives is 1. We use $C\gamma$ to

denote the set of all first degree entailment formulas. We call a formula a

second degree entailment formula if the highest degree of its entailment
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connectives is 2. We use $C_{s}$ to denote the set of all second degree entailment

formulas. $\square$

A classical formula is also called a zero degree entailment formula.

In the following discussion, we use $P$ to denote a set of formula $\{Z_{1}, Z_{2}, \cdots, Z_{n}\}$

and use $q$ to denote a single formula.

Definition 4.3 A deduction of $q$ from $P$ is a finite sequence of formulas such

that each member of the sequence is either an axiom, a member of $P$ , or is

obtained by using any of the inference rules from two earlier members of the

sequence, and the last member of the sequence is q. We call all members of P

the premisses and $q$ the consequence of the deduction. A deduction $q$ from the

empty set ofpremisses is called a proofand $q$ is called a formal theorem. $\square$

Definition 4.4 We say $Ps\gamma ntacticall\gamma$ entails $q$ or $q$ is provable from $P$ ,

write $P\vdash q$ , if and only if $q$ satisfies any of the following conditions:

(1) $q$ is an axiom;

(2) $q\in P$ ;

(3) there exist some $r$ and $t$ such that $P\vdash r,$ $P\vdash t$ and $q=r\wedge t$; or
(4) there exists some $t$ such that $P\vdash t$ and $P\vdash(t\Rightarrow q)$ . $\square$

Clearly, $P\vdash q$ if and only if there exists adeduction of $q$ from $P$ , and $\Phi\vdash q$ if

and only if $q$ is a formal theorem, where $\Phi$ denotes the empty set.

5. Formal Semantics of Second Degree Propositional Entailment Logic

It is not a conpletely solved problem to provide an adequate formal model for

the entailment logic. We are investigating an algebra semantics for full

propositional entailment logic. Below, we give a formal semantics for a

subclass of the entailment logic, named second degree propositional entailment

logic and denoted by $PEL_{sd}$.

The alphabet $ofPEL_{sd}$ are the same as that of $Cm$ . The set of all formulas of

$PEL_{sd}$ is $C_{c}\cup C;\cup C_{s}$ . The axiom schemata of $PEL_{sd}$ are $A_{1}$ , and $A_{4}\sim A_{10}$ of

Cm. The inference rules $ofPEL_{sd}$ are the same as that of Cm.

-10-
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First of all, we describe some basic concepts of lattice theory [Birkhoff-61,

Szasz-63, Rutherford-65].

Definition 5.1 A partial order on a set A is a binary relation relation $\leqq\subseteq$

$A\cross A$ satisfying the following conditions:

Reflexivity : For every a in $A,$ $a\leqq a$;

Antisymmety : For every $a,$ $a$
’ in $A$, if both $a\leqq a$’ and $a’\leqq$ a hold, then a

$=a’$ ;

Transitivity : For every $a,$ $a’,$ $a$
’ in $A$ , if both a $\leqq a$ ’ and $a’\leqq a$’ hold,

then $a\leqq a’$ .

If $\leqq$ is a partial order on $A$ , we call the pair $(A, \leqq)$ a poset (short for $partiall\gamma$

ordered set). $\square$

Definition 5.2 Let $(A, \leqq)$ be a poset. Let $A$
’ be a subset ofA. An element $b$

of A is called an lower bound (1.b.) for $A’$ , if $b\leqq$ a for every a in $A’;b$ is called

greatest lower bound (g.l.$b.$ ) for $A’$ , if $b’\leqq b$ for every l.b. $b$
’ for $A’$ . An element $b$

of A is called an upper bound (u.p.) for $A$
’ if $a\leqq b$ for every a in $A’,$ $b$ is called

least upper bound (l.u.$p.$ ) for $A$
’ ifb $\leqq b$’ for every u.b. $b$

’ for $A’$ . We denote g.l.$b$ .
and l.u. $p$ . for $A’ by\cap A$

’ and U $A$’ respectively. If $A$
’ has only two elements, we

write $a_{1}\cap a_{2}$ (read: $a_{1}$ meet $a_{2}$ ) and $a_{1}Ua_{2}$ (read: $a_{1}$ join $a_{2}$ ), respectively, $for\cap$

$\{a_{1}, a_{2}\}$ and $U\{a_{1}, a_{2}\}$ . $\square$

Definition 5.3 A meet-semilattice is a poset $(L, \leqq)$ such that any two its

elements have a g.l. $b.$ ; a.ioin-semilattice is a poset $(L, \leqq)$ such that any two its

elements have a l.u. $b.$ ; a lattice is a poset $(L, \leqq)$ which is both a meet-

semilattice and ajoin-semilattice; a complete lattice is a poset $(L, \leqq)$ in which

every subset has botha g.1.$b$ . andal.u.b.. $\square$

Now, we define a lattice for giving formal semantics $ofPEL_{sd}$.

Definition 5.4 An entailment lattice is a quadruplet $<L,$ $\leqq,$ $N,$ $T>$ that

satisfies the following conditions:

(1) $(L, \leqq)$ is a meet-semilattice;
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(2) $N$ is a unary function, which satisfies the following conditions, on $L$ :
$<1>for$ all $a\in L,$ $N(N(a))=a$, and

$<2>for$ all $a,$ $b\in L$, if $a\leqq b$ then $N(b)\leqq N(a)$ ;

(3) $T$ is a sublattice, which satisfies the following conditions, of $L$ :
$<1>for$ all a E $L,$ $N(a)$ ( $T$ iffa $\not\in T$ ,

$<2>for$ all $a,$ $b\in L,$ $a\cap b\in T$ iff a $\in T$ and $b\in T$ , and

$<3>there$ exists no $a,$ $b\in L$ such that $a\in T,$ $N(b)\in T$ , and $a\leqq b$ . $\square$

We use $F$ and $T$ , called truth values, to represent ”false” and “true”

respectively. Let $D$ be the set of all atomic formulas. Let $C_{c}$ be the set of all

classical formulas defined on $D,$ $C\gamma$ the set of all first degree entailment

formulas defined on $D$ , and $C_{s}$ the set of all second degree entailment formulas

defined on $D$ , respectively.

Definition 5.5 An interpretation $ofPEL_{sd}$ is a quadruplet I $=<L_{e},$ $v_{f},$ $v_{S}$ ,

$s>that$ satisfies the following conditions:

(1) $L_{e}=<L,$ $\leqq,$ $N,$ $T>is$ an entailment lattice;

(2) $v_{f}$ is a mapping, $v_{f}$ : $Darrow L$;

(3) $v_{S}$ is a mapping, $v_{s}$ : { $X\Rightarrow Y$ I X, $Y\in C_{c}$ } $arrow L$, which satisfies the

following conditions:
$<1>v_{S}(X\Rightarrow Y)\in T$ iff $s(X)\leqq s(Y)$ ,

$<2>v_{s}(\neg X\Rightarrow Y)\leqq v_{S}(\neg Y\Rightarrow X)$ ,

$<3>s(X\wedge\neg Y)\leqq N(v_{s}(X\Rightarrow Y))$,

$<4>(v_{s}(X\Rightarrow Y)\cap v_{s}(X\Rightarrow Z))\leqq v_{s}(X\Rightarrow(Y\wedge Z))$,

$<5>ifs(X)\leqq v_{s}(Y\Rightarrow Z)$ then $s(X\wedge Y)\leqq v_{s}(Z)$;

(4) $s$ is a mapping, $s$ : $C_{c}UC$; $arrow L$, which satisfies the following

conditions :
$<1>s(d)=v_{f}1d)$ for all $d\in D$ ,

$<2>s(d)=v_{s}(d)$ for all $d\in$ { $X\Rightarrow Y$ I X, $Y\in C_{c}$ },

$<3>s(\neg X)=N(s(X))$ for all $X\in C_{c}\cup C\gamma$,

$<4>s(X\wedge Y)=s(X)\cap s(Y)$ for all X, $Y\in C_{c}\cup C\gamma$. $\square$

Definition 5.6 For every interpretation I $=<L_{e},$ $v_{f},$ $v_{s},$ $s>$ and every

formula $fofPEL_{sd}$, the truth value of $f$, denoted by I(f), is inductively defined as
follows, where X, $Y\in C_{c}\cup C\gamma\cup C_{s}$ and $M,$ $N\in C_{c}\cup C\gamma$ .
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(1) For every $X\in D,$ $I(X)=Tiffv_{f}(X)\in T$, and otherwise I(X) $=F$.
(2) $I(\neg X)=T$ iffI(X) $=F$, and otherwise $I(\neg X)=F$ .
(3) $I(X\wedge Y)=T$ iffI(X) $=T$ and $I(Y)=T$, and otherwise $I(X\wedge Y)=F$ .
(4) $I(M\Rightarrow N)=Tiffs(M)\leqq s(N)$, and otherwise $I(M\Rightarrow N)=F$. $\square$

In the following discussion, we use $P$ to denote a set of formula $\{Z_{1}, Z_{2}, \cdots, Z_{n}\}$

and use $q$ to denote a single formula.

Defnition 5.7 We say $P$ semantically entails $q$ , write PFq, if and only if

$I((Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\Rightarrow q)=T$ for any interpretation I $=<L_{e},$ $v_{f},$ $v_{s},$ $s>$ . We say a

formula $q$ is valid, write Fq, if and only if I(q) $=T$ for any interpretation I $=$

$<L_{e},$ $v_{f},$ $v_{s},$ $s>$ . $\square$

From this definition, we have the following Theorem 5.1 as a direct result.

Theorem 5.1 $\{X_{1}, X_{2}, \cdots, X_{n}\}FY$ iff $F(X_{1}\wedge X_{2}\wedge\cdots\wedge X_{n})\Rightarrow Y$ . $\square$

Corollary XFY iff $FX\Rightarrow Y$ . $\square$

The following Theorem 5.2 shows that $PEL_{sd}$ has a model defined based on

an entailment lattice.

Theorem 5.2 All axioms $ofPEL_{sd}$ are valid.

Proof This is easy to prove by applying Definition 5.6 to all axiom

schemata $ofPEL_{sd}$. $\square$

The following two theorems shows that the two inference rules of the

propositional entailment logic are valid.

Theorem 5.3 If $P!=X$ and $PFX\Rightarrow Y$ then PFY.

Proof Suppose $P1=X$ and $PFX\Rightarrow Y$ . Then

$I((Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\Rightarrow X)=T$ for any interpretation I, and
$I((Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\Rightarrow(X\Rightarrow Y))=T$ for any interpretation I.

According to Definition 5.5, if $I((Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\Rightarrow(X\Rightarrow Y))=T$ then
$I(Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n}\wedge X\Rightarrow Y)=T$. Therefore, for any interpretation I $=<L_{e},$ $v_{f},$ $v_{s}$ ,

$s>$ , the following formulas hold.

$s(Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\leqq s(X)$ and $s(Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n}\wedge X)\leqq s(Y)$
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According to Definition 5.5, $s(Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n}\wedge X)=s(Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\cap s(X)$ .
Moreover, according to lattice theory, if a $\leqq b$ then a $\cap b=a$ . Therefore, we

have

$s(Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\leqq s(Y)$

Consequently,

$I((Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\Rightarrow Y)=T$ for any interpretation I, i.e., P $FY$ . $\square$

Corollary If EX and $FX\Rightarrow Y$ then $I=Y$ .

Proof Suppose FX and $FX\Rightarrow Y$. Then

I(X) $=T$ for any interpretation I, and
$I(X\Rightarrow Y)=T$ for any interpretation I.

Therefore, for any interpretation I $=<L_{e},$ $v_{f},$ $v_{s},$ $s>$ , the following formulas

hold.

$s(X)\in T$ and $s(X)\leqq s(Y)$

So, according to the properties of entailment lattices (see Definition 5.4), there

must be $s(Y)\in T$ , i.e., $FY$ . $\square$

Theorem 5.4 IfPPX and P#Y then $PFX\wedge Y$ .

Proof Suppose PPX and PEY. Then

$I((Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\Rightarrow X)=T$ for any interpretation I, and
$I((Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\Rightarrow Y)=T$ for any interpretation I.

Therefore, for any interpretation I $=<L_{e},$ $v_{f},$ $v_{s},$ $s>$ , the following formulas

hold.

$s(Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\leqq s(X)$ and $s(Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\leqq s(Y)$

So, according to lattice theory, the following formula holds.

$s(Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\leqq s(X)\cap s(Y)$

Moreover, according to Definition 5.5, $s(X\wedge Y)=s(X)\cap s(Y)$ . Therefore, we

have
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$s(Z_{1}\wedge Z_{2}\wedge\cdots\wedge Z_{n})\leqq s(X\wedge Y)$.

Consequently,

$I((Z_{1}\wedge Z_{2}\wedge\cdots\Lambda Z_{n})\Rightarrow(X\wedge Y))=T$ for any interpretation I, i.e., PkXAY. $\square$

Corollary If $FX$ and PY then FXAY. $\square$

From Theorems 5.1\sim 5.4, we have the following

$Theorem5.5(TheSoundnessTheoremofPEL_{sd})$ $IfP\vdash qthenPt=q$; if

$\vdash q$ then Eq. $\square$

We may say, similar to the classical mathematical logic, that a formula X

follows from a set $P$ of formulas, write $PF_{f}X$ , if and only if I(X) $=T$ for every

interpretation with $I(Y)=T$ for every Y E P. But, note that in the terms of the

propositional entailment logic, “a formula X follows from a set $P$ of formulas”

does not mean $P$ semantically entails X”.

In the classical mathematical logic, a fundamental fact is $\{X_{1}, X_{2}, \cdots, X_{n}\}E_{f}Y$

iff $F_{f}\langle X_{1}\wedge X_{2}\wedge\cdots\wedge X_{n}$ )$arrow Y$ or $XF_{f}Y$ iff $F_{f}Xarrow Y$ . However, in the propositional

entailment logic, we only have the following Theorem 5.5 but do not have its

converse theorem. This shows one of the differences between the entailment

and the material implication in semantics.

Theorem 5.6 If $\mathfrak{t}=f\langle X_{1}\wedge X_{2}\wedge\cdots\wedge X_{n}$) $\Rightarrow Y$ then $\{X_{1}, X_{2}, \cdots, X_{n}\}F_{f}Y$ ; if
$F_{f}X\Rightarrow Y$ then $XF_{f}Y$ . $\square$

6. Valid Deductive Reasoning

In the framework of the classical mathematical logic, from any given

proposition X and the axiom $Xarrow(Yarrow X)$ , we can infer $Yarrow X$ by using the modus

ponens with the material implication. It is clear that the inference is not

necessarily regarded to be valid from the viewpoint of human ordinary logical

thinking because there may be no necessarily relevant relation between $Y$ and

X. Then, what is a ”valid” deductive reasoning? Let us consider the question.

This is an old and important problem both in philosophy and in logical science.

For computer science, when we intend to develop a software system working

with a deductive reasoning mechanism, such as a logic programming system,
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deductive database, expert system, and knowledge-based system, to consider

and answer the above problem is very important for designing the deductive

reasoning mechanism and correctly evaluating conclusions deductively

reasoned by the software system.

Definition 6.1 An entailment formula $X\Rightarrow Y$ is called a valid entailment

formula if $FX\Rightarrow Y$ . A valid entailment formula $X\Rightarrow Y$ is called a derivative

formula if $FX$ can be determined only after PY has been determined, i.e., if not

FY then not $FX$ . A valid entailment formula $X\Rightarrow Y$ is called a deductive

formula if EX without deternining $1FY$ , i.e., $FX$ whether PY or not. $\square$

The property that $FX$ can be determned without determining FY is called

the second independence [Lin-85a,b].

For exanple, $(X\wedge Y)\Rightarrow Y$ is a derivative formula and $(X\wedge(X\Rightarrow Y))\Rightarrow Y$ is a

deductive formula.

Theorem 6.1 If $X\Rightarrow Y$ is a valid entailment formula, then X and $Y$ must

share a propositional variable.

Proof Suppose $X\Rightarrow Y$ is a valid entailment formula, i.e., $FX\Rightarrow Y$ . If no

propositional variable occurs both in X and in $Y$ , then we can construct an

interpretation I $=<L_{e},$ $v_{f},$ $v_{s},$ $s>$ such that $s(Y)\leqq s(X)$ . But this is

inconsistent with the fact $FX\Rightarrow Y$ . Therefore, X and $Y$ must share a

propositional variable. $\square$

Corollary If $X\Rightarrow Y$ is a valid entailment formula and a first degree

entailment formula, then X and $Y$ must share all propositional variables

occurring in Y. $\square$

Theorem 6.2 No first degree entailment formula is a deductive formula.

Proof Suppose $X\Rightarrow Y$ is a first degree entailment formula, then by the

corollary of Theorem 6.1 X and $Y$ must share all proposition $a1$ variables

occurring in Y. Therefore, if not FY then not $FX$ , i.e., $X\Rightarrow Y$ is not a deductive

formula. $\square$

Theorem 6.2 means that ”every tautological implicational formula is a

correct inference form” is incorrect in terms of the propositional entailment

logic.
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An interesting fact is that every “logical derivative law” specified in formal

logic texts can be regarded a first degree entailment fornula and every “logical

deductive law” specified in formal logic texts can be regarded a second degree

deductive formula.

In the following discussion, we use the following abbreviations (defined

logical operators).

$\bullet$ $X\vee Y$ : $\neg(\neg X\wedge\neg Y)$

$\bullet$ $Xarrow Y$ : $\neg(X\wedge\neg Y)$

$\bullet$ $Xrightarrow Y$ : $(Xarrow Y)\wedge(Yarrow X)$

$\bullet$ $X$} $Y$ : $\neg X\Rightarrow Y$

$\bullet$ X! $Y$ : $\neg(X\Rightarrow\neg Y)$

$\bullet$ $X\Leftrightarrow Y$ : $(X\Rightarrow Y)\wedge(Y\Rightarrow X)$

For notional simplicity, we may define a priority order of the primitive and

defined logical operators: $\neg$ $\wedge,$ $\vee$ , !, }
$,$

$arrow$ $rightarrow$
$\Rightarrow,$

$\Leftrightarrow$ where the priority

order of a left operator is higher that of the right one.

The derivative laws used in our ordinary logical thinking and discussed in

formal logic are given by the notation of entailment logic as follows [Lin-85a].

$\bullet$ $X\Leftrightarrow X$

$\bullet$ $X\wedge X\Leftrightarrow X$

$\bullet$ $X\vee X\Leftrightarrow X$

$\bullet$ $\neg\neg X\Leftrightarrow X$

$\bullet$ $X\wedge Y\Leftrightarrow Y\Lambda X$

$\bullet$ $X\vee Y\Leftrightarrow Y\vee X$

$\bullet$ $(X\wedge Y)\wedge Z\Leftrightarrow X\wedge(Y\wedge Z)$

$\bullet$ $(X\vee Y)\vee Z\Leftrightarrow X\vee(Y\vee Z)$

$\bullet$ $X\wedge(Y\vee Z)\Leftrightarrow(X\wedge Y)\vee(X\wedge Z)$

$\bullet$ $X\vee(Y\wedge Z)\Leftrightarrow(X\vee Y)\wedge(X\vee Z)$

$\bullet$ $\neg(X\wedge Y)\Leftrightarrow\neg X^{\neg}Y$

$\bullet$ $\neg(X\vee Y)\Leftrightarrow\neg X\wedge\neg Y$

$\bullet$ $X\wedge Y\Rightarrow X$

$\bullet$ $X\Rightarrow X\vee Y$

The deductive laws used in our ordinary logical thinking and discussed in

formal logic are given by the notation of entailment logic as follows [Lin-85a].
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$\bullet$ $(X\wedge(X\Rightarrow Y))\Rightarrow Y$

$\bullet$ $(\neg Y\wedge(X\Rightarrow Y))\Rightarrow\neg X$

$\bullet$ $(\neg X\wedge(\neg X\Rightarrow Y))\Rightarrow Y$

$\bullet$ $(X\wedge(\neg X\Rightarrow Y)\wedge(Y\Rightarrow\neg X))\Rightarrow\neg Y$

$\bullet$ $(X\wedge(X\Rightarrow\neg Y))\Rightarrow\neg Y$

$\bullet$ $((X\Rightarrow Z)\wedge(Y\Rightarrow Z)\wedge(X\vee Y))\Rightarrow Z$

$\bullet$ $((X\Rightarrow M)\wedge(Y\Rightarrow N)\wedge(XY))\Rightarrow(M\vee N)$

$\bullet$ $((X\Rightarrow Y)\wedge(X\Rightarrow Z)\wedge(\neg Y^{\neg}Z))\Rightarrow\neg X$

$\bullet$ $((X\Rightarrow M)\wedge(Y\Rightarrow N)\wedge(\neg M^{\neg}N))\Rightarrow(\neg X^{\neg}Y)$

$\bullet$ $(X\Rightarrow Y)\Rightarrow(\neg Y\Rightarrow\neg X)$

$\bullet$ $(X\Rightarrow(Y\wedge\neg Y))\Rightarrow\neg X$

$\bullet$ $(X\Rightarrow\neg X)\Rightarrow\neg X$

$\bullet$ $((X\Rightarrow Y)\wedge(Y\Rightarrow Z))\Rightarrow(X\Rightarrow Z)$

$\bullet$ $((X\Rightarrow M)\wedge(Y\Rightarrow N))\Rightarrow((X\wedge Y)\Rightarrow(M\wedge N))$

$\bullet$ $((X\Rightarrow M)\wedge(Y\Rightarrow N))\Rightarrow((\neg M\wedge\neg N)\Rightarrow(\neg X\wedge\neg Y))$

Note that all above deductive lows are second degree deductive formulas.

This fact means that the second degree entailment formulas are sufficient for

our ordinary logical thinking.

In the framework of the propositional entailment logic, a deductive reasoning

for a formula X from $a$ given set $P$ of formulas, called the premises of the

deductive reasoning, can be regarded as $P\vdash X$ .

Definition 6.2 We say a deductive reasoning is valid if and only if it

satisfies the following two conditions:

(1) the modus ponens “from X and $X\Rightarrow Y$ to infer $Y$
’ is applied at least once;

(2) there exists at least one entailment fornula $f\in P$ which is a deductive

formula. $\square$

For example, “by R2 from X, $Y$ to infer XAY” and “by Rl from $X\wedge Y,$ $(X\wedge Y)$

$\Rightarrow Y$ to infer $Y$
’ are not valid deductive reasoning. “by Rl from $X\wedge(X\Rightarrow Y)$ ,

$(X\wedge(X\Rightarrow Y))\Rightarrow Y$ to infer $Y$
’ is a valid deductive reasoning.

Thus, we have the following proposition.

Proposition The conclusion of a valid deductive reasoning is not a

tautological consequence but an entailment consequence for given premises. $\square$
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7. Concluding Remarks

We have presented why it is not suitable to use the material implication as a

logical basis for deductive reasoning and have discussed what is a valid

deductive reasoning based on the entailment notion that is a logical connective

in entailment logic and relevance logics. The discussion leads us to proposes to

use the entailment as a logical basis for deductive reasoning.

Now, let us discuss what contributions to computer science it can make to use
the entailment as a logical basis for deductive reasoning.

First, the entailment notion provides a logical basis for more clearly and

naturally describing if $\cdots$ then”, only $\cdots$ if”, and “if and only if’ in knowledge

representation.

Second, we can reject ambiguous descriptions for some central concepts of

declarative semantics of logic programs, e.g., “logical consequence”, “correct

answer”, and so on [Lloyd-87], and then give more clear and “logical”

descriptions for such concepts using the entailment notion.

Third, using the entailment as a logical basis for deductive reasoning makes

it possible for us to construct such logic systems where the validity of a

conclusion of a deductive reasoning is dependent only on the validity of given

premises and the correctness of the reasoning and independent of the concrete

content of the conclusion. As a result, a logic programming system or deductive

database based on the entailment logic may answer such a query as “is

judgnent if $X$ then $Y$
’ correct?”.

Finally, for given premises, i.e., knowledge, a theorem prover based on the

entailment logic can deduce many new entailment formulas as valid conditions

with respect to the entailment relation between two propositions, i.e., inference

rules or new knowledge. This provides a logical basis for automatic synthesis of

program, automatic generation of production rules of a production system,

maintenance of a knowledge-based system.

Some important problems related to practical applications of the entailment

logic are:
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(1) Can we provide an adequate formal semantics for the full entailment

logic with which we can discuss the soundness and completeness of the

entailment logic?

(2) Is the entailment logic decidable forprovability and validity?

(3) What automatic theorem proving method is suitable for the entailment

logic?

Another further work is to compare the entailment logic and the relevance

logics with other non-classical logic systems such as Nute’s “conditional logic”

[Nute-80], McDermott’s Nonmonotonic Logic [McDermott-80,82], and so on.

The proposal to use the entailment as a logical basis for deductive reasoning

is one of the results of our investigation for constructing a suitable logic system

for deductive reasoning based concurrent program debugging [Cheng-88]. We

developed an execution monitor for concurrent Ada programs that can record

the execution history of a monitored program [Cheng-87]. In order to provide a

powerful means for its users to debug a concurrent Ada program, we intend to

develop a deductive reasoning based concurrent program debugging approach

[Cheng-88]. In the approach, debugging a program can be regarded as queries

and updates on a deductive database which contains the program specification,

program source text, execution histories, and knowledge about program errors;

detecting a program error can be regarded as a deductive proof for $a$ formal

theorem which is a logical formula specifying the error.

We are working for extending the entailment logic into a temporal

entailment logic in order to construct a suitable logic system for deductive

reasoning based concurrent program debugging [Cheng-88].
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